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Abstract

The construction of new quasi-interpolants (QIs) having optimal approximation
order and small infinity norm and based on a trivariate C2 quartic box spline is
addressed in this paper. These quasi-interpolants, called near-best QIs, are obtained
in order to be exact on the space of cubic polynomials and to minimize an upper
bound of their infinity norm which depends on a finite number of free parameters
in a tetrahedral sequence defining the coefficients of the QIs. We show that this
problem has always a unique solution, which is explicitly given. We also prove that
the sequence of the resulting near-best quasi-interpolants converges in the infinity
norm to the Schoenberg operator.

Key words: Trivariate box spline, Type-6 tetrahedral partition, Tetrahedral
sequences, Near-best quasi-interpolation
PACS: 41A05, 41A15, 65D05, 65D07

1 Introduction

The construction of appropriate non-discrete models from given discrete vol-
ume data is an important problem in many applications, such as scientific
visualization, computer graphics, medical imaging, numerical simulation, etc.
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Classical approaches are based on trivariate tensor-product polynomial splines.
If we require a certain smoothness along the coordinate axes, such splines
can be of high coordinate degree, that can create unwanted oscillations and
often require (approximate) derivative data at certain prescribed points. These
reasons raise the natural problem of constructing alternative smooth spline
models, that use only data values on the volumetric grid and simultaneously
approximate smooth functions as well as their derivatives. Moreover, in order
to avoid unwanted oscillations, it is desirable that polynomial sections have
total degree, instead of the coordinate degree, that is typical of tensor product
schemes.

Therefore, in the literature, alternative smooth spline models using only data
values on the volumetric grid and of total degree have been proposed. A
first possible approach, beyond the classical tensor product scheme, is rep-
resented by blending sums of univariate and bivariate C1 quadratic spline
quasi-interpolants (see e.g. [18,22,26]). Other methods based on trivariate C1

splines of total degree have been proposed, in [16,29] and [25] on type-6 tetra-
hedral partitions, in [23] on truncated octahedral partitions, in [27,28,30] on
Powell-Sabin (Worsey-Piper) split, and in [24] by using quadratic trivariate su-
per splines on uniform tetrahedral partitions. Furthermore, higher smoothness
C2 has been considered in [10–12,18,20], where the reconstruction of volume
data is provided in the space of C2 quartic splines.

The aim of this paper is to continue the investigation of such kind of trivariate
spaces of total degree four and smoothness C2, with approximation order four.
In particular, we propose the construction of a new general family of quasi-
interpolants (abbr. QIs) on R

3, called of near-best type, motivated by the good
results obtained by this method in the univariate and bivariate settings (see
[1–6,13,18,19,21]).

Moreover, we recall that a fundamental property of quasi-interpolants is that
they do not require the solution of huge systems of linear equations, as occurs
in the construction of interpolating operators, and this is very important in
the 3D setting.

In particular, this general family of operators is constructed by imposing the
exactness on the space P3 of trivariate polynomials of total degree at most
three and by minimizing an upper bound for the operator infinity norm.

Such a technique has been partially used in [12] for the construction of QIs on
a bounded domain based on C2 quartic splines. Since the main goal is to deal
with functions defined on a bounded domain, it is necessary to construct co-
efficient functionals associated with boundary generators (i.e. generators with
supports not completely inside the domain), so that the functionals involve
data points inside or on the boundary of the domain. Therefore, they propose
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to minimize an upper bound for the infinity norm of the operator, by using a
technique that takes into account both the value of such an upper bound and
the position of the data points.

The main difference with respect to the present paper is that in this paper we
propose and analyse the general construction of near-best QIs in the whole
space R

3.

The paper is organized as follows. In Section 2, we recall definitions and prop-
erties of the space of C2 quartic splines on type-6 tetrahedral partitions. In
Section 3, we explain in details the construction of near-best QIs. They are
obtained by solving a minimization problem that admits always a unique so-
lution. We provide norm and error estimates. In Section 4 we provide some
results concerning the performances of the near-best QIs when the degree of
the involved box spline increases. Finally, a section devoted to conclusions is
included.

2 On the space of trivariate C2 quartic splines

In this section we study the spline space generated by the integer translates
of a trivariate C2 quartic box spline specified by a set of seven directions.

We consider the box spline proposed in [17], that is a box spline whose direction
vectors form a cube and its four diagonals, thus R3 is cut into a symmetric reg-
ular arrangement of tetrahedra called type-6 tetrahedral partition (see Fig. 1
(a)).

