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Abstract

Motivation: The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early
diagnosis and treatment. However, methodologies for the discovery of biomarkers using microarray data often provide
results with limited overlap. These differences are imputable to 1) dataset size (few subjects with respect to the number of
features); 2) heterogeneity of the disease; 3) heterogeneity of experimental protocols and computational pipelines
employed in the analysis. In this paper, we focus on the first two issues and assess, both on simulated (through an in silico
regulation network model) and real clinical datasets, the consistency of candidate biomarkers provided by a number of
different methods.

Methods: We extensively simulated the effect of heterogeneity characteristic of complex diseases on different sets of
microarray data. Heterogeneity was reproduced by simulating both intrinsic variability of the population and the alteration
of regulatory mechanisms. Population variability was simulated by modeling evolution of a pool of subjects; then, a subset
of them underwent alterations in regulatory mechanisms so as to mimic the disease state.

Results: The simulated data allowed us to outline advantages and drawbacks of different methods across multiple studies
and varying number of samples and to evaluate precision of feature selection on a benchmark with known biomarkers.
Although comparable classification accuracy was reached by different methods, the use of external cross-validation loops is
helpful in finding features with a higher degree of precision and stability. Application to real data confirmed these results.
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Introduction

In the last decade, transcriptome analysis performed with high-

throughput microarrays has experienced a huge diffusion and has

profoundly changed the approach to the study of complex

diseases. In an experimental design, the data typically come from

different subjects and phenotypes. The analysis of these data has

proven extremely useful for the identification of biomarker genes

and for the development of new physiologic hypotheses useful for

answering diagnostic, prognostic and functional questions. How-

ever, for complex diseases such as cancer, the high-throughput

analysis carried out in different laboratories and research centers

has given different results, with limited overlap or reduced

statistical significance [1,2]. These differences are matters of

important scientific discussions and, besides the different or poorly

reproducible experimental protocols and analysis pipelines [3–5],

are imputed to two main reasons:

1. Datasets often include small numbers of subjects (some tens)

with respect to the number of variables (tens of thousands of

genomic probes in human) [6,7];

2. The most complex pathologies, such as cancer, are heteroge-

neous and multifactorial, as a result of the alteration of multiple

regulatory pathways and of the interplay between different

genes and the environment, rather than referable to a single

dysfunctional gene like in monogenic diseases [8,9]. A

consequence of this is that data are characterized by many

correlated features; different features may thus be selected

under different settings.

Widely used methodologies for the identification of biomarkers

using microarray data are based on computing differential gene

expression by univariate statistical tests. Such approaches provide

information on the effects of specific genes as individual features,

whereas it is now widely recognized that the interplay between

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e32200



weakly up/down regulated genes, although not significantly

differentially expressed, might be extremely important to charac-

terize a disease status [10–11]. Machine learning algorithms are, in

principle, able to identify multivariate nonlinear combinations of

features and have thus the possibility to select a more complete set

of experimentally relevant gene features. In this context,

classification methods are often used to select biomarker genes

from microarray data. In a recent study [12], classification

performance of different methods was compared across different

microarray studies in terms of ability to select biomarkers

discriminating between two conditions. Besides reaching good

classification accuracy, obtaining stable list of biomarkers is critical

both to understand the results from a biological point of view and

to gain sufficient reliability on potential targets of clinical and

pharmaceutical applications. The stability issue in feature selection

has received much attention recently [13–16]. In a recent

contribution, He and Yu [17] review existing stable feature

selection methods for biomarker discovery.

As shown in [18], biomarker stability and accuracy are

associated to task difficulty, and higher stability is found for

higher accuracy. However, it is in principle possible to have a lack

of stability due to the presence of many highly correlated features,

even with accuracy equal to one. A first contribution of this work is

the comparison of different classification methods in terms of

consistency of lists of candidate biomarkers and classification

accuracy. To this purpose, three real microarray datasets

monitoring breast cancer patients with positive and negative

estrogen receptor status are used; we compare biomarker lists from

the three datasets as well as sets of sub-lists of different sample size

obtained from each dataset.

A slightly different issue, although related with list stability, is

the precision of biomarker identification, i.e. the ability to select

true biomarkers, defined as features biologically related to the

physiological or clinical condition under study as cause or effect of

it. A second contribution of our work is the generation of a

simulated dataset to assess alternative methods’ performance

across multiple studies and varying number of samples, and to

evaluate precision of feature selection on a benchmark with known

biomarkers. We extensively simulate the effect of heterogeneity

and variability on different sets of synthetic microarray data

consisting of two balanced groups of 50, 20, 15 or 10 subjects.

