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Abstract 7 

A time series of Landsat 8 OLI (L8 OLI) multispectral images acquired between May 2013 and 8 

February 2016 were used to investigate vigour, vine and soil water content in a vineyard of Moscato 9 

Reale (syn. Moscato Bianco) sited in the Castel del Monte DOCG area. Normalized difference 10 

vegetation index (NDVI) and normalized difference water index (NDWI) were calculated and 11 

compared with vine midday stem water potential (MDstem) and soil volume water content (VWC), 12 

to calibrate estimation models. Estimation models were calibrated using already existing ground 13 

observation datasets from previous ordinary vineyard management operations: MDstem was 14 

measured at two different locations in vineyard at 6 different dates in summer 2014; VWC was 15 

continuously measured from June to October 2014 and from January to September 2015. Results 16 

showed that: a) vine stem water potential can be locally estimated with an accuracy ranging from 17 

±0.046 (high vigour vines) to ±0.127 (low vigour vines) MPa; b) soil volume water content can be 18 

locally estimated with an accuracy of about ±1.7%.  Medium resolution satellite imagery proved, 19 

therefore, to be effective, at vineyard level, to describe vigour, vine and soil water status and their 20 

seasonality. This is an important issue to focus on since, as Landsat 8 images are free, the entire 21 

process is economic enough to be consistent with cost and incoming of the farming system.  22 
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1. INTRODUCTION 26 

 27 

Monitoring crop water status in vineyard is essential to optimize water supply and has a significant 28 

impact on agriculture sustainability, especially in semi-arid Mediterranean regions. In wine grape 29 

production, plant water status is widely recognized as a critical factor for attaining and maintaining 30 

a high quality level, since it exerts a direct effect on berry growth, grape yield, skin structure, 31 

metabolite concentration and, especially under particular climate conditions, on flavonoid 32 

biosynthesis (Ojeda at al., 2002; Roby et al, 2004). Nonetheless, it affects also photosynthate export 33 

and partitioning among organs, shoot vigour and bunch microclimate, and exerts an indirect effect 34 

on grape composition and wine sensorial attributes (Bota et al. 2004; Chaves et al., 2007).  35 

Crop water status is known to change in space and time, depending on soil properties and moisture, 36 

root development, canopy vigour, topography, irrigation uniformity and several other factors. 37 

Geomatics techniques have proved to be a helpful tool in supporting agronomical practices and are 38 

more and more entering the production workflow (Bonilla et al., 2015). In particular, optical remote 39 

sensing permits vegetation monitoring in space and time; in the last decades, it demonstrated to be 40 

effective in describing some plants biophysical features, such as vigour, that can be related to 41 

fruit/wine quality and potential yield (Hall et al., 2011; Ledderhof et al., 2016). Unmanned Aerial 42 

Vehicles (UAVs) are the newest and, probably, the most used remote sensing technology in 43 

precision farming. Unfortunately, in spite of many reported experiences (Torres-Sanchez et al., 44 

2014; Candiago et al., 2015), data provided by low cost sensors from UAV are still affected by 45 

some critical issues (scene radiometric consistency, spectral features of bands, reliability of 46 

information, etc…) that, currently, have not been completely explored (Borgogno-Mondino, 2017). 47 



Furthermore, UAVs, at the moment, due to their limited operational endurance, can be only thought 48 

to operate over small areas. Borgogno-Mondino & Gajetti (2017) showed that, in the Italian context, 49 

UAV acquisition costs are consistent with the low incomes of the agriculture sector (lower than 10 50 

€/ha) only if imaged areas for single flight is greater than about 50 ha, moving toward a spatial scale 51 

that reasonably is more consistent with aerial and satellite imagery. Additionally, satellite and aerial 52 

images are generally more reliable since: a) detailed technical specifications for sensors are 53 

available, b) the entire vineyard usually falls into a single scene making pixels homogeneous from 54 

a radiometric point of view. Due to high performance of sensors and chance to acquire images at a 55 

specific time without limitations due to cloud coverage, aerial data are probably the best solution to 56 

monitor crops, but also the most expensive choice (Matese et al. 2015). Differently, in spite of their 57 

low geometric resolution, consistent with many applications at vineyard/field level, satellite data 58 

present some peculiar features: they are free, recurrent in time (Bramley et al. 2003) and benefit of 59 

sensor having a generally higher spectral resolution. In particular, those sensors can acquire bands 60 

belonging to an important range of the spectrum that is mostly missing in ordinary aerial 61 

multispectral sensors: the medium infrared region (1.0-2.5 microns). The NASA (National 62 

