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Aesthetic appreciation of musical 
intervals enhances behavioural 
and neurophysiological indexes of 
attentional engagement and motor 
inhibition
p. Sarasso  1*, i. Ronga  2, A. pistis1, e. forte1, f. Garbarini  2, R. Ricci1 & M. neppi-Modona  1

from Kant to current perspectives in neuroaesthetics, the experience of beauty has been described as 
disinterested, i.e. focusing on the stimulus perceptual features while neglecting self-referred concerns. 
At a neurophysiological level, some indirect evidence suggests that disinterested aesthetic appreciation 
might be associated with attentional enhancement and inhibition of motor behaviour. to test this 
hypothesis, we performed three auditory-evoked potential experiments, employing consonant and 
dissonant two-note musical intervals. twenty-two volunteers judged the beauty of intervals (Aesthetic 
Judgement task) or responded to them as fast as possible (Detection task). in a third Go-noGo task, 
a different group of twenty-two participants had to refrain from responding when hearing intervals. 
individual aesthetic judgements positively correlated with response times in the Detection task, with 
slower motor responses for more appreciated intervals. electrophysiological indexes of attentional 
engagement (N1/P2) and motor inhibition (N2/P3) were enhanced for more appreciated intervals. These 
findings represent the first experimental evidence confirming the disinterested interest hypothesis and 
may have important applications in research areas studying the effects of stimulus features on learning 
and motor behaviour.

Most current theories of aesthetics describe aesthetic appreciation as a mental state focusing on the stimulus 
perceptual features, while neglecting self-referred concerns1–8. This idea of aesthetic pleasure as disinterested, 
originated in the western positivist philosophical tradition. Kant, in the ‘Critique of Judgement’, defined taste as 
“the faculty of judging an object […] by an entirely disinterested satisfaction or dissatisfaction”9. This notion was 
further adapted into a psychological theory of aesthetics by the philosopher Schopenhauer10, according to whom 
aesthetic experiences free the observer from “will”, allowing him or her to achieve a transitory will-less [willenlos] 
perception of the world.” Therefore, aesthetic appreciation is defined as independent from any material or social 
reward or loss (i.e., disinterested; for a recent discussion see e.g., Kreitman11) and at the same time prompted by a 
special attitude of attention (i.e., focused on the stimulus features; see e.g., Stolnitz12). For the philosopher Dewey, 
aesthetic experiences involve an intense engagement in the ever-changing present moment and stand out from 
more mechanical and routine interactions with the environment13. The temporary suspension of prototypical 
responses that results from psychological distance (i.e. absence of personal goals or threats) makes room for a 
higher intensity of the felt sensations and emotions elicited by beautiful objects (Distancing-Embracing model8). 
This enables observers to fully embrace the “here and now” of perception for its own sake, and the subjectively felt 
intensity of sensations being rewarding in its own right14.

Interestingly, recent neuroaesthetic research has proposed neurofunctional models of aesthetic apprecia-
tion that refer to the same theoretical framework described above. Aesthetic pleasure is considered as a peculiar 
reward, directed to promote contemplation (i.e., “sensing and learning pleasures”5,15–18), while preventing the 
craving for objects by inhibiting motor activation3. We will refer to this link between aesthetic appreciation, atten-
tion to stimulus features and inhibition of motor behaviour, as the disinterested interest hypothesis.

1SAMBA (SpAtial, Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Turin, 
Italy. 2MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy. *email: pietro.sarasso@unito.it

open

https://doi.org/10.1038/s41598-019-55131-9
http://orcid.org/0000-0003-0859-7764
http://orcid.org/0000-0002-2960-4639
http://orcid.org/0000-0003-1210-0175
http://orcid.org/0000-0002-2481-803X
mailto:pietro.sarasso@unito.it


2Scientific RepoRtS |         (2019) 9:18550  | https://doi.org/10.1038/s41598-019-55131-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Some neuroimaging results support this hypothesis. Through an electrophysiological study, de Tommaso et al.19  
found increased motor inhibition in response to beautiful images as compared to ugly ones. More specifically, the 
amplitude of the event-related potential (ERP) P3 component, known to be modulated by motor-inhibition, was 
greater for visual stimuli perceived as more beautiful than for neutral or ugly images. Kawabata and Zeki20 found 
significantly greater fMRI activations in bilateral motor cortices during the observation of paintings judged as 
ugly, as compared to paintings rated as beautiful. Interestingly, motor activations were linearly increasing with 
the subjectively perceived stimulus ugliness. Similarly, Di Dio and colleagues found increased activations peaking 
in the left motor cortex after the presentation of images of statues rated as ugly compared to beautiful images21. 
Moreover, in the auditory domain, the existence of a relation between motor responses to sounds and their pleas-
antness has also been described18. Roy and colleagues22 found that the startle eye blink reaction amplitude was 
larger during unpleasant compared with pleasant consonant intervals. Moreover, a number of neuroimaging 
studies16,23–27 revealed the presence of enhanced sensory processing for more appreciated visual and auditory 
stimuli, which might be attributed to the effect of increased attentional engagement28–30. Additionally, fMRI stud-
ies investigating “disinterested” aesthetic judgements showed partially functionally dissociable networks under-
lying judgements of beauty and more pragmatic (e.g. symmetry) judgments25. During aesthetic judgements only, 
more appreciated visual stimuli caused a “beauty-induced” signal boost in higher visual processing areas25 that 
mimics the effect of increased attention. However, to the best of our knowledge, there is no direct evidence of a 
link between beauty-related motor inhibition and attention engagement towards beautiful stimuli, as postulated 
by the disinterested interest hypothesis.