Sample heterogeneity characteristic of complex diseases is

reproduced within the same group by simulating both intrinsic

variability of the population and the alteration of regulatory

mechanisms induced by the disease. Population variability is

simulated by modeling evolution of a pool of subjects in terms of

pairing, mutation and selection in order to generate individuals

characterized by different genotypes. Then, a subset of this

population undergoes alterations in regulatory mechanisms so to

mimic the disease state; these perturbations are slightly different

across the patients in the diseased group, so to reflect the lack of

homogeneity among patients that is typically reported in the

literature for complex diseases [8].

Different methods for binary classification and feature weighting

and ranking are applied to both simulated and real data. In

particular, the classical Support Vector Machine algorithm (SVM)

[19] is used in its linear and Gaussian kernel versions, and the

SVM weights are used for feature ranking. As an alternative, I-

Relief [20] is also used as the feature ranking algorithm coupled

with linear SVM. One method of totally different nature is also

applied: the Spectral Regression version of the Discriminant

Analysis algorithm (SRDA) both as a classifier and a feature

weighting algorithm [21]. All methods make use of the Entropy-

based version of the classical Recursive Feature Elimination

procedure as ranking schema [22,23]. In all experiments, external

cross-validation loops with separate training and test phases are

employed to avoid overfitting effects such as selection bias [24].

Results are also compared with those obtained by using SAM, a

widely applied variant of univariate statistical t-test [25].

Methods

Simulation of population variability
Each subject in the dataset was modeled by a regulatory

network of N = 10000 genes, based on the simulator described in

[26], using default parameter settings. The topology is character-

ized by the connectivity matrix W, with weights wij different from

zero if gene-product j directly affects the expression of gene i. The

sign and the magnitude of wij indicate the sign and the strength of

the regulation. Differential equations were used to model the

dynamics of transcription and degradation as continuous variables

and to describe transcription delay with different time constants

for each gene (see Text S1 for further details).

In molecular biology, transcription factors and enhancers are

proteins that bind to specific DNA sequences and can regulate

transcription of a gene by respectively activating/blocking the

transcription and tuning the quantity of RNA transcribed in a unit

of time. Loosely speaking, weights wij of the connectivity matrix W

can be interpreted as the affinity of the genome specific sequences

for a transcription factor or an enhancer j, regulating expression of

a gene i. Since weights wij can in principle be mapped to specific

nucleotide sequences in the genome, W can be interpreted as part

of the genotype of the subject. Moreover, since each network is

characterized by a finite number of attractors, reachable from a

specific set of initial conditions and/or external stimuli, each

attractor can be interpreted as the phenotype of an individual in a

particular environmental condition.

Following these concepts, evolution of a population of M = 1000

individuals was simulated using a procedure similar to the one

described in [27]. In summary, subjects were modeled as

regulatory networks of N = 10000 nodes characterized by a

specific genotype (the connectivity matrix W with weights wij)

and a specific phenotype (the system attractors). Given specific

initial conditions (i.e. environment condition that we consider fixed

for the purpose of this work), the initial population at generation 1

consisted of M individuals with identical connectivity matrix W

and with N dimensional vectors of expression values obtained by

considering the steady state reached by the system. Gene specific

kinetic parameters ai and bi were sampled from Gaussian

distributions with means ma, mb and standard deviations sa, sb.

For each subject, ma and mb were set to 20 and 0.2, respectively,

whereas sa and sb were sampled from a Gaussian distribution

with means 0.5 and 0.02 and standard deviations equal to 0.075

and 0.0025, respectively. Parameters values (Text S1, Equations 1

and 2) were empirically chosen so to generate in silico data with

statistical distribution similar to those observed on the real

datasets.

To introduce genotype variability in the population, subsequent

generations were produced by iteration of three steps: random

pairing of individuals, mutation of a randomly chosen subset of

subjects and selection of the surviving subjects. For computational

reasons, these three steps were applied only to a sub-network of

size N = 900, indicated as W900 in the following, which was

constrained to be not connected to any of the other 9100 nodes in

the network. Each step is described in detail in what follows.

a. Pairing. Offspring was created by randomly selecting two

parents among the current population of M individuals and

Sample Heterogeneity Effect on Biomarker Discovery
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randomly combining rows of the connectivity matrix W900 from

each parent with equal probability.

