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Point and differential C1 quasi-interpolation

on three direction meshes

D. Barrera, C. Dagnino, M. J. Ibáñez, S. Remogna∗

Abstract

In this paper we construct and analyse C1 cubic and quartic quasi-interpolating splines on type-

1 triangulations approximating regularly distributed data, without using minimal determining sets

and without defining the approximating splines as linear combinations of compactly supported

bivariate spanning functions. In particular, the C1 cubic splines are directly determined by setting

their Bernstein-Bézier coefficients to appropriate combinations of the given data values without

using prescribed derivatives at any point of the domain, in such a way that the C
1-smoothness

conditions are satisfied and approximation order three is guaranteed, for smooth functions. We

also propose some numerical tests that confirm the theoretical results. Then, from the above

C
1 cubic splines we obtain C

1 quartic splines exact on P3, achieving approximation order four.

The associated differential quasi-interpolation operator involves the values of the first partial

derivatives in its definition.

Keywords: Spline approximation, Quasi-interpolation, Bernstein-Bézier form, Type-1 triangula-

tion

1 Introduction

Many approaches on quasi-interpolation and interpolation by bivariate splines are based on the con-
struction of local and stable minimal determining sets (see e.g. [12] and references therein) or on
the use of locally supported spanning functions like box splines (see e.g. [5, 7, 12, 18] and references
therein). Moreover, some recent literature concerns the approximation in spaces of smooth splines of
low degree on triangulations [1, 3, 4, 8, 13, 14].

In this paper, we construct and analyse C1 cubic and quartic quasi-interpolating splines on type-1
triangulations approximating regularly distributed data, without using minimal determining sets and
without defining the approximating splines as linear combinations of compactly supported bivariate
spanning functions.

In particular, the C1 cubic splines are directly determined by setting their Bernstein-Bézier (BB-)
coefficients to appropriate combinations of the given data values without using prescribed derivatives
at any point of the domain, in such a way that the C1-smoothness conditions are satisfied and
approximation order three is guaranteed, for smooth functions. We construct and analyse two families
of cubic splines, based on two different sets of evaluation points. We want to remark that, although
the data needed for our schemes have to be regularly distributed, the methods here proposed can be
included in a two-step approach, where in the first step a polynomial approximant is computed locally
on each triangle and then the data values on each triangle can be sampled from the approximant, as
in the paper [9]. Moreover, the quasi-interpolation scheme here proposed is applicable to a compact
domain in the plane, by considering special rules near the boundary (see [15]) or by extending the
triangulation.

Afterwards, following the general method proposed in [2], from the above C1 cubic splines we
obtain C1 quartic splines exact on P3, achieving approximation order four. The associated differential
quasi-interpolation operator involves the values of the first partial derivatives in its definition.

Here is an outline of the paper. In Section 2, we give some preliminaries on the BB-form of
splines on type-1 triangulations and we introduce some useful notation used throughout the paper.
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Figure 1: The triangulation ∆ (left) and the hexagon Hi,j (right).

In Section 3, we define families of C1 cubic quasi-interpolating splines based on two different sets
of points. We analyse the general schemes, in one case depending on two free parameters and we
present some strategies in order to fix them. Moreover, we discuss the approximation properties of
the corresponding operators and propose some numerical tests that confirm the theoretical results.
Finally, in Section 4, from the C1 cubic quasi-interpolant constructed in Section 3.1, we define a C1

quartic differential quasi-interpolant exact on P3 and we describe it in the Bernstein basis.

2 Notations and preliminaries

Although the results presented in this paper are valid for any three-directional partition of the plane,
following the notation of [16], given h > 0 and the two vectors e1 := (h, h) and e2 := (h,−h), the
vertices vi,j := ie1 + je2, i, j ∈ Z, define the two-dimensional lattice V := {vi,j : i, j ∈ Z}, that
subdivides the plane into equal parallelograms Pi,j := [vi,j , vi,j+1, vi+1,j+1, vi+1,j ] (see Fig. 1(left)).
Each parallelogram Pi,j is split into two triangles

Ti,j := [vi,j , vi+1,j+1, vi+1,j ] and T̃i,j := [vi,j , vi+1,j+1, vi,,j+1] ,

by drawing the diagonal [vi,j , vi+1,j+1]. Therefore, the triangulation ∆ is defined in this way

∆ :=
⋃

i,j∈Z

{
Ti,j , T̃i,j

}
.

The triangulation ∆ can also be viewed as a collection of overlapping hexagons, as shown in Fig.
1(right), where Hi,j is the hexagon centered at vi,j .

We are interested in the construction of quasi-interpolating splines in the spaces

S1
ℓ (∆) :=

{
s ∈ C1

(
R

2
)
: s|T ∈ Pℓ, for all T ∈ ∆

}
,

with ℓ = 3, 4. Here Pℓ := span
{
xi
1x

j
2 : 0 ≤ i+ j ≤ ℓ

}
is the space of bivariate polynomials of total

degree ℓ. Such splines will be defined by directly setting their BB-coefficients on the triangles of ∆
(see e.g. [12]). Given a function s ∈ S1

ℓ (∆), its restriction to a triangle T = [v0, v1, v2] ∈ ∆ can be
written as

s|T =
∑

i+j+k=ℓ

cTi,j,kB
T
i,j,k,

where BT
i,j,k := ℓ!

i!j!k!b
i
0b

j
1b

k
2 , i, j, k ≥ 0, i + j + k = ℓ, are the Bernstein polynomials of degree ℓ

associated with T and (b0, b1, b2) are the barycentric coordinates with respect to T , i.e. x = b0v0 +
b1v1 + b2v2, b0 + b1 + b2 = 1 for x := (x1, x2) ∈ T . Notice that any reference to the triangle T has
been omitted in the notation for the barycentric coordinates.

