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A NOTE ON HERMITE–FEJÉR INTERPOLATION AT LAGUERRE ZEROS

G. MASTROIANNI, I. NOTARANGELO, L. SZILI AND P. VÉRTESI

Abstract. In order to approximate functions defined on the real semiaxis, we introduce a new operator of

Hermite–Fejér-type based on Laguerre zeros and prove its convergence in weighted uniform metric.

Keywords: Hermite–Fejér operator, weighted polynomial approximation, orthogonal polynomials,

Laguerre zeros, real semiaxis.

MCS classification (2000): 41A05, 41A10.

1. Introduction and main results

The Lagrange or Hermite–Fejér interpolation based on the zeros of Laguerre polynomials
has been considered in the literature by G. Szegő [11] and J. Szabados [10], who studied the
uniform convergence of this interpolation process under proper hypotheses on the function
(see also [6]).

Here we introduce a new operator of Hermite–Fejér-type, which is a slight modification of
the one considered by the previous authors, and prove a uniform convergence theorem.

In the sequel c, C will stand for positive constants which can assume different values in each
formula and we shall write C 6= C(a, b, . . .) when C is independent of a, b, . . .. Furthermore
A ∼ B will mean that if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)±1 ≤ C.
Finally, we will denote by Pm the set of all algebraic polynomials of degree at most m. As
usual N, Z, R, will stand for the sets of all natural, integer, real numbers, while Z+ and R+

denote the sets of positive integer and positive real numbers, respectively.
Let

w(x) = xαe−x
β

, α > −1 , β > 1/2 , x > 0 ,

be a Laguerre-type weight and {pm(w)}m∈N the related sequence of orthonormal polynomials
with positive leading coefficient. Let us denote by xk = xm,k(w) the zeros of pm(w), located
as follows [8]

(1.1) C am
m2

< x1 < x2 < . . . < xm < am

(
1− C

m2/3

)
,

where am ∼ m1/β is the Mhaskar–Rakhmanov–Saff number related to
√
w (see, e.g., [8]).

The first author was partially supported by University of Basilicata (local funds). The second author was partially supported
by University of Basilicata (local funds) and by National Group of Computing Science GNCS–INdAM. The third and the fourth
authors were supported by the Hungarian National Scientific Research Foundation (OTKA), No. K115804.
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Using an idea due to J. Szabados, we define the Hermite–Fejér polynomial based on these
nodes and the extra point xm+1 := am as follows

Fm(w, f, x) =
m+1∑
k=1

`2
k(x)vk(x)f(xk) , x ≥ 0

where f is a continuous function on (0,∞),

vk(x) = 1− 2`′k(xk)(x− xk) ,

`k(x) =
pm(w, x)

p′m(w, xk)(x− xk)
am − x
am − xk

, k = 1, 2, . . . ,m ,

and

`m+1(x) =
pm(w, x)

pm(w, am)
.

Let θ ∈ (0, 1) be fixed, we define the index j = j(m) as

xj = min
1≤k≤m

{xk : xk ≥ θam}

and denote by χj the characteristic function of the interval [0, xj]. So, by using a proce-
dure similar to that in [9] for Lagrange interpolation, we introduce the Hermite–Fejér-type
operator F ∗m(w) by

F ∗m(w, f, x) = Fm(w, χjf, x) =

j∑
k=1

`2
k(x)vk(x)f(xk) .

F ∗m(w, f) is a polynomial of degree at most 2m+ 1 and by definition we have

F ∗m(w, f, xk) =

{
f(xk) , k = 1, 2, . . . , j ;
0 , k = j + 1, . . . ,m+ 1 .

Let us now introduce a couple of function-spaces associated to the weights

u(x) = xγe−x
β

, β > 1/2 , γ ≥ 0 , x > 0

and

ū(x) = log(2 + x)u(x) .

