
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A 3D Efficient Procedure for Shepard Interpolants on Tetrahedra

Publisher:

Published version:

DOI:10.1007/978-3-030-39081-5_4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1730979 since 2020-12-29T14:58:43Z

This is the author’s final version of the contribution published as:

Roberto Cavoretto, Alessandra De Rossi, Francesco Dell’Accio and Filomena

Di Tommaso. A 3D Efficient Procedure for Shepard Interpolants on Tetrahe-
dra. Y. D. Sergeyev and D. E. Kvasov (Eds.): NUMTA 2019, LNCS, 11973,
pp. 27-34, 2020, DOI: 10.1007/978-3-030-39081-5 4.

The publisher’s version is available at:

[https://doi.org/10.1007/978-3-030-39081-5 4]

When citing, please refer to the published version.

Link to this full text:

[http://hdl.handle.net/2318/1730979]

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

A 3D efficient procedure for Shepard

interpolants on tetrahedra

Roberto Cavoretto[0000−0001−6076−4115],
Alessandra De Rossi∗[0000−0003−1285−3820],
Francesco Dell’Accio[0000−0003−4879−894X],
Filomena Di Tommaso[0000−0002−4638−2994]

Department of Mathematics “Giuseppe Peano”, University of Torino
Via Carlo Alberto 10, 10123 Torino, Italy

Department of Mathematics and Computer Science, University of Calabria
via P. Bucci, Cubo 30A, 87036 Rende (CS), Italy

roberto.cavoretto@unito.it, alessandra.derossi@unito.it,

francesco.dellaccio@unical.it, ditommaso@mat.unical.it

Abstract. The need of scattered data interpolation methods in the mul-
tivariate framework and, in particular, in the trivariate case, motivates
the generalization of the fast algorithm for triangular Shepard method.
A block-based partitioning structure procedure was already applied to
make the method very fast in the bivariate setting. Here the searching
algorithm is extended, it allows to partition the domain and nodes in cu-
bic blocks and to find the nearest neighbor points that need to be used
in the tetrahedral Shepard interpolation.

Keywords: scattered data interpolation· tetrahedral Shepard operator·
fast algorithms· approximation algorithms.

1 Introduction

Given a set of values of a function f at certain scattered nodesXn = {x1, . . . ,xn}
in a compact convex domain Ω ⊂ R

2, the triangular Shepard method [8] can be
applied efficiently to interpolate the target function f : Ω → R. In [5] we pro-
posed a triangular Shepard method which combines triangle-based basis func-
tions with linear combinations of the values f(xi) at the vertices of the trian-
gles. Moreover, the triangulation can be found in an efficient way by reducing the
number of triangles. The triangulation considered is called compact triangulation
and it allows the triangles to overlap or being disjoint. These triangulations are
determined by minimizing the bound of the error of the linear interpolant on the
vertices of the triangle, chosen in a set of nearby nodes. For these triangulations
a block-based partitioning structure procedure was presented in [3] to make the
method very fast, since the vertices of the triangles must be chosen in a set of
nearby nodes.

In recent years an increasing attention to the multivariate framework was
given. For this reason we propose in this paper a generalization to the 3D setting.

2 R. Cavoretto, A. De Rossi et al.

More precisely, we propose a fast searching procedure to apply to the tetrahedral
Shepard interpolation. It allows to partitioning the 3D domain and nodes in
cubic blocks and to find the nearest neihbor points to compute the Shepard
interpolant on tetrahedra. Similar algorithms were also analized in [2] in the
context of trivariate partition of unity methods combined with the use of local
radial kernels.

The paper is organized as follows. In Section 2 the tetrahedral Shepard
method for trivariate interpolation is recalled. In Section 3 we give a pseudo-
code of the complete interpolation algorithm, presenting the procedures used to
identify and search the nearest neighbor points in the 3D interpolation scheme.
In Section 4 we show some numerical experiments obtained to illustrate the
performance of our tetrahedral Shepard algorithm. Finally, Section 5 contains
conclusions and future work.

2 Tetrahedral Shepard Interpolant

Let be Xn = {x1, . . . ,xn} a set of data points or nodes of R3 with an associated
set of function data Fn = {f1, . . . , fn} and H = {h1, . . . , hm} a set of tetrahedra
with vertices in Xn. Let us denote by Wj = {xj1 ,xj2 ,xj3 ,xj4} the set of vertices
of hj , j = 1, . . . ,m. Moreover, we assume that the set {Wj}j=1,...,m constitutes
a cover of Xn, that is

m
⋃

j=1

Wj = Xn.