American Space Agency) Landsat 8 and ESA (European Space Agency) Sentinel I-II datasets 63 

(Malenovský et al., 2012; Frampton et al., 2013) can be considered the reference products for this 64 

type of application. These products can certainly play an important role in precision farming, both 65 

at regional and single-field/vineyard level. Some works have already proved the correlation 66 

between satellite data and some biophysical parameters (Johnson et al., 2003), as well as their 67 

efficiency to monitor vigour of vegetated surfaces (Testa et al., 2014). Moreover, since they are 68 

made available for free, they are economically consistent with the costs and incomings of farming 69 

systems (Borgogno-Mondino et al., 2017).  70 

In spite of a wide literature concerning the utilization of satellite-derived spectral indices to get 71 

estimates of biophysical parameters of vines and soil properties by regressive models, the following 72 

questions still persist: a) can reliable estimates of ground measures be obtained using models 73 



calibrated on not perfectly overlaying (especially in time) satellite images and ground 74 

observations?;  b) does the accuracy of estimates depend on plant or soil status?  75 

This work aims to give some preliminary answers to these questions, well knowing that all results 76 

have to be intended as specific for the investigated vineyard and that no general conclusion can be 77 

given.  78 

Focusing on a vineyard sited in Southern Italy, spectral indices from Landsat 8 (L8) operational 79 

land imager (OLI) data were related to vine water status (Acevedo-Opazo, 2008), as stem water 80 

potential (MDstem), and to soil moisture, as volume water content (VWC). In particular, NDVI 81 

(Normalized Difference Vegetation Index, Rouse et al., 1974) and NDWI (Normalized Difference 82 

Water Index, Gao, 1996) time series were generated and related to the available ground measures. 83 

Assuming NDVI and NDWI as proxies of  MDstem and VWC respectively, correspondent 84 

relationships were modelled and uncertainty of estimates measured.  85 

Authors acknowledge that the experimental design of ground data is not perfectly responding to a 86 

rigorous scientific approach: in fact, ground measures and satellite images are not perfectly aligned 87 

in time, and ground data are very few both in time and space. Nevertheless, they present a crucial 88 

peculiarity: they were already available and free from past ordinary vineyard management practices 89 

of farmers. The exploitation of previously existing measures, that someone collected in the past for 90 

different goals, is desirable to make technology transfer easier and consistent with the costs of the 91 

agriculture sector.  92 

 93 

2. MATERIALS AND METHODS 94 

 95 

2.1 Test area, satellite and ground measures datasets 96 

A vineyard of Moscato Reale (syn. Moscato Bianco), sizing about 37000 m2, centred around 611895 97 

E, 4548884 N coordinates (UTM 33N WGS84 reference frame) and located in Apulia (SE Italy) 98 

was selected as test area. The vineyard belongs to the DOC zone of Castel del Monte (Figure 1). 99 



Basing on the climatic dataset of Apulia Region Government, and according to the classification of 100 

Rivas-Martínez et al. (1999), this zone proves to have a “Mediterranean pluviseasonal-oceanic 101 

semicontinental” bioclimate, characterized by alternation of favourable/limiting periods for plant 102 

growth.  103 

 104 

[FIGURE 1] 105 

 106 

Twenty-five Landsat 8 OLI/TIRS images, Level-2 Data Products - Surface Reflectance,  (table 1) 107 

with a spatial resolution of 30 m, were obtained from the EarthExplorer web system 108 

(http://earthexplorer.usgs.gov/) covering the period 19/05/2013 – 05/0272016 (hereinafter called 109 

reference period). The vineyard was imaged by 37 L8 OLI pixels. 110 

Measures of soil VWC (%) were available, from past vineyard management operations, at two 111 

positions, respectively representative of averagely higher (V+) and lower (V-) vigour (Figure 1b, 112 

white dots). They were obtained by sensors of dielectric constant positioned at 35-40 cm depth 113 

(Decagon’s ECH2O 5TM) and automatically collected, at 15’ step, from June to October 2014 and 114 

from January to September 2015. At the same positions, measures of vine midday stem water 115 

potential (MDstem, MPa) were available too, but covering a shorter time range (June-August 2014). 116 