In the present study, we aim at testing this hypothesis, both at a behavioural and at an electrophysiological 
level, with auditory stimuli. Sounds, as well as images, can induce an aesthetic response, and, at the same time, it is 
possible to control for sounds’ basic features (e.g., frequency, duration, complexity, volume) in a very precise way. 
Previous studies demonstrated that ERPs may provide neurophysiological indexes of both attentional engage-
ment/selection31,32 and motor inhibition33–35, thus making EEG a suitable technique to investigate the possible 
correlates of disinterested aesthetic appreciation. We will present content-free auditory stimuli, consisting in more 
or less consonant two-note intervals (i.e., two synthetic tones displayed simultaneously), because consonance is 
known to influence aesthetic appreciation36 and to modulate cortical responses measured with EEG37–41. Even 
though some studies found peference for mild dissonance over consonance42, more consonant musical intervals 
are normally (especially in non musicians43) more appreciated than dissonant ones36,44–48. Importantly, it is pos-
sible to produce consonant and dissonant intervals sharing comparable physical features by just varying the ratio 
between the frequency (Hz) of single tones36 (§ Stimuli). This was crucial in the present experiment to control for 
potential confounding effects, due to tones’ basic physical features, known to affect EEG responses49.

To test our hypothesis, we performed three EEG experiments. In Experiment 1, participants were asked to 
evaluate the beauty of single intervals (aesthetic judgement task, from now on AJ task). In Experiment 2 partic-
ipants listened to the same intervals intermixed with white noise (intervals were presented in 50% of trials) and 
had to respond as fast as possible by pressing a button whenever they heard an interval (Detection task). This task 
aimed at investigating the relationship between aesthetic experience and motor behaviour. In Experiment 3, par-
ticipants had to perform a Go-NoGo task, which is usually employed to investigate motor-inhibition mechanisms 
and their electrophysiological correlates50,51. In this task subjects had to respond to frequent Go stimuli, while 
avoiding to respond to infrequent NoGo stimuli.

If the disinterest interest hypothesis is correct, we expect the following results: 1) Slower response times in the 
detection task for more appreciated intervals (as a behavioural index of related motor inhibition); 2) The enhance-
ment of ERP components related to motor inhibition (the N2/P3 complex) for more appreciated intervals; 3) The 
enhancement of attention-related ERP components (such as the N1/P2 complex) for more appreciated intervals.

Results
Experiment 1 (AJ task). Behavioural results. Aesthetic judgements (AJs) were significantly modulated by 
consonance (F = 45.682, p < 0.001, η2

p = 0.685, observed-power = 1): more consonant intervals were, on average, 
more appreciated than more dissonant ones on a 1–9 Likert scale (5.298 for Octaves, 4.028 for Fifths and 3.26 for 
Tritones, Fig. 1c).

Auditory evoked potential (AEP) results: The point-by-point ANOVA (corrected with 1000 permutations) 
highlighted two significant clusters with a fronto-central distribution. On Fz, the main effect of ‘Condition’ 
was a significant source of variance within the time window of 80–194 ms and 212–257 ms, corresponding to 
the latency of the N1/P2 complex and the N2 component, respectively (Fig. 1). Post-hoc pairwise comparisons 
(cluster corrected point-by-point t-tests comparing waveforms corresponding to the three different interval 
types) were performed given the significant effect of “Interval type”. The results of point-by-point t-tests are fully 
reported in Table 1.

Mean correlation coefficients (averaged across participants) between amplitudes at channel Fpz and AJs are 
depicted in Fig. 2. The point-by-point t-test on single subjects’ r values highlighted a significant positive corre-
lation between trial-by-trial P2 amplitudes and AJs, as revealed by the presence of a significant cluster centred 
at the latency corresponding to the peak of the P2 component (150–189 ms). Moreover, a second significant 
time-cluster at 272–296 ms revealed a negative correlation between N2 amplitudes and AJs. As shown by scalp-
maps in Fig. 2, r-values were peaking at Fpz at 180 and 280 ms post-onset.

Experiment 2 (Detection task). Behavioural results. Omission rate was 0% in the Detection task. On 
average, 8 responses per participant (2.85% of the total) were considered as outliers (i.e. RTs exceeded two stand-
ard deviations from the single subject’s mean) and were excluded from subsequent analyses. Outliers were equally 
distributed across interval types.
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Figure 1. AEPs and behavioural results. Panel a shows grand-average AEPs recorded at Fz during the Aesthetic 
Judgement task. AEPs elicited by different interval types during the Detection and Go-Nogo task are represented 
in panel d and g, respectively. Shaded areas represent significant time-clusters evidenced by the point-by-
point ANOVA. Scalp-maps depict voltage distribution registered during the Aesthetic Judgement (panel b) and 
Detection task (panel e) at 110 ms (N1), 200 ms (P2), 260 ms (N2). Panel h shows voltages registered on the 
scalp at 310 ms post-onset (P3) during the Go-NoGo task. Panels c, f and i depict all subjects’ mean AJs from 
Experiment 1, RTs from Experiment 2 and AJs from Experiment 3, respectively. Bars represent standard errors. 
Asterisks represent significant differences in single subjects’ mean AJs and RTs between different interval types 
evidenced by two-tailed t-tests (*p < 0.05, **p < 0.001, n.s = not significant). P8 = perfect octaves, P5 = perfect 
fifth intervals, TT = tritone intervals.

