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Abstract 
 
Purpose: Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to 

sensitivity analysis for the effect of measurement error: imputation of the ‘true’ exposure based on specifying the 

sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the 

predictive values; and adjustment based on a fully Bayesian analysis. 

Methods: We deliberately misclassify smoking status in data from a case-control study of lung cancer. We then 
implement the SS and DI methods using fixed-parameter (FBA) and probabilistic (PBA) bias analyses, and Bayesian 

analysis using the Markov-Chain Monte-Carlo program WinBUGS to show how well each recovers the original 

association. 

Results: The ‘true’ smoking-lung cancer odds ratio (OR), adjusted for sex in the original dataset, was OR = 8.18 [95% 

confidence limits (CL): 5.86, 11.43]; after misclassification, it decreased to OR = 3.08 (nominal 95% CL: 2.40, 3.96). 

The adjusted point estimates from all three approaches were always closer to the ‘true’ OR than the OR estimated from 

the unadjusted misclassified smoking data, and the adjusted interval estimates were always wider than the unadjusted 

interval estimate. When imputed misclassification parameters departed much from the actual misclassification, the 

‘true’ OR was often omitted in the FBA intervals whereas it was always included in the PBA and Bayesian intervals. 

Conclusions: These results illustrate how PBA and Bayesian analyses can be used to better account for uncertainty and 

bias due to measurement error. 

 

 

Key Messages 

 We illustrate how to apply several methods for sensitivity analysis of 

misclassification, including imputation based on sensitivity and specificity, direct 

imputation based on predictive values and fully Bayesian analyses. 

 Sensitivity-specificity imputation requires only values or prior distributions for 

sensitivity and specificity, but these values or priors should be restricted to values 

compatible with the data. 

 Direct imputation does not require range restrictions, but does require information 

beyond sensitivity and specificity, such as a prior distribution for the association of 

interest. 
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 Fully Bayesian analyses require the most prior information, but can best capture the 

uncertainty warranted under the assumed models and priors. 

 All methods should employ priors that are plausible in light of background literature. 
 

Introduction 

A major source of bias and uncertainty in epidemiological analysis is measurement error, usually 

termed ‘misclassification’ when referring to discrete variables.1–4 Measurement error can be 

considered a missing-data problem3 in that information has been recorded on a variable which is an 

imperfect surrogate for the missing ‘true’ variable of interest. 

When internal validation or replication data are not available, the true values for the mismeasured 

variables are completely missing and no consistent point estimate can be constructed from the data 

without adding further, potentially arbitrary assumptions. To address this problem, simple 

sensitivity-analysis formulae adjust for misclassification assuming various values for fixed 

misclassification rates, based on background literature or on external validation data.2,13,14 More 

sophisticated analyses construct and use prior distributions for these rates;2–4,13,15–18 in that case, 

standard missing-data software can be used by augmenting the actual data with pseudo-validation 

data representing these priors.3. Such analyses may be repeated using different plausible priors to 

assess sensitivity to the assumed prior information. 

In this paper we focus on the situation where exposure has been misclassified, no validation data are 

available and adjustment for potential confounders or matching factors is needed. We illustrate and 

compare methods to adjust for the misclassification of smoking status in a case-control study of 

smoking and lung cancer, while also adjusting for sex. Each method can be carried out with 

commercial software. 

Material and Methods 

Methods 

In a case-control study, let Y, T and C denote the outcome (case/control status), exposure status 

(exposed/unexposed) and a dichotomous covariate, respectively. In many studies the exposure T 

cannot be directly observed and a surrogate exposure X is measured instead. In order to retrieve 

information on the ‘true’ exposure and its association with the outcome, one has to make a priori 



assumptions on the relationship between T and X, i.e. on the misclassification rates. Assumptions 

can be made on one of the two following groups of rates: 

i. In the sensitivity-specificity imputation approach (SS), assumptions are made on the 

proportion of subjects classified as exposed among those truly exposed, i.e. the sensitivity (Se) and 

the proportion of subjects classified as unexposed among those truly unexposed, i.e. the specificity 

(Sp). 

ii. In the direct imputation approach (DI), assumptions are made on the proportion of truly 

exposed subjects among those classified as exposed, i.e. the positive predictive value (PPV), and the 

proportion of truly unexposed subjects among those classified as unexposed, i.e. the negative 

predictive value (NPV). The predictive values can be expressed as functions of the sensitivity, 

specificity and true exposure prevalence: 

  

PPV=Se×P(T=1)Se×P(T=1)+(1−Sp)×(1−P(T=1))NPV=Sp×(1−P(T=1))Sp×(

1−P(T=1))+(1−Se)×P(T=1)PPV=Se×P(T=1)Se×P(T=1)+(1−Sp)×(1−P(T=1))NP

V=Sp×(1−P(T=1))Sp×(1−P(T=1))+(1−Se)×P(T=1) 

Making assumptions about PPV and NPV is therefore equivalent to making assumptions 

on Se, Sp and P(T = 1). 