Measurements were obtained by a Scholander pressure bomb (Soil Moisture Corp., Santa Barbara, 117 

CA, USA), according to McCutchan and Shakel (1992). Per each position, measurements were 118 

taken on a group of 10 vines surrounding the soil VWC sensor; ten readings per position were 119 

collected to represent the local vineyard behaviour. In this work, MDstem is expressed in terms of 120 

absolute values. It is worth to remind that measurements of both VWC and MDstem were not fitting 121 

the date nor the hour of satellite acquisitions, being available from previous campaigns. 122 

 123 



2.2 Data processing 124 

NDVI and NDWI were computed according to equations (2) and (3): 125 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
                    (2) 126 

𝑁𝐷𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅1
                    (3) 127 

where ρRED, ρNIR and ρSWIR1 are the at-the-ground reflectance in band 4 (0.630–0.680 μm), band 5 128 

(0.845–0.885 μm) and band 6 (1.560–1.660 μm),  respectively.  129 

Since ground and satellite dataset were not timely consistent, a chronological aligning step was 130 

achieved. An estimation of both NDVI and NDWI from satellite imagery at the same days of ground 131 

ones was given by interpolating observed values along a 1-day-stepped time series. Regularization 132 

was achieved at pixel level by considering all available NDVI/NDWI values, corresponding to 25 133 

sampling dates irregularly spaced in time, and calibrating a cubic spline with tension = 5 (De Boor 134 

et al., 1978) for a period of 992 days (about 3 years) to approximate the whole temporal profile of 135 

pixel. A daily estimation of NDVI and NDWI was thus given, even included that corresponding to 136 

ground measurements 137 

 138 

2.3 Vineyard vigour mapping 139 

Previous research experiences in the same test area (de Palma et al., 2016) showed that, in the 140 

vineyard, high vigour portions (V+) alternate with low vigour ones (V-). As above mentioned, 141 

ground measures were taken at 2 locations representing V+ and V-, respectively. According to this 142 

a-priori knowledge, the vineyard was mapped in two clusters (Figure 2) to separate V+ from V- 143 

zones. An automatic classification (iterative minimum distance - Forgy, 1965) was achieved based 144 

on the average NDVI value NDVI(x,y), computed by eq. (4) for each pixel in the reference period 145 

(interpolated NDVI time series).  146 



𝜇𝑁𝐷𝑉𝐼(𝑥∗, 𝑦∗) =
∑ 𝑁𝐷𝑉𝐼𝑡(𝑥∗,𝑦∗)992

𝑡=1

992
                  (4) 147 

where 𝜇𝑁𝐷𝑉𝐼(𝑥∗, 𝑦∗) is the average value of NDVI of the generic pixel located at (𝑥∗, 𝑦∗) in the 148 

vineyard, and 𝑁𝐷𝑉𝐼𝑡(𝑥∗, 𝑦∗) the value of NDVI at the same position recorded at the t date; 992 is 149 

the number of days for which an estimate of NDVI was known after daily interpolation of the 150 

original data. All tests and calibrations were performed separately for V+ and V- pixels. 151 

 152 

2.4 Minimizing vegetation effects in NDWI 153 

An intermediate step was needed at this point; in fact, due to the coarse geometric resolution of the 154 

L8 OLI sensor, vineyard pixels, necessarily include both soil (corridors) and vegetation (vines). 155 

Since NDWI is intended for VWC detection of the soil fraction, vegetation effects must be 156 

minimized. For this task, scatterplots relating NDVI and NDWI (Figure 3) were generated showing 157 

a strong correlation. Aside the main trend of the modelled regression, a de-correlated information 158 

persists in model residuals computed according to eq. (5). They were assumed as proxies of soil 159 

VWC. 160 

𝑁𝐷𝑊𝐼′ = 𝑁𝐷𝑊𝐼 − (𝑎 ∙ 𝑁𝐷𝑉𝐼 + 𝑏)                    (5) 161 

where a and b are the coefficients of the linear regression relating NDWI to NDVI. 162 

 163 

2.5 Relating ground measures to spectral indices 164 

For the available dates, and separately for V+ and V- classes (table 1), ground measures of MDstem 165 

and soil VWC were respectively compared with NDVI and NDWI' through the following ratios: 166 

