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Quasi-interpolation based on the ZP-element for the numerical
solution of integral equations on surfaces inR

3

C. Dagnino, S. Remogna∗

Abstract

The aim of this paper is to present spline methods for the numerical solutionof integral equations on
surfaces ofR3, by using optimal superconvergent quasi-interpolants defined on type-2 triangulations and
based on the Zwart-Powell quadratic box spline. In particular we propose a modified version of the classical
collocation method and two spline collocation methods with high order of convergence. We also deal with
the problem of approximating the surface. Finally, we study the approximation error of the above methods
together with their iterated versions and we provide some numerical tests.
Keywords: Surface integral equation, Spline quasi-interpolation
Mathematics Subject Classification: 65R20, 65D07

1 Introduction

Let
ρ(P1)−

∫

S
K(P1,P2)ρ(P2)dSP2 = ψ(P1), P1 ∈ S, (1.1)

be an integral equation, whereS is a connected surface inR3, described by a sufficiently smooth mapF : Ω→ S,
with Ω a polygonal domain inR2, and the kernelK(P1,P2) is continuous forP1, P2 ∈ S.

Therefore, the integral equation (1.1) can be written as

ρ(F(u,v))−
∫

Ω
K(F(u,v),F(s, t))ρ(F(s, t)) |(DsF×DtF)(s, t)| ds dt

= ψ(F(u,v)), (u,v) ∈ Ω,

(1.2)

where
|(DsF×DtF)(s, t)| (1.3)

is the Jacobian of the mapF(s, t).
If we denote byK : C(S)−→C(S) the integral operator defined by

K ρ(F(u,v)) :=
∫

Ω
K(F(u,v),F(s, t))ρ(F(s, t)) |(DsF×DtF)(s, t)| ds dt,

for (u,v) ∈ Ω, then we can write (1.1) in the following operator form

(I −K )ρ = ψ. (1.4)

We remark that (1.4) has a unique solutionρ ∈C(S) for any givenψ ∈C(S) [3].
A standard technique for numerically solving (1.4) is to replaceK by a finite rank operator and to obtain

the approximate solution by solving a system of linear equations. Nystr̈om, Galerkin and collocation methods
are the commonly used ones for this purpose. For instance, werecall the collocation ones based on a sequence
of linear interpolatory projection operators onto finite dimensional subspacesXmn of C(S), converging to the
identity operator pointwise. A classical choice ofXmn is the space ofC0 piecewise polynomials of a given
degreed (usuallyd = 2) on a triangulation ofΩ (see [3, 7]).
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In this paper we propose three collocation methods for (1.4), based on a sequence of optimal super-
convergent spline quasi-interpolating operators{Qmn}, that are not projectors and are defined on the space
Xmn = S1

2(Ω,Tmn) of the C1 quadratic splines on a uniform type-2 triangulationTmn of Ω, with Ω a rect-
angular domain. We recall [16] that the above quasi-interpolating splines are expressed by means of the
scaled/translates of the Zwart-Powell quadratic box spline (ZP-element) (see e.g. [6, Chap. 1], [19, Chap.
2]).

We remark thatC1 quadratic spline spaces on type-2 triangulations have beenwidely studied (see [1, 4, 5,
8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20] and references therein), with reference to the dimension, local basis,
approximation power, etc. and they have been used in many applications. This paper wants to be a further
contribution to the researches on this topic, with regard tothe numerical solution of surface integral equations.

In the first proposed method, that we callspline modified collocation method, in (1.4) we replace the
operatorK by QmnK and the right hand sideψ by Qmnψ. As expected, we prove that its convergence rate
is of order three and the convergence rate of its iterated version is of order four. Moreover, the approximate
solution belongs toC1(S).

In the other two ones, that we callspline collocation methods with high order of convergence, in (1.4) we
replaceK by one of the two following finite rank operators

Kmn,i := QmnK +K
∗

mn,i −QmnK
∗

mn,i, i = 1,2,

whereK ∗
mn,1 is the degenerate kernel operator obtained by approximating

K(F(u,v),F(s, t)) |(DsF×DtF)(s, t)|

by usingQmn with respect to the variables(s, t) andK ∗
mn,2 is the Nystr̈om operator based onQmn. We can

establish that, if the kernel is suitably smooth, then the convergence rate of both methods is of order seven and
the convergence rate of their iterated version is of order eight. We remark that such methods are defined by a
logical scheme similar to that one used in [1] to construct methods for 2D integral equations, based on other
quasi-interpolants.

Since with many surfacesS, gaining knowledge of the derivatives ofF(s, t) can be a major inconvenience,
both to specify and to program, here we also consider surfaceapproximations of the form̃S = QmnF(Ω), for
which the Jacobians are more easily computed and we investigate its effect on the spline modified collocation
method.

Moreover, discrete versions of all our methods are presented. They are based on composite Gaussian
cubatures on triangular domains (see [15]).

Finally, we remark that the proposed methods can be generalized to the case of connected piecewise smooth
surfaces, i.e. for surfacesS that can be written asS = S1∪S2∪ ·· ·∪SJ , where eachS j is the continuous image
of a rectangular regionΩ j in the plane:F j : Ω j → S j, j = 1, . . .J, with F j, j = 1, . . .J, sufficiently smooth
maps.

Here is an outline of the paper. In Section 2, we describe the optimal superconvergent spline quasi-
interpolantQmn, defined on the spaceS1

2(Ω,Tmn) and based on dilation/translation of the ZP-element, proving
their properties and providing an application to numericalintegration, used in a subsequent section.