We associate the BB-coefficients cTi,j,k of s|T relative to T with the domain points ξℓi,j,k :=
(iv0 + jv1 + kv2) /ℓ in T . The union, without repetitions, of all domain points of each triangle
in ∆ gives rise to a set denoted by Dℓ. For the construction of the quasi-interpolating splines,
we also consider the subset D2 provided by the union, without repetitions, of the set of points
ξ2i,j,k := (iv0 + jv1 + kv2) /2.
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Figure 2: The points of D3 relative to Hi,j .
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Figure 3: The points of D2 relative to Hi,j .

The proposed construction is based on appropriate partitions
{
Dk

i,j , i, j ∈ Z
}

of Dk, defined as
follows: k = 2, 3:

- D3
i,j :=

{
vi,j , ti,j , t̃i,j

}
∪
{
wk,m

i,j , k,m ∈ {−1, 0, 1} , k +m 6= 0
}
, where

– ti,j and t̃i,j are the barycenters of Ti,j and T̃i,j , respectively,

– wk,m
i,j := 1

3 (2vi,j + vi+k,j+m),

- D2
i,j :=

{
vi,j , e

1,0
i,j , e

0,1
i,j , e

1,1
i,j

}
, with

eℓ,ni,j =
1

2
(ei,j + ei+ℓ,j+n) , ℓ, h ∈ {0, 1} , ℓ+ n 6= 0.

Therefore, Dk =
⋃

i,j D
k
i,j , k = 2, 3. Figs. 2 and 3 show the domain points in Dk, k = 3, 2, lying in

the hexagon Hi,j , respectively.

3 C1-cubic quasi-interpolation

In this section, we construct and analyse quasi-interpolating splines Q3,σf ∈ S1
3 (∆), σ = 2, 3, to a

given function f ∈ C
(
R

2
)
, by assuming to know the values f (v), v ∈ Dσ.
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Figure 4: Ordering a general sequence µ representing fi,j (D2) or any of masks α, β, γ or ωk, k =
0, . . . , 5.

3.1 C1-cubic quasi-interpolation based on D2

Given the values f (v), v ∈ D2, we construct the spline Q3,2f ∈ S1
3 (∆) by setting its BB-coefficients

on each triangle T ∈ ∆, taking into account that ∆ is a uniform triangulation. For example, we write
the restrictions of Q3,2f to the triangle Ti,j as

Q3,2f|Ti,j
= c3 (vi,j)B

Ti,j

3,0,0 + c3

(
w1,1

i,j

)
B

Ti,j

2,1,0 + c3

(
w1,0

i,j

)
B

Ti,j

2,0,1 + c3

(
w−1,−1

i+1,j+1

)
B

Ti,j

1,2,0 (3.1)

+ c3 (ti,j)B
Ti,j

1,1,1 + c3

(
w−1,0

i+1,j

)
B

Ti,j

1,0,2 + c3 (vi+1,j+1)B
Ti,j

0,3,0 + c3

(
w0,−1

i+1,j+1

)
B

Ti,j

0,2,1

+ c3

(
w0,1

i+1,j

)
B

Ti,j

0,1,2 + c3 (vi+1,j)B
Ti,j

0,0,3,

with c3 (p) denoting the BB-coefficient associated with the domain point p ∈ D3
i,j of the cubic poly-

nomial Q3,2f|Ti,j
. Notice that the three vertices defining Ti,j are counter-clockwise ordered starting

from vi,j .
The BB-coefficients corresponding to the domain points are expressed as linear combinations of the

values of f at the 19 domain points of D2 lying in Hi,j (see Fig. 3). For example, the BB-coefficient
associated with the domain point vi,j has the following form:

c3 (vi.j) = α0f (vi,j) + α1f
(
e1,1i,j

)
+ α2f

(
e1,0i,j

)
+ α3f

(
e0,1i,j−1

)
+ α4f

(
e1,1i−1,j−1

)
(3.2)

+ α5f
(
e1,0i−1,j

)
+ α6f

(
e0,1i,j

)
+ α7f (vi+1,j+1) + α8f

(
e0,1i+1,j

)
+ α9f (vi+1,j)

+ α10f
(
e1,1i,j−1

)
+ α11f (vi,j−1) + α12f

(
e1,0i−1,j−1

)
+ α13f (vi−1,j−1) + α14f

(
e0,1i−1,j−1

)

+ α15f (vi−1,j) + α16f
(
e1,1i−1,j

)
+ α17f (vi,j+1) + α18f

(
e1,0i,j+1

)
.

In order to simplify the notations, let fi,j (D2) ∈ R
19 be the vector of the values of f at the 19

domain points of D2 lying in Hi,j , enumerated as in Fig. 4, and let α ∈ R
19 be the vector whose

elements are enumerated in the same way. We call α a mask. Therefore, we write

c3 (vi,j) = fi,j (D2) · α,

where A · B :=
∑n

k=1 AkBk, with n the cardinality of A and B. The BB-coefficients associated with

the w−points w1,1
i,j , w

1,0
i,j , w

0,−1
i,j , w−1,−1

i,j , w−1,0
i,j , and w0,1

i,j are defined in a similar way by using masks
ωk, 0 ≤ k ≤ 5, respectively.

Analogously, the BB-coefficients c3 (ti,j) and c3
(
t̃i,j
)
are defined by considering masks β and γ,

respectively:
c3 (ti,j) = fi,j (D2) · β and c3

(
t̃i,j
)
= fi,j (D2) · γ.