𝑅1 =
MDstem

𝑁𝐷𝑉𝐼
                     (6) 167 

𝑅2 =
VWC

(𝑁𝐷𝑊𝐼′+0.1)
                    (7) 168 



The term (+0.1) in eq. (7) was introduced to make positive original NDWI’ values, thus possible 169 

applying the power model. All models depend on vine vigour class, giving significantly different 170 

values for V+ and V- observations.  171 

R1 definition was reached by relating, separately, NDVI and MDstem to DOY (Day of the Year). 172 

A strong correlation was observed and a 2nd order polynomial function used to model relationships 173 

(Figure 5 a, b).  174 

{
NDVI = 𝑘0𝑡2 + 𝑘1𝑡 + 𝑘2                           (𝑎)

MDstem = ℎ0𝑡2 + ℎ1𝑡 + ℎ2                      (𝑏) 
                 (8) 175 

where k0, k1, k2 and h0, h1, h2  are the coefficient values estimated by an ordinary least squares (OLS) 176 

estimation process. 177 

Combining both models along a numerical system, eq. (8), the following general equation was 178 

obtained: 179 

MDstem = 𝑅1(𝑡) ∙ 𝑁𝐷𝑉𝐼                   (9) 180 

where R1(t) is, rigorously, a ratio between two independent 2nd order polynomial functions of time. 181 

Inverting eq. (9) and plotting computed values of 𝑅1(𝑡) =
MDstem

𝑁𝐷𝑉𝐼
 in respect of DOY,  it can be 182 

observed that both V+ and V- are well fitted by a 2nd order polynomial, eq. (10), whose parameters 183 

are significantly different for the two classes. 184 

𝑅1(𝑡) = 𝑎0𝑡2 + 𝑎1𝑡 + 𝑎2                 (10) 185 

where a0, a1, a2 are the coefficient values estimated by OLS and t the date of observations as DOY. 186 

Differently, an exponential function proved to well fit the relationship between R2 and NDWI’: 187 

𝑅2 = 𝑏1𝑒𝑏2𝑁𝐷𝑊𝐼′                  (11) 188 

where b1 and b2 are the coefficient values estimated by OLS. 189 



To test the effect of including NDVI in MDstem estimation, some concerns were done about both 190 

model parameters stability/robustness and uncertainty of estimates.  191 

Being the available ground datasets too small (not properly adequate) a leave-one-out (LOO) cross-192 

validation approach was adopted (Picard & Cook, 1984). Since LOO generate different estimates 193 

of model parameters at each iteration (n. of iterations = n. of ground observations), the final 194 

parameter estimate was computed like the average value (𝜇𝑎𝑖
) of all its values. Stability of estimates 195 

was measured by the standard error (
𝜎𝑎𝑖

√𝑛
). To make more evident uncertainty of parameter estimates 196 

the coefficient of variation (𝐶𝑉 =
𝜎𝑎𝑖

𝜇𝑎𝑖

∙ 100) was computed too (Table 5). 197 

MAE (Mean Absolute Error, eq. (12)) was assumed as measure of estimate accuracy (or 198 

uncertainty). 199 

𝑀𝐴𝐸 =
∑ |𝑥𝑜𝑏𝑠−𝑥𝑒𝑠𝑡|𝑖

𝑁
𝑖=1

𝑁
                  (12) 200 

where |𝑥𝑜𝑏𝑠 − 𝑥𝑒𝑠𝑡| is the absolute value of the difference between the measured value and its 201 

estimate. 202 

With the only goal of pointing out the role that such a modelling could have within an operational 203 

context, two pairs of maps of MDstem and VWC at two arbitrary dates (2nd July 2014 and 2015), 204 

within the explored period, were generated.  205 

 206 

3. RESULTS AND DISCUSSIONS 207 

Twenty-five L8 OLI images, 11 VWC and 6 MDstem measures, obtained at two positions in 208 

vineyard (V+ and V-), were used.  Values and accuracy of ground measures are reported in Table 209 

1, together with dates of acquisition of L8 OLI images. 210 



 211 

Table 1. Ground measure of soil VWC and vine MDstem. V+ and V- represent the high and low vigour sample 212 

points in vineyard, respectively (see Figure 1b). Dates of L8 OLI image acquisitions are reported in the last 213 

two columns. 214 

Date 
V+ 

VWC (%) 
V- 

VWC (%) 
Date 

V 

MDstemPa 

V 

MDstemPa 

Date of L8 OLI 
image acquisition 

23/06/2014 14.52 ±1.61 21.35 ±1.91 02/06/2014 0.544 ±0.018 0.404 ±0.056 19/05/2013 26/08/2014 