b. Mutation. Mutation was simulated by changing each nonzero

wij (which, by simulation, resulted equal to 1619 elements on a

matrix of 9006900 = 810000 elements) with probability 0.025/

1619. The new value of each mutated wij was sampled from a

Gaussian distribution with mean and standard deviation equal to 0

and 1, respectively. Therefore, at each iteration, each subject

mutated with probability 0.025.

c. Selection. Assuming, in a naı̈ve simplification of reality, that

individuals behaved as haploid organisms and that the initial

phenotype was essential for survival, subjects with at least one

mutated wij were allowed to survive only if their phenotype did not

change with respect to the original population. In practice, we

calculated the Euclidean distance between the expression profile of

each mutated subject (the N dimensional vector of gene expression

values at steady state) and the average expression profile of subjects

at generation 1; if Euclidean distance exceeded the value of 0.81

(corresponding to the percentile 99.5 of the observed distances) the

subject was eliminated, otherwise he/she survived. At each

generation, M individuals were generated, independently of the

number of parents survived in the previous generation. Evolution

proceeded for a time sufficient to have a final population of M

subjects with the same phenotype but different genotype, i.e. 150

generations (Figure S1).

Noise was added to expression data of the 10000 genes in the

1000 subjects as additive Gaussian noise with mean 0 and

standard deviation sampled from the distribution of within-groups

error variance in real datasets (paragraph 2.3), as described in

[28]. In particular, the error variance associated to genes was

approximated by a lognormal distribution with mean 0.22 and

standard deviation 0.35.

Simulated data
Once the base population was simulated, two groups, each of

500 subjects, were defined. The pathological condition was

simulated by knocking out or down six target hubs, defined as

those genes with the highest out-degree and expression value at

steady state higher than 0.88, so that their knock-out (down)

achieved an effect. The knock-out of gene j was simulated by

setting to 0 its expression and all the elements of row j in matrix W.

Consistently, the knock-down of gene j was simulated by halving

its value and all the elements of row j in matrix W. Diseased

subjects had 4, 5 or 6 genes belonging to W900 that were knocked

out or down. The proportion of subjects with 4, 5 or 6 genes

affected was set equal to 1/3, 1/3, 1/3, respectively. For each

gene, the proportion of subjects affected by knock-out and knock-

down was set equal to 1/3 and 2/3, respectively. Figure 1 displays

the diseased group variability in terms of histogram of the

Euclidean distance between the steady states of the original and

the diseased population. The variability rises from both the

intrinsic population variability, i.e. the different connectivity

weights wij in W900, and the heterogeneity of the disease.

Comparison between simulated and Affymetrix data (GSE2990,

see below) showed that the datasets have very similar distribution

(Wilcoxon test p-value equal to 0.9).

The putative biomarkers were defined as those genes directly or

indirectly regulated by at least one of the six hubs, having

expression modified by the knock-out (down). This resulted in 155

biomarkers on a total of 10000 features.

To consider the effect of sample size, we partitioned the two

groups of 500 healthy and 500 diseased subjects into 4 sets of 10

balanced non-overlapping datasets of size 50, 20, 15 or 10 subjects

per group (10 datasets for each case study), for a total of 40

simulated datasets.

Real data
Publicly available data from three breast cancer microarray

studies were collected from Gene Expression Omnibus repository

(GEO) with accession numbers: GSE2990 [29], GSE3494 [30]

and GSE7390 [31].

Datasets were all hybridized using Affymetrix U133 Gene-

chipsTM (HG-U133A). Samples that have known estrogen-receptor

(ER) status were selected so to have balanced groups (ER+ and

ER2), homogeneous with respect to characteristics such as age,

tumor size and histological grade. We chose to investigate the ER

status because it is always assessed in breast biopsies, therefore it is

very often present among the clinical/pathological information

given with the datasets. Moreover, the assessment of the ER status is

important to divide breast cancer into molecular classes and to treat

cancer with the hormone blocking therapy [32]. Since there are

subgroups of samples belonging to multiple datasets, redundant

subjects were removed. The resulting datasets are characterized by

22207 features (probe sets) and 66 subjects for GSE2990 (33 ER+,

33 ER2), 50 subjects for GSE3494 (25 ER+, 25 ER2) and 92

subjects for GSE7390 (46 ER+, 46 ER2). Comparison among the

three datasets allowed assessing list stability in a real case study. To

assess list stability within dataset, thus not accounting for

experimental setup variability, and to compare the effect of sample

size with simulated data, 20 subjects per ER status were repeatedly

sampled from datasets GSE2990 and GSE7390 to set up smaller

balanced datasets (10 datasets for each case study). Gene expression

intensity signal was derived and normalized independently for each

dataset using the robust multiarray average (RMA) algorithm [33].

