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Quasi-interpolation based on the ZP-element for the numerical
solution of integral equations on surfacesiif

C. Dagnino, S. Remogia

Abstract

The aim of this paper is to present spline methods for the numerical solftimiegral equations on
surfaces ofR3, by using optimal superconvergent quasi-interpolants defined or2tyangulations and
based on the Zwart-Powell quadratic box spline. In particular we peoaasodified version of the classical
collocation method and two spline collocation methods with high order of cgamee. We also deal with
the problem of approximating the surface. Finally, we study the apprdiximarror of the above methods
together with their iterated versions and we provide some numerical tests.

Keywords: Surface integral equation, Spline quasi-interpolation
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1 Introduction

Let
p(Py)— | K(PL.P2)p(P)dSe, = Y(Py), PreS (1.1)
be an integral equation, whe®és a connected surfaceR?, described by a sufficiently smooth mBpQ — S,

with Q a polygonal domain ifR?, and the kerneK (P1,P,) is continuous foPy, P, € S.
Therefore, the integral equation (1.1) can be written as

p(F(u,v))— / K(F(u,v),F(s,))p(F(s1)) [(DsF x DtF)(s,t)| dsdt

Q (1.2)
=Y((Fuyv), (uyv) €Q,
where
|(DsF x DtF)(s,1)| (1.3)
is the Jacobian of the mdg(s,t).
If we denote byz : C(S) — C(S) the integral operator defined by
A p(F(u,v)) = / K(F(u,v),F(st))p(F(s,t)) |(DsF x D¢F)(s,t)| dsdt,
JQ
for (u,v) € Q, then we can write (1.1) in the following operator form
(= H)p=y. (1.4)

We remark that (1.4) has a unique solutpr C(S) for any giveny € C(S) [3].

A standard technique for numerically solving (1.4) is tolaep.#" by a finite rank operator and to obtain
the approximate solution by solving a system of linear equat Nystbm, Galerkin and collocation methods
are the commonly used ones for this purpose. For instancesaadl the collocation ones based on a sequence
of linear interpolatory projection operators onto finitengnsional subspace®&n, of C(S), converging to the
identity operator pointwise. A classical choice 8f, is the space o€ piecewise polynomials of a given
degree (usuallyd = 2) on a triangulation of2 (see [3, 7]).
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In this paper we propose three collocation methods for (Ibdsed on a sequence of optimal super-
convergent spline quasi-interpolating operatf@m,}, that are not projectors and are defined on the space
Zrm = S5(Q, Trn) of the Ct quadratic splines on a uniform type-2 triangulatiGg, of Q, with Q a rect-
angular domain. We recall [16] that the above quasi-intatpw splines are expressed by means of the
scaled/translates of the Zwart-Powell quadratic box sp{ifP-element) (see e.g. [6, Chap. 1], [19, Chap.
2)).

We remark thaC® quadratic spline spaces on type-2 triangulations have wédgly studied (see [1, 4, 5,
8,9,10,11,12, 13, 14, 16, 17, 18, 19, 20] and referencesith)ewith reference to the dimension, local basis,
approximation power, etc. and they have been used in maricafipns. This paper wants to be a further
contribution to the researches on this topic, with regarthiéonumerical solution of surface integral equations.

In the first proposed method, that we capline modified collocation methpéh (1.4) we replace the
operator.z” by Qm-#" and the right hand sidgy by Qma (. As expected, we prove that its convergence rate
is of order three and the convergence rate of its iteratesioreiis of order four. Moreover, the approximate
solution belongs t€*(S).

In the other two ones, that we calpline collocation methods with high order of convergencdl.4) we
replace#” by one of the two following finite rank operators

K, = an<%+f£n,i - anjffn;kn,i, i= 1,2,
where 77, ; is the degenerate kernel operator obtained by approxigatin
K(F(U,V), F(S7t)) |(DSF X DtF) (Sat)|

by usingQm with respect to the variablegs,t) and 7, , is the Nystdm operator based d@m. We can
establish that, if the kernel is suitably smooth, then theveagence rate of both methods is of order seven and
the convergence rate of their iterated version is of ordghnteiWe remark that such methods are defined by a
logical scheme similar to that one used in [1] to constructhoes for 2D integral equations, based on other
guasi-interpolants.

Since with many surface§ gaining knowledge of the derivatives Bfs,t) can be a major inconvenience,
both to specify and to program, here we also consider sugppeoximations of the forn§ = QmF(Q), for
which the Jacobians are more easily computed and we inagstitg effect on the spline modified collocation
method.

Moreover, discrete versions of all our methods are predenféhey are based on composite Gaussian
cubatures on triangular domains (see [15]).