 09/07/2014 12.74 ± 1.42 24.90 ± 1.87 23/06/2014 0.460 ±0.018 0.492 ±0.027 20/06/2013 13/10/2014 

 10/08/2014 9.89 ± 1.23 22.99 ± 1.86 28/06/2014 0.643 ±0.019 0.745 ±0.021 06/07/2013 17/01/2015 

 26/08/2014 9.98 ± 1.21 24.18 ± 1.76 02/08/2014 0.625 ±0.099 0.602 ±0.044 07/08/2013 18/02/2015 

 13/10/2014 9.79 ± 1.34 18.59 ± 1.71 23/08/2014 0.920 ±0.043 1.222 ± 0.030 10/10/2013 10/06/2015 

 17/01/2015 17.30 ± 1.51 7.36 ± 1.12 08/09/2014 1.552 ±0.026 1.676 ±0.041 14/01/2014 12/07/2015 

 18/02/2015 18.01 ± 1.86 8.49 ± 1.16    15/02/2014 28/07/2015 

 10/06/2015 13.70 ± 1.52 22.19 ± 1.87    19/03/2014 13/08/2015 

 12/07/2015 14.50 ± 1.48 23.69 ±1.89    22/05/2014 29/08/2015 

 28/07/2015 14.28 ± 1.56 24.87 ±1.93       23/06/2014 14/09/2015 

 13/08/2015 12.23 ± 1.32 24.14 ± 1.89    09/07/2014 03/12/2015 

      10/08/2014 05/02/2016 

 215 

 216 

3.1 Vineyard vigour mapping 217 

Irregularly spaced time series of NDVI and NDWI were generated and interpolated by spline with 218 

tension (value of tension = 5) to get a daily estimations within the reference period.  219 

The average NDVI value, along the correspondent time series, was computed for all the vineyard 220 

pixels. An unsupervised classification, with two classes, was performed to separate V+ and V- 221 

pixels. Observations outside vine growing season were not filtered out, for the following reasons: 222 

a) farmers reported that V+ an V- were mainly conditioned by local soil properties all along the 223 

year; b) mean value is representative of the total (cumulated) annual vigour; c) this strategy is not 224 

influenced by the spatial distribution of V+ and V- classes, that, differently, could heavily condition 225 

an approach based on local anomaly computation (difference, or ratio, between the local NDVI 226 

value and the vineyard average one).  227 



Clustering showed that the two ground measurement stations fell into different classes (Figure 2), 228 

making possible the interpretation of their meaning. Statistics of clusters are reported in Table 2. 229 

This preliminary clustering step was mandatory to separate V+ from V- pixels and apply the proper 230 

model in the different part of vineyard.  231 

 232 

[FIGURE 2] 233 

 234 

Table 2. Statistics of NDVI and NDWI’ for V+ and V- clusters (Iterative Minimum Distance algorithm). 235 

Spectral Index 
V- V+ 

Mean Std. Dev. Mean Std. Dev. 

NDVI 0.39 0.03 0.49 0.02 

NDWI’ 0.017 0.013 0.007 0.012 

 236 

3.2 Relating ground measures to spectral indices 237 

NDVI and NDWI values of vineyard pixels (37) were graphed by scatterplot; a linear function was 238 

used to model the relationship. To minimize  “vegetation effects” when using NDWI as proxy of 239 

VWC, the correlated information was removed from the original NDWI values according to eq. 240 

(15) assuming that regression residuals (hereinafter called NDWI’) were better proxies of soil 241 

VWC. 242 

𝑁𝐷𝑊𝐼′ = 𝑁𝐷𝑊𝐼 − (0.7034 ∙ 𝑁𝐷𝑉𝐼 − 0.1647)              (15) 243 

 244 

[FIGURE 3] 245 



 246 

Consequently, correlations between satellite-derived indices and ground measures were tested. The 247 

following correlations were computed, separately, for the two vigour classes (V+ and V-): MDstem 248 

vs. NDVI, MDstem vs. NDWI’, VWC vs. NDVI, VWC vs. NDWI’ (Figure 4). 249 

 250 

[FIGURE 4] 251 

 252 

Table 4. Pearson’s correlation coefficients (at p-value < 0.01), separately calculated for V+ and V-, between 253 

spectral indices and ground data of MDstem and VWC. 254 

 255 

 256 

 257 

Strength of correlations and scatterplot cloud shapes proved that no regression model could generate 258 

accurate estimates of MDstem and VWC by directly relating spectral index with ground measures.   259 