(a) (b)

Fig. 1. (a) The uniform type-6 tetrahedral partition and (b) the support of the seven
directional box spline

Following [17], we consider the set of seven direction vectors of Z3 and spanning
R

3

X = {e1, e2, e3, e4, e5, e6, e7}
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defined by

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), e4 = (1, 1, 1),

e5 = (−1, 1, 1), e6 = (1,−1, 1), e7 = (−1,−1, 1).
(2.1)

According to [7, Chap. 11] and [8, Chap. 1], since the set X has seven elements
and the domain is R

3, the box spline B(·) = B(·|X) is of degree four. The
continuity of the resulting box spline depends on the determination of the
number d, such that d + 1 is the minimal number of directions that needs
to be removed from X to obtain a reduced set that does not span R

3: then
one deduces that the continuity class is Cd−1. In our case d = 3, thus the
polynomial pieces defined over each tetrahedron are of degree four and they
are joined with C2 smoothness.

The support of the C2 quartic box spline B is the truncated rhombic dodec-
ahedron centered at the point (1

2
, 1
2
, 5
2
) and contained in the cube [−2, 3] ×

[−2, 3] × [0, 5], see Fig. 1(b). Its projections on the coordinate planes are the
octagonal supports of the bivariate C2 quartic box spline with the following
set of directions of R2: {(1, 0); (0, 1); (1, 1); (1, 1); (−1, 1); (−1, 1)}.

Now we consider the space S(X) spanned by the integer translates of the box
spline B

S(X) =



s =

∑

α∈Z3

cαB(· − α), cα ∈ R



 .

This space is in general a subspace of the whole space S2
4 (R

3) of all C2 quartic
splines. Moreover, it is well-known that P3 ⊂ S(X) and P4 6⊂ S(X).

We introduce the scaled spline space Sh(X) associated with S(X) ([8, Chap.
3])

Sh(X) = σh(S(X)) = {σhs : s ∈ S(X)},
which is defined by means of the scaling operator σh, h > 0

σhf : x 7→ f
(
x

h

)
. (2.2)

Thus, Sh(X) is the spline space defined on the refined lattice hZ3.

We also recall [8, Chap. 3] that the approximation power of S(X) is the largest
r for which

dist(f,Sh) = O(hr)

for all sufficiently smooth f , with the distance measured in the Lp(Ω)-norm
(1 ≤ p ≤ ∞). In our case we get r = 4.
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3 Near best quasi-interpolants in S(X)

A quasi-interpolant

Q : F → S(X)

based on the box spline B is a linear operator defined on some functional space
F by an expression of the form

Qf =
∑

α∈Z3

λα(f)Bα

with Bα(x) = B(α1,α2,α3)(x1, x2, x3) = B(x1−α1+
1
2
, x2−α2+

1
2
, x3−α3+

5
2
) and

λα(f) linear combinations of values of f at specific points. We also introduce
the scaled quasi-interpolation operator

Qhf(x) = σhQσ1/hf(x), (3.1)

where σh is defined by (2.2).

In order to define the coefficient functionals λα(f), firstly, for any n ≥ 1, let
Λn be the octahedron with vertices (±n, 0, 0), (0,±n, 0), (0, 0,±n). We denote
by Λ∗

n the set of points Λn ∩ Z
3 (see Fig. 2 for n = 2, 3 and 4).

Fig. 2. From left to right, the octahedron Λn with the corresponding points Λ∗
n, for

n = 2, n = 3 and n = 4.

The choice of octahedron shapes can be considered a 3D generalization of the
rhombic one used in [1,5,6,13] for the construction of 2D near-best QIs.

Then, associated with the tetrahedral sequence Λ∗
n we define the coefficient of

Bα as

λn,α(f) =
∑

β∈Λ∗
n

cβf(α + β) (3.2)

5



Fig. 3. From left to right, sequences of points associated with parameters in Λ∗
1, Λ

∗
2

and Λ∗
3.

and the corresponding operator as

Qnf =
∑

α∈Z3

λn,α(f)Bα (3.3)

Thanks to the symmetry of Λn, it is sufficient to know ℓ(n) < cardΛ∗
n points

in Λ∗
n and the position of the other ones can be obtained by symmetry. When

n = 0, the unique coefficient is c(0,0,0), and ℓ(0) = 1. Let n = 1. The coefficients
cβ involved in Λ∗

1 are derived by symmetry from the parameters c(0,0,0) in Λ∗
0

and c(1,0,0), and then ℓ(1) = 2. The last one is the unique point in Λ∗
1 lying in

the plane of equation x + y + z = 1 that satisfies the inequalities x ≥ y ≥ z
(see Fig. 3). When n = 2, there are ℓ(2) = 4 parameters, derived from the
ones in Λ∗

1 and those in Λ∗
2 satisfying equation x + y + z = 2 as well as the

inequalities x ≥ y ≥ z, namely c(2,0,0) and c(1,1,0) are added. Fig. 3 shows also
the case n = 3, while the cases n = 4 and n = 5 are illustrated in Fig. 4.