Finally, we remark that the proposed methods can be gereddld the case of connected piecewise smooth
surfaces, i.e. for surfac&that can be written 8S= S US U ---U S, where eacly; is the continuous image
of a rectangular regioR; in the plane:F;: Q; — §;, j =1,...J, with Fj, ] = 1,...J, sufficiently smooth
maps.

Here is an outline of the paper. In Section 2, we describe fitenal superconvergent spline quasi-
interpolantQuy, defined on the spac%(Q,Tmn) and based on dilation/translation of the ZP-element, pigpvi
their properties and providing an application to numerigtdgration, used in a subsequent section.

Then, in Section 3, we propose three collocation methodsdasQ, for surface integral equations. In
particular, in Section 3.1, we define and study the splineifieabcollocation method, that is a generalization
of the classical one and, in Section 3.2, we define and andhgsspline collocation methods with high order
of convergence. In Section 3.3 we provide numerical teBtstiating the approximation properties of the
proposed schemes. Finally, in Section 3.4, we deal with tbkelem of approximating the surface, considering
surface spline approximations for which the Jacobians anereasily evaluated and then we apply the spline
modified collocation method of Section 3.1, to solve the egponding surface integral equation.

2 On optimal superconvergent spline quasi-interpolants based on the
ZP-element

Let Q = [a,b] x [c,d] be a rectangular domain divided intam equal square$Q; }Iril r;:l with a given edge
h, m;n > 4, each of them being subdivided into 4 triangles by its died® obtainiﬁg a uniform type-2 tri-
angulationTy, of Q. We denote b8} (Q, Tm) the space o€! quadratic splines off,y, whose dimension is
(m-+2)(n+2) — 1 ([19] and the reference therein).



This space is generated by tfme+2) (n+2) B-spline functiongB; j, (i, j) € Am}, whereAm = {(i, j),0<
i <m+1 0< j<n+1}, obtained by dilation/translation of the ZP-element. MweT, in order to obtain a
B-spline basis fotS5(Q, Trm) We have to neglect one B-spline from the spanning set ([18]the reference
therein).

In the spac@l(Q,Tmn) we consider special optimal quasi-interpolants (abbr) Qfithe form

Qmf:= % Aij(f)Bij, (2.1)
(i,})€Am

with {)\m-, (i,j) € Amn} a family of local linear functionals defined in this way

M= S o) T(Mg), 2.2)
(kI)ER

where the finite set of pointsMy;, (k1) € Fj}, F,j C Am, lies in some neighbourhood of sufip N Q and
thea; j(k,1)’s are chosen such th@m, f = f for all f in P> (the space of bivariate polynomials of total degree
two) and superconvergence is induced at some specific pomtghe vertices, the centers, the midpoints of
horizontal and vertical edges of each subsquare of thetipartiThe coefficient functional expression (2.2) is
given in [16] and we recall thafQm ||, < 2.

The pointsMy in (2.2) are thenn centers of the squares, thén2+ n) midpoints of boundary segments
and the four vertices dd, i.e. My| = (S, 1)), where

so=a s=a+(k—3h 1<k<m sp1=Dh,
to=c, t|=C+(|—%)

We underline that the above QIs have the following good pitigee They are based on functionals involv-
ing only data points inside the domain and, moreover, theydafined by means of the scaled/translates of the
ZP-element. From a computational point of view, this is mmavenient than the use of other spanning sets,
for instance formed by bivariate B-splines with support ptetely included inQ [1, 10, 13, 18], that, having
different supports, have different expressions in the donwehile the ZP-element is always the same.

We remark that the Qls (2.1) can also be written in quasi-hage form

Qmf:= 5 f(MijLij, (2.3)
(i,)) €Am

by means of the fundamental functiobs;, obtained as linear combination of tBg;'s and reported in Ap-
pendix A.
Now, we need to introduce the following notations:

1B ;
- DP =DAF = dx'gldyﬁz » With |8 = B1+ Ba;

- |IDVfl, = maxHDBfH ;
|B|=v o

- w(DVf,h)=max{w(D*f,h),|a| = v}, where
w(f,h) =max{[f(Py) — f(P)|;PL, P2 € Q,[|PL — P2 <h}
is the modulus of continuity of € C(Q), and||-|| is the Euclidean norm.

Standard results in approximation theory and other spemifies given in [9] allow us to deduce the following
theorem.