R1 and R2 ratios  were considered as possible alternatives; the following correlations were tested: 260 

R1 vs. DOY, R1 vs. NDVI and R2 vs. NDWI’. Since correlations were found to be strong (R > 261 

0.75), relationships were modelled: R1 was related to DOY and to NDVI by a 2nd order polynomial. 262 

R2 was related to NDWI’ by an exponential function. Pearson’s correlation coefficients and model 263 

parameters, included standard error and coefficient of variation of model parameters estimates by 264 

LOO, are reported in Table 5. 265 

 266 

Index Cluster MDstem VWC 

NDVI 
V+ 0.32 0.36 

V- 0.05 0.59 

NDWI' 
V+ 0.36 0.57 

V- 0.04 0.11 



[FIGURE 5] 267 

 268 

[FIGURE 6] 269 

 270 

Table 5 shows that MDstem estimates obtained including NDVI are more robust (stable) than those 271 

obtained only considering DOY, even if correlation coefficient values are comparable. In fact, both 272 

SE and CV of model parameters estimated by LOO cross-validation are significantly lower in the 273 

first estimation approach for both V+ and V- classes. 274 

 275 

Table 5. Parameters of calibrated models. SE= standard error; CV = coefficient of variation. Correlations 276 

are tested at p-value <0.01. 277 

Class 
a0 a1 a2 

R 
value SE CV (%) value SE CV (%) value SE CV (%) 

𝑅1 =  𝑎0𝑡2 + 𝑎1𝑡 + 𝑎2 

V+ 0.00051 0.00002 4% -0.18759 0.00746 4% 18.36732 0.67397 4% 0.802 

V- 0.00100 0.00013 13% -0.00746 0.05075 14% 36.46838 5.05053 14% 0.771 

MDstem  =  𝑎0𝑡2 + 𝑎1𝑡 + 𝑎2 

V+ 0.00015 0.00002 13% -0.05484 0.00784 14% 5.35292 0.76361 14% 0.848 

V- 0.00014 0.00004 29% -0.04606 0.01795 39% 4.32824 1.79622 42% 0.884 

R2 = a0ea1(NDWI′+0.1) 

V+ 130.11616 0.24370 0.6% -15.9413 0.10991 2.2%    -0.903 

V- 125.69176 0.21619 0.5% -9.00119 0.05489 1.9%    -0.787 

 278 

It can be therefore said that MDstem estimates by R1 (including NDVI information) is preferable, 279 

whatever is the uncertainty of estimates (Table 6). It is worth to point out that estimates of model 280 

parameters is significantly different for V+ and V- classes, making evident that this type of approach 281 

is very sensible to local environmental/soil conditions. Further developments have still to be done, 282 



especially concerning stability of model coefficients in time (they could change in different growing 283 

seasons). Nevertheless these preliminary results are encouraging. 284 

Table 6 shows estimate uncertainty (MAE) for both vine MDstem and VWC given by calibrated 285 

models. 286 

Table 6. Uncertainty of estimates. The mean absolute error (MAE) was assumed as measure of uncertainty. 287 

Table reports both mean and standard deviation of MAE as resulting from the iterations of the LOO cross-288 

validation.  289 

Predictor 
MAE  

MDstem [MPa] 

NDVI V+ 0.046 ± 0.007 

NDVI V- 0.127 ± 0.016 

Time (DOY) V+ 0.086 ± 0.010 

Time (DOY) V- 0.127 ± 0.016 

 
MAE  

Soil VWC [%] 

NDVI V+ 1.746 ± 0.075 

NDVI V- 1.715 ± 0.042 

 290 

According to Table 6 it can be stated that: a) MDstem estimations are more accurate for V+ than for 291 

V- parts of vineyard; b) estimations from the model directly relating MDstem and DOY are less 292 

accurate than those based on R1. The local NDVI value modulates the correspondent average 293 

MDstem value of the day (as obtainable through DOY), making possible an intra-vineyard mapping 294 

of MDstem, i.e. local variations of MDstem around the cluster (V+ or V-) average trend.  295 

Results also showed that the potential uncertainty affecting estimates was averagely 0.1 MPa for 296 

