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POLYNOMIAL APPROXIMATION WITH POLLACZECK–LAGUERRE WEIGHTS ON

THE REAL SEMIAXIS. A SURVEY

G. MASTROIANNI, G. V. MILOVANOVIĆ AND I. NOTARANGELO

Abstract. The paper summarizes recent results on weighted polynomial approximation for functions
defined on the real semiaxis, which can grow exponentially both at 0 and at +∞: orthogonal polynomials,

polynomial inequalities, function spaces with new moduli of smoothness, estimates for the best approxima-

tion, Gaussian rules and Lagrange interpolation with respect to the weight w(x) = xγe−x
−α−xβ .

Keywords: orthogonal polynomials, weighted polynomial approximation, polynomial inequalities,
Gaussian quadrature rules, Lagrange interpolation, Pollaczeck–Laguerre exponential weights.

MCS classification (2000): 41A05, 41A10, 41A17, 41A25, 65D05, 65D32.

1. Introduction

This paper is a short survey on weighted polynomial approximation of functions defined
on the real semiaxis, which can grow exponentially both at 0 and at +∞. As far as we know,
this topic has received attention in the literature only recently (see [12, 13, 14, 15, 16]).

To this aim we consider weight functions of the form

(1.1) w(x) = xγe−x
−α−xβ , α > 0, β > 1, γ ≥ 0, x ∈ (0,+∞).

Even if w can be seen as a combination of a Pollaczeck-type weight e−x
−α

and a Laguerre-
type weight xγe−x

β
, one cannot investigate the problem reducing it to a combination of a

Pollaczeck-type case (on [0, 1], say) and a Laguerre-type case (on [1,+∞)).
We are going to present the main results concerning orthogonal polynomials, polynomial

inequalities, function spaces with new moduli of smoothness, estimates for the best poly-
nomial approximation with respect to the weight w. We will also show due attention to
Gaussian rules and Lagrange interpolation in weighted L2 norm. The behaviour of the re-
lated Fourier sums and their discrete version, the Lagrange polynomials, in Lp norms remain
an open problem.

In the sequel c, C will stand for positive constants which can assume different values in each
formula and we shall write C 6= C(a, b, . . .), when C is independent of a, b, . . .. Furthermore
A ∼ B will mean that if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)±1 ≤ C.
Finally, we will denote by Pm the set of all algebraic polynomials of degree at most m. As
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2 G. MASTROIANNI, G. V. MILOVANOVIĆ AND I. NOTARANGELO

usual N, Z, R, will stand for the sets of all natural, integer, real numbers, while Z+ and R+

denote the sets of positive integer and positive real numbers, respectively.

2. Orthogonal polynomials

First of all we note that the weight w, defined by (1.1), can be reduced to a weight
belonging to the class F(C2+), introduced by Levin and Lubinsky in [7, pp. 7–8], by using a
linear transformation. Let us recall the definition of this class for the reader’s convenience.

Let I = (c, d) be an interval, with −∞ ≤ c < 0 < d ≤ +∞, and % : I ∈ R be a weight
function, with % = e−Q, Q : I ∈ [0,+∞), satisfying the following properties:

(i) Q′ is continuous in I and Q(0) = 0;
(ii) Q′′ exists and is positive in I \ {0};

(iii) limx→c+ Q(x) = limx→d− Q(x) =∞;
(iv) the function

T (x) =
xQ′(x)

Q(x)
, x ∈ I \ {0} ,

is quasi-decreasing in (c, 0) and quasi-increasing in (0, d), with

T (x) ≥ Λ > 1 , x ∈ I \ {0} ;

(v) there exist C1, C2 > 0 and a compact subinterval J ⊆ I, such that

Q′′(x)

|Q′(x)|
≤ C1

|Q′(x)|
Q(x)

, a.e. x ∈ I \ {0} ,

and
Q′′(x)

|Q′(x)|
≥ C2

|Q′(x)|
Q(x)

, a.e. x ∈ I \ J .

Then we say % ∈ F(C2+).
With the previous notation, we can state next lemma.

Lemma 1. (see [16, pp. 817–818]). Letting w be the weight in (1.1), there exists a λ > 0
such that the weight w̃ defined as

w̃(y) = e−Q(y) , y ∈ (−λ,+∞) ,

with

Q(y) =
1

(y + λ)α
+ (y + λ)β − γ log(y + λ)− λ−α − λβ + γ log(λ) ,

belongs to the class F(C2+).