Theorem 1 Let f € CY(Q),0< || <v <2, |a| =0,1then

D% (f — Qunf)le, < Kawh’ %l (DVf,h),

where the error constant Ky isindependent of h and depends only on a and v.
If, in addition, f € C3(Q), then

ID%(f — Qunf) |l < Kaah® 191]|D3F ] .
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We underline tha@.y, has superconvergence properties. In particularf foiC*(Q), we have that
|(f —Qmf)(P)| = O(h*)

at specific point$ in Q, that are the vertices, the centers, the midpoints of hotét@and vertical edges of
each subsquare 61 partition.

Moreover, the following theorem holds. We omit its proofchese it can be proved by the same logical
scheme given in [1] for another spline Q.

Theorem 2 Let g be a differentiable function with bounded derivatives and f € C*(Q), then we have

£(1.0)= | [[(1 - Qui)g] < on' (|01, + [0*f].)
where C is a positive constant independent of n, m.

We also prove the following result that we will use later irc&en 3.4.1.

Lemma 3 Let p be a bivariate cubic polynomial on Qjj := [a+ (i —1)h,a+ih] x [c+ (j —1)h,c+ jh], i =
1,....mj=1....n. Then

/Q gs[p(svt)—anp(S,t)} dsdt =0, (2.4)
V3]
/Qi_ %{p(&t) 7anp(3,t)} dsdt=0. (2.5)

Proof. Firstly, we write (2.4) as:

/~C+ih /:*”’ 9 [P(s.) ~Qmp(sit)| dsdt =11~ 1o,

Jet(j—1hJat(i-1)h 9S
where _
c+jh ] )
I1=/ {p(a+|h,t)—anp(a+|h,t)} dt
c+(j—1)h
and

c+jh

o= [ [pla+ (-t~ Qupla+ (- )] d.
c+(j—1)h

The functionp(a+ih,t) is a univariate cubic polynomial in the varialiet € [c+ (j — 1)h,c+ jh] and

Qmp(a+ih,t) is a univariate quadratic polynomial in the variable € [c+ (j — 1)h,c+ jh]. Thanks to

the superconvergence properties®f, Qmp(a+ih,t) is the quadratic polynomial interpolatimga+ih,t)

at the point§a+ih,c+ (j—1)h), (a+ih,c+(j— %)h) and(a+ih,c+ jh). Therefore, we can use the classical

Lagrange interpolation error formula, getting

p(a+ih,t) — Qmp(a+ih,t)
—cft- e (-mm) - (e (i-3) ) | 1t- e+ in,

with C* a suitable constant independentofThen, it is immediate to obtain = 0.

Similarly, we getlp = 0 and therefore (2.4) holds.

Following the same logical scheme, we obtain (2.5).

Finally, we propose an interesting application of the abmweerconvergent QIs to numerical integration,
getting cubature rules that we will use in Section 3.2.

For any functionf € C(Q), we consider the numerical evaluation of the integral

1(f) :/ f(st) dsdt
Q
by the cubature rule defined by

|(anf)= Z Wi_’jf(l\/h’j)7 (2.6)
(i,)) €Am
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where the weights are
Wi j :/ Li’j(S,t) dsdt.
Q

Since the fundamental functiohs;’s are linear combinations of B-splines (see Appendix Ag, weightsw; ;
are linear combinations of, By (s,t) ds dt, whose values have been computed in [8]. Therefore, we dan ge
the valuesw j, such thawv; j = hzvvi,j, and we report them in Table 1, remarking their symmetry ertgs.

Table 1: The coefficients j’s.

_ 15161 1187 4943 17 10721 1 1 10721 17 4943 1187 _ 15161
120960 7200 69120 192 161280 15 e 15 161280 192 69120 7200 120960
1187 2343 67 767 23 23 23 23 767 67 2343 1187
7200 2560 80 800 24 24 t 24 24 800 80 2560 7200
4943 67 68737 7451 23 23 23 23 7451 68737 67 4943
69120 80 69120 7680 24 24 e 24 24 7680 69120 80 69120
17 767 7451 31 61 61 61 61 31 7451 767 17
192 800 7680 30 60 60 te 60 60 30 7680 800 192
10721 23 23 61 1 1 1 1 61 23 23 10721

161280 24 24 60 o 60 24 24 161280
1 23 23 61 61 23 23 1
15 7 11 ... 1 1 80 %4 15
1 23 23 61 61 23 23 1
is 24 24 0 11 ... 1 1 0 24 24 15
10721 23 23 61 1 1 1 1 61 23 23 10721
161280 24 24 60 e 60 24 24 161280
17 767 7451 31 61 61 61 61 31 7451 767 17
192 800 7680 30 60 60 e 60 60 30 7680 800 192
4943 67 68737 7451 23 23 23 23 7451 68737 67 4943
69120 80 69120 7680 24 24 t 24 24 7680 69120 80 69120
1187 2343 67 767 23 23 23 23 767 67 2343 1187
7200 2560 80 800 24 24 e 24 24 800 80 2560 7200