(I) Interval type (J) Interval type
Significant clusters latencies 
(ms post-onset)

Experiment 1

P8 P5
126–174

207–259

P5
TT

78–135

160–193

229–258

TT 115–156

Experiment 2

P8

P5
126–158

222–281

TT
177–207

235–291

P5 TT
115–149

185–213

Experiment 3

P8

P5
40–75

113–165

TT

82–186

274–370

519–601

P5 TT 544–623

Table 1. Post-hoc point-by-point t-tests. This table reports the latencies of significant clusters evidenced 
at Fz by the point-by-point t-tests comparing waveforms registered during different interval types (I vs. J). 
P8 = Octaves; P5 = Fifths; TT = Tritones.
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The repeated measures ANOVA performed on RTs failed to reveal a significant effect of the factor interval type 
(F = 2.678, p = 0.08, η2

p = 0.113, observed-power = 0.502). Interestingly, however, RTs were on average slower 
for more appreciated intervals (300.617 ms for Octaves, 294.194 for Fifths and 290.616 for Tritones, Fig. 1f). 
Moreover, based on our hypothesis #1 and despite the fact that the main effect of interval type was not signif-
icant, we performed post-hoc analyses (two-tailed t-tests), to verify whether pair-wise comparisons between 
RTs belonging to different interval types yielded any significant result. Post-hoc comparisons revealed a sig-
nificant difference between RTs to Octaves and Tritones (t = 2.066; p = 0.026; Cohen’s d = 0.075). Furthermore, 
results from the linear mixed-model analysis evidenced that AJs could significantly predict RTs (estimate of the 
effect = 3.133; 95% CI: 0.147 + 6.199; p = 0.04; t = 2.062). This result was significant after correction for multiple 
comparisons (Benjamini–Hochberg correction; false discovery rate: 10%; total number of tests in the study: 30). 
Crucially, as we expected, predicted RTs increased with AJs (see Fig. 3).

AEP results. Similarly to Experiment 1, the point-by-point ANOVA (corrected with 1000 permutations) evi-
denced three significant clusters, with a wide fronto-central distribution. On Fz, the main effect of ‘Interval type’ 
was a significant source of variance within three time windows: 121–155 ms, coinciding with the latency of N1; 

Figure 2. Point-by-point trial-by-trial correlation analysis. The graph shows mean (averaged across all 
participants) correlation coefficients between single subjects’AJs (Experiment 1) and signal amplitudes at 
channel Fpz. Shaded areas represent significant clusters evidenced by the point-by-point t-test comparing the 
22 single subjects’ r values against 0. The t-test on r values between amplitudes and AJs revealed two significant 
clusters (150–189 and 272–296 ms) corresponding to P2 and N2. Scalpmaps represent the distribution of mean r 
values at 180 and 280 ms post-onset.
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Figure 3. Linear mixed-model. The 22 coloured lines represent single participants’ predicted RTs, based 
on the parameters estimated by the mixed-model analysis (§ Data analysis, Behavioural data) and observed 
AJs. Predicted RTs were defined as a function of subjects’ ID and observed AJ. The positive slope of the lines 
indicates a positive statistically significant (§ Results, Experiment 2) relation between AJs and RTs.
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178–209 ms, corresponding to the latency of the P2 component; and 225–288 ms, coinciding with the N2 com-
ponent (Fig. 1d). Therefore, the point-by-point analysis revealed that N1, P2 and N2 amplitudes were all signifi-
cantly modulated by interval type during both the AJ and the Detection task.

ANOVA results on peak amplitudes are fully reported in Table 2, where we also included pairwise compari-
sons between the levels of the factor interval type for components that were found to be significantly modulated 
by interval type. Results were corrected for multiple comparisons (Benjamini–Hochberg correction; false discov-
ery rate: 10%; total number of tests in the study: 30). Overall peak analyses confirmed the findings highlighted 
by the point-by-point ANOVA, except for P2 peak in Experiment 2, where differences among interval types 
did not reach significance. In Experiment 2, N1 and N2 peak voltages were significantly modulated by interval 
type. Average peak amplitudes for significant components are represented in Fig. 4. With the exception of N1 in 
Experiment 2, average peak amplitudes generally showed the same trend as AJs, with greater peak voltages regis-
tered during the display of more appreciated consonant intervals.

Experiment 3 (Go-NoGo task). Behavioural results. One participant was excluded from subsequent 
analyses for a technical problem which hampered the recordings. The remaining 21 participants of Experiment 3 
performed, on average, 4.95 errors in the Go-NoGo task (incorrect NoGo trials were 5.893% of the total). Average 
error rates were comparable across interval types (6.247% for Octaves, 5.71% for Fifths and 5.71% for Tritones) 
and did not significantly differ between interval types as evidenced by a repeated measure ANOVA (F = 0.106, 
p = 0.9, η2

p = 0.005, observed-power = 0.065).

AEP results. Waveforms corresponding to the N1 (79–172 ms) and P3 (287–371 ms) components registered dur-
ing the Go-NoGo task were significantly modulated by interval type (Fig. 1g), as evidenced by the point-by-point 
ANOVA (corrected with 1000 permutations). One additional significant time-cluster, centred around 550 ms 
post-onset, was evidenced by the ANOVA. This later cluster presumably corresponds to the negative rebound 
following the P3 oscillation. The ANOVA performed on peak voltages confirmed these results: N1 and P3 peak 

ANOVAs on mean peak voltages

Task Component
Mean voltage at 
peak (µv) F-value p-value

Effect-size (Eta partial 
square)

