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Organic pollution of domestic origin represents the most important cause
of water quality deterioration in rural and mountainous areas of the
northern Apennines. In this study, the ecological consequences of a small

10 sewage dump in the Caramagna Creek (northwestern Italy) were analyzed.
The addition of organic matter and nutrients led to a dramatic change in
the taxonomic richness and density of the macrobenthic community.
Also functional, biological, and ecological composition of the invertebrate
assemblages changed downstream of the effluent. Interestingly, benthic

15 chlorophyll a showed only a weak increase in the downstream section,
despite the increased levels of nutrients. This work emphasizes the
importance of better management of sewage treatment also in remote areas.

Keywords: 222

Introduction

20 Organic pollution represents one of the most common causes of degradation of
water quality in stream ecosystems (Paul and Meyer 2001). This kind of pollution is
usually categorized as derived from point sources (Goudie 2006). Industrial and farm
effluents, and urban run-off are surely important in this context, but sewage pollutants
of domestic origin represent the greatest source of organic materials discharged into

25 fresh waters (Mason 2002). In much of the developed world, the greatest part of the
population is served by public sewers, and approximately the 80% of sewage receives
at least secondary treatment, but the release of crude sewage into watercourses still
remains a great ecological problem. Sewage from villages and towns is usually treated
and then sent into river systems of medium-high order, but this practice is not so

30 diffuse when we consider wastewaters from isolated houses and small housing
assemblages. The impacts of these small point sources attain special relevance in
circum-Mediterranean ecosystems, where water-level is scarce and temperature is
elevated (Ortiz et al. 2005; López-Rodrı́guez et al. 2009).

The northern Apennines area, situated between the Alps and the Mediterranean,
35 represents an important biodiversity hotspot, with peculiar climatic, geomorpholo-

gic, and biologic characteristics. This area has a low human population density; the
economy is generally based on non-intensive agricultural and silvicultural practices,
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while medium and large industrial plants are lacking. Northern Apennine rivers are
characterized by the presence of discharge peaks produced by autumn–winter rains,

40 after which flows decline to baseflow in early summer. The hydrographic network
of the area, because of the complex morphology of the Apennine mountains,
is characterized by the presence of a few medium-sized rivers but a myriad of small
to very small streams and creeks. These lotic systems host rich and diversified
biological communities (Bo et al. 2009, 2010), with many rare and interesting taxa

45 (Tierno de Figueroa et al. 2009; Fenoglio et al. 2010a). In the recent years, these
environments have been increasingly threatened by human activities. Recent studies
have emphasized the role of morphological alterations in damaging lotic systems
of the northern Apennines (Hering et al. 2001), but little information is available
about the effects of sewage micro-effluents on small Apennine creeks. The aim of

50 this study was to analyze the effects of a micro-point source of organic pollution on
the biota of a small Apennine creek, investigating the impacts of the effluent on the
macroinvertebrate community structure and composition and on the benthic
chlorophyll a abundance.

Methods and materials

55 This study was conducted in the Caramagna Creek, a small tributary of the Bormida
River, northwestern Italy (44�360 N–8�320 E; 280 m a.s.l.). Dense woodlands
with small scattered urban areas cover the entire catchment. Riparian vegetation
is abundant and mainly composed by Alnus glutinosa, Carpinus betulus, and
Robinia pseudoacacia, and the stream flows through a narrow, sinuous channel,

60 characterized by a moderate slope. Riverbed width is approximately 2.0–2.5m, and
in this area substrate showed the following particle composition: 10% sand, 30%
gravel, 50% pebbles, and 10% boulders. Moreover, there is a natural series of riffles
alternating with shallow pools, with a generally moderate current velocity.
At the study site, no morphological alterations are present, but the creek receives

65 an effluent sewer from a small cluster of houses. To evaluate the impact of this point
source of pollution, the creek was divided into two parts, and samplings were
performed at one reach located 50m upstream and one 50m downstream of the
sewer pipe. Main chemical and microbiological parameters were measured in six
occasions (Table 1). Main physicochemical parameters were measured in the field

Table 1. Main chemical-microbiological parameters upstream and
downstream of the sewage outfall in Caramagna Creek (mean� SD).

Parameters Upstream Downstream

Conductivity (mS/cm) 469.0� 41.8 510.8� 37.1
DO (mg/L) 11.30� 0.99 9.04� 0.69
T (�C) 8.30� 5.28 8.53� 5.84
Total P (mg/L) 0.05� 0.00 0.82� 0.68
COD (mg/L) 7.51� 1.40 24.0� 30.7
NHþ4 (mg/L) 0.07� 0.07 2.88� 3.84
NO�3 (mg/L) 0.71� 0.34 0.69� 0.40
pH 7.91� 0.19 6.78� 2.85
Anionic tensioactives (mg/L) 0.05� 0.00 0.06� 0.01
E. coli (cfu/mL) 0.00� 0.00 1983.3� 3504.5
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70 with Eijkelkamp 13.14 and 18.28 portable instruments. Water samples were also
collected from the sub-surface in acid-washed polythene bottles or sterile glass
bottles. In laboratory, some other chemical and bacteriological properties of the
water were assessed by using A.P.A.T. - I.R.S.A. (2003) methods (total P¼M.598,
COD¼M.014, NHþ4 ¼M.589, NO�3 ¼M.020, anionic tensioactives¼M.268, and

75 Escherichia coli¼M.001).
Macroinvertebrate community composition and structure were evaluated using

a 20� 20 cm2 Surber sampler (255mm mesh). Samples were collected at each station
monthly from January 2005 to March 2006. In the laboratory, all organisms were
counted and identified to the genus level, except for Annelida and early instars of

80 some Trichoptera and Diptera, which were identified to the family level. Each taxon
was also assigned to one of the following functional feeding groups: scrapers (Sc),
shredders (Sh), collector-gatherers (Cg), filterers (F), or predators (P) according to
Merritt and Cummins (1996). Moreover, a classification of taxa into seven biological
and seven ecological groups was conducted according to the Usseglio-Polatera et al.