We can associate to each tetrahedra hj the set of barycentric coordinates of a
point x ∈ R

3, that is

µj,j1 (x) =
W (x,xj2 ,xj3 ,xj4)

W (xj1 ,xj2 ,xj3 ,xj4)
, µj,j2 (x) =

W (xj1 ,x,xj3 ,xj4)

W (xj1 ,xj2 ,xj3 ,xj4)
,

µj,j3 (x) =
W (xj1 ,xj2 ,x,xj4)

W (xj1 ,xj2 ,xj3 ,xj4)
, µj,j4 (x) =

W (xj1 ,xj2 ,xj3 ,x)

W (xj1 ,xj2 ,xj3 ,xj4)
,

whereW (x,y,v,z) denotes 1
6 the signed volume of the tetrahedra hj . The linear

polynomial λj(x) which interpolates the data at the vertices of the tetrahedra
hj can be expressed in terms of barycentric coordinates in the following form

λj (x) =

4
∑

k=1

µj,jk (x) fjk , j = 1, . . . ,m. (1)

The tetrahedral basis functions are a normalization of the product of the inverse
distances from the vertices of the tetrahedra hj

βν,j (x) =

4
∏

ℓ=1

||x− xjℓ ||−ν

m
∑

k=1

4
∏

ℓ=1

||x− xkℓ
||−ν

, j = 1, . . . ,m, ν > 0, (2)

A 3D efficient procedure for Shepard interpolants on tetrahedra 3

where || · || is the Euclidean norm. The tetrahedral Shepard method is defined
by

Tν [f] (x) =
m
∑

j=1

βν,j (x)λj (x) . (3)

Tetrahedral basis functions form a partition of unity, as the triangular Shepard
ones, and allow the interpolation of functional and derivative values. In fact,
the following results hold, the proofs can be easily obtained in analogy with [5,
Proposition 2.1].

Proposition 1. The tetrahedral basis function βν,j(x) and its gradient (that
exists for ν > 1) vanish at all nodes xi ∈ Xn that are not a vertex of the
corresponding tetrahedron hj. That is,

βν,j(xi) = 0, (4)

∇βν,j(xi) = 0, ν > 1, (5)

for any j = 1, . . . ,m and i /∈ {j1, j2, j3, j4}. Moreover, they form a partition of
unity, that is

m
∑

j=1

βν,j(x) = 1 (6)

and consequently, for each i = 1, . . . , n,
∑

j∈Ji

βν,j(xi) = 1, (7)

∑

j∈Ji

∇βν,j(xi) = 0, ν > 1, (8)

where Ji =
{

k ∈ {1, . . . ,m} : i ∈ {k1, k2, k3, k4}
}

is the set of tetrahedra which
have xi as a vertex.

These properties imply that the operator Tν satisfies the following ones, see [4]
for details.

Proposition 2. The operator Tν is an interpolation operator, that is,

Tν [f](xi) = fi, i = 1, . . . , n,

and reproduces polynomials up to the degree 1.

The procedure to select the compact 3D-triangulation (by tetrahedra) of the
node set Xn strongly affects the results of the analysis of the convergence of the
operator Tν [f] (x).

In order to determine the approximation order of the tetrahedral operator,
we denote by Ω ⊂ R

3 a compact convex domain containing Xn and by C1,1(Ω)
the class of differentiable functions f : Ω → R whose partial derivative of order
1 are Lipschitz-continuous, equipped with the seminorm

‖f‖1,1 = sup

{‖Dµf(u)−Dµf(v)‖
‖u− v‖ : u,v ∈ Ω,u 6= v, ‖µ‖ = 1

}

. (9)

4 R. Cavoretto, A. De Rossi et al.

We also denote by ek,ℓ = xjk − xjℓ , with k, ℓ = 1, 2, 3, 4, the edge vectors of the
tetrahedron hj . Then, the following result holds (for the proof see [4]).

Proposition 3. Let f ∈ C1,1(Ω) and hj ∈ H a tetrahedron of vertices xj1 , xj2 ,
xj3 , xj4 . Then, for all x ∈ Ω we have

|f (x)− λj (x)| ≤ ||f ||1,1
(

3 ||x− xj1 ||22 +
27

2
Cjkj ||x− xj1 ||2

)

, (10)

where kj = maxk,ℓ=1,2,3,4 ‖ek,ℓ‖ and Cj is given by the ratio between the max-
imum edge and the volume, and then is a constant which depends only on the
shape of the tetrahedron hj. The error bound is valid for any vertex.

3 Trivariate Shepard Interpolation Algorithm on

Tetrahedra

In this section we present the interpolation algorithm, which performs the tetra-
hedral Shepard method (3) using the block-based partitioning structure and the
associated searching procedure. Here we consider Ω = [0, 1]3.

INPUTS: n, number of data; Xn = {x1, . . . ,xn}, set of data points; Fn =
{f1, . . . , fn}, set of data values; ne, number of evaluation points; nw, localiz-
ing parameter.