MDstem (range of variation = 0.5-1.6 MPa) and about 1.7% for VWC (range of variation = 9-20 %).  297 

These values, in spite of the simplified approach and of the low quality of ground measures 298 

distribution in time and space, are consistent, and sometimes better, than the expected ones. 299 

Comparing uncertainty of estimates given by models with the one originally affecting ground 300 

measures (table 1) it can be noticed that: uncertainty of estimates of MDstem is about 2-3 times 301 



higher; uncertainty of estimates of  VWC is completely consistent with the ground measured one. 302 

No specific reference perfectly fitting this work were found in literature. Nevertheless,  Champagne 303 

et al. (2003) using, the Probe-1 airborne hyperspectral sensor, applying an extremely rigorous 304 

radiative transfer model for image calibration (MODTRAN4), and an opportune ground sampling 305 

strategy,  could estimate  EWT (equivalent water thickness, cm)  for different crops (wheat, canola, 306 

corn, beans and peas) with  an accuracy (root mean squared error, RMSE) of about 0.052 cm, for 307 

ground measures ranging between 0 and 0.3 cm (error > 20 %).  Bellvert et al. (2014) explored the 308 

adoption of thermal infrared sensors to get estimates of MDstem, but the focuse was on the strength 309 

and shape of correlation  withno definitive value for estimates uncertainty.  310 

Concerning the uncertainty of VWC, Jacome et al. (2013) estimated it by radar multi polarization 311 

data from RADARSAT-2 with an accuracy of 10 %: it was almost 5 time higher than the one given 312 

by the models proposed in this work.   313 

 314 

3.3 Periodicity of spectral indices 315 

With these premises, daily estimations of both MDstem and VWC in the reference period were 316 

respectively generated by separate models for V+ and V- clusters. Daily estimates of MDstem and 317 

VWC were computed at cluster level according to the V+ and V- average temporal profiles of NDVI 318 

and NDWI’. Some evident anomalies were found for MDstem estimates (Figure 7a); out of the range 319 

values of MDstem (up to 6 or 7 MPa) were obtained recurrently along years. Such values cannot be 320 

retained consistent with those expected for vines: midday stem water potential values higher than 321 

1.4 MPa indicates severe water deficit (Van Leeuwen et al., 2009), values higher than 1.64 MPa are 322 

found in non-irrigated vines (Williams & Araujo, 2002), and a maximum of 1.8 MPa was found in 323 

the present trial. MDstem estimates along the year were compared with an arbitrary, but reasonable, 324 

maximum admissible value of 2 MPa. Only within the vine growing season (from about April to 325 

October) estimates proved to be consistent with ground measured values and lower than 2 MPa. In 326 



the same period, NDVI values showed a great variability proving that NDVI cannot be considered 327 

a robust proxy of MDstem without taking care about the DOY of measurements.   328 

  329 

[FIGURE 7] 330 

 331 

Using the interpolated time series of NDWI’ (averaged over V+ and V- classes), temporal profiles 332 

of soil VWC were estimated in the reference period (figure 8) through the calibrated model.  333 

  334 

[FIGURE 8] 335 

 336 

Graphs of figure 8 show that VWC tends to remain quite stable low along the year (about 12%) in 337 

V- parts of vineyard; differently, in V+ parts of vineyard, VWC changes from a minimum of about 338 

10% up to about 35%. This has generally occurred in opposite to NDWI’ profile, supporting the 339 

convincement that soil capacity to keep water conditions markedly vine vigour; once more, water 340 

supply management shows to be a delicate step for making vineyard behaviour more homogeneous. 341 

To translate these considerations into the practical agronomic management, two scenarios were 342 

generated by vine MDstem and soil VWC respectively. An arbitrary date within the growing season 343 

of vines was selected for the simulation: maps of estimates of MDstem and VWC were generated 344 

through the above mentioned models at the following dates: 2/07/2014 and 2/7/2015 (Figure 9). 345 

 346 

[FIGURE 9] 347 

 348 

Simulated scenarios (Figures 7, 8 and 9) are not intended to demonstrate consistency of estimates.  349 

They are just intended to make clear how model estimates can be accessed and represented in such 350 

a way that they can be easily interpreted by vineyard managers.  351 



Class width was selected greater than the expected estimation uncertainty (0.1 MPa for MDstem and 352 