For ℓ(n) we have the following explicit expression (see [9]):

ℓ(n) =
⌊
1

72
(n+ 5)

(
2n2 + 5n+ 5

)⌋
, n ≥ 1,

where ⌊x⌋ stands for the integer part of x. It is also known that ℓ(n) is the inte-
ger number closer to 1

72
(n+ 3) (2n2 + 15n+ 1), n ≥ 0 (see the label A181120

in The On-line Encyclopedia of Integer Sequences, https://oeis.org/). The
sequence ℓ(n) is obtained as partial sums of the sequence of general term

round
(
(n+3)2

12

)
, where round(x) denotes the integer number closer to x.

After some algebra, we have obtained that

ℓ(n) =
1

2
(t+ 1)(2(2t+ 1)(3t+ 1)− t+ s(s+ 1 + 6t))
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Fig. 4. From left to right, sequences of points associated with parameters in Λ∗
4 and

Λ∗
5.

if n = 6t+ s, s = 0, . . . , 5.

From (3.2), it is clear that, for ‖f‖∞ ≤ 1, |λα(f)| ≤ ‖c‖1, where c is the vector
with components cβ, β ∈ Λ∗

n. Therefore, since the scaled translates of B form
a partition of unity [7], we deduce immediately

‖Qn‖∞ ≤ ‖c‖1.

Now, we can try to find a solution of the minimization problem

min
{
‖c‖1 : c ∈ R

card(Λ∗
n), Ac = b

}
, (3.4)

where Ac = b is the linear system expressing that Qn is exact on P3. In our
case, in order to obtain such a system, we require that, for f ∈ P3, each
coefficient functional coincides with the corresponding one of the differential
quasi-interpolating operator [20] exact on P3

Q̂f =
∑

α∈Z3

(
I − 5

24
∆ +

3

128
∆2
)
f(α)Bα.

By using the monomial expansion of P3 (see [20], Table 1) we have to impose
twenty conditions:

(
I − 5

24
∆ +

3

128
∆2
)
p(0, 0, 0) =

∑

β∈Λ∗
n

cβp(β)

for all p ∈ P3. Due to the symmetries, there only remain the following two
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equations:

1 =
∑

β∈Λ∗
n

cβ, − 5

12
=

∑

β∈Λ∗
n

β2
1cβ, (3.5)

with β = (β1, β2, β3). They provide the linear system involved in (3.4). Since
the number of unknowns in problem (3.4) has been reduced from card(Λ∗

n) to
ℓ(n) by imposing the symmetries of the octahedron Λn to Λ∗

n, we can express
the equations above in terms of the ℓ(n) free parameters. They can be decom-
posed into eight different types. To describe them, let Ir := {r,−r}, r ∈ N,
and I0 := {0}, and let P3 (r1, r2, r3) be the 3! permutations of the different
numbers r1, r2 and r3. Thus, they are

• c(0,0,0), associated with the point (0, 0, 0);
• c(i,0,0), 1 ≤ i ≤ n, related to the 6 points (±i, 0, 0), (0,±i, 0) and (0, 0,±i);

• c(i,i,0), 1 ≤ i ≤
⌊
n
2

⌋
, corresponding to the 12 sites in Ii × Ii × I0, Ii × I0 × Ii

or I0 × Ii × Ii;
• c(i,j,0), 1 ≤ j ≤

⌊
n−1
2

⌋
and j + 1 ≤ i ≤ n − j, linked to the 24 points in

∪σ∈P3(i,j,0)

(
Iσ(i) × Iσ(j) × Iσ(0)

)
;

• c(i,i,i), 1 ≤ i ≤
⌊
n
3

⌋
, related to the 8 points in Ii × Ii × Ii;

• c(i,j,j), 1 ≤ j ≤
⌊
n−1
3

⌋
and j + 1 ≤ i ≤ n − 2j, corresponding to the 24

evaluation points in Ii × Ij × Ij, Ij × Ii × Ij or Ij × Ij × Ii;