Then, in Section 3, we propose three collocation methods based onQmn for surface integral equations. In
particular, in Section 3.1, we define and study the spline modified collocation method, that is a generalization
of the classical one and, in Section 3.2, we define and analysetwo spline collocation methods with high order
of convergence. In Section 3.3 we provide numerical tests, illustrating the approximation properties of the
proposed schemes. Finally, in Section 3.4, we deal with the problem of approximating the surface, considering
surface spline approximations for which the Jacobians are more easily evaluated and then we apply the spline
modified collocation method of Section 3.1, to solve the corresponding surface integral equation.

2 On optimal superconvergent spline quasi-interpolants based on the
ZP-element

Let Ω = [a,b]× [c,d] be a rectangular domain divided intomn equal squares
{

Ωi j
}m n

i=1, j=1 with a given edge
h, m,n ≥ 4, each of them being subdivided into 4 triangles by its diagonals, obtaining a uniform type-2 tri-
angulationTmn of Ω. We denote byS1

2(Ω,Tmn) the space ofC1 quadratic splines onTmn, whose dimension is
(m+2)(n+2)−1 ([19] and the reference therein).
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This space is generated by the(m+2)(n+2)B-spline functions{Bi, j,(i, j)∈Amn}, whereAmn = {(i, j), 0≤
i ≤ m+1, 0≤ j ≤ n+1}, obtained by dilation/translation of the ZP-element. Moreover, in order to obtain a
B-spline basis forS1

2(Ω,Tmn) we have to neglect one B-spline from the spanning set ([19] and the reference
therein).

In the spaceS1
2(Ω,Tmn) we consider special optimal quasi-interpolants (abbr. QIs) of the form

Qmn f := ∑
(i, j)∈Amn

λi, j( f )Bi, j, (2.1)

with
{

λi, j, (i, j) ∈ Amn
}

a family of local linear functionals defined in this way

λi, j( f ) := ∑
(k,l)∈Fi, j

σi, j(k, l) f (Mk,l), (2.2)

where the finite set of points
{

Mk,l , (k, l) ∈ Fi, j
}

, Fi, j ⊂ Amn, lies in some neighbourhood of suppBi, j ∩Ω and
theσi, j(k, l)’s are chosen such thatQmn f ≡ f for all f in P2 (the space of bivariate polynomials of total degree
two) and superconvergence is induced at some specific points, i.e. the vertices, the centers, the midpoints of
horizontal and vertical edges of each subsquare of the partition. The coefficient functional expression (2.2) is
given in [16] and we recall that‖Qmn‖∞ ≤ 2.

The pointsMk,l in (2.2) are themn centers of the squares, the 2(m+ n) midpoints of boundary segments
and the four vertices ofΩ, i.e. Mk,l = (sk, tl), where

s0 = a, sk = a+(k− 1
2)h, 1≤ k ≤ m, sm+1 = b,

t0 = c, tl = c+(l − 1
2)h, 1≤ l ≤ n, tn+1 = d.

We underline that the above QIs have the following good properties. They are based on functionals involv-
ing only data points inside the domain and, moreover, they are defined by means of the scaled/translates of the
ZP-element. From a computational point of view, this is moreconvenient than the use of other spanning sets,
for instance formed by bivariate B-splines with support completely included inΩ [1, 10, 13, 18], that, having
different supports, have different expressions in the domain, while the ZP-element is always the same.

We remark that the QIs (2.1) can also be written in quasi-Lagrange form

Qmn f := ∑
(i, j)∈Amn

f (Mi, j)Li, j, (2.3)

by means of the fundamental functionsLi, j, obtained as linear combination of theBi, j ’s and reported in Ap-
pendix A.

Now, we need to introduce the following notations:

- Dβ = Dβ1β2 = ∂ |β |

∂xβ1∂yβ2
, with |β |= β1+β2;

- ‖Dν f‖∞ = max
|β |=ν

∥
∥
∥Dβ f

∥
∥
∥

∞
;

- ω (Dν f ,h) = max{ω (Dα f ,h) , |α|= ν}, where

ω ( f ,h) = max{| f (P1)− f (P2)| ;P1,P2 ∈ Ω,‖P1−P2‖ ≤ h}

is the modulus of continuity off ∈C(Ω), and‖·‖ is the Euclidean norm.

Standard results in approximation theory and other specificones given in [9] allow us to deduce the following
theorem.

Theorem 1 Let f ∈Cν(Ω), 0≤ |α| ≤ ν ≤ 2, |α|= 0,1 then

‖Dα( f −Qmn f )‖∞ ≤ Kα ,ν hν−|α |ω (Dν f ,h) ,

where the error constant Kα ,ν is independent of h and depends only on α and ν .
If, in addition, f ∈C3(Ω), then

‖Dα( f −Qmn f )‖∞ ≤ Kα ,3h3−|α |
∥
∥D3 f

∥
∥

∞ .
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We underline thatQmn has superconvergence properties. In particular, forf ∈C4(Ω), we have that

|( f −Qmn f )(P)|= O(h4)

at specific pointsP in Ω, that are the vertices, the centers, the midpoints of horizontal and vertical edges of
each subsquare ofΩ partition.

Moreover, the following theorem holds. We omit its proof, because it can be proved by the same logical
scheme given in [1] for another spline QI.

Theorem 2 Let g be a differentiable function with bounded derivatives and f ∈C4(Ω), then we have

E ( f ,g) =

∣
∣
∣
∣

∫

Ω
( f −Qmn f )g

∣
∣
∣
∣
≤Ch4(

∥
∥D3 f

∥
∥

∞ +
∥
∥D4 f

∥
∥

∞
)

where C is a positive constant independent of n, m.