So, w(y) = Cw̃(y + λ), where λ is the unique positive zero of q′(x) = −αx−α−1 + βxβ−1 −
γx−1. Then we can deduce the properties of the orthogonal polynomials w.r.t. our weight
w from the results obtained by Levin and Lubinsky, using the inverse transformation.
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The Mhaskar–Rakhmanov–Saff (MRS) numbers related to w(x) = e−q(x), with q(x) =
x−α + xβ − γ log(x), are ετ = ετ (w) and aτ = aτ (w), are defined by

τ =
1

π

∫ aτ

ετ

xq′(x)√
(aτ − x)(x− ετ )

dx

and

0 =
1

π

∫ aτ

ετ

q′(x)√
(aτ − x)(x− ετ )

dx .

Proposition 2. (see [16, pp. 820] and [7, p. 13]).For τ > 0, ετ is a decreasing function and
aτ is an increasing function of τ , and

lim
τ→+∞

ετ = 0 , lim
τ→+∞

aτ = +∞ ,

with

(2.1) ετ ∼
(√

aτ
τ

) 1
α+1/2

and

(2.2) aτ ∼ τ 1/β .

Let us denote by {pm(w)}m∈N the sequence of the orthonormal polynomials defined by

pm(w, x) = γmx
m + lower degree terms , γm = γm(w) > 0 ,

and ∫ +∞

0

pm(w, x)pn(w, x)w(x) dx = δm,n .

The zeros of pm(w) lie in the MRS interval associated with
√
w. So, here and in the rest of

the paper, we use the notation ετ = ετ (
√
w) and aτ = aτ (

√
w), taking into account that, by

definition, ετ (
√
w) = ε2τ (w) and aτ (

√
w) = a2τ (w). The next proposition provides further

information concerning the distribution of these zeros.

Proposition 3. (see [14, pp. 1656–1657] and [7, pp. 312–324]). The zeros of pm(w) are
located as

εm < x1 < x2 < · · · < xm < am ,

with

x1 − εm ∼ δm , δm ∼
(√

am
m

) 2
3( 2α+3

2α+1)
∼ m−

2
3( 2α+3

2α+1)(1− 1
2β ) ,

and
am − xm ∼ amm

−2/3 ∼ m
1
β
− 2

3 ,

where the constants in “∼” are independent of m.
The distance between two consecutive zeros ∆xk = xk+1 − xk can be estimated by

∆xk ∼ Ψm(xk) , k = 1, . . . ,m− 1,
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where
Ψm(xk) =

am xk

m
√

(xk − εm)(am − xk)
and the constants in “∼” are independent of k and m.

Now, letting θ ∈ (0, 1) be fixed, we define two indexes j1 = j1(m) and j2 = j2(m) as

(2.3) xj1 = max
1≤k≤m

{xk : xk ≤ εθm} and xj2 = min
1≤k≤m

{xk : xk ≥ aθm} .

For the sake of completeness, if {xk : xk ≤ εθm} or {xk : xk ≥ aθm} are empty, we set
xj1 = x1 or xj2 = xm, respectively.

From Proposition 3, it follows that

∆xk ∼
√
am
m

√
xk , k = j1, . . . , j2 .

Let

λm(w, x) =

(
m−1∑
k=0

p2
m(w, x)

)−1

be the mth Christoffel function and

λk(w) = λm(w, xk) , k = 1, . . . ,m ,

be the Christoffel numbers related to w.

Proposition 4. (see [7, p. 257]). We have

λm(w, x) ∼ Ψm(x)w(x) , x ∈ [εm, am] ,

where Ψm is given by

Ψm(x) =
am x

m
√

(x− εm + δm)(am − x+ amm−2/3)

and the constants in “∼” are independent of m.
In particular, for θ ∈ (0, 1), we get

λm(w, x) ∼
√
am
m

√
xw(x) , x ∈ [εθm, aθm] ,

From the numerical point of view, in order to compute the zeros of pm(w) and the
Christoffel numbers, we use a procedure given in [14] and the Mathematica package
OrthogonalPolynomials (cf. [3] and [18]), which is freely downloadable from the Web
Site: http://www.mi.sanu.ac.rs/∼gvm/.

For the sake of brevity we omit the description of the numerical procedures for the com-
putation of the zeros of pm(w), the Christoffel numbers and the Mhaskar–Rahmanov-Saff
numbers εm and am. The interested reader can find all the details about these procedures
in [14, pp. 1676–1680] (cf. [15]).

The following estimates are crucial tools in order to study the convergence of several
approximation processes.
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Proposition 5. (see [7, pp. 325 and 360]). We have

sup
x∈(0,+∞)

|pm (w, x)|
√
w(x) 4

√
|(am − x)(x− εm)| ∼ 1 ,

sup
x∈(0,+∞)

|pm (w, x)|
√
w(x) ∼ m

1
6(1− 1

2β )( 2α+3
2α+1) ,

and
1

|p′m (w, xk)|
√
w(xk)

∼ ∆xk
4
√

(am − x)(x− εm)

where the constants in “∼” are independent of m.