With C0(0,∞) the set of all continuous functions on (0,∞), we consider the spaces

Cu =
{
f ∈ C0(0,∞) : lim

x→0
f(x)u(x) = lim

x→∞
f(x)u(x) = 0

}
with norm

‖f‖Cu = sup
x∈(0,∞)

|f(x)u(x)| =: ‖fu‖

and

Cū =
{
f ∈ C0(0,∞) : lim

x→0
f(x)ū(x) = lim

x→∞
f(x)ū(x) = 0

}
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with norm

‖f‖Cū = sup
x∈(0,∞)

|f(x)ū(x)| =: ‖fū‖ .

Obviously Cū ⊂ Cu.
In order to introduce the r−th modulus of smoothness in Cū, proceeding as in [7], we

define

Ωr
ϕ(f, t)ū = sup

0<h≤t

∥∥∆r
hϕ (f) ū

∥∥
Ih
,

where Ih =
[
Ah2, Ah∗

]
, A > 1 is a fixed constant, h∗ = h−

1
β−1/2

∆r
hϕ(f, x) =

r∑
k=0

(−1)k
(
r

k

)
f (x+ (r − k)hϕ(x))

and ϕ(x) =
√
x. Then we set

ωrϕ(f, t)ū = Ωr
ϕ(f, t)ū + inf

P∈Pr−1

‖(f − P ) ū‖[0,At2]

+ inf
P∈Pr−1

‖(f − P ) ū‖[At∗,∞)

Proceeding as in [7] we can easily prove that

Em(f)ū = inf
Pm∈Pm

‖(f − Pm) ū‖ ≤ Cωrϕ
(
f,

√
am
m

)
ū

.

Considering F ∗m(w) as a map from Cū into Cu, we can prove the following theorems.

Theorem 1. If the parameters of the weights w and u satisfy

0 ≤ γ − α− 1

2
≤ 1

then, for any function f ∈ Cū, we have

‖F ∗m (w, f)u‖ ≤ C‖fū‖[x1,xj ] ,

where C 6= C(m, f) depends only on the parameters α, γ and θ.

Theorem 2. Under the assumptions of Theorem 1, we get

‖[f − F ∗m (w, f)u]‖ ≤ Cωϕ
(
f,

√
am logm

m

)
ū

+ Ce−cm‖fū‖

with C 6= C(m, f) and c 6= c(m, f) depending only on the parameters α, γ and θ.

For the sake of simplicity, we have considered the orthonormal system related to the weight
w(x) = xαe−x

β
. We can obtain similar results replacing w with a weight of the form xαe−Q(x),

where e−Q(x) belongs to the class F(C2+) introduced by Levin and Lubinsky (see [2, p.109]
or [3, p.109]).
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2. Proofs

of Theorem 1. Taking into account that (see, e.g., [8])

‖F ∗m (w, f)u‖ = ‖F ∗m (w, f)u‖Im ,

where Im =
[am
m2

, am − c
am
m2/3

]
, c > 0, and for x ∈ Im, letting xd be a zero closest to x, we

have

`2
k(x)

|vk(x)|
log(2 + xk)

u(x)

u(xk)
≤ C k = d− 1, d, d+ 1

whence

(2.1) |F ∗m (w, f, x)|u(x) ≤ C ‖fū‖[x1,xj ]

1 +
∑

1 ≤ k ≤ j
k 6= d, d± 1

`2
k(x)

|vk(x)|
log(2 + xk)

u(x)

u(xk)

 .

Using (see [8, p. 126])

(2.2) |pm(w, x)| ≤ C√
w(x)

√
x(am − x)

, x ∈ Im ,

(2.3)
1

|p′m(w, xk)|
∼ ∆xk

√
w(xk)

√
xk(am − xk) , x1 ≤ xk ≤ xj ,

where

(2.4) ∆xk = xk+1 − xk ∼
√
am
m

√
xk , k = 1, 2, . . . , j ,

for k 6= d, d± 1, by (1), we obtain

`2
k(x)

u(x)

u(xk)
=

∣∣∣∣ pm(w, x)

p′m(w, xk)(x− xk)
am − x
am − xk

∣∣∣∣2 w(x)

w(xk)

(
x

xk

)γ−α
≤ C

(
∆xk
x− xk

)2(
x

xk

)γ−α−1/2(
am − x
am − xk

)3/2

≤ C
(

∆xk
x− xk

)2(
x

xk

)γ−α−1/2

and (2.1) becomes

|F ∗m (w, f, x)|u(x) ≤ C ‖fū‖[x1,xj ]

1 +
∑

1 ≤ k ≤ j
k 6= d, d± 1

(
∆xk
x− xk

)2(
x

xk

)γ−α− 1
2 |vk(x)|

log(2 + xk)


=: C ‖fū‖[x1,xj ]

{1 + σ(x)} .
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Let us now estimate the term

vk(x) = 1− 2`′k(w, xk)(x− xk) .