The main goal in this section is to define masks α, β, γ and ωk, 0 ≤ k ≤ 5, such that

Q3,2f ∈ C1
(
R

2
)

and Q3,2f = f for all f ∈ P2. (3.3)
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Proposition 1 The problem (3.3) has a unique solution. The associated masks appear in Figs. 5,
6 and 7. The quasi-interpolation operator Q3 : C

(
R

2
)
−→ S1

3 (∆) defined by Q3,2 (f) := Q3,2f is
bounded in the uniform norm and

‖Q3,2‖∞ ≤ max {‖α‖1 , ‖β‖1 , ‖γ‖1 , ‖ωk‖1 , 0 ≤ k ≤ 5} =
13

3
. (3.4)

Proof. Thanks to the symmetry properties of the partition, we can fix a general vertex vi,j . Firstly
we impose the C1-smoothness conditions on every segment emanating from vi,j . Then, we impose the
reproduction of P2 on every triangle having vi,j as vertex, by requiring Q3,2mγ1,γ2

(x, y) = mγ1,γ2
(x, y),

γ1 + γ2 ≤ 2, γ1, γ2 ≥ 0, with mγ1,γ2
(x, y) = xγ1yγ2 .

By using a symbolic computation software, the results stated in Proposition 1 are established.
Moreover, for any f ∈ C

(
R

2
)
, all the BB-coefficients of Q3,2f on a triangle T are determined

by using values of f at the points located in the hexagons containing T only. Therefore, since the
Bernstein polynomials form a partition of unity, according to Figs. 5, 6 and 7, (3.4) follows.

Thanks to standard results in approximation theory (see e.g. [5, 12]), we can state the following
result.

Theorem 2 Let T be an arbitrary triangle in ∆, and let ΩT be the union of the triangles in ∆ having
a non-empty intersection with T . Then, there exist constants K̄|γ|, independent on h, such that for

every f ∈ Cm+1
(
R

2
)
, 0 ≤ m ≤ 2,

‖Dγ (f −Q3,2f)‖∞,T ≤ K̄|γ|h
m+1−|γ|

∥∥Dm+1f
∥∥
∞,ΩT

,

for all 0 ≤ |γ| ≤ m, γ = (γ1, γ2).
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3.2 C1-cubic quasi-interpolation based on D3

The construction above can be carried out in a similar way if the BB-coefficient of every point in Ti,j

and T̃i,j is defined as a linear combination of the values of f at the points in D3
i,j . Their coefficients

come from masks α, β, γ and ωk, 0 ≤ k ≤ 5, in R
37. In Fig. 8 it is shown how to order a general

mask.
After imposing the C1 class and the reproduction of quadratic polynomials a general solution de-

pending on the free parameters a := ω0,0 and b := ω2,0 is obtained by using the software Mathematica.
The masks associated with α and β appear in Fig. 9 and 10.

For the non-zero values of ω0 the following expressions hold:

ω3,0 = 7
2 + 3a+ 1

2b, ω5,0 = 1
2 − 1

2a, ω6,0 = −6− 6a− b, ω9,0 = 1− a,
ω11,0 = −3− 3a− 1

2b, ω15,0 = 1
2b, ω17,0 = 7 + 6a+ b, ω22,0 = − 1

3 + 1
3b,

ω25,0 = 5
6 + a+ 1

6b, ω31,0 = − 1
6 − 1

6b, ω34,0 = − 7
3 − 2a− 1

3b.
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The following results are obtained for the masks ωk, 1 ≤ k ≤ 5:

ω0,1 = − 11
6 − a− 1

2b, ω3,1 = 7 + 6a+ b, ω6,1 = −3− 3a− 1
2b, ω9,1 = 1− b,

ω11,1 = −6− 6a− b, ω17,1 = 7
2 + 3a+ 1

2b, ω22,1 = − 1
3 + 1

3b, ω25,1 = 3
2 + 2a+ 1

2b,
ω26,1 = 1

2 − 1
2b, ω27,1 = 1

2b, ω28,1 = − 1
6 − 1

6b, ω34,1 = − 7
6 − a− 1

6b,
ω0,2 = − 5

2 − 2a− 1
2b, ω2,2 = 1

2b, ω3,2 = 7 + 6a+ b, ω9,2 = 1
2 − 1

2b,
ω11,2 = −6− 6a− b, ω22,2 = − 1

6 + 1
6b, ω25,2 = 4

3 + 2a+ 2
3b,

ω26,2 = 1− b, ω27,2 = b, ω28,2 = a− 1
6b,

ω29,2 = −3− 3a− 1
2b, ω30,2 = 7

2 + 3a+ 1
2b, ω31,2 = − 7

6 − a− 1
6b,

ω0,3 = − 4
3 − a, ω3,3 = 7

2 + 3a+ 1
2b, ω5,3 = 1

2 − 1
2b, ω11,3 = −3− 3a− 1

2b,
ω15,3 = 1

2b, ω25,3 = 1
2 + a+ 1

2b, ω26,3 = 1− b, ω27,3 = b,
ω28,3 = 4

3 + 2a, ω29,3 = −6− 6a− b, ω30,3 = 7 + 6a+ b, ω31,3 = − 5
2 − 2a− 1

2b,
ω0,4 = 1

2 + a+ 1
2b, ω5,4 = 1− b, ω5,6 = −3− 3a− 1

2b, ω15,4 = b,
ω17,4 = 7

2 + 3a+ 1
2b, ω25,4 = − 1

6 + 1
6b, ω26,4 = 1

2 − 1
2b,

ω27,4 = 1
2b, ω28,4 = 3

2 + 2a+ 1
6b, ω29,4 = −6− 6a− b,

ω30,4 = 7 + 6a+ b, ω31,4 = − 8
3 − 2a− 2

3b, ω34,4 = − 7
6 − a− 1

6b,
ω0,5 = 7

6 + 2a+ 1
2b, ω2,5 = 1

2b, ω5,5 = 1− b, ω6,5 = −6− 6a− b,
ω9,5 = 1

2 − 1
2b, ω15,5 = b, ω17,5 = 7 + 6a+ b,

ω22,5 = − 1
6 + 1

2b, ω28,5 = 5
6 + a+ 1

6b, ω29,5 = −3− 3a− 1
2b,

ω30,5 = 7
2 + 3a+ 1

2b, ω31,5 = − 3
2 − a− 1

2b, ω34,5 = − 7
3 − 2a− 1

3b.