Proposition 6. (cfr. [7, p. 25]). For the leading coefficient of pm(w) we have

γm =
1√
2π

(
4

am + εm

)m+ 1
2

exp

(
1

π

∫ am

εm

q(x)√
(am − x)(x− εm)

dx

)
(1 + o(1)) ,

where q(x) = 1
2

(
x−α + xβ − γ log x

)
.

3. Polynomial inequalities

Letting w be given by (1.1), x ∈ R+, we introduce the weight function

(3.1) u(x) = xδ
√
w(x) , δ ∈ R .

In the sequel, by a slight abuse of notation, we denote by ‖ · ‖p the quasinorm of the
Lp-spaces for 0 < p < 1, defined in the usual way.

Lemma 7. (see [16, p. 809]). Let δ ∈ R and n = m + d|δ|e. For any Pm ∈ Pm, with
0 < p ≤ ∞, we have

‖Pm u‖p ≤ C ‖Pm u‖Lp[εn,an] ,

where C 6= C(m,Pm), and εn, an are defined by (2.1) and (2.2).
On the other hand, for any s > 1, we have

‖Pm u‖Lp(R+\[εsm,asm]) ≤ Ce
−cmν ‖Pm u‖p ,

where

(3.2) ν =

(
1− 1

2β

)
2α

2α + 1
,

and C and c are independent of m and Pm.

For the rest of the paper, let

ϕ(x) =
√
x .

Next lemma has interest in itself and gives rise to a useful procedure for proving polynomial
inequalities.
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Lemma 8. (see [16, p. 809]). For a sufficiently large m (say m ≥ m0), there exists a
polynomial R`m ∈ P`m, with ` a fixed integer, such that

R`m(x) ∼ w(x)

and

|R′`m(x)|ϕ(x) ≤ C m
√
am

w(x)

for x ∈ [εm, am], where εm = εm(w) and am = am(w) are defined by (2.1) and (2.2). The
constants in “∼” and C are independent of m.

By Lemmas 7 and 8 we reduce the problem of the polynomial inequalities related to the
weight u on (0,+∞), to analogous inequalities on bounded intervals with Jacobi weights. In
fact, we get:

Theorem 9. (see [16, p. 810]). Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

(3.3) ‖P ′m ϕu‖p ≤ C
m
√
am
‖Pm u‖p

and

(3.4) ‖P ′m u‖p ≤ C
m

√
εmam

‖Pm u‖p ,

where C 6= C(m,Pm) .

We want to emphasize that the presence of the algebraic factor xδ in the definition of u
allows us to iterate the Bernstein inequality (3.3) as follows∥∥P (r)

m ϕru
∥∥
p
≤ C

(
m
√
am

)r
‖Pm u‖p ,

for 1 ≤ r ∈ Z.
Also, the factor

m
√
εmam

∼
(

m
√
am

) 2α+2
2α+1

=

(
m
√
am

)1+ 1
2α+1

.

in the Markoff inequality (3.4) is smaller than the one appearing in the analogous inequality
(see [17])

‖P ′mwβ‖p ≤ C
(

m
√
am

)2

‖Pmwβ‖p

with the generalized Laguerre weight wβ(x) = e−x
β

on (0,+∞). Whereas, the factors of the
Bernstein inequalities for the weights u and wβ are the same.

Using standard arguments, the Markoff inequality (3.4) can be deduced from the Bernstein
inequality (3.3) and the Schur inequality stated in the following theorem.
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Theorem 10. (see [16, p. 810]). Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

‖Pm u‖p ≤ C
(

m
√
am

) δ
α+1/2

‖Pm vδ u‖p ,

where vδ(x) = xδ and C 6= C(m,Pm).

In analogy with the Bernstein and Markoff inequalities, we give two versions of the Nikolskii
inequality.

Theorem 11. (see [16, p. 810]). Let 0 < p < q ≤ ∞. Then, for any Pm ∈ Pm, we get

(3.5)
∥∥∥Pm ϕ 1

p
− 1
q u
∥∥∥
q
≤ C

(
m
√
am

) 1
p
− 1
q

‖Pm u‖p ,

and

(3.6) ‖Pm u‖q ≤ C
(

m
√
εmam

) 1
p
− 1
q

‖Pm u‖p

where C 6= C(m,Pm).

In analogy with different weighted polynomial inequalities, the factor m/
√
εmam in the

second Nikolskii inequality is the same as the one appearing in the Markoff inequality.