_ 15161 1187 4943 17 10721 1 1 10721 17 4943 1187 _ 15161

120960 7200 69120 192 161280 15 e 15 161280 192 69120 7200 120960
0 1 2 3 4 5 ...m—4 m-3 m—2 m—-1 m m+1

From Theorem 1, we can easily deduce the following result.
Theorem 4 Let f e C(Q) and E(f) =1(f) —1(Qmnf). Then,
[E(f)] < Ca(f,h),

whereCisa positive constant independent of mand n.
Moreover if f € CY(Q), v=1,2,3, then

E(f) = O(h").

We remark that the above cubature has precision degreesalelecaus®,, is exact onP,. However,
since uniform partitions are special cases of the ones wittmsetric knots with respect to the center©@f
Corollary 1 of [14] can be generalized to our case, getting

I(f) =1(Qmf) for f(st) = g1t"2,

with0<rq,rp <3,r1+rp,=3andrq,r, = 1,3, withry +r, = 4. Therefore the precision degree of the cubature
(2.6) is 3 and, iff € C*(Q), then
E(f)=0(h%).



3 Spline collocation methods for integral equations on surfaces iR3

In this section we present and analyse three collocatiomadstbased on the sequed@y,} of spline QI
operators defined in Section 2.

The first one is a generalization of the classical collocetieethod. The last two are characterized by high
order of convergence, under suitable hypothesis.

3.1 Spline modified collocation method
Approximate the integral equation (1.4) by

(j - Qrmc%/)pmn = Qmy. (3.2)
We write the approximated solutign.,, belonging toS%(QTmn), as
pmn(F(U,V)) = XaLa(UvV)» Wlth a= (Ia J) (32)
acAm

Substituting the expressions Qfy, given in (2.3) angm, given in (3.2) into (3.1), we find

%mxal-a* ;rm z XﬁEB(Ma)La: Y(F(Ma))La,

EAm BEAM aéAm

with ITB = X Lg. Therefore, by identifying the coefficients bf, we obtain

Xa— Y XgLp(Ma) = @(F(Ma)), @ €Am.
BEAmM

This is a linear system din+ 2)(n+ 2) equations, that can be written in the form
(I—AX=a (3.3)
whereA is the matrix with entries

Aap = Lp(Mg) = /QK(F(MO,),F(S,t)) |(DsF x DtF)(s,t)| Lg(st) dsit (3.4)

anda s the vector with elements, := ¢/(F(Mg)).
The iterated solution is defined by

P =A Pm+ Y
and it satisfies the equation
(.5 = H Q) Py = - (3.5)
Therefore, it is necessary to constrpgh, = XqLg and then? ppm = X4Lq, in order to finally get
acAm acAm

ﬁmn =Y+ XGEG
ac
We remark that the idea of defining a collocation method byratpes that are not projectors has been

proposed in [2] for univariate integral equations.
In order to get convergence results, firstly we give the foihg lemma.
Lemma 5 For m, nlarge enough, we have

1P = Prmnlle < Cal[(-7 — Qrm)Pllo, (3.6)

and
10— Pmlle < C2[l# (& — Q)P » (3.7)

where C; and C; arereal constants independent of mand n.



Proof. From the standard theory (see e.qg. [3]), sitids a compact operator ati@h,, is pointwise convergent
to the identity operator, we have that

[(.# —Qm)H# ||, +0, as mn— .

Moreover, sincg.¥ — ¢) is invertible, then(.¥ — Qm.#") and (¥ — # Qm,) are invertible form, n large
enough and

H(fomn%)‘le <Cy, (3.8)
H(j*%Qrm)_luw <C. (3.9)

whereC; andC; are real constants independentoéndn.
Now, applying the operatd®m, to the equation (1.4) and rearranging, we find

P —QmA p = p+QmtY — Qmp. (3.10)

From (3.1) and (3.10), we get
(& = QmA ) (P — Pm) = (& —Qm)p.

Then, from (3.8), we obtain (3.6).
Let us consider the two equations (1.4) and (3.5). By the ssoge arguments, we obtain

(F = Qm)(P—Pm) = (I —Qm)p.

Then, from (3.9), we get (3.7).
Now we can prove the following result.

Theorem 6 Let p € C3(Q), then

P — prmlle = O (h®). (3.11)
Moreover, if p € C*(Q) and K(Py,-) € CX(S), then
Ip = Pronll. = O (h*). (3.12)

Proof. From (3.6) and Theorem 1, we get (3.11).
From (3.7) and Theorem 2, (3.12) is proved.