Probe sets related to the estrogen receptor (ESR1) were removed

from all datasets, since ESR1 is the gene more directly associated

with ER status and can mask other potential descriptors of the

underlying pathophysiology [34].

Biomarker discovery methods
Support Vector Machine (SVM). Support Vector Machines

[19] are a set of supervised learning methods used for

classification, in principle able to identify nonlinear features thus

providing a more complete set of relevant genes. They were used

here with linear (LSVM) and Gaussian kernel (GSVM). The

tuning phase required the identification of the optimal value of the

regularization parameter c (the trade-off between empirical error

and smoothness of the solution) and, for the Gaussian kernel, of

the bandwidth s.

Iterative-Relief and SVM (IRSVM). Iterative Relief [20] is

a feature selection/ranking algorithm that solves a convex

optimization problem with a margin-based objective function in

Figure 1. Variability of the diseased population. Histogram of the
Euclidean distance between the steady states of the diseased
population with respect to the original phenotype.
doi:10.1371/journal.pone.0032200.g001
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a nearest-neighbor based strategy. The ranking provided by I-

Relief can be used by an independent classifier: in our case, we

used it together with linear SVM. The only required parameter to

set is the bandwidth s of the internal kernel.

Spectral Regression Discriminant Analysis (SRDA).

SRDA algorithm embeds the classical Discriminant Analysis into

a regression framework through the use of spectral graph analysis

[21]. This improves computational efficiency by solving only a set of

regularized least squares problems without eigenvector computation

involved. Moreover, the score attributed to each feature can be

interpreted as a feature weight, allowing directly feature ranking.

The regularization value a is the only parameter we had to tune.

Parameter Tuning. For GSVM, IRSVM and SRDA,

parameter tuning was performed through a preliminary 3-fold

cross-validation (without feature ranking) run for a set of possible

parameter values.

Bootstrap. The four methods, LSVM, GSVM, IRSVM and

SRDA, were used both in single cross-validation and in a Monte

Carlo bootstrap resampling schema with B = 100 external training/

test splits with 3-fold cross-validation as internal resampling (methods

named as LSVM_B, GSVM_B, IRSVM_B and SRDA_B in the

following). This strategy has been proved to be an effective

countermeasure against unwanted selection bias effects [23,24].

Ranking and selection. In the four aforementioned

methods, the Entropy-based Recursive Feature Elimination

(ERFE) procedure was used as the ranking schema [22].

Starting from the classical RFE algorithm [35], ERFE adaptively

discards a subset of the least informative features according to an

entropy measure of the distribution of the weights generated by

the feature weighting schema. This guarantees a relevant speed-up

of the ranking procedure without performance degradation. The

optimal number of features was chosen in correspondence to the

minimum classification error estimate.

Statistical analysis of Microarrays (SAM). The SAM test

[25] is a widely used univariate statistical test for the identification

of differentially expressed genes from microarray data. This

variant of the t-test accounts for the non Gaussian distribution of

data. SAM uses a resampling procedure to derive the null

hypothesis distribution and the false discovery rate (FDR) to

account for multiple testing [36]. In this study, a FDR = 5% was

used to select features after a ranking based on their p-value.

Algorithm evaluation
Algorithm performance was evaluated in terms of the ability to

select true biomarkers, to provide stable lists of biomarkers and to

accurately classify the subjects.

The ability to select the true biomarkers was evaluated in term

of precision (number of true positives divided by the number of

selected features) obtained by the different methods according to

their choice of the optimal number of features. The area under the

precision vs. recall (number of true positives divided by the number

of true biomarkers) curve was also considered to outline the ability

of the different methods to rank the features, a task related with the

ability to select the true biomarkers.

To evaluate the ability of the different methods to provide stable

lists of biomarkers, the algebraic stability indicator derived by

Canberra distance was used [15]. In particular, given two ordered

lists T1 and T2 of p ranked features, the Canberra distance

between them is defined as:

Ca T1,T2ð Þ~
Xp

i~1

t1 ið Þ{t2 ið Þj j
t1 ið Þzt2 ið Þ ð1Þ

where t1(i) and t2(i) indicate the rank, i.e. the position, of feature i

in the ordered lists T1 and T2, respectively. The stability indicator

for a given set of lists was computed as the mean of the Canberra

distances between pairs of lists in the set, normalized by its

expected value on the whole permutation group on p features: the

obtained value ranges then between 0 (maximal stability) and 1.4

(maximal instability), with 1 as the case of randomly generated

lists. A different extension based on quotients of permutation

groups allowed comparing lists T1 and T2 of different length l1, l2:

Ca T1,T2ð Þ~ 1

p{l1ð Þ!: p{l2ð Þ!
X

C1[S1

X

C2[S2

Ca C1,C2ð Þ ð2Þ

where p is the total number of analyzed features and Cj (j = 1,2)

belong to the set Sj of all the lists having the first lj features ordered

as in Tj and the remaining (p–lj) elements ordered in all the (p–lj)!

possible combinations. This is called the complete version of the

partial lists distance: neglecting its component depending only on

the discarded features we ended up with a different measure

(called core distance) better tailored to highlight variations on

partial short lists [37]. Full statements and proofs of the

mathematical properties of the Canberra distance can be found

in [38].

The Matthews correlation coefficient, MCC [39], was used as a

measure of the quality of binary classifications. The MCC can be

calculated directly from the confusion matrix using the formula:

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ð3Þ

In this equation, TP is the number of true positive, TN the

number of true negative, FP the number of false positive and FN

the number of false negative subjects.

Statistical significance of the comparison between each method

and its bootstrap variant was assessed using Wilcoxon signed ranks

test with significance level a equal to 0.05. Differences among the

four multivariate feature selection methods in their bootstrap

variant were assessed using Friedman test (a= 0.05), followed, if

significant, by Wilcoxon signed ranks test to examine between

which methods the differences actually occur, with a significance

level a equal to 0.05/6 = 0.0083 to correct for multiple testing.

Finally, SAM was compared with the other eight methods using

Wilcoxon signed ranks test with a significance level a equal to

0.05/8 = 0.00625 to correct for multiple testing.

Results

Simulated data
Application of the nine biomarker discovery methods on the

forty simulated datasets provides information on precision of

feature selection, stability of biomarker lists and classification

accuracy.

Feature selection. Figure 2 shows boxplots of precision,

obtained by the different methods according to their choice of the

optimal number of features. Feature selection results show that

bootstrap resampling schema leads to an improvement in terms of

precision, statistically significant when the sample size decreases.

In particular, with 20, 15 and 10 subjects per group, bootstrap

improves precision of 1.5, 1.4 and 2 fold change, respectively

(average improvement across the four different classification

methods). Differences between bootstrap and non-bootstrap

approach are statistically significant (p-value lower than 0.05,

Wilcoxon signed ranks test) for LSVM and GSVM with 20

Sample Heterogeneity Effect on Biomarker Discovery
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subjects per group, for LSVM and SRDA with 15 subjects per

group, for all methods but LSVM with 10 subjects per group. In

Figure 2, the interquartile range of the number of selected features

is also reported. Interestingly, with less than 50 subjects per group,

the bootstrap approaches have the tendency to select a lower

number of features.

There are no appreciable differences among different bootstrap

methods in terms of precision (Friedman test p-value always above

0.05 for every sample size). In the case of 50 subjects per group,

SAM detects differentially expressed features with average

precision comparable to that obtained by the other methods, but

GSVM, IRSVM and IRSVM_B, which perform statistically

significantly better than SAM (p-value equal to 0.002, 0.006, 0.006

respectively, Wilcoxon signed ranks test). With 20 subjects per

group, SAM is not able to select any gene with FDR lower than

0.05 in six datasets, whereas in the remaining four, it selects in

average 50 features with high precision (0.85 in average). In these

latter cases, SAM performs statistically significantly better than

LSVM (p-value = 0.004) and SRDA (p-value = 0.006), i.e. two

methods without the bootstrap approach. Finally, with less than 20

subject per group, SAM is not able to select any gene in any of the

dataset with FDR lower than 0.05; thus we could not report any

result in these latter two cases.

A slightly different task, although related to feature selection, is

feature ranking. In principle, a method could rank features

properly, but fail to select the optimal number of features. Areas

under the precision vs. recall curves (AUC) obtained by ranking

features (Figure 3) show appreciable differences between methods.

Bootstrap methods perform better than their standard variants for

datasets of size 50, 20 and 15, for all methods (p-value always

below 0.005) but GSVM. For datasets of size 10, only SRDA_B

improves with respect to SRDA (p-value = 0.01). With datasets of

50, 20 and 15 subjects per class, IRSVM_B is the best performing

algorithms (Friedman test gave p-value lower than 0.004 for every

sample size and Wilcoxon signed ranks test gave p-value lower

than 0.003 for every comparison between IRSVM_B and the

other bootstrap methods). With 10 subjects per group, all

multivariate methods show AUC below 0.5, without statistically

significant differences among them.