We can write

`′k(x) =

(
am − x
am − xk

)′
˜̀
k(x) +

(
am − x
am − xk

)
˜̀′
k(x) ,

where ˜̀
k are the fundamental Lagrange polynomials based on the nodes x1, x2, . . . , xm. Since

˜̀′
k(xk) =

p′′m(w, xk)

p′m(w, xk)

we have

vk(x) = 1 + 2

[
1

am − xk
− p′′m(w, xk)

p′m(w, xk)

]
(x− xk) .

In order to estimate p′′m(w,xk)
p′m(w,xk)

, we consider the generalized Freud weight w̄(x) = |x|2α+1e−|x|
2β

and the associated orthonormal system {qm(w̄)}m. We denote by x̄k = xm,k(w̄) the zeros
of qm(w̄) and by ām = am(

√
w̄) the Mhaskar–Rahmanov–Saff number related to

√
w̄. Since

q2m(w̄, x) = pm(w, x2) and a2
m(
√
w̄) ∼ am(

√
w) (see [8]),

q′′2m(w̄, x)

q′2m(w̄, x)
=

1

x
+ 2x

p′′m(w, x2)

p′m(w, x2)
,

and so
p′′m(w, x2)

p′m(w, x2)
=

q′′2m(w̄, x)

2xq′2m(w̄, x)
− 1

2x2
,

from the inequality (see [1, Theorem 3.6 at p. 42])∣∣∣∣q′′2m(w̄, x)

q′2m(w̄, x)

∣∣∣∣ ≤ C [ |x̄k|
a2
m(
√
w̄)

+ |xk|2β−1 +
1

|x̄k|

]
we deduce ∣∣∣∣p′′m(w, xk)

p′m(w, xk)

∣∣∣∣ ≤ C [1 + xβ−1
k +

1

xk

]
.

So we get

(2.5) |vk(x)| ≤ C
[
1 + (1 + xk)

β−1|x− xk|+
|x− xk|
xk

]
.

Let us estimate σ(x), considering first the case x > 2. Setting

Ak(x) =

(
∆xk
x− xk

)2(
x

xk

)γ−α− 1
2 |vk(x)|

log(2 + xk)
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we can write

σ(x) =

 ∑
x1≤xk≤1

+
∑

1<xk≤xd−2

+
∑

xd+2≤xk≤xj

Ak(x)

=: σ1(x) + σ2(x) + σ3(x) .

For x1 ≤ xk ≤ 1 from (2.5) we get |vk(x)| ≤ C x
xk

. Since x > 2, whence x − xk > x
2
, we

have

Ak(x) ≤ Cx
γ−α+ 1

2

x2

∆xk
xk

x
−γ+α+ 1

2
k ∆xk ≤ Cx

−γ+α+ 1
2

k ∆xk

using (1.1) and 1 ≤ γ − α + 1
2
≤ 2. It follows that

σ1(x) ≤ C
∫ 1

0

t−γ+α+ 1
2 dt = C .

For 1 < xk ≤ xd−2 from (2.5) we obtain

|vk(x)| ≤ C
[
1 + xβ−1

k (x− xk)
]

and then

Ak(x) ≤ C
(
x

xk

)γ−α− 1
2 1 + xβ−1

k (x− xk)
log(2 + xk)

(
∆xk
x− xk

)2

≤ C
(
x

xk

)γ−α− 1
2
(

∆xk
x− xk

)2

+ C
(
x

xk

)γ−α− 1
2 ∆xk x

β−1
k

log(2 + xk)

∆xk
x− xk

≤ C∆xd
(
x

xk

)γ−α− 1
2 ∆xk

(x− xk)2 +
C

logm

(
x

xk

)γ−α− 1
2 ∆xk
x− xk

=: A∗k(x) + A∗∗k (x)

since, for β > 1/2, by (2.4)

∆xk x
β−1
k

log(2 + xk)
∼ x

β−1/2
k

log(2 + xk)

√
am
m
≤ C

logm

aβm
m
∼ 1

logm
.

