
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A Yule-Simon process with memory

Published version:

DOI:10.1209/epl/i2006-10263-9

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1730969 since 2020-02-25T16:05:00Z



ar
X

iv
:c

on
d-

m
at

/0
60

86
72

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  3
0 

A
ug

 2
00

6
Europhysics Letters PREPRINT

A Yule-Simon process with memory

C. Cattuto1,2, V. Loreto2 and V. D. P. Servedio3,1

1 Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi , Compendio Vim-

inale, 00184 Rome, Italy
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Abstract. – The Yule-Simon model has been used as a tool to describe the growth of
diverse systems, acquiring a paradigmatic character in many fields of research. Here we study
a modified Yule-Simon model that takes into account the full history of the system by means
of an hyperbolic memory kernel. We show how the memory kernel changes the properties
of preferential attachment and provide an approximate analytical solution for the frequency
distribution density as well as for the frequency-rank distribution.

In 1925 Yule [1] proposed a model to explain experimental data on the abundances of bio-
logical genera [2]. Thirty years later, Simon introduced an elegant copy and growth model [3],
in spirit equivalent to Yule’s model, to explain the observed power-law distribution of word
frequencies in texts [4–6]. In Simon’s growth model, new words are added to a text (more
generally a stream) with constant probability p at each time step, whereas with complemen-
tary probability p̄ = 1 − p an already occurred word is chosen uniformly from within the
already formed text (stream). This model yields a power-law distribution density for word
frequencies P (k) ∼ k−β with β = 1 + 1/p̄ . The same mechanism is at play in the pref-
erential attachment (PA) model for growing networks proposed, in their pioneering article,
by Barabási and Albert [7]. In that case, a network is constructed by progressively adding
new nodes and linking them to existing nodes with a probability proportional to their current
connectivity. Yule-Simon processes and PA schemes are closely related to each other and a
mapping between them has been provided by Bornholdt and Ebel [8].

In the original Yule-Simon process, the metaphor of text construction is somehow mis-
leading because in that process there is no notion of temporal ordering. All existing words
are equivalent and in many respects everything goes as in a Polya urn model [9]. However,
the notion of temporal ordering may play an important role in determining the dynamics of
many real systems. In this perspective it is interesting to investigate models where temporal
ordering is explicitly taken into account. A first attempt in this direction has been provided
by Dorogovtsev and Mendes (DM) [10], who studied a generalization of the Barabási-Albert
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Fig. 1 – Yule-Simon process with a fat-tailed memory kernel.

model by introducing a notion of aging for nodes. Each node carries a temporal marker
recording its time of arrival into the network, and its probability to be linked to newly added
nodes is proportional to its current connectivity weighted by a power-law of its age. Another
recent example has been proposed in [11] in relation with the very new phenomenon of collab-
orative tagging [12]: new web sites appeared where users independently associate descriptive
keywords – called tags – with disparate resources ranging from web pages to photographs. A
sort of tag dynamics develops, eventually yielding a fat-tailed distribution of tag frequencies.
In order to explain such phenomenology, a generalization of the Yule-Simon process has been
introduced [11], which explicitely takes into account the time ordering of tags. Specifically,
an hyperbolic memory kernel has been introduced to weight the probability of copying an
existing tag, affording a remarkable agreement with experimental data.

In this Letter we show that the memory kernel induces a non-trivial change of the properties
of PA with respect to the original Yule-Simon process as well as to the DM model with aging.
Moreover, we analytically investigate the generalization of the Yule-Simon model and provide
an approximate solution for the frequency distribution density as well as for the frequency-rank
distribution.

The model we investigate is defined as follows. We start with n0 words. At every time
step t a new word may be invented with probability p and appended to the text, while with
probability p̄ = 1 − p one word is copied from the text, going back in time by i steps with

a probability that decays with i as Q(i) = C(t)
τ+i

, as shown in Fig. 1. C(t) is a logarithmic
time-dependent normalization factor and τ is a characteristic time-scale over which recently
added words have comparable probabilities.

The first important observation concerns the deviations of our model from the pure PA rule
of the original Yule-Simon model. An elegant and efficient way to check for deviations from
PA was suggested by Newman [13]. In Simon’s model, the probability of choosing an existing
word, which already occurred k times at time t, is p̄ k π(k, t), where π(k, t) is the fraction
of words with frequency k at time t. In order to ascertain whether a PA mechanism might
be at work, we construct the histogram of the frequencies of words that have been copied,
weighting the contribution of each word according to the factor 1/π(k, t). If this histogram
displays a direct proportionality to the frequency k, then one might be observing a PA-driven
growth. For our model, the numerical results in Fig. 2 show that the chosen form of the
memory kernel leads to a sub-linear attaching probability. The same kind of sub-linearity has
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Fig. 2 – Deviations from the preferential attachment rule (Simon’s model), in the case of our model
and DM model. For all curves, p = 0.4 and 106 steps were simulated. Finite size effects are responsible
for the drop at high frequencies, as extensively discussed in Ref. [13].

been observed in the growth dynamics of the wikipedia network [14]. Conversely, the DM
model with hyperbolic kernel (a limiting case for the analysis of Ref. [10]) displays no clear
dependence on k.