Observed 
power

Detection-Experiment 2

N1
P8: −11.63; P5: 
−12.30; TT: 
−11.03

6.091* 0.005 0.225 0.865

N2 P8: −2.07; P5: 
−0.83; TT: −0.77 6.609* 0.003 0.239 0.891

P2 P8: 5.22; P5: 5.38; 
TT: 5.15 0.227 0.799 0.022 0.081

Go-NoGo-Experiment 3
N1

P8: −12.23; P5: 
−11.30; TT: 
−10.43

3.66* 0.034 0.148 0.643

P3 P8: 9.51; P5: 8.14; 
TT: 7.12 3.85* 0.029 0.155 0.666

Pairwise comparisons

(II) Interval type (J) Interval type Mean difference 
(I-J) St. err. p-value 95% CI around Mean 

difference

N1 Experiment 2

P8
P5 0.670 0.358 0.075 −0.073; 1.414

TT −0.599 0.351 0.103 −1.329; 0.131

P5 TT −1.270* 0.382 0.003 0.475; 2.064

N2 Experiment 2

P8
P5 −1.244* 0.391 0.004 −2.058; −0.431

TT −1.311* 0.440 0.007 −2.226; −0.396

P5 TT −0.066 0.385 0.865 −0.867; 0.735

N1 Experiment 3

P8
P5 −0.875 0.534 0.116 −1.987; 0.236

TT −1.746* 0.791 0.039 −3.391; −0.101

P5 TT −0.870 0.582 0.149 −2.08; 0.339

P3 Experiment 3

P8
P5 1.316 0.828 0.127 −0.407; 3.039

TT 2.248* 0.870 0.017 0.438; 4.058

P5 TT 0.932 0.738 0.221 −0.603; 2.467

Table 2. Peak amplitudes ANOVA. Amplitudes at peak latencies at Fz were extracted from single subjects’ 
mean ERP for relevant components in Experiment 2 and 3. Peaks voltages were entered in a one-way repeated 
measures ANOVA with Interval type as a within-subject factor. P-values highlighted in bold are significant after 
Benjamini–Hochberg correction for multiple comparisons. P8 = Octaves; P5 = Fifths; TT = Tritones.
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voltages were significantly modulated by interval type and were increased for more appreciated intervals (Table 2, 
Fig. 4).

Discussion
In this study we aimed to test the disinterested interest hypothesis in the auditory domain, namely that aesthetic 
appreciation for more consonant two-note intervals is associated with attentional enhancement and motor inhi-
bition. Based on this hypothesis we predicted, for more appreciated intervals: (1) Slower response times in the 
Detection task; (2) Significantly larger motor-inhibition AEP responses; (3) More pronounced AEP components 
related to attention enhancement. The results substantially confirmed our predictions. In Experiment 1 and 3 we 
evidenced a subjective preference for more consonant intervals, thus replicating previous findings. Importantly, 
in Experiment 2, we showed that AJs predicted RTs in a simple detection task, as evidenced by the mixed-model 
analysis, with slower RTs for increasing AJs, thus confirming prediction #1. Moreover, results from Experiments 
2 and 3 showed that attention and motor-inhibition related AEP components were significantly enhanced for 
more appreciated intervals, thus confirming predictions #2 and #3 (see also below). Overall, our behavioural and 
electrophysiological results seem to support the disinterested interest hypothesis. To our knowledge, this is the first 
empirical evidence of a direct link between aesthetic appreciation, attentional enhancement and motor-inhibition.

In the following paragraphs, we will discuss our electrophysiological results in relation to the existing liter-
ature, evidencing the possible evolutionary advantage of attentional enhancement and motor inhibition during 
aesthetic appreciation and the potential implications for basic and clinical research. We will discuss our results 
in the light of neuroimaging and behavioural results encompassing different sensory domains. This might be 
criticised, since some authors52 highlighted the need for domain-specific models of aesthetic judgements. It is 
possible that domain-specific models may be more appropriate to describe the processing of complex works of 
art52 (e.g. music pieces and paintings), which extends far beyond mere aesthetic pleasure and cannot be reduced 
to “core liking”18. Previous studies have demonstrated that, during the processing of works of art, domain specific 
processes normally apply to (low level) sensory processing, whereas domain general mechanisms apply to (higher 
level) central processing52. In our case, however, low-level perceptual correlates of “core liking”, triggered by basic 
stimuli (such as two-note intervals), might be predicted by domain-independent models as well. Indeed, neu-
roimaging and behavioural results in neuroaesthetics28,30,53 and neurocomputational models of aesthetic emto-
tions54,55 seem to suggest a common neurophysiological and behavioural pattern in the emergence of aesthetic 
appreciations across different sensory domains.

The N1/P2 complex amplitude has been frequently described as an index of attentional engagement31,56–61. 
In accordance with previous findings, in our study the N1/P2 complex amplitude was modulated by interval 
type in all three experiments, as evidenced by the point-by-point ANOVA, with larger amplitudes associated 
with preferred interval types. Interestingly, trial by-trial fluctuations in P2 voltages registered during Experiment 
1 significantly correlated with single trial AJs (see Fig. 2). Moreover, N1 peak voltages from Experiment 3 were 
significantly larger for more appreciated intervals (see Fig. 4). Thus, overall, the point-by-point analyses on N1/P2 
complex seem to indicate a significant enhancement of attentional-related responses for more appreciated inter-
val types. Coherently, previous findings showed that expertise produced a similar effect: musical chords elicited 

Figure 4. Mean peak amplitudes. The graphs show, for AEP components separately, all subjects’ mean peak 
amplitudes for the three interval types. Bars represent standard errors. Asterisks represent significant (p < 0.05) 
post-hoc pairwise comparisons between interval types (*p < 0.05, n.s = not significant). P8 = perfect octaves, 
P5 = perfect fifth intervals, TT = tritone intervals.
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larger P2 responses in professional musicians compared to laypersons, suggesting that experts develop specific 
abilities for music perception and cognition62.