• c(i,i,j), 1 ≤ j ≤
⌊
n−2
3

⌋
and j + 1 ≤ i ≤

⌊
n−j
2

⌋
, associated to the 24 sites in

Ii × Ii × Ij, Ii × Ij × Ii or Ij × Ii × Ii;

• c(i,j,k), 1 ≤ k ≤
⌊
n
3

⌋
− 1, k + 1 ≤ j ≤

⌊
n−1−k

2

⌋
and j + 1 ≤ i ≤ n − j − k,

associated with the 48 points in ∪σ∈P3(i,j,k)

(
Iσ(i) × Iσ(j) × Iσ(k)

)
.

Therefore, equations (3.5) can be expressed as follows:

1 = c(0,0,0) + 6
n∑

i=1

c(i,0,0) + 12

⌊n
2
⌋∑

i=1

c(i,i,0) + 24

⌊n−1

2
⌋∑

j=1

n−j∑

i=j+1

c(i,j,0) + 8

⌊n
3
⌋∑

i=1

c(i,i,i)

(3.6)

+ 24

⌊n−1

3
⌋∑

j=1

n−2j∑

i=j+1

c(i,j,j) + 24

⌊n−2

3
⌋∑

j=1

⌊n−j

2
⌋∑

i=j+1

c(i,i,j) + 48

⌊n
3
⌋−1∑

k=1

⌊n−1−k
2

⌋∑

j=k+1

n−j−k∑

i=j+1

c(i,j,k),

− 5

24
=

n∑

i=1

i2c(i,0,0) + 4

⌊n
2
⌋∑

i=1

i2c(i,i,0) + 4

⌊n−1

2
⌋∑

j=1

n−j∑

i=j+1

(
i2 + j2

)
c(i,j,0) + 4

⌊n
3
⌋∑

i=1

i2c(i,i,i)

(3.7)

+ 4

⌊n−1

3
⌋∑

j=1

n−2j∑

i=j+1

(
i2 + 2j2

)
c(i,j,j) + 4

⌊n−2

3
⌋∑

j=1

⌊n−j

2
⌋∑

i=j+1

(
2i2 + j2

)
c(i,i,j)

+ 4

⌊n
3
⌋−1∑

k=1

⌊n−1−k
2

⌋∑

j=k+1

n−j−k∑

i=j+1

(
i2 + j2 + k2

)
c(i,j,k).
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If c∗ is a solution of the minimization problem (3.4), then the associated QI
Q∗

n defined by (3.2) and (3.3) is called near-best quasi-interpolant.

The objective function of our minimization problem has the following expres-
sion:

‖c‖1 = |c(0,0,0)|+ 6
n∑

i=1

|c(i,0,0)|+ 12

⌊n
2
⌋∑

i=1

|c(i,i,0)|+ 24

⌊n−1

2
⌋∑

j=1

n−j∑

i=j+1

|c(i,j,0)|

+ 8

⌊n
3
⌋∑

i=1

|c(i,i,i)|+ 24

⌊n−1

3
⌋∑

j=1

n−2j∑

i=j+1

|c(i,j,j)|+ 24

⌊n−2

3
⌋∑

j=1

⌊n−j

2
⌋∑

i=j+1

|c(i,i,j)|

+ 48

⌊n
3
⌋−1∑

k=1

⌊n−1−k
2

⌋∑

j=k+1

n−j−k∑

i=j+1

|c(i,j,k)|.

The existence of at least a solution to problem (3.4) is guaranteed because of
the objective function is a polyhedral function. Next result proves that in fact
there is a unique solution.

Theorem 1 The unique solution of the minimization problem (3.4) is the

vector c∗ such that the only values different from zero are

c∗(0,0,0) = 1 +
5

(2n)2
and c∗(n,0,0) = − 5

6(2n)2
.

PROOF. ‖c‖1 is a function of ℓ (n) variables of seven different types: c(i,0,0),

0 ≤ i ≤ n; c(i,i,0), 1 ≤ i ≤
⌊
n
2

⌋
; c(i,j,0), 1 ≤ j ≤

⌊
n−1
2

⌋
, j + 1 ≤ i ≤ n− j; c(i,i,i),

1 ≤ i ≤
⌊
n
3

⌋
; c(i,j,j), 1 ≤ j ≤

⌊
n−1
3

⌋
, j + 1 ≤ i ≤ n− 2j; c(i,i,j), 1 ≤ j ≤

⌊
n−2
3

⌋
,

j + 1 ≤ i ≤
⌊
n−j
2

⌋
, and c(i,j,k), 1 ≤ k ≤

⌊
n
3

⌋
− 1, k + 1 ≤ j ≤

⌊
n−1−k

2

⌋
,

j + 1 ≤ i ≤ n− j − k.