With 50 and 20 subjects per group, a simple univariate test such

as SAM is able to rank differentially expressed features with

performance comparable to multivariate methods such as LSVM,

GSVM, SRDA and their bootstrap versions, but not to IRSVM

and IRSVM_B that perform better (p-values equal to 0.002 for

both tests). However, when the number of subjects is lower than

20, SAM performance in feature ranking dramatically drops with

respect to classification based methods (p-value lower than 0.002

for all comparisons but GSVM and GSVM_B). This behavior is

consistent with the inability of SAM to select any feature with 15

and 10 subjects per group.

Feature stability. The ability of the various methods to

select the same features across different datasets is depicted in

Figure 4, where the boxplots of the core Canberra distance

(Equation 2) of the lists of selected features are shown. The

distance between the ranked lists increases for all the methods

when the number of subjects per group decreases. Results are

consistent with those obtained for feature selection: the bootstrap

resampling schema leads to an improvement in list stability,

statistically significant when sample size decreases. In particular,

differences are statistically significant for LSVM, SRDA and

IRSVM with 20 subjects per group (p-value always lower than

0.036), for LSVM, GSVM and IRSVM with 15 subjects per group

(p-value always lower than 0.033), for all methods with 10 subjects

per group (p-value always lower than 0.001). Among bootstrap

approaches, IRSVM_B is the best performing method in terms of

list stability, when 20 subjects per group are available; LSVM_B

performs as IRSVM_B in the case of 15 subjects per group;

GSVM_B performs as IRSVM_B in the case of 10 subjects per

group (Friedman test gave p-value lower than 10211 for sample

Figure 2. Precision of feature selection on simulated data.
Boxplots of precision corresponding to the optimal number of features
chosen by different methods when 50, 20, 15 or 10 subjects per group
are available. A star highlights the significant differences between pair
of bootstrap and non-bootstrap approaches (p-value lower than 0.05,
Wilcoxon test). The interquartile range of the number of selected
features is also reported below each boxplot.
doi:10.1371/journal.pone.0032200.g002

Figure 3. Evaluation of feature ranking on simulated data.
Boxplots of area under the precision vs. recall curves obtained by
ranking features according to the different methods, when 50, 20, 15 or
10 subjects per group are available.
doi:10.1371/journal.pone.0032200.g003

Sample Heterogeneity Effect on Biomarker Discovery
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size 20, 15, 10 and Wilcoxon signed ranks test gave p-value lower

than 0.001 for every significant pairwise comparison).

In the case of 50 subjects per group, SAM shows list stability

comparable to the one obtained by the other methods. With 20

subjects per group, SAM is as good as IRSVM_B; however, results

are limited to the four datasets for which SAM was able to select

features below the 0.05 FDR threshold. As for feature selection,

with less than 20 subjects per group we do not report any results

since SAM was not able to select any gene in any of the dataset.

Classification Accuracy. Bootstrap approach also improves

classification accuracy (Table 1): with 50 subjects per group

LSVM_B and IRSVM_B perform better than their standard

versions (p-value equal to 0.019 and 0.007, respectively); with 20

subjects per group GSVM_B and SRDA_B perform better than

their standard versions (p-value equal to 0.030 and 0.025,

respectively); with 15 subjects per group LSVM_B, GSVM_B

and SRDA_B perform better than their standard versions (p-value

equal to 0.031, 0.031 and 0.016, respectively). All bootstrap

classification methods perform equally well (Friedman test p-values

always above 0.15 for every sample size) in terms of classification

accuracy.. SAM was excluded from this part of the analysis.

Real Data
Application of the various methods on breast cancer data

provides information on list stability and classification accuracy.

Results on dataset GSE3494 are not shown since none of the

different methods gave good accuracy (MCC always below 0.4).

On the other two datasets, results confirmed those obtained by

simulated data. In particular, bootstrap resampling schema leads

to an improvement in list stability (Figure 5), appreciable both

when the complete datasets GSE2990 and GSE7390 are

compared and when 20 subjects per group are repeatedly sampled

from each dataset, for a total of 10 resampled dataset for each of

the original datasets.

Differences between bootstrap and standard approach are

statistically significant for every method (p-value always lower than

0.002) with dataset GSE2990 and for LSVM and GSVM with

dataset GSE7390.