3.2 Spline collocation methods with high order of convergere

In this section, we propose to approximatg, in (1.4), by one of the following finite rank operators
Jifmn_’i = an%/ +¢%/nfn.,i - qu%n;knfi, | == 1,2, (313)
where

1. A1 is the degenerate kernel operator defined by

A1 (F(LY))
= | Qun(K(F(uv).F(s.1)) |(DsF x DiF)(s.1)]) p(F(s.1) dsc (3.14)

= gm K(F(va)vF(Ma))KDSFXDtF)(Ma)|'/QLOI(Sat)p(F(Svt))det7

2. Ko is the Nystbm operator based d@m, and defined by

K 2P (F(U,V)) 1= WK (F(u,v),F(Mq)) |(DsF x DtF)(Ma )| p(F(Ma)), (3.15)

acAm

according to (2.6).



We approximate (1.4) by
Prm;i — (Qm- + Hni — QunHmi) P = W, i=12 (3.16)

The iterated solution is defined by
ﬁmnj = %Pmn,i + .

Now, we consider the reduction of (3.16) to two systems(afi2 2)(n+ 2) linear equations.
After some algebra, from (3.14) and (3.16), we can write fhgreximate solutiopmn 1 as:

pma(F(uV)) = @(F(u,v)+ ;mXaLa(U,V)
+ YaK(F(u,v),F(Ma)) [(DsF x DtF)(Ma),

ae

where the unknown§X, } and{Yy }, a € Am, are obtained by solving the linear systém- R)Z = d, with

R::{é DEB], z::[é}, d::[g} (3.17)

andA, B, C, D, E € RM2(n+2)x(M2)(n+2) b ¢ ¢ R(M2(2) whose entries are given by
o Aypi=Lg(My), see (3.4),

e By g :=K(F(Mq),F(Mg)) ](DSF X DtF)(MB)],

Cap ::/QLG(SJ)LB(S,t) dst,

Do g = /Q K(F(Mq),F(s,1))|(DsF x DtF)(s,t)[K(F(s,t),F(Mg))|(DsF x DtF)(Mg)| dsdt,

Eapi= /QK(F(s,t),F(MB)) | (DsF x D{F)(Mg)| La(s;t) dsdt,

bg := A W(F(Mq)) =/QK(F(Ma)7F(SJ))|(DsF>< DiF)(s,t)| W(F(s,t)) dsdt,

. Cq ::/ WF(sH))La(st) dsdt.
Q
Similarly, from (3.15) and (3.16), we can get that the soluy, 2 is

pm2(F(Uv)) = @(FUV)+ 3 Xala(uv)

1Y WaYaK(F(UV),F(Ma)) |(DeF x DiF)(Ma)],

ae

where the unknown$X, } and{Yy }, a € Am, are obtained by solving the linear systéim- T)Z = f, with

T::[ﬁ FE;G], Z::[é}, f::[Z] (3.18)

andF, G, H e R(M2(+2)x(m+2)(n+2) '\whose entries are given by
o Fypi=Wg /Q K(F(Ma),F(s,t))[(DsF x D¢F)(s,t)[K(F(s,t), F(Mg))[(DsF x D¢F) (M) | ds dt,

o Gy :=WgK(F(Mq),F(Mg))|(DsF x D{F)(Mg)|,
L] Ha,ﬁ = Lp(Ma)

Now, we are able to state the following convergence results.



Lemma 7 For m, nlargeenough andi = 1, 2, it holds

1P = Pmnille < Cai||(# = Q) (= Hmi)P|., (3.19)
and
lo=Pmill. < (17 =), (|| # (7 = Qu)(# = Hemide 620
[ 7 = Qua)(# = H)| 1o = Pl )
where Cz; are real constants independent of mand n.
Proof. From (3.13) and Theorem 1, we have
1 = Hmillo = [ = Quk = Hoii + Qe
= (f—an)(Ji’—t%/n’;u)H — 0, as m,n— .
Then,(. — Jm;) is invertible form, n large enough and
|7 = Hami) Y| <Cai (3.21)

with Czj, i = 1, 2, real constants independento&ndn.
Therefore, by a procedure similar to that one used in [1, Tdrad], we can write

P — Pm,i = (f—%mn,i)il(%/—%mn.i)p-

Thus, from (3.21), (3.19) follows.
Moreover, since

P—Pmi = H (P~ Pmii)
= c%/(f—%)il(%—%nn,i)prm,i
(F =) LA (I = Q) (H — i) (Pmni £ P),

we can easily get (3.20).
Theorem 8 Assumethat p is differentiable with bounded derivatives, K(-,-) € C*(Sx S) and F € C5(Q). Then
I = P all., = O(h") (3.22)

and
|0 = Pmall,, = O(h°). (3.23)