OUTPUTS: Ene
= {Tν [f](z1), . . . , Tν [f](zne

)}, set of approximated values.

Step 1: Generate a set Zne
= {z1, . . . , zne

} ⊆ Ω of evaluation points.

Step 2: For each point xi, i = 1, . . . , n, construct a neighborhood of radius

δ =

√
3

d
, with d =

⌊

(n

8

)1/3
⌋

.

where the value of d is suitably chosen extending the definition contained in [2].
This phase performs the localization.

Step 3: Compute the number b of blocks (along one side of the unit cube Ω)
defined by

b =

⌈

1

δ

⌉

.

In this way we get the side of each cubic block is equal to the neighborhood
radius. This choice enables us to examine in the searching procedure only a
small number of blocks, so to reduce the computational cost as compared to
the most advanced searching techniques, as for instance the kd-trees [10]. The
benefit is proved by the fact that this searching process is carried out in constant
time, i.e. O(1). Further, in this partitioning phase we number the cube-shaped
blocks from 1 to b3.

A 3D efficient procedure for Shepard interpolants on tetrahedra 5

Step 4: Build the partitioning structure on the domain Ω and split the set
Xn of interpolation nodes in b3 cubic blocks. Here we are able to obtain a fast
searching procedure to detect the interpolation points nearest to each of nodes.

Step 5: For each neighborhood or point (i.e., the neighborhood centre), solve
the containing query and the range search problems to detect all nodes Xnk

,
k = 1, . . . , b3, belonging to the k-th block and its twenty-six neighboring blocks
(or less in case the block lies on the boundary). This is performed by repeatedly
using a quicksort routine.

Step 6: For each data point xi ∈ Xn, fix its nw nearest neighbors N (xi) ⊂ Xn.
Among the

nw (nw − 1) (nw − 2)

6

tetrahedra with a vertex in xi, name it xj1 and other three vertices in N (xi),
choose the one which locally reduces the bound for the error of the local linear
interpolant

3 ||x− xj1 ||22 +
27

2
kj

k3j
W (xj1 ,xj2 ,xj3 ,xj4)

||x− xj1 ||2 .

Step 7: Compute the local basis function βν,j(z), j = 1, . . . ,m, at each evalu-
ation point z ∈ Zne

.

Step 8: Compute the linear interpolants λj(z), j = 1, . . . ,m, at each evaluation
point z ∈ Zne

.

Step 9: Apply the tetrahedral Shepard method (3) and evaluate the trivariate
interpolant at the evaluation points z ∈ Zne

.

4 Numerical Results

We present here accuracy and efficiency results of the trivariate interpolation
algorithm proposed. The algorithm was implemented in Matlab. All the nu-
merical experiments have been carried out on a laptop with an Intel(R) Core i7
6500U CPU 2.50GHz processor and 8.00GB RAM.

In the following we analize the results obtained about several tests car-
ried out. We solved very large interpolation problems by means of the tetra-
hedral Shepard method (3). To do this we considered two different distribu-
tions of irregularly distributed (or scattered) nodes contained in the unit cube
Ω = [0, 1]3 ⊂ R

3, and taking a number n of interpolation nodes that varies
from 2 500 to 20 000. More precisely, as interpolation nodes we focus on a few
sets of uniformly random Halton points generated through the Matlab pro-
gram haltonseq.m [6], and pseudo-random points obtained by using the rand

Matlab command. In addition, the interpolation errors are computed on a grid
consisting of ne = 21× 21× 21 evaluation points, while as localizing parameter
we fix the value nw = 13 and ν = 2.

6 R. Cavoretto, A. De Rossi et al.

In the various experiments we discuss the performance of our interpolation
algorithm assuming the data values are given by the following two trivariate test
functions:

f1(x1, x2, x3) = cos(6x3)(1.25 + cos(5.4x2))/(6 + 6(3x1 − 1)2),

f2(x1, x2, x3) = exp(−81/16((x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2))/3.

These functions are usually used to test and validate new approximation
methods and algorithms (see e.g. [9]).

As a measure of the accuracy of our results, we compute the Maximum Ab-
solute Error (MAE) and the Root Mean Square Error (RMSE), whose formulas
are respectively given by

MAE = ||f − Tν [f]||∞ = max
1≤i≤ne

|f(zi)− Tν [f](zi)|

and

RMSE =
1√
ne

||f − Tν [f]||2 =

√

√

√

√

1

ne

ne
∑

i=1

|f(zi)− Tν [f](zi)|2,

where zi ∈ Zne
is an evaluation point belonging to the domain Ω.