The infinity norm of the operator Q3,3 defined by the masks above is bounded by

max
{
‖α‖1 ,

∥∥β
∥∥
1
, ‖γ‖1 , ‖ωk‖1 , 0 ≤ k ≤ 5

}
.

This is a function depending on the variables a and b, so it is natural to determine the values of such
parameters providing the minimum value of that function. It can be proved that its minimum value,
that it is equal to 5, is reached at all points lying in the triangle with vertices (−1, 0),

(
− 7

6 , 0
)
and(

− 7
6 , 1
)
.

We can notice that the values (a, b) = (−1, 0) provide symmetrical masks β and γ and therefore
we consider such a choice in the numerical tests proposed in Section 3.3.

Also for Q3,3f the approximation error Theorem 2 holds.

3.3 Numerical Results

Now, we show the results of some numerical tests, developed in the Matlab environment, on Franke’s
function

f1 (z1, z2) = 0.75 exp

(
−
(9z1 − 2)

2

4
−

(9z2 − 2)
2

4

)
+ 0.75 exp

(
−
(9z1 + 1)

2

49
−

9z2 + 1

10

)

+ 0.5 exp

(
−
(9z1 − 7)

2

4
−

(9z2 − 3)
2

4

)
− 0.2 exp

(
− (9z1 − 4)

2
− (9z2 − 7)

2
)
,

and the highly oscillating test function

f2 (z1, z2) = 0.1

(
1 + cos

(
12π cos

(
π
√
z21 + z22

)))
,

both defined on the unit square [0, 1]2.
For a step length h, the maximal error (ME) for a given function f and a quasi-interpolation

operator Q is estimated as the value MEh given by maximum of the quasi-interpolation error |f −Qf |
on a finite subset G = {(g1,i, g2,j) : (i, j) ∈ J} of points lying in the unit square, and the root mean
square error (RMSE) as

RMSEh :=

√∑
(i,j)∈J (f (g1,i, g2,j)−Qf (g1,i, g2,j))

2

card J
,
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Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh

1/4 4.35× 10−1 − 1.11× 10−1

1/8 7.46× 10−2 2.54 2.41× 10−2

1/16 2.31× 10−2 1.69 4.39× 10−3

1/32 3.55× 10−3 2.70 6.31× 10−4

1/64 4.46× 10−4 2.99 8.23× 10−5 8.70× 10−2 − 1.56× 10−2

1/128 5.70× 10−5 2.97 1.04× 10−5 1.42× 10−2 2.62 2.56× 10−3

1/256 7.14× 10−5 3.00 1.31× 10−6 1.89× 10−3 2.90 3.45× 10−4

1/512 8.92× 10−7 3.00 1.64× 10−7 2.43× 10−4 2.96 4.40× 10−5

Table 1: Numerical results for functions f1 and f2 using the operator Q3,2.

Test function f1 Test function f2
h MEh NCO RMSEh MEh NCO RMSEh

1/4 4.02× 10−1 − 1.07× 10−1

1/8 8.51× 10−2 2.24 2.27× 10−2

1/16 2.14× 10−2 2.0 3.82× 10−3

1/32 3.02× 10−3 2.83 5.32× 10−4

1/64 3.63× 10−4 3.05 6.86× 10−5 8.45× 10−2 − 1.43× 10−2

1/128 4.66× 10−5 2.96 8.66× 10−6 1.31× 10−2 2.69 2.18× 10−3

1/256 5.77× 10−6 3.02 1.09× 10−6 1.72× 10−3 2.92 2.87× 10−4

1/512 7.19× 10−7 3.00 1.36× 10−7 2.21× 10−4 2.96 3.64× 10−5

Table 2: Numerical results for functions f1 and f2 using the operator Q3,3.

with card J standing for the cardinality of J .
In order to evaluate these values we have sampled the splines on 300 points in each triangle of ∆,

for every considered value of h. The evaluation of the quasi-interpolating splines is carried out by the
de Casteljau’s algorithm [12, p. 25].

The numerical convergence orders are computed by the formula

NCO := log2
MEh

MEh/2
.

We have omitted any reference to f and Q in denoting these quantities.
For the more difficult function f2, we started the computations by using a larger set of data points,

i.e. by considering an initial value of h smaller than the one used for the test function f1.
Here we consider Q = Q3,2, Q3,3 and we report the results in Table 1 and 2, respectively. We can

notice that the obtained results confirm the theoretical value for the convergence order.

4 Defining C1-quartic differential quasi-interpolating splines

The main goal in this section is to define from the C1-cubic quasi-interpolant Q3,2f provided by the
operator Q3,2, which is exact on P2, a C1-quartic differential quasi-interpolant H4f in such a way
that the associated operator H4 is exact on P3, and to describe it in the Bernstein basis.

To do that, we recall the results in [6] (see also [17, 10, 11]). Given a compact convex domain
Ω of R

n with a non-empty interior, let L be a linear operator defined on the subspace Ck (Ω) of
C (Ω) := C0 (Ω), k ∈ N0 := N ∪ {0}, endowed with the norm given by the expression

‖L‖ := sup

{
sup
x∈Ω

|L [f ] (x)| : f ∈ Ck (Ω) , max
0≤j≤k

∥∥Djf
∥∥
Ω
= 1

}
.
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As in [11], here Ck (Ω) is the subspace of all functions that are k times continuously differentiable in
the following sense: for each x ∈ Ω and any y ∈ R

n such that x+ y ∈ Ω, the directional derivatives

Dj
yf (x) :=

dj

dtj
f (x+ ty)|t=0 , 0 ≤ j ≤ k,

exist and depend continuously on x. Moreover,

∥∥Djf
∥∥
Ω
:= sup

x∈Ω
sup

{∣∣Dj
yf
∣∣ : y ∈ R

n, ‖y‖ = 1
}
.