In terms of stability, SAM performance is poor: when 20

subjects per group are repeatedly sampled from each dataset the

core Canberra distance between lists of biomarkers ranges

between 0.04 and 0.37 (average 0.27) for GSE2990 and between

0.13 and 0.31 (average 0.22) for GSE7390; on the other hand,

between the complete datasets (GSE2990 vs. GSE7390) the core

Canberra distance is equal to 0.63. SAM results are not shown in

Figure 5 to avoid masking the differences among the other

methods.

The MCC obtained using different methods on real datasets is

shown in Table 2. The first two columns report the MCC for

GSE2990 and GSE7390, respectively, when 20 subjects per group

are repeatedly sampled from each dataset. The third and fourth

columns of Table 2 report the MCC obtained using the complete

datasets GSE2990 and GSE7390. Results are comparable to those

obtained using simulated data. Bootstrap approach improves

classification accuracy on dataset 7390 for all methods (p-value

equal to 0.02, 0.04, 0.001, 0.03 for LSVM_B, GSVM_B,

SRDA_B and IRSVM_B, respectively, with respect to their

standard version), whereas, with dataset 2990, the differences

between bootstrap and standard approaches are not statistically

significant. It is confirmed the tendency of the bootstrap

approaches to select a lower number of features. As observed

with simulated data, all bootstrap classification methods perform

equally well in terms of classification accuracy (Friedman test p-

values always above 0.06 on both the datasets).

To improve our confidence in the biological meaningfulness of

the results obtained with real data, the functional annotation of the

selected genes was considered. In particular, we considered: 1) the

intersection of the lists obtained by the four bootstrap methods on

datasets GSE2990 and GSE7390; 2) the intersection of the lists

obtained by IRSVM_B on datasets GSE2990 and GSE7390. The

two lists of genes and the results of enrichment analysis are

available in Text S2.

Discussion

The identification of an appropriate and robust biomarker

signature of a disease is a fundamental step for early diagnosis and

Figure 4. Evaluation of feature stability on simulated data.
Boxplots of the core Canberra distance between lists of selected
features obtained using different methods when 50, 20, 15 or 10
subjects per group are available. A star highlights the significant
differences between pair of bootstrap and non-bootstrap approaches
(p-value lower than 0.05, Wilcoxon test).
doi:10.1371/journal.pone.0032200.g004

Table 1. MCC corresponding to the optimal number of
features obtained using different methods - simulated data.

50 20 15 10

LSVM 0.73 (0.62, 0.82) 0.69 (0.51, 0.93) 0.73 (0.60, 0.88) 0.70 (0.60, 0.82)

LSVM_B 0.77 (0.65, 0.87) 0.74 (0.54, 0.95) 0.80 (0.68, 0.94) 0.73 (0.64, 0.83)

GSVM 0.78 (0.70, 0.87) 0.76 (0.62, 0.91) 0.81 (0.72, 0.89) 0.73 (0.66, 0.80)

GSVM_B 0.80 (0.65, 0.92) 0.81 (0.62, 0.95) 0.83 (0.66, 0.94) 0.71 (0.64, 0.86)

SRDA 0.75 (0.66, 0.84) 0.72 (0.61, 0.93) 0.74 (0.61, 0.87) 0.69 (0.60, 0.80)

SRDA_B 0.77 (0.67, 0.85) 0.74 (0.59, 0.96) 0.75 (0.60, 0.94) 0.73 (0.61, 0.83)

IRSVM 0.77 (0.66, 0.84) 0.83 (0.61, 0.94) 0.77 (0.67, 0.85) 0.65 (0.60, 0.80)

IRSVM_B 0.81 (0.67, 0.92) 0.72 (0.50, 0.95) 0.80 (0.64, 0.94) 0.69 (0.51, 0.86)

Average MCC obtained when 50, 20, 15 or 10 subjects per group are available.
Range of values is indicated in parenthesis.
doi:10.1371/journal.pone.0032200.t001
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treatment. However, for complex diseases such as cancer, high

throughput analysis carried out in different research centers may

exhibit poor reproducibility, with limited overlap or reduced

statistical significance. The results of the MAQC-II study address

in a comprehensive analysis this issue on real datasets by

comparing methods and procedures between data analysis teams

[18]. Here we have further explored the effect of the intrinsic

complexity of the task.

A first contribution of this work is the comparison of different

classification methods applied on real microarray datasets, in

terms of consistency of lists of candidate biomarkers and

classification accuracy. A second contribution of our work is the

generation of a simulated dataset to extensively assess average

method performance on a large number of studies and

experimental conditions, and to evaluate precision and feature

ranking performance on a benchmark with known biomarkers.