4. Function spaces, K-functionals and moduli of smoothness

Let us now define some function spaces related to the weight u (see [13, pp. 168–172]).
By Lpu, 1 ≤ p <∞, we denote the set of all measurable functions f such that

‖f‖Lpu := ‖fu‖p =

(∫ +∞

0

|fu|p (x) dx

)1/p

<∞ ,

while, for p =∞, by a slight abuse of notation, we set

L∞u = Cu =

{
f ∈ C0(0,+∞) : lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
with the norm

‖f‖L∞u := ‖fu‖∞ = sup
x∈(0,+∞)

|f(x)u(x)| .

For smoother functions we introduce the Sobolev-type spaces

W p
r (u) =

{
f ∈ Lpu : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕru‖p <∞

}
,

where 1 ≤ p ≤ ∞, 1 ≤ r ∈ Z+, ϕ(x) :=
√
x and AC(0,+∞) denotes the set of all absolutely

continuous functions on (0,+∞). We equip these spaces with the norm

‖f‖W p
r (u) = ‖fu‖p + ‖f (r)ϕru‖p .
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To characterize some subspaces of Lpu, we introduce the following moduli of smoothness.
Let us consider the intervals

Ih(c) =
[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

with α and β in (3.1), h > 0 sufficiently small, and c > 1 an arbitrary but fixed constant.
For any f ∈ Lpu, 1 ≤ p ≤ ∞, r ≥ 1 and t > 0 sufficiently small (say t < t0), we set

Ωr
ϕ(f, t)u,p = sup

0<h≤t

∥∥∆r
hϕ (f)u

∥∥
Lp(Ih(c))

,

where

∆r
hϕf(x) =

r∑
i=0

(−1)i
(
r

i

)
f (x+ (r − i)hϕ(x)) , ϕ(x) =

√
x .

Moreover, we introduce the following K-functional

K(f, tr)u,p = inf
g∈W p

r (u)

{
‖(f − g)u‖p + tr‖g(r)ϕru‖p

}
and its main part

K̃(f, tr)u,p = sup
0<h≤t

inf
g∈W p

r (u)

{
‖(f − g)u‖Lp(Ih(c)) + hr‖g(r)ϕru‖Lp(Ih(c))

}
.

The main part of the K−functional is equivalent to the main part of the previous modulus
of smoothness, as the following lemma shows.

Lemma 12. (see [13, p. 171]). Let r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any
f ∈ Lpu, 1 ≤ p ≤ ∞, we have

Ωr
ϕ(f, t)u,p ∼ K̃(f, tr)u,p

where the constants in “∼” are independent of f and t.

Then we define the complete rth modulus of smoothness by

ωrϕ(f, t)u,p = Ωr
ϕ(f, t)u,p + inf

q∈Pr−1

‖(f − q)u‖Lp(0,t1/(α+1/2)]

+ inf
q∈Pr−1

‖(f − q)u‖Lp[c t−1/(β−1/2),+∞)

with c > 1 a fixed constant. We emphasize that the behaviour of ωrϕ(f, t)u,p is independent
of the constant c. Moreover, the following lemma shows that this modulus of smoothness is
equivalent to the K-functional.

Lemma 13. (see [13, p. 172]). Let r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any
f ∈ Lpu, 1 ≤ p ≤ ∞, we have

ωrϕ(f, t)u,p ∼ K(f, tr)u,p ,

where the constants in “∼” are independent of f and t.
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By means of the main part of the modulus of smoothness, for 1 ≤ p ≤ ∞, we can define
the Zygmund-type spaces

Zp
s (u) =

{
f ∈ Lpu : sup

t>0

Ωr
ϕ(f, t)u,p

ts
<∞, r > s

}
,

s ∈ R+, with the norm

‖f‖Zps (u) = ‖f‖Lpu + sup
t>0

Ωr
ϕ(f, t)u,p

ts
.

We remark that, in the definition of Zp
s (u), the main part of the rth modulus of smoothness

Ωr
ϕ(f, t)u,p can be replaced by the complete modulus ωrϕ(f, t)u,p, as can be deduced from

Theorem 5.1 in next section.

5. Weighted approximation and embedding theorems

5.1. Estimates for the best weighted approximation. Let us denote by

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p

the error of best polynomial approximation of a function f ∈ Lpu, 1 ≤ p ≤ ∞. The following
Jackson, weak Jackson and Stechkin inequalities hold true.

Theorem 14. (see [13, p. 173]). For any f ∈ Lpu, 1 ≤ p ≤ ∞, and m > r ≥ 1, we have

(5.1) Em(f)u,p ≤ C ωrϕ
(
f,

√
am
m

)
u,p

,

and, assuming Ωr
ϕ(f, t)u,p t

−1 ∈ L1[0, 1],

Em(f)u,p ≤ C
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t
dt , r < m .