If L is exact on Pm, then for r ∈ N the operator Hm,r defined by

Hm,r [f ] (x) := L




r∑

j=0

am,r,j

j!
Dj

x−· f


 (x)

for f ∈ Ck+r (Ω) with

am,r,j :=
(m+ r − j)!

(m+ r)! (r − j)!

is exact on Pm+r. The conditions above allow to derive an expression for the error f −Hm,r [f ].
Since Q3,2 is exact on P2, this construction can be applied to the operator Q3,2 with r = 1 and

m = 2 to define the action H4f of H4 on a given function f :

H4f (x) := Q3,2

[
f +

1

3
Dx−· f

]
(x) . (4.1)

The operator H4 is exact on P3. H4f is a differential quasi-interpolant to f involving the values of
the first order partial derivatives of f at the points in a subset of R2 that will be described later.

To obtain the explicit expression of H4f on every triangle in ∆, we will consider the generic
triangles Ti,j and T̃i,j defining the parallelogram Pi,j . The domain points involved in the expression

of Q3,2f on Ti,j (see Fig. 2) are ordered as vi,j , w
1,1
i,j , w

1,0
i,j , w

−1,−1
i+1,j+1, ti,j , w

−1,0
i+1,j , vi+1,j+1, w

0,−1
i+1,j+1,

w0,1
i+1,j , and vi+1,j . With this order in mind, let

T 3
i,j :=

{
vi,j , w

1,1
i,j , w

1,0
i,j , w

−1,−1
i+1,j+1, ti,j , w

−1,0
i+1,j , vi+1,j+1, w

0,−1
i+1,j+1, w

0,1
i+1,j , vi+1,j

}
.

Analogously, let

T̃ 3
i,j :=

{
vi,j , w

1,1
i,j , w

0,1
i,j , w

−1,−1
i+1,j+1, t̃i,j , wi,j+1, vi+1,j+1, w

−1,0
i+1,j+1, w

1,0
i,j+1, vi,j+1

}
.

For every domain point p in T 3
i,j or T̃ 3

i,j , let P := (P0, P1, P2) stand for the index (i, j, k) associated
with p (see Fig. 11)

Then, by (3.1) for all x ∈ Ti,j it holds

Q3,2f (x) =
∑

p∈T 3
i,j

c3 (p)BP ,

where BP = 3
P0!P1!P2!

bP0

0 bP1

1 bP2

2 is the Bernstein polynomial associated with p an bs := bs (x), 0 ≤ s ≤
2, are the barycentric coordinates of x with respect to Ti,j . We have omitted any reference to Ti,j in
the notation for the Bernstein polynomials and the barycentric coordinates and also the dependence of
BP of the variable x because it follows from the relationship between x and bs. Notice that (b0, b1, b2)
is given by the solution of the system of equations

x = b0vi,j + b1vi+1,j+1 + b2vi+1,j , b0 + b1 + b2 = 1,

i.e.

x1 = h ((i+ j) b0 + (i+ j + 2) b1 + (i+ j + 1) b2) ,

11



(0,3,0)(1,2,0)(2,1,0)(3,0,0)

(2,0,1) (1,1,1) (0,2,1)

(1,0,2) (0,1,2)

(0,0,3)

(2,0,1) (1,1,1) (0,2,1)

(1,0,2) (0,1,2)

(0,0,3)

Ti,j

T̃i,j

Figure 11: Indices P for the domain points in Ti,j and T̃i,j .

x2 = h ((i− j) b0 + (i− j) b1 + (i− j + 1) b2) ,

and

b0 = i+ 1−
x1 + x2

2h
, b1 = −j +

x1 − x2

2h
, b2 = −i+ j +

x2

h
.

Similarly, for all x ∈ T̃i,j it holds

Q3,2f (x) =
∑

p∈T̃ 3
i,j

c3 (p)BP ,

with the barycentric coordinates given by

x = b0vi,j + b1vi+1,j+1 + b2vi,j+1, b0 + b1 + b2 = 1,

i.e.

x1 = h ((i+ j) b0 + (i+ j + 2) b1 + (i+ j + 1) b2)

x2 = h ((i− j) b0 + (i− j) b1 + (i− j − 1) b2) ,

and

b0 = j + 1−
x1 − x2

2h
, b1 = −i+

x1 + x2

2h
, b2 = i− j −

x2

h
.

Every BB-coefficient in the restrictions of Q3,2f to Ti,j and T̃i,j is a linear combination of the
values of f at the 19 domain points in D2

i,j (see Fig. 2). To simplify the notation, let us write

D2
i,j = {qm, 0 ≤ m ≤ 18} .

The coefficients of every linear combination are the values given by the corresponding mask (α for a
vertex, ω for a w−point, and β for ti,j). Let µ (p) := (µm (p))0≤m≤18 stand for the mask associated
with p. Then,

c3 (p) =
18∑

m=0

µm (p) f (qm) .