Proof. From (3.19) of Lemma 7, with=1 and Theorem 1

I~ pmile < Cor[[(# ~ Q) (# — Hm o

Sl s . (3.24)
< Cah® | D3((H — A 0P|
whereC, is a real constant independentrofaindn. Since, for = (f1,5.) and|B| < 4,
DF [(H — Hn )P (F(U,V)|
(3.25)

0PIK(F(u,v),F(st))
JduBLgvB2

:/QP(F(Svt))(f*Qrm) [ |(DsF x DtF)(s,t)|] dsdt,

from Theorem 2, with

= 0PIK(F(u,v),F(st))
1) = AuBLvB2

|(DsF x DiF)(s,t)| and g(st) =p(F(st)),



we can get
ID3[(# = A )P, = O(h?).

Therefore, from (3.24) and (3.26), (3.22) follows.
Now, from (3.20) of Lemma 7, with=1

lp=Pmall, < [[(Z =2, |[#(F = Q) — el
(i)

HIA N | 17 = Q) H Nl + [[ (- = Qun) Hrma ||, | 10— Pmales | -
—_—

(i) (iii)
Consider(i) in (3.27). From Theorem 2, with

f(S,t) = ('%/_L%/r:t\,l)p(lz(sat)% g(S,t) = K(F(U,V),F(S,t)) ‘(DsF X DIF)(SJ)‘a

and, from (3.25), with3| = 3,4, we get
(i) = O(h®).

From Theorem 1 we have
1(.# —Qm)# pll, < Csh®||D3(#p)],

with Cs a real constant independentrafandn. Since, for8 = (1, 2) and|B| =3,

dIBIK (F(u,v),F(s,1))

D [ p(F(u.v))] = | (DsF X DiF)(s.)| p(F(s.1)) dst.

OuPLovP2
then, from (3.29),
(i) = O(h®).
Similarly, we can easily show that that
(iii) = O(h®).

Finally, from (3.22), (3.27), (3.28), (3.30) and (3.31) wstain (3.23).

Theorem 9 Assume p € C*(S), K(-,-) € C*(Sx S) and F € C3(Q). Then

lp = pm.2|l., = O(h)

and
Hp _ﬁmn,ZHoo = O(hs)

Proof. From (3.19) of Lemma 7, with= 2 and Theorem 1

1P~ Pzl <Caz||( ~ Qm)(# ~ Him oo
< Cad|| D3 — A2l

whereCg is a real constant independentroandn. Since, for8 = (B1,52) and|B| < 4,

DB [(H — Frin2)P(F(U,Y))]

8
= [~ Qm) [d KSFIJ(;’(;’\)I;ZF(S’”) (DSFthF)(s,t)p(F(s,t))] dsa,

from Theorem 2 with

~ 9FIK(F(u,v),F(st))
o duBLovB:

f(st) |(DsF x DiF)(s,t)[p(F(st)) and g(st) =1,
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(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



we can get
ID3[(A — Hm 2P, = O(h?). (3.35)

Therefore, from (3.34) and (3.35), (3.32) follows.
Now, from (3.20) of Lemma 7, with= 2, following the same logical scheme used in Theorem 8, we can
get (3.33).

3.3 Discrete versions and numerical tests

In Sections 3.1 and 3.2, we discussed spline collocatiohadstfor solving surface integral equations.

In practice, by using the collocation methods (3.1) andgB.we have to evaluate many integrals and usu-
ally it must be done by suitable numerical integration folasu Therefore, we have to discretize the proposed
methods by introducing convenient cubatures and we deyqgp p,?m, i = 1,2, the corresponding solutions.

Here, we decide to compute the entries of the matrices artdrgeappearing in (3.3), (3.17), (3.18), by
using a composite Gaussian cubature on triangular domsées[(5]), implemented by the Matlab function
triquad (see [21]), withN? nodes in each triangle &y, and with precision degreeNe— 1. The number
of nodes is chosen to preserve the approximation order afntbod. Therefore, we choode= 2 for the
spline modified collocation method (3.1) aNd= 4 for the two spline collocation methods with high order of
convergence (3.16).