In order to get a deeper insight into the phenomenology of the model we present an analyt-
ical study aimed at computing the approximate functional form of the probability distribution
of word frequencies as well as the corresponding frequency-rank distribution. In the following
we shall write the normalization factor as C, with no explicit mention of its time dependence.
We also define α(t) ≡ p̄ C(t), and we will similarly refer to it as α. We assume that word X
occurred at time t for the first time, and we ask what is the probability P (∆t) that the next
occurrence of X happens at time t+∆t, with ∆t ≥ 1.

If ∆t = 1, P (∆t) is the probability of replicating the previous word, i.e. the product be-
tween the probability p̄ of copying an old word, and the probability of choosing the immediately
preceding word (i = 1) computed according to the chosen memory kernel, Q(1) = C/(τ + 1).
This gives

P (1) =
p̄ C

τ + 1
=

α

τ + 1
. (1)

For ∆t > 1, P (∆t) can be computed as the product of the probabilities of not choosing
word X for ∆t − 1 consecutive steps, multiplied by the probability of choosing word X at
step ∆t. In order not to choose word X at the first step, one has to either append a new
word (probability p) or copy an existing word (probability p̄) which is not X (probability
1− C/(τ + 1)).

Finally, under the approximation that C is constant from step to step, i.e. ∆t ≪ t, we can
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write the return probability as the product

P (∆t) ≃

[

p̄ C

τ +∆t

]

·

∆t−1
∏

i=1

[

p+ p̄

(

1−
C

τ + i

)]

. (2)

Taking the logarithm of P (∆t), we can write the above product as the sum

lnP (∆t) = −α

∆t−1
∑

i=1

1

τ + i
+ ln

α

τ +∆t
, (3)

where we used the fact that α ≪ 1 for t ≫ 1.
By using the approximate expression lnP (∆t) =

∫ ∆t

1
(lnP (∆t′ + 1) − lnP (∆t′)) d∆t′ we

obtain
P (∆t) ≃ α(1 + τ)α(τ +∆t)−α−1 (4)

derived under the assumption that t ≫ ∆t ≫ 1. The estimated value of P (∆t) depends on
time through α, so that the probability distribution of intervals ∆t , which turns out to be
correctly normalized, is non-stationary.
We now focus, for simplicity, on the case τ = 0. At any given time t, the characteristic return
time 〈∆t〉 can be computed by using Eq. 4:

〈∆t〉 =

t
∑

∆t=1

P (∆t)∆t ≃
α

1− α
t1−α . (5)

In a continuum description the frequency ki of a given word i, will change according to
the rate equation

dki
dt

= p̄Πi , (6)

where Πi is the probability of picking up a previous occurrence of word i. With our choice of
the memory kernel, the exact value of Πi is given by the sum

Πi = C

j=ki
∑

j=1

1

t− t
(i)
j

, (7)

where t
(i)
j (j = 1, 2, . . . , ki) are the times of occurrence of word i.

We adopt a mean-field approach and assume that the above sum can be written as the

frequency ki times the average value of the term (t− t
(i)
j )−1 over the occurrence times t

(i)
j .

As shown in Fig. 3a, this is supported by numerical evidence, so that we can write (dropping
the word index (i) from here onward):

Πi = C

j=ki
∑

j=1

1

t− tj
≃ C ki

〈

1

t− tj

〉

j

, (8)

where 〈 〉j denotes the average over the ki occurrences of word i. Furthermore, we assume
that the average is dominated by the contribution of the most recent occurrence of word i, at
time tki

: 〈(t − tj)
−1〉j ≃ (t − tki

)−1. We replace t − tki
with the typical return interval for

word i, and use Eq. 5 to estimate the latter, obtaining:
〈

1

t− tj

〉

j

≃
1

t− tki

≃
1

〈∆t〉
=

1− α

α
·

1

t1−α
, (9)
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Fig. 3 – a) Rate Πi of Eq. 7, for a given word i having frequency ki at time t (p = 0.05, n0 = 10,
t = 30000) b) Memory kernel of Eq. 10 averaged over the times of occurrence tj and over about 2000
realizations of the process (p = 0.05, n0 = 10, t = 5 · 103, 104, 2 · 104, 3 · 104, 5 · 104). Values are
shown for a word of given frequency k = 200 (dots), a word of frequency k = 500 (crosses) and for
the average over all frequencies (squares). Numerical error bars are within the size of data markers.
The two curves are obtained by fitting Ω in Eq. 10 against numerical data. The fitted continuous line
sets the value of Ω used from Eq. 11 onwards.