For a C1-function f , the restriction of H4f to Pi,j becomes

H4f (x) =





∑

p∈T 3
i,j

(
18∑

m=0

µm (p)
(
f (qm) + 1

3∇f (qm) · (x− qm)
)
)
BP , x ∈ Ti,j ,

∑

p∈T̃ 3
i,j

(
18∑

m=0

µm (p)
(
f (qm) + 1

3∇f (qm) · (x− qm)
)
)
BP , x ∈ T̃i,j ,
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vi,j

vi+1,j

vi+1,j+1u1,1
i,j e1,1i,j u−1,−1

i+1,j+1

u1,0
i,j

e1,0i,j

u−1,0
i+1,j

u−1,0
i+1,j+1

e0,1i+1,j

u0,1
i+1,j

z1,1i,j z0,−1
i+1,j+1

z−1,0
i+1,j

vi,j

vi,j+1

vi+1,j+1u1,1
i,j e1,1i,j u−1,−1

i+1,j+1

u0,1
i,j

e0,1i,j

u0,−1
i,j+1 u1,0

i,j+1

e1,0i,+1j

u0,1
i+1,jz0,1i,j z−1,−1

i+1,j+1

z1,0i,j+1

Figure 12: The domain points in Ti,j and T̃i,j .

with ∇ denoting the gradient operator.
Notice that the computation of the BB-coefficients of H4f on Ti,j can be done symbolically taking

into account that

H4f (x) =
∑

p∈T 3
i,j

(
18∑

m=0

µm (p)

(
f (qm) (b0 + b1 + b2) +

1

3
∇f (qm) · (x− qm (b0 + b1 + b2))

))
BP ,

and using a symbolic computation software to expand the expression above to determine the coefficient
of each one of the 15 Bernstein polynomials relative to Ti,j .

The BB-coefficients of H4f depend on the values of f and its partial derivatives f (1,0) and f (0,1)

of the first order at the points in D
(
T 3
i,j

)
:= D3

i,j ∪ D3
i+1,j+1 ∪ D3

i+1,j (see Fig. 13). The notation

fi,j (D2) in Section 3 is extended to be applied to define f
(1,0)
i,j (D2) and f

(0,1)
i,j (D2).

The BB-coefficient of the quartic polynomial H4f|Ti,j
relative to the vertex vi,j (see Fig. 12) is

given by the expression

c4 (vi,j) := fi,j (D2) · α+
h

6
f
(1,0)
i,j (D2) · α ∗ Ξ1 +

h

6
f
(0,1)
i,j (D2) · α ∗ Ξ2, (4.2)

where α ∗ Ξ denotes pointwise product and

Ξ1 := (0,−2,−1, 1, 2, 1,−1,−4,−3,−2, 0, 2, 3, 4, 3, 2, 0,−2,−3) ,

Ξ2 := (0, 0,−1,−1, 0, 1, 1, 0,−1,−2,−2,−2,−1, 0, 1, 2, 2, 2, 1) .

Also these masks are ordered as indicated in Fig. 4.
With respect to the point u1,1

i,j and u1,0
i,j in Fig. 12, it holds

c4

(
u1,1
i,j

)
:=

1

4
fi,j (D2) · (α+ 3ω0) +

h

24
f
(1,0)
i,j (D2) · (α ∗ Ξ3 + 3ω0 ∗ Ξ1) (4.3)

+
h

24
f
(0,1)
i,j (D2) · (α+ 3ω0) ∗ Ξ2,

c4

(
u1,0
i,j

)
:=

1

4
fi,j (D2) · (α+ 3ω1) +

h

24
f
(1,0)
i,j (D2) · (α ∗ Ξ4 + 3ω0 ∗ Ξ1) (4.4)

+
h

24
f
(0,1)
i,j (D2) · (α ∗ Ξ5 + 3ω1 ∗ Ξ2) ,

with

Ξ3 := (4, 2, 3, 5, 6, 5, 3, 0, 1, 2, 4, 6, 7, 8, 7, 6, 4, 2, 1) ,

Ξ4 := (2, 0, 1, 3, 4, 3, 1, 2,−1, 0, 2, 4, 5, 6, 5, 4.2, 0,−1) .

The masks Ξ1, . . . ,Ξ4 are represented in Fig. 14.
For the BB-coefficients associated with the remaining points in Fig. 12, we get the following

expressions:

c4

(
e1,1i,j

)
:=

1

2
(fi,j (D2) · ω0 + fi+1,j+1 (D2) · ω3) (4.5)
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vi−1,j−1 e
1,1
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e
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i,j−1

e
1,0

i,j−1
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1,0

i+1,j

e
0,1
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e
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i,j

e
0,1

i,j

vi+2,j+2

vi+2,j+1

e
0,1

i+2,j+1

vi+1,j−1 e
1,1

i+2,j−1

e
0,1

i+2,j−1

vi+2,j

e
0,1

i+2,j

vi−1,j e
1,1

i−1,j

e
1,0

i−1,j

e
0,1

i−1,j

vi,j+1 e
1,1

i,j+1

e
1,0

i,j+1

e
0,1

i,j+1

vi+1,j+2

e
1,0

i+1,j+2

vi−1,j+1 e
1,1

i−1,j+1

e
1,0

i−1,j+1
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e
1,0

i,j+2
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e
1,1

i+1,j+1

e
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e
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Figure 13: The subset D
(
T 3
i,j

)
.