It follows that

σ2(x) ≤ C
∑

1<xk≤xd−2

(A∗k(x) + A∗∗k (x))

≤ C∆xd
∫ x−∆xd

1

(x
t

)γ−α− 1
2 dt

(x− t)2
+
C

logm

∫ x−∆xd

1

(x
t

)γ−α− 1
2 dt

x− t
.
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The first integral, with t = xy, is equal to

∆xd
x

∫ 1−∆xd/x

1/x

y−γ+α+ 1
2

dy

(1− y)2
≤ C∆xd

x

[∫ 1/2

0

y−γ+α+ 1
2 dy +

∫ 1−∆xd/x

1/2

dy

(1− y)2

]

≤ C∆xd
x

[
1 +

x

∆xd

]
≤ C .

Using the same substitution, the second integral is dominated by

C
logm

∫ 1−∆xd/x

1/x

y−γ+α+ 1
2

dy

1− y
≤ C

logm

[∫ 1/2

0

y−γ+α+ 1
2 dy +

∫ 1−∆xd/x

1/2

dy

1− y

]
≤ C .

Finally, if xd+2 ≤ xk ≤ xj, from (2.5) we get again |vk(x)| ≤ C
[
1 + xβ−1

k (x− xk)
]
. Hence

Ak(x) ≤ C
(

∆xk
x− xk

)2

+ C xβ−1
k ∆xk

log(2 + xk)

∆xk
xk − x

and

σ3(x) ≤ C
∑

xd+2≤xk≤xj

(
∆xk
x− xk

)2

+
C

logm

∑
xd+2≤xk≤xj

∆xk
xk − x

≤ C .

Then, for 2 < x ≤ Cam, we have

|F ∗m (w, f, x)|u(x) ≤ C ‖fū‖[x1,xj ]
.

Let us now consider the case am
m2 ≤ x ≤ 2. We can write

σ(x) =

 ∑
x1≤xk≤x2

+
∑

x
2
<xk≤xd−2

+
∑

xd+2≤xk≤2x

+
∑

2x<xk≤xj

Ak(x)

=: σ1(x) + σ2(x) + σ3(x) + σ4(x) .

For x1 ≤ xk ≤ x
2
, since vk(x) ≤ C x

xk
and

|vk(x)|
log(2 + xk)

· ∆xk
x− xk

≤ C ,

we get

σ1(x) ≤ C
∑

x1≤xk≤x2

(
x

xk

)γ−α− 1
2 ∆xk
x− xk

∼
∫ x/2

0

(x
t

)γ−α− 1
2 dt

x− t

=

∫ 1/2

0

y−γ+α+ 1
2

dy

1− y
= C .



8 G. MASTROIANNI, I. NOTARANGELO, L. SZILI AND P. VÉRTESI

For x
2
< xk ≤ xd−2 we have |vk(x)| ≤ C and x ∼ xk, whence

σ2(x) ≤ C
∑

x
2
<xk≤xd−2

(
∆xk
x− xk

)2

= C .

For xd+2 ≤ xk ≤ 2x we get |vk(x)| ≤ C and, proceeding as for σ2(x), we get

σ3(x) ≤ C .

For 2x ≤ xk ≤ xj, since |vk(x)| ≤ C(xk − x)xβ−1
k and xk − x ≥ xk

2
, it follows that

Ak(x) ≤ C xβ−1
k ∆xk

log(2 + xk)

∆xk
xk
≤ C

logm

∆xk
xk

and then
σ4(x) ≤ C

which completes the proof. �

In order to prove Theorem 2 we need some preliminary results. We recall that if g is a
continuous function having a continuous derivative, the Hermite polynomial based on the
nodes x1, x2, . . . , xm+1 can be written as

H2m(w, g, x) = Fm(w, g, x) +
m∑
k=1

`2
k(x) (x− xk) g′(xk)

=: Fm(w, g, x) +Gm(w, g, x) .