1.7% for VWC).  353 

 354 

4. CONCLUSIONS 355 

 356 

This work proved that multispectral medium resolution satellite imagery are effective in mapping 357 

vine and soil water status to support vineyard management. It also proved that existing ground 358 

measures, that do not perfectly fit scientific requirements in terms of repetitions and space 359 

distribution, can be effectively used to calibrate satellite-based models for vines and soil water 360 

content estimation if proper processing strategies (e.g. LOO approach) are adopted to minimize 361 

those limits. In these conditions, satellite-derived NDVI and NDWI’ (de-trended NDWI) proved to 362 

be correlated to vine midday stem water potential and with soil volume water content, respectively. 363 

Models relating ground measures to spectral indices were found depending on vineyard vigour class 364 

(high or low), making clear that no general predictive model for both MDstem and VWC can be 365 

imagined without an a-priori knowledge of vineyard spatial variability. It was also demonstrated 366 

that a model directly relating MDstem to DOY, with no regard of NDVI, is less accurate and reliable 367 

than the one including NDVI; moreover NDVI local value can tune the daily estimation of MDstem. 368 

Models can be successfully used to generate reliable estimations of vine MDstem and soil VWC for 369 

whatever date when spectral indices are available.  370 

Finally, supported by the obtained results, this work demonstrated that vineyard knowledge can be 371 

augmented by combining proper processing strategies such as free satellite data and ground 372 

measures obtained from past campaigns and/or from ordinary vineyard management practices. 373 

These ingredients are promising, especially for the agronomic sector where technology transfer has 374 

to be driven carefully, considering the related costs and their incidence on the farm financial 375 

balance. 376 
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FIGURES CAPTIONS 502 

 503 

Figure 1. (a) Test area location in Apulia (Italy). (b) Aerial view of the vineyard. White dots correspond to 504 

ground measurements stations. 505 

 506 

Figure 2. Map showing V+ (high vigour) and V- (low vigour) parts of vineyard. Classification was achieved 507 

by clustering vineyard pixels in respect of their average NDVI value in the reference period (19/05/2013-508 

05/02/2016). To be noticed that ground sampling stations are placed in a different cluster, confirming that 509 

they are representative of two different states of the vineyard (high and low vigour). 510 

 511 

Figure 3. (a) NDWI vs. NDVI before trend removal. (b) NDWI’ vs. NDVI after trend removal. 512 

 513 

Figure 4. Scatterplots directly relating ground measures to spectral indices. The following scatterplots were 514 

generated (and correspondent Pearson’s Coefficient computed, Table 4) separately for V+ (high vigour) and 515 

V- (low vigour): MDstem vs. NDVI, MDstem vs. NDWI’, VWC vs. NDVI, VWC vs. NDWI’ (MDstem is expressed 516 

in terms of absolute values). 517 

 518 

Figure 5. Scatterplots relating: (a) NDVI vs. DOY; (b) MDstem vs. DOY; (c) R1 vs. DOY. Relationships were 519 

modelled, separately for V+ (continuous line) and V- (dotted line), by a 2nd order polynomial. 520 

 521 

Figure 6. Scatterplots relating: (a) NDWI’ vs. DOY; (b) VWC and DOY; (c) R2 and NDWI’. The latter 522 

relationship was modelled, separately, for V+ (continuous line) and V- (dotted line), by an exponential model. 523 

 524 

Figure 7. (a) Average profiles of NDVI (interpolated series) and MDstem as estimated by models. Bold line 525 

traits of NDVI profiles indicate where MDstem estimates are lower than the selected threshold, while grey 526 

rectangles define the time range where they occurred. (b) Differences between MDstem estimates obtained, 527 

respectively, by eq. (7b) and (9). Graph only reports differences within the previously defined growing 528 

seasons (MDstem is expressed in terms of absolute values). 529 

 530 



Figure 8. Temporal profiles of soil VWC estimates in the reference period ((19/05/2013-05/02/2016)) 531 

estimated by model using the interpolated time series of NDWI’. Estimates are given separately for V+ and 532 

V- classes. 533 

 534 

Figure 9. Example showing maps of estimates of  MDstem (expressed in terms of absolute values) and VWC 535 

obtained by models. Estimates refer to July 2nd 2014 (a, b) and July 2nd 2015 (c, d). Mapped classes bins of 536 

MDstem and VWC have a width of 0.1 MPa and 1.5%, respectively, according to the uncertainty of estimates 537 

from models. 538 

 539 
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