85 (2000) species traits approach. In the same period, benthic chlorophyll a was assessed
on six occasions by positioning 84 ceramic tiles in the stream reach. Tiles were left in
place for 1 month and then brushed to collect attached material. We determined
chlorophyll a concentrations by spectrophotometry following extraction in 90%
acetone according to Steinman and Lamberti (1996). We used the Mann–Whitney

90 U-test to evaluate differences in biological measures between the upstream and the
downstream sites.

Statistical analyses were performed with Systat 8.0 (Wilkinson 2000).

Results and discussion

Totally, we collected 156 samples and identified 13,981 organisms belonging to 92
95 taxa in the section upstream of the sewage outfall and 48,549 organisms belonging to

Figure 1. Relative abundance of functional feeding groups upstream (U) and downstream (D)
of the sewage outfall in Caramagna Creek.
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56 taxa in the downstream section of Caramagna Creek. The upstream and

downstream reaches were different from each other in many biological aspects.
The upstream section of Caramagna Creek is a typical Apennine low-order

watercourse. Richness and density of the macroinvertebrate community were high
100 and in the range reported for other streams in this area (Fenoglio et al. 2005, 2010b).

However, taxonomic richness was significantly ( p5 0.001) different between

upstream (N¼ 17.7� 5.76 SD) and downstream (N¼ 8.70� 6.18 SD) sites.

Likewise, organism density was significantly ( p5 0.001) different, being

128.2� 106.6 SD organisms/m2 upstream but 1032.9� 1495.6 SD organisms/m2

105 downstream.
Furthermore, in the upstream section, the functional composition of the benthic

biocenosis seemed well structured. Collector-gatherers comprised the most abundant

functional feeding group, followed by shredders, filterers, predators, and scrapers.

Downstream of the sewage effluent, the functional composition was completely
110 altered, and collector-gatherers represented the dominant and almost exclusive

group. Considering the relative importance of the functional feeding groups in the

upstream and downstream communities, significant ( p50.001) differences were also

present for all functional groups except the collector-gatherers (Figure 1).

Ephemeroptera/Plecoptera/Trichoptera taxa were present, with 34 taxa (representing
115 49.7% of the total number of organisms) in the upstream reach and 24 taxa (1.7% of

the total number) in the downstream reach (Table 2).
Considering the relative importance of the biological traits group in the two

communities, significant (p5 0.001) differences were evident in all trait groups

except group ‘b’ (Figure 2). The most represented biological trait group was the ‘e’
120 group (small- or medium-sized organisms, uni-or plurivoltine, with aquatic respi-

ration, crawlers), followed by the ‘f’ group (medium-sized or large monovoltine

organisms, with aquatic respiration, crawlers), while the ‘b’ group was the rarest

(medium or large crawlers or burrowers, mostly ovoviviparous).
Considering the relative importance of the ecological traits groups, significant

125 ( p50.001) differences were also apparent between the two communities for all

groups except the ‘E’ group (i.e., eurythermic or thermophilous mesosaprobic, living

in lentic riverine microhabitats) (Figure 3). The most important group was the ‘B’

group (organisms adapted to rhithronic and oligotrophic environments with coarse

substrate), followed by the ‘C’ group (those living in rhithronic or epipotamic

130 oligotrophic environments with slow-medium current velocities). The ‘F’ and ‘D’

groups (organisms avoiding the main channel and living in semi-lentic habitats,

oligo- or mesotrophic) were also abundant.
Downstream of the sewage outfall the biological community changes dramat-

ically. Density of invertebrates increased eightfold, while the taxonomic richness
135 of the community collapsed, with the complete loss of most taxa. Oligochaeta

Naididae and Diptera Chironomidae represented, respectively, 79.7% and 17.0%

of the total invertebrates collected in the downstream samples. These groups are

usually well known for their tolerance to organic pollution and, as collector-

gatherers, are advantaged by the increased presence of fine particulate organic
140 matter downstream. Naididae are multivoltine, burrowers/interstitial, micropha-

gous deposit-feeders (biological trait group ‘F’), while Chironomidae are

small/medium-sized organisms, plurivoltine, and short-lived crawlers with varied

feeding habits (group ‘E’).

6 T. Bo and S. Fenoglio
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Figure 2. Relative abundance of biological traits groups (Usseglio-Polatera et al. 2000) in the
functional feeding group presence in the upstream (U) and downstream (D) reaches of
Caramagna Creek.

Figure 3. Relative abundance of ecological traits groups (Usseglio-Polatera et al. 2000) in the
functional feeding group presence in the upstream (U) and downstream (D) reaches of
Caramagna Creek.
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Ecologically, both Naididae and Chironomidae are organisms adapted to the life
145 in slow flowing or semi-lentic, mesosaprobic environments with fine and organic

substrata (ecological group ‘F’).
The increased concentrations of nutrients downstream versus upstream would

suggest an increase in the instream autotrophic component. However, although the

amount of chlorophyll a found on artificial substrates was slightly higher
150 downstream of the sewage outlet (0.44� 0.50 SDmg/cm2) than upstream

(0.32� 0.19 SD mg/cm2), the difference was not significant.
The impact of small-not-regulated sewage sources on high quality aquatic

environments is important. The protection of lotic environments should not be

entrusted only to an efficient management of large sewage treatment plants, but it
155 must assume an accurate control of the many, small organic waste dumps that are

present also in isolated and rural areas.
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