Finally for any f ∈ Lpu, 1 ≤ p ≤ ∞, we get

(5.2) ωrϕ

(
f,

√
am
m

)
u,p

≤ C
(√

am
m

)r m∑
i=0

(
i
√
ai

)r
Ei(f)u,p

i
.

In any case C is independent of m and f .

In particular, for any f ∈ W p
r (u), 1 ≤ p ≤ +∞, we obtain

(5.3) Em (f)u,p ≤ C
(√

am
m

)r ∥∥f (r)ϕru
∥∥
p
, C 6= C(m, f) .

Whereas, for any f ∈ Zp
s (u), 1 ≤ p ≤ +∞, we get

(5.4) Em (f)u,p ≤ C
(√

am
m

)s
sup
t>0

Ωr
ϕ(f, t)u,p

ts
, r > s , C 6= C(m, f) .
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From (5.1), (5.2) and (5.4), we deduce the following equivalences

lim
m
ωϕ

(
f,

√
am
m

)
u,p

= 0 ⇔ lim
m
Em(f)u,p = 0

and

‖fu‖p + sup
t>0

Ωr
ϕ(f, t)u,p

ts
∼ ‖fu‖p + sup

m≥1

(
m
√
am

)s
Em(f)u,p

for 1 ≤ p ≤ ∞ and r > s.

5.2. Embedding theorems. Now, using Theorem 14, the dyadic decomposition, the Nikol-
skii inequalities (3.5) and (3.6), we can prove some embedding theorems, connecting different
subspaces of Lpu.

Theorem 15. (see [12, p. 159]). For any f ∈ Lpu, 1 ≤ p <∞, such that∫ 1

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt <∞ ,

where η = (2α + 2)/(2α + 1), we have

Em(f)u,∞ ≤ C
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt ,

Ωr
ϕ

(
f,

√
am
m

)
u,∞
≤ C

∫ √
am
m

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt

and

‖fu‖∞ ≤ C
{
‖fu‖p +

∫ 1

0

Ωr
ϕ(f, t)u,p

t1+η/p
dt

}
,

where C depends only on r.

In the following theorem, we replace η/p by 1/p.

Theorem 16. (see [12, pp. 159–160]). For any f ∈ Lpu, 1 ≤ p <∞, such that∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt <∞ ,

we have

Em(f)ϕ1/pu,∞ ≤ C
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt ,

Ωr
ϕ

(
f,

√
am
m

)
ϕ1/pu,∞

≤ C
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

and

‖fϕ1/pu‖∞ ≤ C
{
‖fu‖p +

∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

}
,

where C depends only on r.
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From Theorem 16 we can easily deduce the following corollary, useful in several contexts.

Corollary 17. (see [12, p. 160]). If f ∈ Lpu, 1 ≤ p <∞, is such that∫ 1

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt <∞ ,

then f is continuous on (0,+∞).

6. Quadrature rules and Lagrange interpolation

Here we are going to show a slight extension of the results proved [14] for γ = 0.

6.1. Gaussian formulas. The Gaussian rule related to the weight w(x) = xγe−x
−α−xβ can

be defined by the equality

(6.1)

∫ +∞

0

P2m−1(x)w(x) dx =
m∑
k=1

λk(w)P2m−1(xk)

where xk are the zeros of pm(w), λk(w) are the Christoffel numbers, which holds for any
polynomial P2m−1 ∈ P2m−1.

Thus the error of the Gaussian rule for any continuous function f is given by

em (f) =

∫ +∞

0

f(x)w(x) dx−
m∑
k=1

λk(w)f(xk) .

Let us consider the weight

(6.2) σ(x) = (1 + x)δwa(x) , δ ≥ 0 , 0 < a ≤ 1 .

Naturally, taking also into account Lemma 7, the results of Sections 3 and 4 hold with u
replaced by σ.

If we assume f ∈ Cσ, then we can write∣∣∣∣∣
m∑
k=1

λk(w)f(xk)

∣∣∣∣∣ ≤ ‖fσ‖∞
m∑
k=1

λk(w)

σ(xk)
≤ C ‖fσ‖∞

∫ +∞

0

w(x)

σ(x)
dx

and the next proposition easily follows.

Proposition 18. (cfr. [14, p. 1660]). If w/σ ∈ L1, then, for any f ∈ Cσ, we have

(6.3) |em (f)| ≤ CE2m−1(f)σ,∞ ,

where C 6= C(m, f).

This proposition generalizes a result due to Uspensky [19], who first proved the convergence
of Gaussian rules on unbounded intervals related to Laguerre and Hermite weights (see also
[9, pp. 341–345] and [11]).