It must be noticed, however, that peak analysis failed to find significant enhancement of N1/P2 complex for 
more appreciated intervals in Experiment 2, thus failing to replicate point-by-point results for what concerns 
N1 and P2. This apparently counterintuitive result might reflect the less ‘contemplative’ nature of the Detection 
task performed in Experiment 2, where participants had to respond to intervals as fast as possible. Task analysis, 
namely the comparison of contemplative vs. pragmatic responses to aesthetic stimuli, could inform us regard-
ing the specific cognitive-affective processes underlying aesthetic judgement tasks63–65. This approach, however, 
might not be best suited to interpret our results because task demands and procedures among tasks are not 
directly comparable. Nevertheless, in the case of our study, more action-related neural resources were probably 
recruited in the Detection task: as a consequence, the expression of attentional-related components, was min-
imized (notice that N1 and P2 voltages were halved in the Detection task in respect to the AJ task and NoGo 
trials in the Go-NoGO task). Indeed, previous studies63–65 demonstrated that the amplitude of ERPs registered 
during the presentation of beautiful and ugly stimuli can be differently modulated when participants are judging 
stimulus beauty (i.e. contemplative condition) vs. more pragmatic aspects of the stimuli (i.e. non-contemplative 
condition). More pragmatic and action-finalized tasks (such as those requiring fast responses) seem to prevent 
the adoption of a contemplative attitude, typical of aesthetic judgements1,12,66, probably because motor prepara-
tion competes with perceptual mechanisms directing the attentional focus on stimulus features8. In other words, 
phenomenal and electrophysiological correlates of “core liking”18, i.e. embracing perception and sensations, might 
emerge only when perceivers are not goal-oriented (in the case of our study, when participants are not required 
to respond as fast as possible), thus allowing psychological distancing8.

In all our experiments, the amplitude of N2/P3 complex was systematically modulated by interval type, with 
larger amplitudes in response to more appreciated intervals. Crucially, N2/P3 amplitude enhancement is tradi-
tionally related to the recruitment of a “global suppression network”67 responsible for motor inhibition, and the 
slowing of motor output68. Apparently, N2 amplitude increases reflect early non-strictly motor aspects (i.e. cog-
nitive) of inhibition50, finalized to overcome the usual stimulus-to-response mappings and to update the behav-
iour plan69,70. Therefore, N2 amplitude can be modulated even in tasks not directly requiring the inhibition of a 
motor response and, in such tasks, generally correlates with response times71,72. Consistently with this finding, we 
observed an increase of N2 voltages following the presentation of more appreciated intervals also in Experiment 
1 and 2, where subjects were not required to inhibit their motor responses (i.e., they were not performing a 
Go-NoGo task). Notably, in Experiment 1, trial-by-trial fluctuations in N2 voltages were significantly correlated 
with AJs. P3 amplitude modulation, instead, has been traditionally related to later properly motoric stages of 
response inhibition33,50,51. As predicted by previous studies, we observed a significant P3 amplitude modulation 
only in Experiment 3 (the Go-NoGo task). Crucially, P3 average peak amplitudes registered during NoGo trials, 
were enhanced for more appreciated consonant intervals. Overall, the N2/P3 amplitude modulation observed in 
our experiments seem to indicate that aesthetic appreciation significantly fosters both non-motoric and strictly 
motoric stages of response inhibition, thus directly limiting motor activation. We propose that this inhibitory 
mechanism is finalized to support the contemplative “aesthetic attitude” (see also below).

Altogether, the enhancement of electrophysiological indexes of attentional engagement and motor inhibition 
might represent the neural counterpart of the neglect for self-referred concerns paired with an increment of atten-
tion for the stimulus perceptual features described by the theory of disinterest and distancing-embracing models 
of aesthetic experiences8 (see Introduction). However, it remains unclear what the evolutionary advantage of such 
a mechanism could be. Why do we divert attentional resources from action execution to the perception per se (i.e. 
contemplation) of more appreciated stimuli? This might be better understood within the theoretical framework 
of the free-energy principle73–75. Following the free-energy principle, agents select their action plans maximizing 
both expected utility (i.e. extrinsic value) and information gain or intrinsic epistemic value76–78. Since attention 
is a limited resource79, the most profitable strategy is probably to devote attentional resources, from time to time, 
either to maximize stimulus epistemic intrinsic value (i.e. updating and refining prior beliefs) or to maximize 
utilitarian extrinsic value based on prior beliefs80–82. But how does the nervous system choose where it should be 
most profitable to direct the attentional focus (toward perception vs toward action)? Previous theoretical models 
suggested that, in order to recognize stimuli which maximize epistemic value, intelligent systems (biological and 
artificial) have developed an intrinsic feedback on information gains (see Gottlieb et al.82 for a review). According 
to some authors15,83–85, the brain generates intrinsic rewards to stimuli with high informational content directly 
modulating the active sampling of sensory inputs. In accordance with this idea, we propose that aesthetic pleasure 
serves as an intrinsic reward in response to highly informative sensory interactions signaling to the nervous sys-
tem the profitability of directing attention to present stimuli instead of modifying the environment through motor 
activation. This idea fits well with current models of aesthetic emotions, which posit that the intrinsic pleasant-
ness of stimuli is of preeminent importance for their emergence14. Interestingly, previous research has already 
postulated the existence of a close link between aesthetic appreciation and stimulus informational value, with 
greater AJs for stimuli with the higher informational content86–91. Aesthetic pleasure has indeed been defined as 
a “meta-learning feedback”92 on successful perceptual learning dynamics5,55,86,87,92, i.e. when the cognitive system 
senses a progress in the refinement of mental representations and in the insightful93 creation of new ones87,89,92. 
Accordingly, the update of prior beliefs (which can be considered as an index of stimulus high informational 
value) was found to attract attention94,95 and to inhibit motor response68,96. Crucially, informational value per se 
also seems to trigger activations of midbrain reward-related areas97, which are usually found to correlate with aes-
thetic appreciation20,98,99. These data further support the presence of a direct link between aesthetic appreciation, 
stimulus information value, attentional enhancement and motor inhibition.