We also prove the following result that we will use later in Section 3.4.1.

Lemma 3 Let p be a bivariate cubic polynomial on Ωi j := [a+(i− 1)h,a+ ih]× [c+( j − 1)h,c+ jh], i =
1, . . . ,m, j = 1, . . . ,n. Then

∫

Ωi j

∂
∂ s

[

p(s, t)−Qmn p(s, t)
]

ds dt = 0, (2.4)

∫

Ωi j

∂
∂ t

[

p(s, t)−Qmn p(s, t)
]

ds dt = 0. (2.5)

Proof. Firstly, we write (2.4) as:

∫ c+ jh

c+( j−1)h

∫ a+ih

a+(i−1)h

∂
∂ s

[

p(s, t)−Qmn p(s, t)
]

ds dt = I1− I0,

where

I1 =
∫ c+ jh

c+( j−1)h

[

p(a+ ih, t)−Qmn p(a+ ih, t)
]

dt

and

I0 =
∫ c+ jh

c+( j−1)h

[

p(a+(i−1)h, t)−Qmn p(a+(i−1)h, t)
]

dt.

The function p(a + ih, t) is a univariate cubic polynomial in the variablet, t ∈ [c + ( j − 1)h,c + jh] and
Qmn p(a+ ih, t) is a univariate quadratic polynomial in the variablet, t ∈ [c+ ( j − 1)h,c+ jh]. Thanks to
the superconvergence properties ofQmn, Qmn p(a+ ih, t) is the quadratic polynomial interpolatingp(a+ ih, t)
at the points(a+ ih,c+( j−1)h), (a+ ih,c+( j− 1

2)h) and(a+ ih,c+ jh). Therefore, we can use the classical
Lagrange interpolation error formula, getting

p(a+ ih, t)−Qmn p(a+ ih, t)

=C∗[t − (c+( j−1)h)]

[

t −

(

c+

(

j−
1
2

)

h

)]

[t − (c+ jh)],

with C∗ a suitable constant independent ofh. Then, it is immediate to obtainI1 = 0.
Similarly, we getI0 = 0 and therefore (2.4) holds.
Following the same logical scheme, we obtain (2.5).
Finally, we propose an interesting application of the abovesuperconvergent QIs to numerical integration,

getting cubature rules that we will use in Section 3.2.
For any functionf ∈C(Ω), we consider the numerical evaluation of the integral

I( f ) =
∫

Ω
f (s, t) ds dt

by the cubature rule defined by
I(Qmn f ) = ∑

(i, j)∈Amn

wi, j f (Mi, j), (2.6)
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where the weights are

wi, j =
∫

Ω
Li, j(s, t) ds dt.

Since the fundamental functionsLi, j ’s are linear combinations of B-splines (see Appendix A), the weightswi, j

are linear combinations of
∫

Ω Bk,l(s, t) ds dt, whose values have been computed in [8]. Therefore, we can get
the values ¯wi, j, such thatwi, j = h2w̄i, j, and we report them in Table 1, remarking their symmetry properties.

Table 1: The coefficients ¯wi, j ’s.

n+1 − 15161
120960

1187
7200

4943
69120

17
192

10721
161280

1
15 . . .

1
15

10721
161280

17
192

4943
69120

1187
7200 − 15161

120960

n 1187
7200

2343
2560

67
80

767
800

23
24

23
24 . . .

23
24

23
24

767
800

67
80

2343
2560

1187
7200

n−1 4943
69120

67
80

68737
69120

7451
7680

23
24

23
24 . . .

23
24

23
24

7451
7680

68737
69120

67
80

4943
69120

n−2 17
192

767
800

7451
7680

31
30

61
60

61
60 . . .

61
60

61
60

31
30

7451
7680

767
800

17
192

n−3 10721
161280

23
24

23
24

61
60 1 1 . . . 1 1 61

60
23
24

23
24

10721
161280

n−4 1
15

23
24

23
24

61
60 1 1 . . . 1 1 61

60
23
24

23
24

1
15

...
...

...
...

...
...

...
...

...
...

...
...

...

5 1
15

23
24

23
24

61
60 1 1 . . . 1 1 61

60
23
24

23
24

1
15

4 10721
161280

23
24

23
24

61
60 1 1 . . . 1 1 61

60
23
24

23
24

10721
161280

3 17
192

767
800

7451
7680

31
30

61
60

61
60 . . .

61
60

61
60

31
30

7451
7680

767
800

17
192

2 4943
69120

67
80

68737
69120

7451
7680

23
24

23
24 . . .

23
24

23
24

7451
7680

68737
69120

67
80

4943
69120

1 1187
7200

2343
2560

67
80

767
800

23
24

23
24 . . .

23
24

23
24

767
800

67
80

2343
2560

1187
7200

0 − 15161
120960

1187
7200

4943
69120

17
192

10721
161280

1
15 . . .

1
15

10721
161280

17
192

4943
69120

1187
7200 − 15161

120960

j\i 0 1 2 3 4 5 . . . m−4 m−3 m−2 m−1 m m+1

From Theorem 1, we can easily deduce the following result.

Theorem 4 Let f ∈C(Ω) and E( f ) = I( f )− I(Qmn f ). Then,

|E( f )| ≤ C̄ω( f ,h),

where C̄ is a positive constant independent of m and n.
Moreover if f ∈Cν(Ω), ν = 1,2,3, then

E( f ) = O(hν).