4 2

35

6

5 3

0

1

246

7

8

7

6 4 2

1

Ξ3

2 0

13

4

3 1

−2

−1

024

5

6

5

4 2 0

−1

Ξ4

0 −2

−11

2

1 −1

−4

−3

−202

3

4

3

2 0 −2

−3

Ξ1

0 0

−1−1

0

1 1

0

−1

−2−2−2

−1

0

1

2 2 2

1

Ξ2

Figure 14: The masks Ξ1, . . . ,Ξ4.
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+
h

12

(
f
(1,0)
i,j (D2) · ω0 ∗ Ξ3 + f

(1,0)
i+1,j+1 (D2) · ω3 ∗ Ξ6

)

+
h

12

(
f
(0,1)
i,j (D2) · ω0 ∗ Ξ2 + f

(0,1)
i+1,j+1 (D2) · ω3 ∗ Ξ2

)
,

c4

(
z1,1i,j

)
:=

1

4
fi,j (D2) · (2β + ω0 + ω1) (4.6)

+
h

24
f
(1,0)
i,j (D2) · (2β ∗ Ξ1 + ω0 ∗ Ξ4 + ω1 ∗ Ξ3)

+
h

24
f
(0,1)
i,j (D2) · (2β ∗ Ξ2 + ω0 ∗ Ξ5 + ω1 ∗ Ξ2) ,

c4

(
e1,0i,j

)
:=

1

2
(fi,j (D2) · ω1 + fi+1,j (D2) · ω4) (4.7)

+
h

12

(
f
(1,0)
i,j (D2) · ω1 ∗ Ξ4 + f

(1,0)
i+1,j (D2) · ω4 ∗ Ξ7

)

+
h

12

(
f
(0,1)
i,j (D2) · ω1 ∗ Ξ5 + f

(0,1)
i+1,j (D2) · ω4 ∗ Ξ8

)
,

c4

(
u−1,−1
i+1,j+1

)
:=

1

4
fi+1,j+1 (D2) · (α+ 3ω3) +

h

24
f
(1,0)
i+1,j+1 (D2) · (α ∗ Ξ6 + 3ω3 ∗ Ξ1) (4.8)

+
h

24
f
(0,1)
i+1,j+1 (D2) · (α ∗ Ξ2 + 3ω3 ∗ Ξ2) ,

c4

(
z0,−1
i+1,j+1

)
:=

1

4
(fi,j (D2) · 2β + fi+1,j+1 (D2) · (ω2 + ω3)) (4.9)

+
h

24

(
f
(1,0)
i,j (D2) · 2β ∗ Ξ3 + f

(1,0)
i+1,j+1 (D2) · (ω2 ∗ Ξ6 + ω3 ∗ Ξ7)

)

+
h

24

(
f
(0,1)
i,j (D2) · 2β ∗ Ξ2 + f

(0,1)
i+1,j+1 (D2) · (ω2 ∗ Ξ2 + ω3 ∗ Ξ5)

)
,

c4

(
z−1,0
i+1,j

)
:=

1

4
(fi,j (D2) · 2β + fi+1,j (D2) · (ω4 + ω5)) (4.10)

+
h

24

(
f
(1,0)
i,j (D2) · 2β ∗ Ξ4 + f

(1,0)
i+1,j (D2) · (ω4 ∗ Ξ4 + ω5 ∗ Ξ7)

)

+
h

24

(
f
(0,1)
i,j (D2) · 2β ∗ Ξ5 + f

(0,1)
i+1,j (D2) · (ω4 + ω5) ∗ Ξ8

)
,

c4

(
u−1,0
i+1,j

)
:=

1

4
fi+1,j (D2) · (α+ 3ω4) +

h

24
f
(1,0)
i+1,j (D2) · (α ∗ Ξ6 + 3ω3 ∗ Ξ1) (4.11)

+
h

24
f
(0,1)
i+1,j (D2) · (α ∗ Ξ8 + 3ω4 ∗ Ξ2) ,

c4

(
u0,−1
i+1,j+1

)
:=

1

4
fi+1,j+1 (D2) · (α+ 3ω2) +

h

24
f
(1,0)
i+1,j+1 (D2) · (α ∗ Ξ7 + 3ω2 ∗ Ξ1)

+
h

24
f
(0,1)
i+1,j+1 (D2) · (α ∗ Ξ5 + 3ω2 ∗ Ξ2) ,

c4

(
e0,1i+1,j

)
:=

1

2
(fi+1,j+1 (D2) · ω2 + fi+1,j (D2) · ω5)

+
h

24

(
f
(1,0)
i+1,j+1 (D2) · ω2 ∗ Ξ7 + f

(1,0)
i+1,j (D2) · ω5 ∗ Ξ4

)

+
h

24

(
f
(0,1)
i+1,j+1 (D2) · ω2 ∗ Ξ5 + f

(0,1)
i+1,j (D2) · ω5 ∗ Ξ8

)
,

c4

(
u0,1
i+1,j

)
:=

1

4
fi+1,j (D2) · (α+ 3ω5) +

h

24
f
(1,0)
i+1,j (D2) · (α ∗ Ξ4 + 3ω5 ∗ Ξ1)

+
h

24
f
(1,0)
i+1,j (D2) · (α ∗ Ξ8 + 3ω5 ∗ Ξ2) .

The values of the BB-coefficients for vi+1,j+1 and vi+1,j follow from the previous results with the
appropriate changes of indices.

With respect to the domain points in T̃ij shown in Fig. 12, the BB-coefficients associated with vi,j ,

u1,1
i,j , e

1,1
i,j , u

−1,−1
i+1,j+1 and vi+1,j+1 are given by their counterparts in the triangle Ti,j . The BB-coefficient

c4 (vi,j+1) is provided by equality (4.2) with the appropriate index change.
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Figure 15: The masks Ξ5, . . . ,Ξ8.