We test the performances of the proposed methods in the mahswlution of the surface integral equation
from [3] 5

1 1
p(P1) — 37)/SP(P2)0TPZ (HPl— PZHZ) dSp, = %W(Pl), P.eS (3.36)

whereSis the ellipsoidal surface given by

np, is the inner normal t&atP, and

sin(s) cos(t)
F(st) = [i sin(s)sin(t)] . (st)eQ=1[0,m x [0,271.
3 cos(s)

We choose (P) = e2¢s9) and definap accordingly.
For each method we compute the maximum absolute errors

Emn = max [p(u,v) — oo (U,V)|
(uv)eG

Emi = max [p(u,v) —pp(WV)], 1=1,2,
(uv)eG

for increasing values ah andn, whereG is a uniform grid of 100< 100 points inQ. We also compute the
corresponding numerical convergence oraggs Om,i, i = 1,2.
The results are shown in Table 2 and we can notice that thegagth the theoretical ones.

Table 2: Maximum absolute errors and numerical convergeraers.

m n Emn Omn Emn,1 Omn,1 Enn,2 Omn,2

4 8 7.56e-03 - 2.51e-05 - 3.17e-05 -

8 16 8.11e-04 3.22 2.09e-07 6.91 1.29e-07 7.94
16 32 8.21e-05 3.30 1.48e-09 7.14 1.71e-09 6.24
32 64 8.34e-06 3.30 1.12e-11 7.04 1.46e-11 6.87
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3.4 Approximating the surface

As noticed in the Introduction, in (1.2) the evaluation of tracobian (1.3) is required. With some surfaces the
functionF and its derivatives are easily given and computed. Howeuith,certain other ones, the knowledge
and the evaluation of (1.3) can be a major problem.

For this reason, we consider spline approximatitisr the surfaceS, for which the Jacobians are more
easily evaluated.

Let
x}(s,t)
Fst) = [¥(st)|, (s eQ,
x3(s,t)
and
anxl(&t)
S=QmF(Q), with QmF(st)= [QmX2(st)|, (st)eQ.
anxs(sat)

Scan be represented only by using the value af the pointM, and its derivatives are easily computable,
since, in each triangle &y, they are the derivatives of a polynomial of total degree.two
Therefore, instead of (1.1), we consider the equation

p(Py)— [ K(PL.P2)B(P)dS, = Y(Py), PreS
that we solve by the spline modified collocation method oftidac3.1.

3.4.1 Spline modified collocation method with approximatedurface
If we define
| A BF(UY)
- /Q K (F(U,V), QmF(5.1))P(QmF(51)) | (DsQmF x DiQunF)(s1)] dsdt,

we have to consider the integral equation .
(F—2)p=y. (3.37)

We apply the method of Section 3.1 to numerically solve (B.8@taining
(j - Qrmj)ﬁmn = an(,U,

where we require that the approximated solufigp has the form

Prn(F(U,v)) = %wf(aLa(u,v).

This is equivalent to solve the linear system
(I-AX=a

with _ 3
Agp i =Lg(Ma),  ag:=yY(F(Mq)), (3.38)

and - ~
Lg(u,v) :=#Lg(u,v)

- /Q K (F(U,v), QmF(5.1))Lg (QmF (s, 1)) | (DsQumF x DiQunF)(s.t)] dst.

Concerning the convergence order, we prove the followiegtbm.
Theorem 10 Let the kernel function K(-,-) € C3(Sx S) and p € C*(S). Then

lp = Prmlle, = O(H®). (3.39)
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Proof. We have
[P —Pmlleo < llp — Bl + |2 — Pl = E1 + Ea.

In order to bounde,, we can follow the same argument used in Theorem 6, obtaining
o -1 ~
E2 < [ —QmA) |l —QuBll.
and, from Theorem 1,
E> =O(hd). (3.40)
Now we focus ork;. From (1.4) and (3.37), by addin@’p on both terms we have
(I~ AN p—P)=(H ~A)p
and . . .
Ev< (=) = Ao, <cillr = Apll... (3.41)
for a suitable real consta@t independent ofnandn. Then, we write
(A — H)p = Ea1+ Ezp+ Ezg+ Ea+ Eas, (3.42)

with
Ea1= /Q K(F(u,v),F(st)p(F(st))-
[[(DsF x DtF)(s,t)| = [(DsQmF x DtQmF)(s,t)|] dsdit,

Bz = /QK(F(u,V),F(SJ))[p(F(s,t))fp(anF(s,t))}-
[|(DsQunF x DiQmF)(s,t)| — |(DsF x D{F)(s,t)]] dsdt,

Ess= /Q K(F(u,v),F(st) [(F(s1)) — p(QmF(s1))]-
|(DsF x DiF)(s,t)| dsdt,

Exs= /Q [K(F(LLV), F(S)t)) - K(F(U,V),anF(S,t))] p(anF(Sat))'
[|(DsQmnF % DiQmnF)(s,t)| — |(DsF x DtF)(s,t)|] dsdit,