We remark that the above cubature has precision degree at least 2, becauseQmn is exact onP2. However,
since uniform partitions are special cases of the ones with symmetric knots with respect to the center ofΩ,
Corollary 1 of [14] can be generalized to our case, getting

I( f ) = I(Qmn f ) for f (s, t) = sr1tr2,

with 0≤ r1,r2 ≤ 3, r1+r2 = 3 andr1,r2 = 1,3, with r1+r2 = 4. Therefore the precision degree of the cubature
(2.6) is 3 and, iff ∈C4(Ω), then

E( f ) = O(h4).
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3 Spline collocation methods for integral equations on surfaces inR3

In this section we present and analyse three collocation methods based on the sequence{Qmn} of spline QI
operators defined in Section 2.

The first one is a generalization of the classical collocation method. The last two are characterized by high
order of convergence, under suitable hypothesis.

3.1 Spline modified collocation method

Approximate the integral equation (1.4) by

(I −QmnK )ρmn = Qmnψ. (3.1)

We write the approximated solutionρmn, belonging toS1
2(Ω,Tmn), as

ρmn(F(u,v)) = ∑
α∈Amn

Xα Lα(u,v), with α = (i, j). (3.2)

Substituting the expressions ofQmn given in (2.3) andρmn given in (3.2) into (3.1), we find

∑
α∈Amn

Xα Lα − ∑
α∈Amn

∑
β∈Amn

Xβ L̄β (Mα)Lα = ∑
α∈Amn

ψ(F(Mα))Lα ,

with L̄β = K Lβ . Therefore, by identifying the coefficients ofLα , we obtain

Xα − ∑
β∈Amn

Xβ L̄β (Mα) = ψ(F(Mα)), α ∈ Amn.

This is a linear system of(m+2)(n+2) equations, that can be written in the form

(I −A)X = a (3.3)

whereA is the matrix with entries

Aαβ := L̄β (Mα) =
∫

Ω
K(F(Mα),F(s, t)) |(DsF×DtF)(s, t)|Lβ (s, t) ds dt (3.4)

anda is the vector with elementsaα := ψ(F(Mα)).
The iterated solution is defined by

ρmn = K ρmn +ψ

and it satisfies the equation
(I −K Qmn)ρmn = ψ. (3.5)

Therefore, it is necessary to constructρmn = ∑
α∈Amn

Xα Lα and thenK ρmn = ∑
α∈Amn

Xα L̄α , in order to finally get

ρmn = ψ + ∑
α∈Amn

Xα L̄α .

We remark that the idea of defining a collocation method by operators that are not projectors has been
proposed in [2] for univariate integral equations.

In order to get convergence results, firstly we give the following lemma.

Lemma 5 For m, n large enough, we have

‖ρ −ρmn‖∞ ≤ C1‖(I −Qmn)ρ‖∞ (3.6)

and
‖ρ −ρmn‖∞ ≤ C2‖K (I −Qmn)ρ‖∞ , (3.7)

where C1 and C2 are real constants independent of m and n.
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Proof. From the standard theory (see e.g. [3]), sinceK is a compact operator andQmn is pointwise convergent
to the identity operator, we have that

‖(I −Qmn)K ‖∞ → 0, as m,n → ∞.

Moreover, since(I −K ) is invertible, then(I −QmnK ) and(I −K Qmn) are invertible form, n large
enough and ∥

∥
∥(I −QmnK )−1

∥
∥
∥

∞
≤C1, (3.8)

∥
∥
∥(I −K Qmn)

−1
∥
∥
∥

∞
≤C2. (3.9)

whereC1 andC2 are real constants independent ofm andn.
Now, applying the operatorQmn to the equation (1.4) and rearranging, we find

ρ −QmnK ρ = ρ +Qmnψ −Qmnρ . (3.10)

From (3.1) and (3.10), we get
(I −QmnK )(ρ −ρmn) = (I −Qmn)ρ .

Then, from (3.8), we obtain (3.6).
Let us consider the two equations (1.4) and (3.5). By the sameabove arguments, we obtain

(I −K Qmn)(ρ −ρmn) = K (I −Qmn)ρ .

Then, from (3.9), we get (3.7).
Now we can prove the following result.

Theorem 6 Let ρ ∈C3(Ω), then
‖ρ −ρmn‖∞ = O

(
h3)

. (3.11)

Moreover, if ρ ∈C4(Ω) and K(P1, ·) ∈C1(S), then

‖ρ −ρmn‖∞ = O
(
h4)

. (3.12)

Proof. From (3.6) and Theorem 1, we get (3.11).
From (3.7) and Theorem 2, (3.12) is proved.

3.2 Spline collocation methods with high order of convergence

In this section, we propose to approximateK , in (1.4), by one of the following finite rank operators

Kmn,i := QmnK +K
∗

mn,i −QmnK
∗

mn,i, i = 1,2, (3.13)

where

1. K ∗
mn,1 is the degenerate kernel operator defined by

K ∗
mn,1ρ(F(u,v))

:=
∫

Ω
Qmn (K(F(u,v),F(s, t)) |(DsF×DtF)(s, t)|)ρ(F(s, t)) ds dt

= ∑
α∈Amn

K(F(u,v),F(Mα)) |(DsF×DtF)(Mα)| ·
∫

Ω
Lα(s, t)ρ(F(s, t)) ds dt,

(3.14)

2. K ∗
mn,2 is the Nystr̈om operator based onQmn and defined by

K
∗

mn,2ρ(F(u,v)) := ∑
α∈Amn

wα K(F(u,v),F(Mα)) |(DsF×DtF)(Mα)|ρ(F(Mα)), (3.15)

according to (2.6).
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We approximate (1.4) by

ρmn,i − (QmnK +K
∗

mn,i −QmnK
∗

mn,i)ρmn,i = ψ, i = 1,2. (3.16)

The iterated solution is defined by
ρmn,i = K ρmn,i +ψ.