Notice that the assumption w/σ ∈ L1 in Proposition 18 is fulfilled if a = 1 and δ > 1, or
if a < 1 and δ is arbitrary. The error estimate (6.3) implies the convergence of the Gaussian
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rule for any f ∈ Cσ. For smoother function, for instance f ∈ W∞
r (σ), by (6.3) and (5.3), we

obtain

|em (f)| ≤ C
(√

am
m

)r ∥∥f (r)ϕrσ
∥∥
∞ ,

where C 6= C(m, f) and am ∼ m1/β.
Thus, a natural question is to establish the degree of convergence of em (f) if the function

f is infinitely differentiable, i.e., f ∈ C∞(R+). We recall that [1, 2] proved estimates of
em (f) related to Hermite or Freud weights for analytic functions in some domains of the
complex plane containing the quadrature nodes. For precise estimates, considering the same
class of functions and different weights we refer to [8]. Here we consider the case of infinitely
differentiable functions on R+, with the condition that (f (m)σ)(x) is uniformly bounded
w.r.t. m and x. We note that the derivatives of the function can increase exponentially for
x→ 0 and x→ +∞.

Theorem 19. (cfr. [14, p. 1660]). Let σ be the weight in (6.2) with 0 < a < 1 and δ
arbitrary. For any infinitely differentiable function f , if K (f) := supm

∥∥f (m)σ
∥∥
∞ < +∞,

we have

|em (f) | ≤ CK (f) Γm , lim
m

2m
√

Γm = 0 .

In order to study the behaviour of the Gaussian rule in Sobolev spaces W 1
r (w), it is natural

to investigate whether estimates of the form

(6.4) |em (f) | ≤ C
√
am
m
‖f ′ϕw‖1 , C 6= C(m, f) , f ∈ W 1

1 (w) ,

hold true.
We recall that, as shown in the previous Section, for the error of best approximation we

have

Em (f)w,1 ≤ C
√
am
m
‖f ′ϕw‖1 , C 6= C(m, f) , f ∈ W 1

1 (w) .

On the other hand, inequality (6.4) holds, mutatis mutandis, for Gaussian rules on
bounded intervals related to Jacobi weights. But, as for many exponential weights (see,
e.g., [4, 5, 10, 11]), inequality (6.4) is false in the sense of the following theorem.

Theorem 20. (cfr. [14, p. 1661]). Let w(x) = xγe−x
−α−xβ , α > 0, β > 1 and γ ≥ 0. Then,

for any f ∈ W 1
1 (w), we have

|em (f) | ≤ Cm1/3

√
am
m
‖f ′ϕw‖1,

where C is independent of m and f . Moreover, for a sufficiently large m (say m ≥ m0), there
exists a function fm, with 0 < ‖f ′mϕw‖1 < +∞, and a constant C 6= C(m, fm) such that

|em(fm)| ≥ Cm1/3

√
am
m
‖f ′mϕw‖1.
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Nevertheless, estimates of the form (6.4) are required in different contexts. So, in order to
obtain this kind of error estimates, using also an idea from [10], we are going to modify the
Gaussian rule.

With θ ∈ (0, 1) fixed, we define two indexes j1 = j1(m) and j2 = j2(m) as in (2.3). Then,
for a sufficiently large N , let P∗N denote the following subset of all polynomials of degree at
most N

P∗N = {P ∈ PN : P (xi) = 0 , xi < xj1 or xi > xj2} .

Naturally, pm(w) ∈ P∗N , for N ≥ m and θ ∈ (0, 1) arbitrary.
Now, in analogy with (6.1), we define the new Gaussian rule, by means of the equality∫ +∞

0

Q2m−1(x)w(x) dx =
m∑
k=1

λk(w)Q2m−1(xk) =

j2∑
k=j1

λk(w)Q2m−1(xk) ,

which holds for every Q2m−1 ∈ P∗2m−1.
Then, for any continuous function f , the “truncated” Gaussian rule is defined as

(6.5)

∫ +∞

0

f(x)w(x) dx =

j2∑
k=j1

λk(w)f(xk) + e∗m (f) ,

whose error e∗m (f) is the difference between the integral and the quadrature sum.
Compared to the Gaussian rule (6.1), in the formula (6.5) the terms of the quadrature

sum corresponding to the zeros which are “close” to the MRS numbers are dropped. From
the numerical point of view, this fact has two consequences. First, it avoids overflow phe-
nomena (taking into account that, in general, the function f is exponentially increasing at
the endpoints of R+). Moreover, it produces a computational saving, which is evident in the
numerical treatment of linear functional equations (see [15]).