At first sight, the correlation between motor inhibition and aesthetic appreciation might seem at odds with 
other hypotheses which claim the active involvement of the mirror motor system in aesthetic appreciation, such 
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as the “embodied simulation”100–102. According to this theory, the perception of beauty depends on the magni-
tude of empathic resonance with the content of works of art triggered by the activation of mirror neurons in 
motor103,104 and premotor105 areas. In our view, however, the two hypotheses are not mutually exclusive. Indeed, 
Gallese and colleagues argue that “embodied simulation” must be “liberated”, meaning that works of art (and the 
context in which they are perceived) must induce a potentiation of the mirroring mechanisms that are normally 
active in daily life102. According to Gallese, this potentiation is achieved via motor inhibition: “immobility, that 
is, a greater degree of motor inhibition, probably allows us to allocate more neural resources, intensifying the 
activation of bodily-formatted representations, and in so doing, making us adhere more intensely to what we are 
simulating”102 (p.48).

In our study, aesthetic preference, motor inhibition and attentional enhancement positively correlated with 
the consonance level of musical intervals. This result fits well with the hypothesis of a link between informa-
tional value and AJs, as discussed above. Aesthetic pleasure might be considered as a fundamental feedback to 
discriminate between fluently processed (i.e. informationally profitable) and noisy (i.e.“unlearnable”) signals. 
This argument might explain the preference for more consonant intervals given the evidence, well supported by 
behavioural and psychophysiological data, that consonant intervals are processed more fluently than dissonant 
intervals37,46,106–109. To this respect, it has been suggested that such processing efficiency enhancements might 
reflect the similarity between consonant intervals and conspecific vocalizations (which are mostly harmonic) to 
which the auditory system is tuned36,44,110.

In the present research, we propose that the experience of aesthetic appreciation might be considered as a 
cognitive state signalling to the system to refrain from acting in order to focus on present sensory stimulation to 
learn something new. Our results point to the possibility that the aesthetic value of stimuli can modulate cognitive 
functions, such as perceptual learning and memory retrieval (see also Lehmann & Seufert111 for a recent review), 
and future research should investigate this issue. Furthermore, the role of aesthetic emotions in automatically 
guiding attention toward perception and learning, instead of acting impulsively, is also potentially interesting 
for learning-oriented activities, such as teaching112,113, psychotherapy114,115 or communication more in general13. 
Moreover, the automatic attentional capture induced by aesthetic appreciation might be exploited in the design of 
experimental paradigms, where the attentional engagement of participants is crucial. Finally, the use of aesthet-
ically more valuable stimuli might contribute to develop more effective neuropsychological rehabilitative proto-
cols, for example with patients affected by mild cognitive impairments or dementia which manifest attentional 
and motivational deficits.

Although we consider our study an original contribution to the field of neuroaesthetic research, it presents a 
number of limitations that must be acknowledged.

First, the essentiality of two note intervals limits the range and the intensity of aesthetic responses. On the 
other hand, the use of richer stimuli would inevitably introduce potential confounds into the results, such as cog-
nitive, perceptual, emotional, situational, socio-cultural, affiliation and historical factors116. Nevertheless, future 
studies should attempt testing the disinterested interest hypothesis employing more elaborated stimuli such as 
complex musical chords (rather than two-note intervals), photos or paintings. Secondly, although the occurrence 
of attentional enhancement and motor inhibition in the auditory modality are coherent with previous findings 
from neuroimaging studies20–22 investigating aesthetic appreciation across sensory modalities (see Nadal30 for a 
review), the issue of the level of generality of our results across sensory modalities has not been addressed in our 
study (i.e., modality dependence vs independence). Indeed, it was shown that more complex aesthetic experi-
ences which extend beyond “core liking”, such as the appreciation of works of art (i.e. paintings and music pieces), 
entail both modality-independent and modality-specific processes52. Based on the evidence from previous stud-
ies20–22,30, we hypothesize that motor inhibition and attentional enhancement emerge during “core liking”18 inde-
pendently from sensory modality, but additional research is needed to test this hypothesis. Thirdly, for technical 
constraints, our experimental design did not allow to collect AJs and RTs simultaneously while registering EEG 
activity: this prevented the investigation of the relationship between aesthetic appreciation and motor inhibition 
on a trial-by-trial basis, which would have increased the internal validity of our study. Lastly, the experimental 
procedures employed in our tasks differed too much to allow for a direct comparison of the results of the (more 
contemplative) AJ task and the (more pragmatic) Detection task. Future studies should specifically address the 
issue of the effect of the nature of the task (e.g. aesthetic judgement vs. pragmatic judgement) on motor and atten-
tional responses to more appreciated stimuli.

Methods
participants. Forty-four right-handed healthy volunteers participated to the study. Twenty-two partici-
pants (12 females; age: 24.45 ± 1.96; years of education: 16.45 ± 1.36) took part to Experiment 1 (AJ task) and 
2 (Detection task). The remaining twenty-two (13 females; age: 25.75 ± 2.11; years of education: 16.71 ± 1.72) 
participated in Experiment 3 (Go-NoGo task). The order of Experiments 1 and 2 was counterbalanced among sub-
jects: half of the participants started with Experiment 1, while the remaining half started with Experiment 2. All 
participants gave their written informed consent to participate to the study. The study conformed to the standards 
required by the Declaration of Helsinki and was approved by the local ethics committee (University of Turin).