Now, we consider the reduction of (3.16) to two systems of 2(m+2)(n+2) linear equations.
After some algebra, from (3.14) and (3.16), we can write the approximate solutionρmn,1 as:

ρmn,1(F(u,v)) = ψ(F(u,v))+ ∑
α∈Amn

Xα Lα(u,v)

+ ∑
α∈Amn

Yα K(F(u,v),F(Mα)) |(DsF×DtF)(Mα)| ,

where the unknowns{Xα} and{Yα}, α ∈ Amn, are obtained by solving the linear system(I −R)Z = d, with

R :=

[
A D−B
C E

]

, Z :=

[
X
Y

]

, d :=

[
b
c

]

(3.17)

andA, B, C, D, E ∈ R
(m+2)(n+2)×(m+2)(n+2), b, c∈ R

(m+2)(n+2), whose entries are given by

• Aα ,β := L̄β (Mα), see (3.4),

• Bα ,β := K(F(Mα),F(Mβ ))
∣
∣(DsF×DtF)(Mβ )

∣
∣,

• Cα ,β :=
∫

Ω
Lα(s, t)Lβ (s, t) ds dt,

• Dα ,β :=
∫

Ω
K(F(Mα),F(s, t))|(DsF×DtF)(s, t)|K(F(s, t),F(Mβ ))|(DsF×DtF)(Mβ )| ds dt,

• Eα ,β :=
∫

Ω
K(F(s, t),F(Mβ ))

∣
∣(DsF×DtF)(Mβ )

∣
∣Lα(s, t) ds dt,

• bα := K ψ(F(Mα)) =
∫

Ω
K(F(Mα),F(s, t)) |(DsF×DtF)(s, t)|ψ(F(s, t)) ds dt,

• cα :=
∫

Ω
ψ(F(s, t))Lα(s, t) ds dt.

Similarly, from (3.15) and (3.16), we can get that the solution ρmn,2 is

ρmn,2(F(u,v)) = ψ(F(u,v))+ ∑
α∈Amn

Xα Lα(u,v)

+ ∑
α∈Amn

wαYα K(F(u,v),F(Mα)) |(DsF×DtF)(Mα)| ,

where the unknowns{Xα} and{Yα}, α ∈ Amn, are obtained by solving the linear system(I −T )Z = f, with

T :=

[
A F −G
H G

]

, Z :=

[
X
Y

]

, f :=

[
b
a

]

(3.18)

andF , G, H ∈ R
(m+2)(n+2)×(m+2)(n+2), whose entries are given by

• Fα ,β := wβ

∫

Ω
K(F(Mα),F(s, t))|(DsF×DtF)(s, t)|K(F(s, t),F(Mβ ))|(DsF×DtF)(Mβ )| ds dt,

• Gα ,β := wβ K(F(Mα),F(Mβ ))
∣
∣(DsF×DtF)(Mβ )

∣
∣,

• Hα ,β := Lβ (Mα).

Now, we are able to state the following convergence results.
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Lemma 7 For m, n large enough and i = 1, 2, it holds

‖ρ −ρmn,i‖∞ ≤C3,i
∥
∥(I −Qmn)(K −K

∗
mn,i)ρ

∥
∥

∞ (3.19)

and
∥
∥ρ −ρmn,i

∥
∥

∞ ≤
∥
∥(I −K )−1

∥
∥

∞

(∥
∥
∥K (I −Qmn)(K −K ∗

mn,i)ρ
∥
∥
∥

∞
+
∥
∥
∥K (I −Qmn)(K −K ∗

mn,i)
∥
∥
∥

∞
‖ρ −ρmn,i‖∞

)

,
(3.20)

where C3,i are real constants independent of m and n.

Proof. From (3.13) and Theorem 1, we have

‖K −Kmn,i‖∞ =
∥
∥
∥K −QmnK −K ∗

mn,i +QmnK
∗

mn,i

∥
∥
∥

∞
=
∥
∥
∥(I −Qmn)(K −K ∗

mn,i)
∥
∥
∥

∞
→ 0, as m,n → ∞.

Then,(I −Kmn,i) is invertible form, n large enough and
∥
∥
∥(I −Kmn,i)

−1
∥
∥
∥

∞
≤C3,i, (3.21)

with C3,i, i = 1, 2, real constants independent ofm andn.
Therefore, by a procedure similar to that one used in [1, Theorem 5], we can write

ρ −ρmn,i = (I −Kmn,i)
−1(K −Kmn,i)ρ .

Thus, from (3.21), (3.19) follows.
Moreover, since

ρ −ρmn,i = K (ρ −ρmn,i)

= K (I −K )−1(K −Kmn,i)ρmn,i

= (I −K )−1K (I −Qmn)(K −K ∗
mn,i)(ρmn,i ±ρ),

we can easily get (3.20).