Setting G∗m(w, g) = Gm(w, χjg), we can prove the following lemma.

Lemma 3. If the parameters of the weights w and u satisfy

0 ≤ γ − α− 1

2
≤ 1

then, for any function g ∈ Cu such that ‖g′ϕu‖ <∞, we have

‖G∗m (w, g)u‖ ≤ C
√
am
m

(logm)‖g′ϕu‖[0,xj ] ,

where C 6= C(m, f).

Proof. Using (2.2), (2.3) and (2.4) we easily get

|G∗m (w, g, x)|u(x) ≤ C
√
am
m
‖g′ϕu‖

1 +
∑

1 ≤ k ≤ j
k 6= d, d± 1

(
x

xk

)γ−α−1/2
∆xk
|x− xk|


∼
√
am
m

(logm)‖g′ϕu‖

for x ∈ Im =
[am
m2

, am − c
am
m2/3

]
. �
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We now set N =

⌊
M

logM

⌋
, where M =

⌊
θm

1 + θ

⌋
, 0 < θ < 1, N < M , and prove the

following lemma.

Lemma 4. For any polynomial PN ∈ PN we have

‖H2m (w, (1− χj)PN)u‖ ≤ Ce−cm‖PNu‖ ,
where C 6= C(m, f) and c 6= c(m, f).

Proof. Taking into account that

H2m (w, (1− χj)PN) = Fm (w, (1− χj)PN) +Gm (w, (1− χj)PN) ,

we are going to prove only that

‖Fm (w, (1− χj)PN)u‖ ≤ Ce−cm‖PNu‖ ,
since the other term can be handled in a similar way and implies only a Bernstein inequality.

We have

|Fm (w, (1− χj)PN , x)|u(x) ≤ C‖PNu‖[xj ,∞)

m+1∑
k=j+1

`2
k(x)

v(xk)

u(xk)
u(x)

≤ Cmτ‖PNu‖[θam,∞)

≤ Cmτe−cm‖PNu‖ ≤ Ce−cm‖PNu‖

for some τ > 0, having used (see, [3] or [8])

‖Pmu‖[sam,∞) ≤ Ce−cm‖Pmu‖ , s > 1 .

�

We are now able to prove Theorem 2.

of Theorem 2. For any polynomial PN ∈ PN , where N =

⌊
M

logM

⌋
, M =

⌊
θm

1 + θ

⌋
, 0 < θ <

1, we can write

f − F ∗m(w, f) = f − PN − F ∗m(w, f) +H2m(w,PN)

= f − PN − F ∗m(w, f − PN) +G∗m(w,PN) +H2m(w, (1− χj)PN) .

Hence, using Theorem 1, we get

‖[f − F ∗m(w, f)]u‖ ≤ C‖(f − PN)ū‖[x1,xj ] + ‖G∗m(w,PN)u‖+ ‖H2m(w, (1− χj)PN)u‖
whence, by Lemma 3 and Lemma 4, we obtain

‖[f − F ∗m(w, f)]u‖ ≤ C
[
‖(f − PN)ū‖[x1,xj ] +

1

N
‖P ′Nϕū‖[x1,xj ] + e−cm‖PN ū‖

]
,

since u ≤ ū and

√
am
m

(logm) ≤ 1

N
.
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Taking the infimum on PN ∈ PN we have (see, [4, Theorem 3.5] for a similar argument)

inf
PN∈PN

{
(f − PN)ū‖[x1,xj ] + C

√
aN
N
‖P ′Nϕū‖[x1,xj ]

}
∼ ωϕ

(
f,

√
aN√
N

)
ū

∼ ωϕ

(
f,

√
am
m

(logm)

)
ū

and ‖PN ū‖ ≤ 2‖fū‖, which completes the proof. �
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