We are now going to study the behaviour e∗m (f) in Cσ and W 1
r (w). We will see that the

errors em (f) and e∗m (f) have essentially the same behaviour in Cσ, but not in W 1
r (w), since

e∗m (f) satisfies (6.4), while em (f) does not.
The behaviour of e∗m (f) in Cσ is given by the following proposition.

Proposition 21. (cfr. [14, p. 1662]). Assume w/σ ∈ L1. Then, for any f ∈ Cσ, we get

(6.6) |e∗m (f)| ≤ C
{
EM (f)σ,∞ + e−cm

ν ‖fσ‖∞
}
,

where M =
⌊(

θ
θ+1

)
m
⌋
, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f) and c 6= c(m, f).

In particular, if f ∈ W∞
r (σ), inequality (6.6) becomes

|e∗m (f)| ≤ C
(√

am
m

)r
‖f‖W∞r (σ) .

For smoother functions, the analogue of Theorem 19 is given by the following statement.
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Theorem 22. (cfr. [14, p. 1662]). If the weight σ and the function f satisfy the assumption
of Theorem 19, then, for any 0 < µ < α(1− 1/(2β))/(α + 1/2) fixed, we get

|e∗m (f) | ≤ C [‖fσ‖∞ +K (f)] Γ̄m ,

where limm Γ̄
1/mµ

m = 0 and C 6= C(m, f).

For functions f ∈ W 1
1 (w) or f ∈ Z1

s (w), 1 < s ∈ R+, the following theorem states the
required estimates.

Theorem 23. (cfr. [14, pp. 1662–1663]). For any f ∈ W 1
1 (w), we have

(6.7) |e∗m (f) | ≤ C
√
am
m
‖f ′ϕw‖1 + Ce−cmν‖fw‖1 .

Moreover, for any f ∈ Z1
s (w), with s > 1, we get

(6.8) |e∗m (f) | ≤ C
√
am
m

∫ √am/m
0

Ωr
ϕ(f, t)w,1

t2
dt+ Ce−cmν‖fw‖1 ,

where r > s > 1. In both cases C and c do not depend on m and f , and ν is given by (3.2).

In conclusion, inequality (6.7) is the required estimate and, by (6.8), it can be generalized
as

|e∗m (f) | ≤ C
(√

am
m

)s
‖f‖Z1

s (w) , C 6= C(m, f) ,

for f ∈ Z1
s (w), s > 1. In particular, if s is an integer number, recalling (6.7), the Zygmund

norm can be replaced by the Sobolev norm.
Finally, we emphasize that the previous estimate cannot be improved, since, in these

function spaces, e∗m (f) converges to 0 with the order of the best polynomial approximation.

6.2. Lagrange interpolation in L2√
w
. Here we want to apply the results in Section 6.1

to estimate the error of the Lagrange interpolation process based on the zeros of pm(w). If
f ∈ C0(R+), then the Lagrange polynomial interpolating f at the zeros of pm(w) is defined
by

Lm(w, f, x) =
m∑
k=1

lk(w, x)f(xk), lk(w, x) =
pm(w, x)

p′m(w, xk)(x− xk)
,

and we are going to study the error ‖[f − Lm (w, f)]
√
w‖2 for different function classes.

Since

(6.9)
∥∥Lm (w, f)

√
w
∥∥2

2
=

m∑
k=1

λk(w)

w(xk)
(f
√
w)2(xk)

and we are dealing with an unbounded interval, we cannot expect an analogue of the theorem
by Erdős and Turán [6]. On the other hand, if f ∈ Cũ, with ũ(x) = (1+x)δ

√
w(x)), δ > 1/2,

it is easily seen that∥∥[f − Lm (w, f)]
√
w
∥∥

2
≤ CEm−1 (f)ũ,∞ , C 6= C(m, f).
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Nevertheless, as for the Gaussian formula, if f ∈ W 2
1 (
√
w), then Lm(w, f) has not an

optimal behaviour, i.e., an estimate of the form∥∥[f − Lm (w, f)]
√
w
∥∥

2
≤ C
√
am
m

∥∥f ′ϕ√w∥∥
2
, C 6= C(m, f) ,

does not hold. In order to overcome this gap, for any f ∈ C0(R+) we introduce the following
“truncated” Lagrange polynomial

L∗m(w, f, x) =

j2∑
k=j1

lk(w, x)f(xk) ,

where j1, j2 are given by (2.3).
Naturally, in general L∗m(w,P ) 6= P for arbitrary polynomials P ∈ Pm−1 (for example,

Lm(w,1) 6= 1). But L∗m(w,Q) = Q for any Q ∈ P∗m−1 and L∗m(w, f) ∈ P∗m−1 for any
f ∈ C0(R+). So, the operator L∗m(w) is a projector from C0(R+) into P∗m−1.