Theorem 8 Assume that ρ is differentiable with bounded derivatives, K(·, ·)∈C4(S×S) and F ∈C5(Ω). Then

‖ρ −ρmn,1‖∞ = O(h7) (3.22)

and
∥
∥ρ −ρmn,1

∥
∥

∞ = O(h8). (3.23)

Proof. From (3.19) of Lemma 7, withi = 1 and Theorem 1

‖ρ −ρmn,1‖∞ ≤C3,1

∥
∥
∥(I −Qmn)(K −K ∗

mn,1)ρ
∥
∥
∥

∞
≤C4h3

∥
∥
∥D3[(K −K ∗

mn,1)ρ ]
∥
∥
∥

∞

(3.24)

whereC4 is a real constant independent ofm andn. Since, forβ = (β1,β2) and|β | ≤ 4,

Dβ
[

(K −K ∗
mn,1)ρ(F(u,v))

]

=
∫

Ω
ρ(F(s, t))(I −Qmn)

[

∂ |β |K(F(u,v),F(s, t))
∂uβ1∂vβ2

|(DsF×DtF)(s, t)|

]

ds dt,

(3.25)

from Theorem 2, with

f (s, t) =
∂ |β |K(F(u,v),F(s, t))

∂uβ1∂vβ2
|(DsF×DtF)(s, t)| and g(s, t) = ρ(F(s, t)),
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we can get
∥
∥D3[(K −K

∗
mn,1)ρ ]

∥
∥

∞ = O(h4). (3.26)

Therefore, from (3.24) and (3.26), (3.22) follows.
Now, from (3.20) of Lemma 7, withi = 1

∥
∥ρ −ρmn,1

∥
∥

∞ ≤
∥
∥(I −K )−1

∥
∥

∞







∥
∥K (I −Qmn)(K −K

∗
mn,1)ρ

∥
∥

∞
︸ ︷︷ ︸

(i)

+‖K ‖∞






‖(I −Qmn)K ‖∞
︸ ︷︷ ︸

(ii)

+
∥
∥(I −Qmn)K

∗
mn,1

∥
∥

∞
︸ ︷︷ ︸

(iii)






‖ρ −ρmn,1‖∞






,

(3.27)

Consider(i) in (3.27). From Theorem 2, with

f (s, t) = (K −K
∗

mn,1)ρ(F(s, t)), g(s, t) = K(F(u,v),F(s, t)) |(DsF×DtF)(s, t)| ,

and, from (3.25), with|β |= 3,4, we get
(i) = O(h8). (3.28)

From Theorem 1 we have
‖(I −Qmn)K ρ‖∞ ≤C5h3

∥
∥D3(K ρ)

∥
∥

∞ (3.29)

with C5 a real constant independent ofm andn. Since, forβ = (β1,β2) and|β |= 3,

Dβ [K ρ(F(u,v))] =
∫

Ω

∂ |β |K(F(u,v),F(s, t))
∂uβ1∂vβ2

|(DsF×DtF)(s, t)|ρ(F(s, t)) ds dt,

then, from (3.29),
(ii) = O(h3). (3.30)

Similarly, we can easily show that that
(iii) = O(h3). (3.31)

Finally, from (3.22), (3.27), (3.28), (3.30) and (3.31) we obtain (3.23).

Theorem 9 Assume ρ ∈C4(S), K(·, ·) ∈C4(S×S) and F ∈C5(Ω). Then

‖ρ −ρmn,2‖∞ = O(h7) (3.32)

and
∥
∥ρ −ρmn,2

∥
∥

∞ = O(h8). (3.33)

Proof. From (3.19) of Lemma 7, withi = 2 and Theorem 1

‖ρ −ρmn,2‖∞ ≤C3,2

∥
∥
∥(I −Qmn)(K −K ∗

mn,2)ρ
∥
∥
∥

∞
≤C6h3

∥
∥
∥D3[(K −K ∗

mn,2)ρ ]
∥
∥
∥

∞

(3.34)

whereC6 is a real constant independent ofm andn. Since, forβ = (β1,β2) and|β | ≤ 4,

Dβ
[

(K −K ∗
mn,2)ρ(F(u,v))

]

=
∫

Ω
(I −Qmn)

[

∂ |β |K(F(u,v),F(s, t))
∂uβ1∂vβ2

|(DsF×DtF)(s, t)|ρ(F(s, t))

]

ds dt,

from Theorem 2 with

f (s, t) =
∂ |β |K(F(u,v),F(s, t))

∂uβ1∂vβ2
|(DsF×DtF)(s, t)|ρ(F(s, t)) and g(s, t) = 1,
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we can get
∥
∥D3[(K −K

∗
mn,2)ρ ]

∥
∥

∞ = O(h4). (3.35)

Therefore, from (3.34) and (3.35), (3.32) follows.
Now, from (3.20) of Lemma 7, withi = 2, following the same logical scheme used in Theorem 8, we can

get (3.33).

3.3 Discrete versions and numerical tests

In Sections 3.1 and 3.2, we discussed spline collocation methods for solving surface integral equations.
In practice, by using the collocation methods (3.1) and (3.16), we have to evaluate many integrals and usu-

ally it must be done by suitable numerical integration formulas. Therefore, we have to discretize the proposed
methods by introducing convenient cubatures and we denote by ρD

mn, ρD
mn,i, i= 1,2, the corresponding solutions.

Here, we decide to compute the entries of the matrices and vectors appearing in (3.3), (3.17), (3.18), by
using a composite Gaussian cubature on triangular domains (see [15]), implemented by the Matlab function
triquad (see [21]), withN2 nodes in each triangle ofTmn and with precision degree 2N − 1. The number
of nodes is chosen to preserve the approximation order of themethod. Therefore, we chooseN = 2 for the
spline modified collocation method (3.1) andN = 4 for the two spline collocation methods with high order of
convergence (3.16).