The exactness of Qn on P3 is equivalent to equations (3.5), so we can express
c(0,0,0) and c(n,0,0) in terms of the other variables cβ, β ∈ Λ∗

n\{(0, 0, 0) , (n, 0, 0)} =:

Λ̃∗
n. Therefore, minimizing ‖c‖1 under the linear constraints given in (3.5)

becomes equivalent to minimizing in R
ℓ(d)−2 a polyhedral convex function de-

pending on the variables cβ, β ∈ Λ̃∗
n. Let ω be this function and let cβ, β ∈ Λ̃∗

n.

Denote by ω̄β (cβ) the restriction of ω obtained by replacing its variables by
zero except cβ. We will prove that this univariate function ω̄β attains its min-
imum value uniquely at 0 ∈ R.

Assume for example that β = (i, 0, 0), 1 ≤ i ≤ n, with n ≥ n(i,0,0) := 2. By
cancelling all the variables different from c(0,0,0), c(n,0,0) and c(i,0,0) in (3.6)-(3.7),
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then these equations become

c(0,0,0) + 6c(i,0,0) + 6c(n,0,0) = 1, 2i2c(i,0,0) + 2n2c(n,0,0) = − 5

12
.

Then, the expressions of c(0,0,0) and c(n,0,0) in terms of c(i,0,0) are given by

c(0,0,0) = 1 +
5

4n2
− 6

(
1− i2

n2

)
c(i,0,0), c(n,0,0) = − 5

24n2
−
(
i

n

)2

c(i,0,0).

Thus, ω̄(i,0,0)

(
c(i,0,0)

)
takes the following expression

ω̄(i,0,0)

(
c(i,0,0)

)
=
∣∣∣c(0,0,0)

∣∣∣+ 6
∣∣∣c(i,0,0)

∣∣∣+ 6
∣∣∣c(n,0,0)

∣∣∣

=

∣∣∣∣∣1 +
5

4n2
− 6

(
1− i2

n2

)
c(i,0,0)

∣∣∣∣∣+ 6|c(i,0,0)|+ 6

∣∣∣∣∣
5

24n2
+
(
i

n

)2

c(i,0,0)

∣∣∣∣∣ .

It is a piecewise linear function on the intervals of the real line induced by the
partition x

(i,0,0)
1 := − 5

24i2
< 0 < x

(i,0,0)
2 := 5+4n2

24(n2−i2)
. Explicitly,

ω̄(i,0,0)

(
c(i,0,0)

)
=





1 + p
(i,0,0)
1 c(i,0,0), c(i,0,0) < x

(i,0,0)
1 ,

1 + 5
2n2 + p

(i,0,0)
2 c(i,0,0), x

(i,0,0)
1 ≤ c(i,0,0) < 0,

1 + 5
2n2 + p

(i,0,0)
3 c(i,0,0), 0 ≤ c(i,0,0) < x

(i,0,0)
2 ,

−1 + p
(i,0,0)
4 c(i,0,0), x

(i,0,0)
2 ≤ c(i,0,0),

with

p
(i,0,0)
1 = −12, p

(i,0,0)
2 = −12

(
1− i2

n2

)
, p

(i,0,0)
3 = 12

i2

n2
, p

(i,0,0)
4 = 12.

These slopes satisfy the inequalities

p
(i,0,0)
1 < p

(i,0,0)
2 < p

(i,0,0)
3 < p

(i,0,0)
4 .

Therefore, ω̄(i,0,0) is a strictly convex function that attains its minimum value
at 0.