Moreover, considering the weight

(6.10) ũ(x) = (1 + x)δ
√
w(x) , δ > 0 ,

we can show that every function f ∈ Lpũ can be approximated by polynomials of P∗m. To this
aim we define

Ẽm (f)ũ,p = inf
P∈P∗m

‖(f − P ) ũ‖p , 1 ≤ p ≤ +∞ .

Lemma 24. (cfr. [14, p. 1664]). For any f ∈ Lpũ, where ũ is given by (6.10) and 1 ≤ p ≤
+∞, we have

Ẽm (f)ũ,p ≤ C
{
EM (f)ũ,p + e−cm

ν ‖fũ‖p
}
,

where M =
⌊(

θ
θ+1

)
m
⌋
, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f) and c 6= c(m, f).

As an immediate consequence of the previous lemma and equality (6.9), we get the fol-
lowing

Proposition 25. (cfr. [14, p. 1664]). For any f ∈ Cũ, with ũ as (6.10), δ > 1/2, we have∥∥[f − L∗m (w, f)]
√
w
∥∥

2
≤ C

{
EM (f)ũ,∞ + e−cm

ν ‖fũ‖∞
}
,

where M =
⌊(

θ
θ+1

)
m
⌋
, θ ∈ (0, 1), ν is given by (3.2), C 6= C(m, f) and c 6= c(m, f).

We are going to study the behaviour of the sequence {L∗m(w)}m in the Sobolev spaces
W 2
r (
√
w), which is interesting in different contexts.

To this regard, we observe that, since no results concerning the sequence of the Fourier sum
{Sm(w)}m are known, we cannot deduce the behaviour of {L∗m(w)}m from that of {Sm(w)}m.
Therefore, we need a different approach.

The following theorem describes the behaviour of the operator L∗m(w) in different function
spaces.
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Theorem 26. (cfr. [14, p. 1664]). Assume f ∈ L2√
w

and

(6.11)

∫ 1

0

Ωr
ϕ(f, t)√w,2

t3/2
dt < +∞ , r ≥ 1 ,

then we have
(6.12)∥∥[f − L∗m(w, f)]

√
w
∥∥

2
≤ C

{(√
am
m

)1/2 ∫ √am/m
0

Ωr
ϕ(f, t)√w,2

t3/2
dt+ e−cm

ν ∥∥f√w∥∥
2

}
,

where ν is given by (3.2) and the constants C, c are independent of m and f .

Note that, by Corollary 17, the assumption (6.11) implies f ∈ C0(R+).
The error estimate (6.12) has interesting consequences.
Firstly, if

sup
t>0

Ωr
ϕ(f, t)√w,2

ts
dt < +∞ , r > s > 1/2 ,

i.e., f ∈ Z2
s (
√
w), then the order of convergence of the process is O

((√
am/m

)s)
. While, if

f ∈ W 2
r (
√
w), r ≥ 1 is integer, we have∥∥[f − L∗m (w, f)]

√
w
∥∥

2
≤ C

(√
am
m

)r
‖f‖W 2

r (
√
w) .

This means that the process converges with the error of the best approximation for the
considered classes of functions.

Secondly, we are now able to show the uniform boundedness of the sequence {L∗m(w)} in
the Sobolev spaces.

Theorem 27. (cfr. [14, p. 1665]). With the previous notation, for any f ∈ W 2
r (
√
w), r ≥ 1,

we have

sup
m
‖L∗m (w, f)‖W 2

r (
√
w) ≤ C ‖f‖W 2

r (
√
w) , C 6= C (f) .

Moreover, for any f ∈ W 2
s (
√
w), s > r, we have

‖f − L∗m (w, f)‖W 2
r (
√
w) ≤ C

(√
am
m

)s−r
‖f‖W 2

s (
√
w) , C 6= C(m, f) .

Remark 28. In all the estimates for e∗m (f) and (f − L∗m(w, f)), a constant C 6= C(m, f)
appears. We have not pointed out the dependence on the parameter θ ∈ (0, 1), since θ is
fixed. Nevertheless, it is useful to observe that C = C(θ) = O

(
(θ/(1− θ))2). So, it is clear

that the parameter θ cannot assume the value 0 or 1 and the “truncation” is necessary in
this sense (see [14] for more details).
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[14] G. Mastroianni, I. Notarangelo and G.V. Milovanović, Gaussian quadrature rules with an exponential weight on
the real semiaxis, IMA J. Numer. Anal. 34 (4) (2014), pp. 1654–1685.
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