Eos= [ IK(F(uY),F(s) —K(F(1.v), QuF(s D))
P(QmF(s,t))|(DsF x DiF)(s,t)| dsdt.
Since Lemma 3 holds, we can follow an approach similar todhatproposed in [7, Theorem 1] for collocation
methods based d&° quadratic piecewise interpolating polynomials, getting
Ez1=0(h*), Exn=0(h), Ex=0(h*), Ex=0(h°), Ezs=0(h").
Therefore, from (3.41) and (3.42)
Ey=O(h%) (3.43)
and, from (3.40) and (3.43) we obtain (3.39).

3.4.2 Discrete version and numerical tests

Also in case of spline modified collocation method with apmated surface, we have to consider a discrete
version, by introducing a convenient cubature formula ardienote byd2, the corresponding solution. We
decide to compute the entries of the mathigjiven in (3.38) by using the same composite Gaussian cubatur
on triangular domains with four nodes, considered in Sa@i@. Therefore the approximation order three is
preserved.

Now, we test the proposed method for the numerical solutfdheosurface integral equation (3.36).
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We compute the maximum absolute errors

Emn = max |p(u,v) — P2 (u,v)|
(uv)eG

for increasing values ah andn, whereG is a uniform grid of 100< 100 points inQ. We also compute the
numerical convergence ordesig,.
The results are shown in Table 3 and we can notice that thegagth the theoretical ones.

Table 3: Maximum absolute errors and numerical convergerters.

m n Em Bm
4 8 1.95e-02 -
8 16 1.46e-03 3.74
16 32 1.18e-04 3.63
32 64 9.88e-06 3.58
64 128 1.09e-06 3.18

Appendix A

Here we report the expression of the fundamental functises@ated wittQ, defined in (2.1), fom,n > 8.
They are obtained from the coefficient functionals givenli6][ For the pairgi, j) withi=4,...,m—3 and
j=4,....n—3

3 1

25~ gl

The othetl; j's have particular definitions. In the neighbourhood of thap(a, c) we have

Lij= Bi,j—1+Bij+1+Bi—1j+Bit1j).

1403
Loo= %nBoo— 15B11,

11 173
Lio= 2Bio— 353Bo1— 5B2a,
397 12 1 7 9
Loo= —iBoo— %&BL1+ ¥B2o— £5B31— 5B21+ B0,
1 3 12 1 7
Lso= —15Ba1+ 55Bo1+ FBso— 5B21— 35B3.1,
Lao= 23Boo+ ¥B B1o— 4Ba1— 5B31— 5B
40= 224 0,0 4,0 — 120 10~ 30P41~ 12P31~ 12550
63 13 33 1
Li1= —35Boo— 75(Bro+Boa)+ 55B11— 7(B20o+Bop2),
47 9 1 1 13 1 1 1
Loi1= —55Bro—§B20— 7B30— 55Br1+ 5 B21+ §Bo2— 53B12 — 5B22,
3 1 9 1 7 1 13 1
Lsai= g5B10—7B20—§Bso— 7Ba0— 75Bo1+ 75B11+ §Bs1— 3Bs2,

Loo= gég|300+ (501+Blo) (Bso+|303) 12B11— 2(B12+B21)
24(513+B31)**(|323+|332)+ZBzz,

37 1 1 1 1 1 1
L32= —1gpBoo+ 5B20+ 5Bao— 55B21— 53B41— 5Bs1— 75802
1 1 3 1
+45B12 — 5B22—3Ba2+5B32— B33,

L3z = 4110 (Bgo+Bo3) + 75(Bs1+B13) — 5(Bs2+Bz3) + 3Bss
(Bsa+Ba3z).
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Along the lower edge, for=>5,...,m—4, we have:
Lio= ¥Bio—%Bi1— 5(Bi-11+Bii11),
and fori=4,... m—3:
Li= —8Bio— 2(Bi-10+Bit10)+ ¥Bi1— 1Bi2,
- lip ) _1lp 1 ) 3R
Liz= g§(Bi—10+Bit10) —§Bi1— 22(Bi-11+Biy11) +5Bi2
—5(Bi_12+Bit12) — 3Bis,
Lis= —2Bi0+75Bi1— 3Bi2+3Bis— 3(Bi-13+Bis13) — 3Bia

Taking into account the coefficient functional symmetrisalogous formulas exist for the three other edges
and vertices of2.

We remark that in case,n < 8 the fundamental functions have particular expressidms&ys obtained
from the coefficient functionals given in [16].
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