In Tables 1–2 we report MAEs and RMSEs that decrease when the number
n of interpolation points increases. Comparing then the errors obtained by us-
ing the two data distributions, we can note that a (slightly) better accuracy is
achieved whenever we employ Halton nodes. This fact is basically due to greater
level of regularity of Halton points than pseudo-random Matlab nodes. Ana-
lyzing the error behavior with the test functions f1 and f2, we get similar results
in terms of accuracy of the interpolation scheme.

f1 f2

n MAE RMSE MAE RMSE

2 500 4.29E−2 4.63E−3 1.37E−2 1.99E−3

5 000 3.75E−2 3.04E−3 1.03E−2 1.14E−3

10 000 2.39E−2 2.05E−3 5.96E−3 7.33E−4

20 000 1.72E−2 1.33E−3 3.41E−3 4.50E−4

Table 1. MAE and RMSE computed on Halton points.

Then we compare the performance of the optimized searching procedure
based on the partitioning of nodes in cubic blocks with a standard implemen-
tation of the algorithm where one computes all the distances between the inter-
polation nodes. With regard to the efficiency of the 3D Shepard interpolation

A 3D efficient procedure for Shepard interpolants on tetrahedra 7

f1 f2

n MAE RMSE MAE RMSE

2 500 6.56E−2 5.49E−3 2.28E−2 2.49E−3

5 000 3.89E−2 3.89E−3 1.62E−2 1.63E−3

10 000 4.00E−2 2.71E−3 8.86E−3 1.03E−3

20 000 1.77E−2 1.65E−3 7.60E−3 6.38E−4

Table 2. MAE and RMSE computed on pseudo-random Matlab points.

algorithm the CPU times computed in seconds are around 27 and 55 for the
sets of 10000 and 20000 nodes, respectively. Using a standard implementation
the seconds increase to about 41 and 318 for the two sets. From this study we
highlight a remarkable enhancement in terms of computational efficiency when
the new partitioning and searching techniques are applied.

5 Conclusions and Future Work

In this paper we presented a new trivariate algorithm to efficiently interpolate
scattered data nodes using the tetrahedral Shepard method. Since this inter-
polation scheme needs to find suitable tetrahedra associated with the nodes,
we proposed a fast searching procedure based on the partitioning of domain in
cube blocks. Such a technique turned out to be computationally more efficient
than a standard one. Numerical experiments showed good performance of our
procedure, which enabled us to quickly deal with a large number of nodes.

Another possible extension is given by a spherical triangular or tetrahedral
Shepard method, which can be applied on the sphere S

2 or other manifolds (see
e.g. [1,11]).

Acknowledgments

The authors acknowledge support from the Department of Mathematics “Giusep-
pe Peano” of the University of Torino via Project 2019 “Mathematics for applica-
tions”. Moreover, this work was partially supported by INdAM – GNCS Project
2019 “Kernel-based approximation, multiresolution and subdivision methods
and related applications”. This research has been accomplished within RITA
(Research ITalian network on Approximation).

References

1. Allasia, G., Cavoretto, R., De Rossi, A.: Hermite-Birkhoff interpolation on scattered
data on the sphere and other manifolds. Appl. Math. Comput. 318, 35–50 (2018)

8 R. Cavoretto, A. De Rossi et al.

2. Cavoretto R., De Rossi A., Perracchione E.: Efficient computation of partition of
unity interpolants through a block-based searching technique. Comput. Math. Appl.
71, 2568–2584 (2016)

3. Cavoretto R., De Rossi A., Dell’Accio F., Di Tommaso F.: Fast computation of
triangular Shepard interpolants. J. Comput. Appl. Math. 354, 457–470 (2019)

4. Cavoretto R., De Rossi A., Dell’Accio F., Di Tommaso F.: An efficient trivariate
algorithm for tetrahedral Shepard interpolation, submitted (2019)

5. Dell’Accio F., Di Tommaso F., Hormann, K.: On the approximation order of trian-
gular Shepard interpolation. IMA J. Numer. Anal. 36, 359–379 (2016)

6. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, World Scientific
Publishing Co., Singapore (2007)

7. Fasshauer, G.E., McCourt, M.J.: Kernel-based Approximation Methods using Mat-

lab. Interdisciplinary Mathematical Sciences, vol. 19, World Scientific Publishing
Co., Singapore (2015)

8. Little F. F.: Convex combination surfaces. In Surfaces in Computer Aided Geometric

Design (ed. Barnhill R. E., Boehm W.), Amsterdam (North-Holland), 99–108 (1983)
9. Renka, R. J.: Multivariate Interpolation of Large Sets of Scattered Data. ACM

Trans. Math. Softw. 14, 139–148 (1988)
10. Wendland, H.: Scattered Data Approximation. Cambridge Monogr. Appl. Comput.

Math., vol. 17, Cambridge Univ. Press, Cambridge (2005)
11. Zhang, M. and Liang, X.-Z. On a Hermite interpolation on the sphere. Appl. Nu-

mer. Math. 61, 666–674 (2011).