Stimuli. Musical Intervals were created with Csound (https://csound.com/) software, which allowed to specify 
the frequency (Hz) of single notes composing the interval. Different types of two-note intervals were defined by 
the ratio between the frequency of the two notes. Although not exclusively117,118, consonance also depends on this 
ratio: the smaller the numbers that define the ratio, the more consonant will be the resulting interval36. Octaves 
(consonant) were composed by notes with a ratio of 2:1, fifth intervals (mildly dissonant) had a ratio of 3:2, while 
tritons (dissonant) were defined by a ratio of 45:32. We created seven intervals for each ratio type by varying the 
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frequency of the first note from 200 Hz to 260 Hz (middle C) by steps of 10 Hz. The second note varied according 
to the ratio described above. In Table 3 we report the frequency of the notes of all the intervals we employed.

In the Detection (Experiment 2) and in the Go-NoGo tasks (Experiment 3) intervals were intermixed with 
randomly generated white noise sounds (some trials contained intervals, others contained white noise). Both 
intervals and white noise were displayed via loudspeakers at the same output intensity (65 dB) for 50 ms. We chose 
short presentation durations to limit as much as possible the potentially detrimental effect of stimuli offset on 
EEG signals, given the fact that offset responses are inversely proportional to the duration of the prior sound119.

Apparatus. The set up was identical in the three experiments. Participants sat at a table in a fixed position, 
distant 60 cm from the loudspeakers and from a 53 cm (diagonal) computer screen, with the screen centre and 
loudspeakers placed one next to the other and aligned with the trunk midline. The participant’s left arm was rest-
ing on the corresponding leg, while the right arm was placed on the desk. Subjects had their index finger resting 
on the keyboard spacebar during the Detection and the Go-NoGo tasks. Response keys and subjects’ right hand 
were aligned with the trunk vertical axis. AEPs were registered during all experiments.

experimental procedures. Experiment 1 (AJ task). Experiment 1 consisted of two identical runs. In each 
run participants were asked to evaluate the beauty of musical intervals using a Likert scale ranging from 1 to 9 
(1 = Most ugly, 9 = Most beautiful). Each of the 21 intervals we created was evaluated twice in each of the two 
runs (for a total of 28 judgements for each interval type in the whole experiment). The trial timeline is depicted 
in Fig. 5. Intervals were presented in a random order for 50 ms after a variable inter-trial interval (range: 6–8 s). 
Participants fixated a central white cross for the whole experiment. When they heard an interval, they were asked 
to wait 1 second until the cross changed into a question mark and then verbally report their evaluation. AJs 
were recorded by the experimenter using a keyboard and were automatically registered by E-Prime 2.0 software 
(Psychology Software Tools, Inc. USA). Participants had a five minutes break between runs. Each run lasted 
approximately 8 minutes.

Experiment 2 (Detection task). Experiment 2 consisted of two runs of a simple detection task employing the 
same musical intervals of the AJ task. Intervals were intermixed with 50 ms of white noise. Each of the 21 intervals 
we created was presented twice in each of the two runs (for a total of 28 presentations for each interval type in 
the whole experiment). The white noise was presented 42 times in each run (white noise and interval trials were 
equally numerous). The trial timeline is depicted in Fig. 5. Intervals were presented in a random order after a var-
iable inter-trial interval ranging from 6 to 8 s. Participants fixated a central white cross for the whole experiment. 
They were instructed to press the spacebar as fast as possible as soon as they heard an interval and to restrain 
from responding when they heard a white noise. Response time (RT) and response accuracy were automatically 
registered by the experimental software.

Experiment 3 (Go-NoGo task). Experiment 3 consisted in a Go-NoGo task similar to Experiment 2 except that: 
1) subjects had to respond to the white noise and refrain from responding when they heard an interval; 2) the 
fixation cross turned red for 50 ms (preparatory cue) 1 s before the sound (Go-Nogo signal) was played; 3) white 
noise and intervals were not equally numerous. Intervals (No-Go trials) were rarer than white noise (Go trials), 
with a proportion of one to three (28 intervals per interval type and 252 white noises for a total of 336 trials). In 
each run the 21 intervals were presented twice, randomly alternated with 126 white noise sounds. Additionally, 
after the Go-NoGo task participants of Experiment 3 performed a brief AJ task identical to Experiment 1 described 
above but with shorter ITI (2–3 s). AEPs were not registered during this second phase. The Go-NoGo task was 
devised to elicit those ERP components that are usually associated to the motoric stages of response inhibition 
(P3) during the presentation of intervals (NoGo stimuli), under the assumption that more appreciated intervals 
should facilitate the inhibition of motor response, therefore amplifying motor-inhibition-related components.

electrophysiological recordings and preprocessing. EEG activity was recorded by 32 Ag-AgCl elec-
trodes placed on the scalp of the participant according to the International 10–20 system and referenced to the 
nose. Electrode impedances were kept below 5 kΩ. The electro-oculogram (EOG) was recorded from two surface 

Frequency of 
the first note 
(Hz)

Frequency of the second note (Hz)

Octave Fifth Tritone

200 100 133.33 142.22

210 105 140 149.33

220 110 146.66 156.44

230 115 153.33 163.55

240 120 160 170.66

250 125 166.66 177.77

260 130 173.33 184.88

Table 3. Stimuli. First and second notes were displayed simultaneously for 50 ms. Seven intervals with varying 
frequencies were displayed for each interval type.
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electrodes placed over the right lower eyelid and lateral to the outer canthus of the right eye. Signals were recorded 
and digitized by using a HandyEGG (Micromed, Treviso – IT) amplifier with a sampling rate of 1024 Hz.