which has a (sub-linear, since α & 0) power-law dependence on t and a slower (logarithmic)
time-dependence through α. Fig. 3b shows that the above expression captures the correct
temporal dependence of the average 〈(t − tj)

−1〉 for a given frequency ki, provided that a
constant factor Ω is introduced, as follows:

〈

1

t− tj

〉

j

≃
1

Ω
·
1− α

α
·

1

t1−α
. (10)

The need for a corrective factor Ω is a consequence of our simplifying assumptions, namely
our mean-field approximation, the fact that we ignored all occurrences of word i but the very
last, and the approximations underlying our estimate of the return time ∆t. Moreover, as
shown in Fig. 3b, Ω depends on the frequency ki of the selected word i. In order to keep
only the linear dependence of the kernel on ki we approximate Ω with its average value over
k, numerically estimated as Ω ≃ 1.52 (see Fig. 3b). While this is certainly a rather crude
approximation, it appears to work remarkably well, as we will show in the following (Figs. 4
and 5).
We introduce Eq. 10 and Eq. 8, into the rate Eq. 6, obtaining:

dki
dt

≃ αki

〈

1

t− tj

〉

j

=
ki
Ω

· (1− α) · tα−1 . (11)

We integrate Eq. 11, again neglecting the slow time-dependence of α, from time ti, when word
i appeared for the first time (with frequency 1) up to the final time t, when word i has reached
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Fig. 4 – Frequency probability distribution density P (k) of word occurrence. Numerical data (dots,
averaged over 50 realizations and binned) are in very good agreement with Eq. 14 (solid line) (p = 0.05,
n0 = 10, t = 30000, Ω = 1.52). The dashed line is provided as a guide for the eye.

Fig. 5 – Frequency-rank distribution P (R). Upper curves: Numerical data (dots, average over 50
realizations) are compared against the prediction of Eq. 15 (solid line) (p = 0.05, n0 = 10, t = 30000,
Ω = 1.52). Here the value of Ω is univocally set by our numerics, as explained in Fig. 3b. Lower
curves (shifted one decade downwards): a single realization of our process (squares) is fitted with
respect to Ω against Eq.15 (dashed line), yielding Ω = 1.46.

frequency ki,
∫ ki

1

dk′i
k′i

=
1− α

Ω
·

∫ t

ti

dt′ t′
α−1

. (12)

Performing the integration we get the stretched exponential dependence

ki = exp

[

1− α

Ωα
tα
]

· exp

[

−
1− α

Ωα
tαi

]

= Ae−Ktα
i , (13)

where K ≡ 1−α
Ωα

and A ≡ eKtα .
The probability distribution density for word frequencies P (k) can now be computed as [15,

16]:

P (k) =
p

(n0 + pt) (Kα) k

[

ln(A/k)

K

]
1

α
−1

, (14)

and is in very good agreement with numerical evidence, as shown in Fig. 4 (upper curves),
where it is worth noticing that the value of Ω is univocally set by our numerics. The corre-
sponding frequency-rank distribution is:

P (R) ≃
A

n0 + t
exp

[

−K

(

R

p

)α]

. (15)

Fig. 5 shows that the above equation is in fair agreement with numerical evidence.
In this Letter we have shown how the introduction of a memory kernel drastically changes

the properties of PA with respect of the original Yule-Simon process as well as the Dorogovtsev-
Mendes model with aging [10].

In order to assess the role of the memory kernel we have presented a continuum approach to
a modified Yule-Simon model. The presence of a long-term memory kernel makes the rigorous
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treatment non trivial. Our approach makes use of some assumptions (sometimes rough, but
numerically verified) concerning especially the functional form of the averaged memory kernel,
both as a function of time and of word frequency. We require a single phenomenological pa-
rameter (Ω), for which we presently have no theoretical estimates. Nevertheless our approach
affords an excellent agreement between analytical and numerical results for the probability
distribution density P (k). The frequency-rank distribution P (R) appears to be much more
sensitive to the approximations we made, but the agreement between numerics and theory
is nevertheless reasonable. This is somehow the signature that our theoretical treatment is
capturing some of the important statistical features of the model.

We wish to remark that the frequency probability density P (k) displayed by the model
(Fig. 4) could be easily confused with a power-law behavior with exponent−2, as in the original
Yule-Simon model with p ≪ 1, and a simple PA mechanism could be inferred. Instead, as
shown for the case at hand, more refined indicators (e.g. that of Fig. 2) can tell apart different
underlying mechanisms of growth. This should be read as a general warning against reading
an apparent power-law behavior for the P (k) as the signature of a PA mechanism at play.

The approach described here could be extended to the more complex case of τ 6= 0.
In this respect, several problems remain open: does τ induce a relevant time scale? Is it
asymptotically relevant or does it only affect the dynamics on short time-scales? Does the
limit τ ≫ t fall in the same universality class of the Yule-Simon model without memory?
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