We test the performances of the proposed methods in the numerical solution of the surface integral equation
from [3]

ρ(P1)−
1
30

∫

S
ρ(P2)

∂
∂nP2

(

‖P1−P2‖
2
)

dSP2 =
1
30

ψ(P1), P1 ∈ S, (3.36)

whereS is the ellipsoidal surface given by

x2+

(
4y
3

)2

+(2z)2 = 1,

nP2 is the inner normal toS atP2 and

F(s, t) =





sin(s)cos(t)
3
4 sin(s)sin(t)

1
2 cos(s)



 , (s, t) ∈ Ω = [0,π]× [0,2π].

We chooseρ(P) = e
1
2 cos(s) and defineψ accordingly.

For each method we compute the maximum absolute errors

Emn = max
(u,v)∈G

|ρ(u,v)−ρD
mn(u,v)|

Emn,i = max
(u,v)∈G

|ρ(u,v)−ρD
mn,i(u,v)|, i = 1,2,

for increasing values ofm andn, whereG is a uniform grid of 100×100 points inΩ. We also compute the
corresponding numerical convergence ordersomn, omn,i, i = 1,2.

The results are shown in Table 2 and we can notice that they agree with the theoretical ones.

Table 2: Maximum absolute errors and numerical convergenceorders.

m n Emn omn Emn,1 omn,1 Emn,2 omn,2

4 8 7.56e-03 - 2.51e-05 - 3.17e-05 -

8 16 8.11e-04 3.22 2.09e-07 6.91 1.29e-07 7.94

16 32 8.21e-05 3.30 1.48e-09 7.14 1.71e-09 6.24

32 64 8.34e-06 3.30 1.12e-11 7.04 1.46e-11 6.87
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3.4 Approximating the surface

As noticed in the Introduction, in (1.2) the evaluation of the Jacobian (1.3) is required. With some surfaces the
functionF and its derivatives are easily given and computed. However,with certain other ones, the knowledge
and the evaluation of (1.3) can be a major problem.

For this reason, we consider spline approximationsS̃ for the surfaceS, for which the Jacobians are more
easily evaluated.

Let

F(s, t) =





x1(s, t)
x2(s, t)
x3(s, t)



 , (s, t) ∈ Ω,

and

S̃ = QmnF(Ω), with QmnF(s, t) =





Qmnx1(s, t)
Qmnx2(s, t)
Qmnx3(s, t)



 , (s, t) ∈ Ω.

S̃ can be represented only by using the values ofF at the pointsMα and its derivatives are easily computable,
since, in each triangle ofTmn, they are the derivatives of a polynomial of total degree two.

Therefore, instead of (1.1), we consider the equation

ρ̃(P1)−
∫

S̃
K(P1,P2)ρ̃(P2)dS̃P2 = ψ(P1), P1 ∈ S.

that we solve by the spline modified collocation method of Section 3.1.

3.4.1 Spline modified collocation method with approximatedsurface

If we define

˜K ρ̃(F(u,v))
:=

∫

Ω
K(F(u,v),QmnF(s, t))ρ̃(QmnF(s, t)) |(DsQmnF×DtQmnF)(s, t)| ds dt,

we have to consider the integral equation
(I − ˜K )ρ̃ = ψ. (3.37)

We apply the method of Section 3.1 to numerically solve (3.37), obtaining

(I −Qmn ˜K )ρ̃mn = Qmnψ,

where we require that the approximated solutionρ̃mn has the form

ρ̃mn(F(u,v)) = ∑
α∈Amn

X̃α Lα(u,v).

This is equivalent to solve the linear system

(I − Ã)X̃ = a

with
Ãαβ := L̃β (Mα), aα := ψ(F(Mα)), (3.38)

and
L̃β (u,v) := ˜K Lβ (u,v)

=
∫

Ω
K(F(u,v),QmnF(s, t))Lβ (QmnF(s, t)) |(DsQmnF×DtQmnF)(s, t)| ds dt.

Concerning the convergence order, we prove the following theorem.

Theorem 10 Let the kernel function K(·, ·) ∈C2(S×S) and ρ ∈C4(S). Then

‖ρ − ρ̃mn‖∞ = O(h3). (3.39)
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Proof. We have
‖ρ − ρ̃mn‖∞ ≤ ‖ρ − ρ̃‖∞ +‖ρ̃ − ρ̃mn‖∞ = E1+E2.

In order to boundE2, we can follow the same argument used in Theorem 6, obtaining

E2 ≤
∥
∥
∥(I −Qmn ˜K )

−1
∥
∥
∥

∞
‖(I −Qmn)ρ̃‖∞

and, from Theorem 1,
E2 = O(h3). (3.40)

Now we focus onE1. From (1.4) and (3.37), by adding˜K ρ on both terms we have

(I − ˜K )(ρ − ρ̃) = (K − ˜K )ρ

and
E1 ≤

∥
∥
∥(I − ˜K )

−1
∥
∥
∥

∞

∥
∥(K − ˜K )ρ

∥
∥

∞ ≤C7
∥
∥(K − ˜K )ρ

∥
∥

∞ , (3.41)

for a suitable real constantC7 independent ofm andn. Then, we write

(K − ˜K )ρ = E21+E22+E23+E24+E25, (3.42)

with
E21 =

∫

Ω
K(F(u,v),F(s, t))ρ(F(s, t))·

[|(DsF×DtF)(s, t)|− |(DsQmnF×DtQmnF)(s, t)|] ds dt,

E22 =

∫

Ω
K(F(u,v),F(s, t)) [ρ(F(s, t))−ρ(QmnF(s, t))] ·

[|(DsQmnF×DtQmnF)(s, t)|− |(DsF×DtF)(s, t)|] ds dt,

E23 =
∫

Ω
K(F(u,v),F(s, t)) [ρ(F(s, t))−ρ(QmnF(s, t))] ·

|(DsF×DtF)(s, t)| ds dt,

E24 =

∫

Ω
[K(F(u,v),F(s, t))−K(F(u,v),QmnF(s, t))]ρ(QmnF(s, t))·

[|(DsQmnF×DtQmnF)(s, t)|− |(DsF×DtF)(s, t)|] ds dt,

E25 =
∫

Ω
[K(F(u,v),F(s, t))−K(F(u,v),QmnF(s, t))] ·

ρ(QmnF(s, t)) |(DsF×DtF)(s, t)| ds dt.