Heterogeneity of samples in each group is obtained by simulating

both intrinsic variability of the population and heterogeneity of the

disease. Despite its simplicity with respect to real systems, the

simulator provides a versatile test bed to assess a wide spectrum of

methodologies. The dataset is available upon request (ba

rbara.dicamillo@dei.unipd.it).

Results on simulated data show that when some tens of subjects

are available per group, performance of different methods are

comparable. However, when available subjects are equal or lower

than 20, bootstrap resampling schema leads to an improvement in

the precision of the selected features and list stability. Bootstrap

approach slightly improves also classification accuracy when 50,

20 or 15 subjects per group are available. Among the different

methods here considered, IRSVM_B provides the best combina-

tion of feature ranking and biomarker stability; moreover, it

reaches the best average performance also in terms of classification

accuracy.

In the case of 50 subjects per group, a simple univariate test

such as SAM shows performance comparable to that obtained by

the other methods. With 20 subjects per group, SAM performance

strongly depends on the dataset: on the simulated data, for

example, SAM is not able to select any gene with FDR lower than

0.05 in six datasets, whereas in the remaining four, it selects in

average 50 features with high precision (0.85 in average) and

stability comparable to the one obtained using IRSVM_B,

although this latter outperforms SAM in feature ranking. Finally,

with less than 20 subjects per group, SAM performance

dramatically drops with respect to classification based methods.

With real data, only list stability and classification accuracy can

be assessed. In both cases, results of classification methods tightly

resemble those obtained with simulated data.

In conclusion, our analysis confirms the MAQC-II indication

that comparably good classification accuracy can be reached by

different methods on the same task, provided that a valid Data

Analysis Plan is adopted [18]. Furthermore, we found a systematic

improvement due to bootstrap in selecting features with a high

degree of precision and stability. Overall, the crucial factor

affecting list stability seems to be that the classification task is

under constrained. When additional information is present on the

relationships between genes, this information could be used to

improve the stability with respect to the features of the classifiers.

The basic idea of this strategy would be to take into account the

complex gene relationships, instead of considering genes as

independent features. In future works, we plan to compare the

Figure 5. Evaluation of feature stability on real data. Boxplots of
the core Canberra distance between lists of selected features provided
by different classification methods when 20 subjects per group are
repeatedly sampled from GSE2990 (upper panel) and GSE7390 (middle
panel) datasets. A star highlights the significant differences between
pair of bootstrap and non-bootstrap approaches (p-value lower than
0.05, Wilcoxon test). The interquartile range of the number of selected
features is reported below each boxplot. The core Canberra distances
between lists of biomarkers provided by different methods on the
complete GSE2990 vs. GSE7390 datasets are shown in the lower panel
together with the number of selected features in each dataset.
doi:10.1371/journal.pone.0032200.g005

Table 2. MCC corresponding to the optimal number of
features obtained using different methods – real data.

GSE2990 20
subjects

GSE7390 20
subjects GSE2990 GSE7390

LSVM 0.64 (0.61, 0.69) 0.77 (0.61, 0.90) 0.60 0.79

LSVM_B 0.65 (0.51, 0.77) 0.81 (0.58, 0.91) 0.68 0.81

GSVM 0.62 (0.59, 0.64) 0.73 (0.60, 0.83) 0.59 0.74

GSVM_B 0.65 (0.60, 0.71) 0.78 (0.61, 0.91) 0.61 0.77

SRDA 0.63 (0.61, 0.66) 0.74 (0.62, 0.85) 0.50 0.78

SRDA_B 0.67 (0.61, 0.78) 0.83 (0.66, 0.90) 0.67 0.77

IRSVM 0.62 (0.47, 0.69) 0.80 (0.65, 0.91) 0.60 0.78

IRSVM_B 0.67 (0.58, 0.82) 0.82 (0.62, 0.91) 0.67 0.81

Average MCC obtained when 20 subjects per group are available, sampled from
datasets GSE2990 and GSE7390 MCC (range of values is indicated in
parenthesis), and obtained on the complete datasets GSE2990 and GSE7390.
doi:10.1371/journal.pone.0032200.t002
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use of different biological information from genomic databases in

the learning process by integrating different prior knowledge like

functional annotations, protein-protein interactions, and expres-

sion correlation among genes.

Supporting Information

Figure S1 Progression of population mutation with
generations. Total number of subjects mutated with respect to

the original population with the progress of generations. Only

survived subjects are represented for each generation.

(TIF)

Text S1 In Silico model of regulatory networks.
(DOC)

Text S2 Selected genes.
(DOC)
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