A similar technique can be applied for each of the other variables in (3.5).
Table 1 provides for every variable cβ, β = (i, i, 0), (i, j, 0), (i, i, i), (i, j, j),
(i, i, j) and (i, j, k), the value nβ of n from which the results shown are valid,

as well as the values xβ
1 and xβ

2 that give rise to the intervals Iβ1 :=
(
−∞, xβ

1

)
,

Iβ2 :=
[
xβ
1 , 0

)
, Iβ3 :=

[
0, xβ

2

)
and Iβ4 :=

[
xβ
2 ,+∞

)
in which the restrictions of ωβ

are polynomials of degree less than or equal to one. The slopes pβi , 1 ≤ i ≤ 4,
of those restrictions of ωβ to Iβi , 1 ≤ i ≤ 4, are shown in Table 2. In all
these cases the univariate objective function is strictly convex attaining its
minimum value at zero.
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Table 1
The real line is decomposed into four intervals associated with the values xβ1 < 0 <

x
β
2 . On each interval the reduced objective function is a polynomial of degree less

than or equal to one. Those values depend on n, and these expressions are true for
n ≥ nβ.

β i, j, k nβ x
β
1 x

β
2

(i, i, 0) 1 ≤ i ≤
⌊
n
2

⌋
2 − 5

96i2
5+4n2

48(n2−2i2)

(i, j, 0)





1 ≤ j ≤
⌊
n−1
2

⌋

j + 1 ≤ i ≤ n− j

3 − 5
96(i2+j2)

5+24n2

96(n2−i2−j2)

(i, i, i) 1 ≤ i ≤
⌊
n
3

⌋
3 − 5

96i2
5+4n2

32(n2−3i2)

(i, j, j)





1 ≤ j ≤
⌊
n−1
3

⌋

j + 1 ≤ i ≤ n− 2j

4 − 5
96(i2+2j2)

5+4n2

96(n2−i2−2j2)

(i, i, j)





1 ≤ j ≤
⌊
n−2
3

⌋

j + 1 ≤ i ≤
⌊
n−j
2

⌋ 5 − 5
96(2i2+j2)

5+4n2

96(n2−2i2−j2)

(i, j, k)





1 ≤ k ≤
⌊
n
3

⌋
− 1

k + 1 ≤ j ≤
⌊
n−1−k

2

⌋

j + 1 ≤ i ≤ n− j − k

6 − 5
96(i2+j2+k2)

− 5+4n2

96(i2+j2+k2−2n2)

Some values of n are not included in Tables 1 and 2. A direct calculation in each
case shows that the resulting univariate function also attains the minimum at
zero.

Consequently, we conclude that the convex function ‖c‖1 attains its global
minimum uniquely at 0 ∈ R

ℓ(n)−2. ✷

We remark that in case n = 2 we obtain the quasi-interpolant Q̃2 proposed
in [20]. Finally, it is easy to prove the following proposition concerning the
unique solution of the minimization problem (3.4).

Proposition 2 For all n ≥ 1, the infinity norm of the near-best quasi in-

terpolant Q∗
n associated with the unique solution of problem (3.4) and given

by

Q∗
nf =

∑

α∈Z3

((
1 +

5

(2n)2

)
f (α)− 5

6(2n)2

3∑

ℓ=1

f (α± neℓ)

)
Bα

11



Table 2
On each interval I

β
i , 1 ≤ i ≤ 4, the slope p

β
i of the restriction of the reduced

objective function is given. Except in the last case β = (i, j, k), it holds that pβ1 <

p
β
2 < p

β
3 < p

β
4 . When β = (i, j, k), pβ1 ≤ p

β
2 < p

β
3 < p

β
4 .

p
β
1 p

β
2 p

β
3 p

β
4

β
(
−∞, x

β
1

) [
x
β
1 , 0
) [

0, xβ2

) [
x
β
2 ,+∞

)

(i, i, 0) −24 24
(
2i2

n2 − 1
)

48 i2

n2 24

(i, j, 0) −48 i2+j2−n2

n2 48 i2+j2

n2 48

(i, i, i) −8 16
(
3 i2

n2 − 1
)

48 i2

n2 16

(i, j, j) −48 48 i2+2j2−n2

n2 48 i2+2j2

n2 48

(i, i, j) −48 482i2+j2−n2

n2 482i2+j2

n2 48

(i, j, k) −72 24
2(i2+j2+k2)−3n2

n2 24
2(i2+j2+k2)−n2

n2 72

satisfies the inequality

‖Q∗
n‖∞ ≤ 1 +

5

2n2
.

It becomes an equality for enough large n. Moreover, the sequence (Q∗
n)n≥1

converges in the infinity norm to the Schoenberg’s operator.