EEG data were pre-processed and analysed with Letswave6 toolbox (Nocions, Ucl. BE) for Matlab (Mathworks, 
Inc. USA). Continuous EEG data were divided into epochs of 1.5 s (total duration), including 500 ms pre-stimulus 
and 1 s post-stimulus intervals. Epochs were band-pass filtered (1–30 Hz in Experiment 1 and 2) using a fast 
Fourier transform filter. In Experiment 3 epochs were band-pass filtered with a broader filter (0.5–30 Hz) in 
order to better evidence later components (expressed in lower frequencies), such as P300, that usually emerge in 
Go-Nogo tasks51. Filtered ERPs were baseline corrected using the interval from −0.5 to 0 s as a baseline. Artefacts 
due to eye movements were eliminated using Independent Component Analysis (ICA120). Epochs belonging to 
the same interval type were then averaged, to obtain three average waveforms (i.e. Octaves, Fifths, Tritones) for 
each subject. In the Go-NoGo task (Experiment 3) we additionally analysed epochs corresponding to Go-trials 
(white noise trials) which were averaged together.

Data analysis. Behavioural data. Outliers (RTs diverging more than 2.5 standard deviations from each sin-
gle subject’s average value) in the Detection task (Experiment 2) were excluded from subsequent analyses121,122. AJs 
from Experiment 1 and outlier-corrected RTs from Experiment 2 were then averaged across trials with the same 
interval (each interval was presented 4 times in both experiments; § 2.4- Aesthetic judgement task) to obtain 21 
average values per participant.

Single subjects’ averaged RTs were entered as a dependent variable in a linear mixed-model with subjects’ ID 
as a random-effect factor and AJs as a covariate (fixed-effect factor). This analysis was based on 462 observations 
(21 per each of the 22 participants).

In Experiment 3, omission error rates in the Detection task (i.e. incorrect Go trials) and commission error rates 
in the Go-NoGo task (i.e. incorrect NoGo trials) were computed for each interval type for each participant. Single 
subjects’ AJs from Experiment 3 were averaged across interval types to obtain three average values per participant.

EEG data. First, we were interested in identifying the waveform components modulated by interval type. To 
test for significant differences among AEP elicited by different interval types, we performed three (one per each 
experiment) one-way, repeated measures, point-by-point ANOVA123,124, with three levels corresponding to the 
three interval types. Correction for multiple comparisons was applied via clustersize-based permutation testing125 
(1000 permutations; alpha level = 0.05; percentile of mean cluster sum = 95). Significant clusters were based on 
both temporal contiguity and spatial adjacency of a minimum of two electrodes.

Furthermore, to investigate the relation between EEG responses and AJs more directly and to further explore 
the reliability of the point-by-point ANOVA results, we computed a point-by-point trial-by-trial (i.e. considering 
each single epoch for each single subject separately) correlation analysis126 between the amplitude of the EEG 
responses from single trials (N = 84) registered during the AJ task and the corresponding AJ (§ 2.4- Aesthetic 
judgement task). The outcome of the correlation analysis was a 1.5 s (from 0.5 s pre-onset to 1 s post-onset) long 
time series of r-values for each channel for each subject. This constituted the input for a group-level two-tailed 
point-by-point t-test with permutation-based correction for multiple comparisons (1000 permutations; alpha 
level = 0.05; percentile of mean cluster sum = 95; minimum number of adjacent channels = 2). The test com-
pared single subjects’ correlation coefficients against the constant 0 at each time point. This allowed to identify 
time-clusters containing signal amplitudes which significantly correlated with AJs.

To further test the presence of a possible enhancement in attention- and motor inhibition-related AEP compo-
nents for more appreciated intervals, in Experiment 2 and 3, where it was not possible to compute point-by-point 
trial-by-trial correlations between AJs and voltages (since EEG responses and AJs were not simultaneously col-
lected in Experiments 2 and 3), we extracted single-subjects’ peak amplitudes from relevant waveform compo-
nents (N1, P2 and N2 in Experiment 2; N1 and P3 in Experiment 3). Peaks were extracted from single subjects’ 
average AEP corresponding to the three different interval types. Peaks were defined as the lowest or highest ampli-
tude (for negative and positive components respectively) registered within significant time-cluster evidenced by 

Figure 5. Trial timeline. Panel a shows the trial timeline for the AJ task: after the two-note interval was played 
participants remained still for one second and then verbally reported their answer. Panels b and c show the 
single-trial timeline of the Detection and Go-NoGo tasks, respectively: participants were instructed to press the 
spacebar only when hearing intervals in the Detection task. Contrarily they had to respond only when hearing 
white noise in the Go-NoGo task. Sounds were preceded (1 s) by a visual cue (fixation cross turning red for 
50 ms) in the Go-NoGo task. Pie charts represent the proportion between perfect octave intervals (P8), perfect 
fifth intervals (P5), tritone intervals (TT) and white noise (WN) in each experiment.
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the point-by-point ANOVA. For each component separately, we performed a one-way repeated measure ANOVA 
employing peak amplitude as dependent variable and interval type as a within-subject factor (3 levels: Octave, 
Fifths, Tritones).

Single subjects’ AEPs and correlations between trial-by-trial amplitudes and AJs are available at Mendeley.com.

Data availability
Data are available at Mendeley.
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