For the BB-coefficients of the other domain points, we get the following expressions:

c4

(
u0,1
i,j

)
=

1

4
fi,j (D2) · (α+ 3ω5) +

h

24
f
(1,0)
i,j (D2) · (α ∗ Ξ4 + 3ω5 ∗ Ξ1) (4.12)

+
h

24
f
(0,1)
i,j (D2) · (α ∗ Ξ8 + 3ω5 ∗ Ξ2) ,

c4

(
z0,1i,j

)
=

1

4
fi,j (D2) · (2γ + ω0 + ω5) (4.13)

+
h

24
f
(1,0)
i,j (D2) · (2γ ∗ Ξ1 + ω0 ∗ Ξ4 + ω5 ∗ Ξ3)

+
h

24
f
(0,1)
i,j (D2) · (2γ ∗ Ξ2 + ω0 ∗ Ξ8 + ω5 ∗ Ξ2) ,

c4

(
e0,1i,j

)
=

1

2
(fi,j (D2) · ω5 + fi,j+1 (D2) · ω2) (4.14)

+
h

12

(
f
(1,0)
i,j (D2) · ω5 ∗ Ξ4 + f

(1,0)
i,j+1 (D2) · ω2 ∗ Ξ7

)

+
h

12

(
f
(0,1)
i,j (D2) · ω5 ∗ Ξ8 + f

(0,1)
i,j+1 (D2) · ω2 ∗ Ξ5

)
,

c4

(
z−1,−1
i+1,j+1

)
=

1

4
(fi,j (D2) · 2γ + fi+1,j+1 (D2) · (ω3 + ω4)) (4.15)

+
h

24

(
f
(1,0)
i,j (D2) · 2γ ∗ Ξ3 + f

(1,0)
i+1,j+1 (D2) · (ω3 ∗ Ξ7 + ω4 ∗ Ξ6)

)

+
h

24

(
f
(0,1)
i,j (D2) · 2γ ∗ Ξ2 + f

(0,1)
i+1,j+1 (D2) · (ω3 ∗ Ξ8 + ω4 ∗ Ξ2)

)
,

c4

(
z1,0i,j+1

)
=

1

4
(fi,j (D2) · 2γ + fi,j+1 (D2) · (ω1 + ω2)) (4.16)

+
h

24

(
f
(1,0)
i,j (D2) · 2γ ∗ Ξ4 + f

(1,0)
i,j+1 (D2) · (ω1 ∗ Ξ7 + ω2 ∗ Ξ4)

)

+
h

24

(
f
(0,1)
i,j (D2) · 2γ ∗ Ξ8 + f

(0,1)
i,j+1 (D2) · (ω1 + ω2) ∗ Ξ5

)
,
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Figure 16: The points of D4 relative to Hi,j .

c4

(
u0,−1
i,j+1

)
=

1

4
fi,j+1 (D2) · (α+ 3ω2) +

h

24
f
(1,0)
i,j+1 (D2) · (α ∗ Ξ7 + 3ω2 ∗ Ξ1) (4.17)

+
h

24
f
(0,1)
i,j+1 (D2) · (α ∗ Ξ5 + 3ω2 ∗ Ξ2) ,

c4

(
u−1,0
i+1,j+1

)
=

1

4
fi+1,j+1 (D2) · (α+ 3ω4) +

h

24
f
(1,0)
i+1,j+1 (D2) · (α ∗ Ξ7 + 3ω4 ∗ Ξ1)

+
h

24
f
(0,1)
i+1,j+1 (D2) · (α ∗ Ξ8 + 3ω4 ∗ Ξ2) ,

c4

(
e1,0i,j+1

)
=

1

2
(fi+1,j+1 (D2) · ω4 + fi,j+1 (D2) · ω1)

+
h

12

(
f
(1,0)
i+1,j+1 (D2) · ω4 ∗ Ξ7 + f

(1,0)
i,j+1 (D2) · ω1 ∗ Ξ4

)

+
h

12

(
f
(0,1)
i+1,j+1 (D2) · ω4 ∗ Ξ8 + f

(0,1)
i,j+1 (D2) · ω1 ∗ Ξ5

)
,

c4

(
u1,0
i,j+1

)
=

1

4
fi,j+1 (D2) · (α+ 3ω1) +

h

24
f
(1,0)
i,j+1 (D2) · (α ∗ Ξ4 + 3ω1 ∗ Ξ1)

+
h

24
f
(0,1)
i,j+1 (D2) · (α ∗ Ξ5 + 3ω1 ∗ Ξ2) .

The rules (4.2)-(4.13), along with the needed changes of indices, provide the values of BB-
coefficients associated with the domain points in

D4
i,j :=

{
vi,j , u

1,1
i,j , u

1,0
i,j , u

0,−1
i,j , u−1,−1

i,j , u−1,0
i,j , u0,1

i,j , e
1,1
i,j , z

1,1
i,j , e

1,0
i,j , z

1,0
i,j , z

0,−1
i,j , z−1,−1

i,j , z−1,0
i,j , e0,1i,j , z

0,1
i,j

}
.

The subset D4
i,j is shown in Fig. 16. It has been defined in such a way that

{
D4

i,j , i, j ∈ Z
}
is a

partition of D4, the union, without repetitions, of all domain points ξ4i,j,k := (iv0 + jv1 + kv2) /4 of
each triangle in ∆.

A similar construction can be applied to the cubic quasi-interpolant Q3,3.

5 Conclusions

We have analyzed the construction of C1 cubic quasi-interpolants defined on a type-1 triangulation
based on point values without imposing a structure based on the translation of one or more compactly
supported functions. Instead, the quasi-interpolating splines are determined by setting their BB-
coefficients to appropriate combinations of the given data only using values of the function to be
approximated. The associated operator reproduces quadratic polynomials.

17



We have proved that the proposed problem has a general solution depending of three parameters, and
determined quasi-interpolation operators with the minimal uniform norm. Moreover, from a general
quasi-interpolation exact on quadratics and providing C1 quadratic approximating splines we have
defined a C1 quartic differential quasi-interpolant by expressing its BB-coefficients from the masks of
the point operator.
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[4] D. Barrera, M.J. Ibáñez, Minimizing the quasi-interpolation error for bivariate discrete quasi-
interpolants. J. Comput. Appl. Math. 224 (2009) 250–268.
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