PROOF. Let f ∈ C (R3) such that ‖f‖∞ ≤ 1. Then,

|Q∗
nf | ≤

∑

α∈Z3

((
1 +

5

(2n)2

)
|f (α)|+ 5

6(2n)2

3∑

ℓ=1

|f (α± neℓ)|
)
Bα,

≤ ‖f‖∞
∑

α∈Z3

((
1 +

5

(2n)2

)
+ 6

5

6(2n)2

)
Bα,

≤ 1 +
5

2n2
,

where eℓ, ℓ = 1, 2, 3 are defined in (2.1). Hence, ‖Q∗
n‖∞ ≤ 1 + 5

2n2 . For a large
enough value n, it holds

‖Q∗
n‖∞ ≤ 1 +

5

2n2
.

On the other hand, since the Schoenberg’s operator S is defined as

Sf =
∑

α∈Z3

f (α)Bα,

12



we obtain

Q∗
nf − Sf =

∑

α∈Z3

(
5

(2n)2
f (α)− 5

6(2n)2

3∑

ℓ=1

f (α± neℓ)

)
Bα.

Therefore

|Q∗
nf − Sf | ≤ ‖f‖∞

∑

i∈Z2

5

2n2
Bα ≤ 5

2n2
.

Then, we conclude that ‖Q∗
n − S‖∞ ≤ 5

2n2 , i.e. Q
∗
n converges to S when n −→

+∞. ✷

Finally, standard results in approximation theory [8, Chap.3] allow us to imme-
diately deduce the theorem below, for which we need the following notations:

- let H be a compact set, then, for any function f ∈ C(H), we denote by
‖f‖H = sup{|f(x1, x2, x3)| : (x1, x2, x3) ∈ H} the infinity norm of f ;

- Dβ = Dβ1β2β3 = ∂|β|

∂x
β1
1

∂x
β2
2

∂x
β3
3

;

- |f |r,B = max|β|=r

∥∥∥Dβf
∥∥∥
B
;

- let Λn,(u1,u2,u3), (u1, u2, u3) ∈ Z
3, be the octahedron with vertices (u1 ±

n, u2, u3), (u1, u2 ± n, u3), (u1, u2, u3 ± n);
- let T be a tetrahedron included in the subcube centered at the point α =
(α1, α2, α3), then we set Ωn

T =
⋃α1+2

u1=α1−2

⋃α2+2
u2=α2−2

⋃α3+2
u3=α3−2 Λn,(u1,u2,u3).

Theorem 3 Given a tetrahedron T , let f ∈ C4(Ωn
T ), n ≥ 1 and |γ| =

0, 1, 2, 3, 4. Then there exist constants K|γ| > 0, independent on h, such that

∥∥∥Dγ(f −Q∗
n,hf)

∥∥∥
T
≤ K|γ|h

4−|γ| |f |4,Ωn
T
,

where Q∗
n,h is the scaled quasi-interpolation operator Q∗

n defined by (3.1).

A global version of this result follows by taking the maximum over all tetra-
hedra T .

4 Numerical results

In order to illustrate the theoretical results, in this section we present some
numerical tests obtained by a computational procedure developed in a Matlab
environment. For the evaluation of box splines we can refer to [14], where an
algorithm, that uses the Bernstein-Bézier form of the box spline, is proposed.

We approximate the following functions:

13



(1) the smooth trivariate test function of Franke type

f1(x, y, z) =
1

2
e−10((x− 1

4
)2+(y− 1

4
)2) +

3

4
e−16((x− 1

2
)2+(y− 1

4
)2+(z− 1

4
)2)

1

2
e−10((x− 3

4
)2+(y− 1

8
)2+(z− 1

2
)2) − 1

4
e−20((x− 3

4
)2+(y− 3

4
)2),

on the cube
[
−1

2
, 1
2

]3
;

(2) f2(x, y, z) =
1
9
tanh(9(z − x− y) + 1), on the cube

[
−1

2
, 1
2

]3
;

(3) the Marschner-Lobb function [15]

f3(x, y, z) =
1

2(1 + β1)

(
1− sin

πz

2
+ β1

(
1 + cos

(
2πβ2 cos

(
π
√
x2 + y2

2

))))

with β1 =
1
4
and β2 = 6, on the cube [−1, 1]3. This function is extremely

oscillating and therefore it represents a difficult test for any efficient three-
dimensional reconstruction method;

(4) f4(x, y, z) =
πyexy

40(e− 2)
sin πz, on the cube [0, 1]3.