Since Lemma 3 holds, we can follow an approach similar to thatone proposed in [7, Theorem 1] for collocation
methods based onC0 quadratic piecewise interpolating polynomials, getting

E21 = O(h4), E22 = O(h5), E23 = O(h4), E24 = O(h5), E25 = O(h4).

Therefore, from (3.41) and (3.42)
E1 = O(h4) (3.43)

and, from (3.40) and (3.43) we obtain (3.39).

3.4.2 Discrete version and numerical tests

Also in case of spline modified collocation method with approximated surface, we have to consider a discrete
version, by introducing a convenient cubature formula and we denote bỹρD

mn the corresponding solution. We
decide to compute the entries of the matrixÃ given in (3.38) by using the same composite Gaussian cubature
on triangular domains with four nodes, considered in Section 3.3. Therefore the approximation order three is
preserved.

Now, we test the proposed method for the numerical solution of the surface integral equation (3.36).
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We compute the maximum absolute errors

Ẽmn = max
(u,v)∈G

|ρ(u,v)− ρ̃D
mn(u,v)|

for increasing values ofm andn, whereG is a uniform grid of 100×100 points inΩ. We also compute the
numerical convergence orders ˜omn.

The results are shown in Table 3 and we can notice that they agree with the theoretical ones.

Table 3: Maximum absolute errors and numerical convergenceorders.

m n Ẽmn õmn

4 8 1.95e-02 -

8 16 1.46e-03 3.74

16 32 1.18e-04 3.63

32 64 9.88e-06 3.58

64 128 1.09e-06 3.18

Appendix A

Here we report the expression of the fundamental functions associated withQmn defined in (2.1), form,n ≥ 8.
They are obtained from the coefficient functionals given in [16]. For the pairs(i, j) with i = 4, . . . ,m−3 and
j = 4, . . . ,n−3

Li, j =
3
2

Bi, j −
1
8
(Bi, j−1+Bi, j+1+Bi−1, j +Bi+1, j).

The otherLi, j ’s have particular definitions. In the neighbourhood of the point (a,c) we have

L0,0 =
1403
504 B0,0−

4
15B1,1,

L1,0 =
131
60 B1,0−

173
300B0,1−

1
12B2,1,

L2,0 = − 397
1440B0,0−

2
15B1,1+

12
5 B2,0−

1
12B3,1−

7
30B2,1+

9
40B1,0,

L3,0 = − 1
12B4,1+

3
20B0,1+

12
5 B3,0−

1
12B2,1−

7
30B3,1,

L4,0 =
11
224B0,0+

12
5 B4,0−

1
120B1,0−

7
30B4,1−

1
12B3,1−

1
12B5,1,

L1,1 = −63
32B0,0−

13
40(B1,0+B0,1)+

33
20B1,1−

1
4(B2,0+B0,2),

L2,1 = −47
60B1,0−

9
8B2,0−

1
4B3,0−

1
20B1,1+

13
8 B2,1+

1
8B0,2−

1
24B1,2−

1
8B2,2,

L3,1 =
3
50B1,0−

1
4B2,0−

9
8B3,0−

1
4B4,0−

7
40B0,1+

1
40B1,1+

13
8 B3,1−

1
8B3,2,

L2,2 =
317
288B0,0+

1
4(B0,1+B1,0)+

1
8(B3,0+B0,3)−

1
15B1,1−

1
6(B1,2+B2,1)

− 1
24(B1,3+B3,1)−

1
8(B2,3+B3,2)+

3
2B2,2,

L3,2 = − 37
160B0,0+

1
8B2,0+

1
8B4,0−

1
24B2,1−

1
24B4,1−

1
6B3,1−

1
40B0,2

+ 1
40B1,2−

1
8B2,2−

1
8B4,2+

3
2B3,2−

1
8B3,3,

L3,3 = − 1
40(B3,0+B0,3)+

1
40(B3,1+B1,3)−

1
8(B3,2+B2,3)+

3
2B3,3

−1
8(B3,4+B4,3).
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Along the lower edge, fori = 5, . . . ,m−4, we have:

Li,0 =
12
5 Bi,0−

7
30Bi,1−

1
12(Bi−1,1+Bi+1,1),

and fori = 4, . . . ,m−3:

Li,1 = −9
8Bi,0−

1
4(Bi−1,0+Bi+1,0)+

13
8 Bi,1−

1
8Bi,2,

Li,2 =
1
8(Bi−1,0+Bi+1,0)−

1
6Bi,1−

1
24(Bi−1,1+Bi+1,1)+

3
2Bi,2

−1
8(Bi−1,2+Bi+1,2)−

1
8Bi,3,

Li,3 = − 1
40Bi,0+

1
40Bi,1−

1
8Bi,2+

3
2Bi,3−

1
8(Bi−1,3+Bi+1,3)−

1
8Bi,4.

Taking into account the coefficient functional symmetries,analogous formulas exist for the three other edges
and vertices ofΩ.

We remark that in casem,n < 8 the fundamental functions have particular expressions, always obtained
from the coefficient functionals given in [16].
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