For each test function, defined on the cube [a, b]3, we compute the scaled quasi-
interpolants Q∗

n,hf , n = 1, . . . , 5, with h = (b− a)/N and N = 16, 32, 64, 128.
Then, using a 139× 139× 139 uniform three-dimensional grid G of points in
the domain [a, b]3, we compute the maximum absolute errors

Enf = max
(u,v,w)∈G

|f(u, v, w)−Q∗
n,hf(u, v, w)|,

for increasing values of N , see Table 3. In the table we also report an estimate
of the approximation order, rnf , obtained by the logarithm to base two of the
ratio between two consecutive errors.

We can notice that the theoretical results are confirmed. Moreover, we can
observe that there is a deterioration of the performances, increasing the value
of n. Indeed, we have shown that the near-best quasi-interpolating operator
Q∗

n converges to the Schoenberg operator for n → ∞, and then it may inherit
all Schoenberg operator’s properties, in particular the approximation order 2.

5 Conclusions

We have dealt with the construction of trivariate C2 quartic quasi-interpolating
splines in the space spanned by the integer translates of the 7-direction box
spline to satisfy the following requirements: (a) the quasi-interpolation opera-
tors reproduce the trivariate polynomials in P3; and (b) they have small infin-
ity norms. The coefficients of the quasi-interpolants are linear combinations

14



Table 3
Maximum absolute errors and numerical convergence orders.

N E1f1 r1f1 E2f1 r2f1 E3f1 r3f1 E4f1 r4f1 E5f1 r5f1

16 6.13e-03 - 1.11e-02 - 1.82e-02 - 2.63e-02 - 3.42e-02 -

32 4.22e-04 3.86 7.97e-04 3.80 1.40e-03 3.70 2.19e-03 3.58 3.14e-03 3.44

64 2.71e-05 3.96 5.17e-05 3.95 9.24e-05 3.92 1.49e-04 3.88 2.19e-04 3.84

128 1.69e-06 4.00 3.25e-06 3.99 5.85e-06 3.98 9.46e-06 3.97 1.41e-05 3.96

N E1f2 r1f2 E2f2 r2f2 E3f2 r3f2 E4f2 r4f2 E5f2 r5f2

16 4.95e-03 - 6.16e-03 - 7.72e-03 - 9.13e-03 - 1.02e-02 -

32 5.77e-04 3.10 8.23e-04 2.90 1.17e-03 2.72 1.57e-03 2.54 1.95e-03 2.39

64 4.55e-05 3.67 6.89e-05 3.58 1.06e-04 3.47 1.54e-04 3.35 2.10e-04 3.22

128 3.01e-06 3.92 4.66e-06 3.89 7.38e-06 3.84 1.11e-05 3.79 1.58e-05 3.73

N E1f3 r1f3 E2f3 r2f3 E3f3 r3f3 E4f3 r4f3 E5f3 r5f3

16 1.97e-01 - 1.94e-01 - 1.84e-01 - 1.79e-01 - 1.77e-01

32 1.34e-01 0.56 1.21e-01 0.68 1.20e-01 0.61 1.20e-01 0.57 1.20e-01 0.56

64 2.74e-02 2.29 4.34e-02 1.47 5.20e-02 1.21 5.19e-02 1.21 5.23e-02 1.20

128 2.59e-03 3.40 5.35e-03 3.02 8.96e-03 2.54 1.24e-02 2.06 1.49e-02 1.81

N E1f4 r1f4 E2f4 r2f4 E3f4 r3f4 E4f4 r4f4 E5f4 r5f4

16 1.30e-05 - 3.72e-05 - 7.71e-05 - 1.32e-04 - 2.02e-04 -

32 8.17e-07 4.00 2.34e-06 3.99 4.87e-06 3.98 8.40e-06 3.98 1.29e-05 3.96

64 5.11e-08 4.00 1.46e-07 4.00 3.05e-07 4.00 5.27e-07 3.99 8.13e-07 3.99

128 3.20e-09 4.00 9.16e-09 4.00 1.91e-08 4.00 3.30e-08 4.00 5.09e-08 4.00

of the values of the function to be approximated at points in neighbourhoods
of the support of the corresponding integer translates of the box spline, and
the coefficients of those linear combinations depend on a subset of parame-
ters. They are determined minimizing an upper bound of the infinity norm of
the operator, subject to the linear equations providing the exactness on P3.
We have proved that this minimization problem has a unique solution, which
has been explicitly computed and provides the corresponding near-best quasi-
interpolant. We have proved that the sequence of near-best quasi-interpolants
converges in the infinity norm to the Schoenberg operator. Finally, we ha pro-
vide some results showing that the performances of the near-best QIs when
the degree of the involved box spline increases.
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