These assumptions can be expressed with more or less uncertainty. One can define a range of a 

priori values for the misclassification proportions (fixed-parameter-bias-sensitivity analysis or 

FBA) or a priori probability distributions for these proportions (probabilistic bias analysis or PBA). 

The most rigorous way to do PBA is via Bayesian techniques,15 but a simple approximation is 

provided by Monte Carlo sensitivity analysis (MCSA) in which combinations of parameters are 

sampled from the prior distributions, and then an analysis is conducted for each sampled 

combination.2,13,16,17 Thus, MCSA involves a sensitivity analysis using a random sample of values 

for adjustments, instead of fixed values. On the other hand, a fully Bayesian analysis updates the 

prior distributions based on the study data to yield posterior distributions for the 

parameters.2,13,16,17Procedures for MCSA have been implemented in Excel and SAS.2,16 

We consider here both SS and DI approaches, using FBA, MCSA and a fully Bayesian analysis. 

The a priori values and distributions are described inTable 1. 

We use updated versions of a SAS macro implementing MCSA, which allow covariates in the 

imputation model,16 and the free software WinBUGS to implement fully Bayesian analysis. 



We caution that the interval estimates used for our analyses do not satisfy the criterion for being 

valid confidence intervals (they would not have 95% coverage under all fixed parameter values); 

although they may provide adequate coverage when the true parameter values are very close to the 

parameter values used in the FBA, or close to the centres of the prior distributions in the MCSA, 

they can have poor coverage otherwise. Neither are the FBA and MCSA intervals valid posterior 

intervals (they are not a coherent integration of prior and data information) although MCSA 

intervals can be adequate approximations under certain simplifying assumptions.15,17 We therefore 

refer to them only as FBA or MCSA intervals, as appropriate, noting that the quality of the MCSA 

approximation to Bayesian results is adequate to the extent that the distribution of sampled 

parameters would be negligibly updated by a fully Bayesian analysis. 

Description of the data and misclassification 

The data are from a population-based lung cancer case-control study conducted in New 

Zealand.19 Briefly, cases were all subjects diagnosed with incident lung cancer notified to the New 

Zealand Cancer Registry during 2007 and 2008 and aged 20–75 years. Controls were recruited from 

the New Zealand Electoral Rolls of 2003 and 2008 and were frequency matched with the cases for 

age and sex. For further details see Corbin et al.19 

We considered the association between smoking status (ever/never) and lung cancer. The odds ratio 

(OR) of lung cancer for being ever-smoker vs never-smoker was estimated using unconditional 

logistic regression, adjusting for sex. The SAS logistic procedure (SAS V9.3) was used to estimate 

ORs and corresponding 95% confidence intervals (95% CI). 

To provide a hypothetical reference point for evaluations, we assumed that our original dataset was 

correctly specified, i.e. that the ‘true’ smoking status indicator TT was known for all subjects. We 

then deliberately misclassified TT to XX, and pretended that this was our observed measure. We 

attempted to use realistic misclassification rates which had been observed in previous studies. In 

nine studies using the cotinine validation method reported by a meta-analysis,20 the lowest 

sensitivity of the self-reported smoking status was 0.82 and the lowest specificity was 0.91. We 

therefore took the original data, then misclassified TT with a sensitivity of 0.8 and a specificity of 

0.9. The misclassification was applied nondifferentially, i.e. independently of the other variables 

(disease status, sex). In case-control studies, the nondifferential misclassification assumption may 

not hold, because cases and controls may report past behaviour differently, but the methods applied 

here can be extended to situations where misclassification is differential.2, 3, 16, 17 



Let Y, C and X denote the indicators for case-control status, sex (1 = Man, 0 = Woman) and 

misclassified smoking status, respectively, and let ntycxdenote the number of subjects 

with T = t, Y = y, C = c and X = x. To create the misclassified smoking status XX , we computed 

the frequencies ntyc+ in each of the eight combinations of the categories of T, Y and CC , where a 

subscript ‘+’ indicates summation over a subscript. We then calculated the frequencies of classified 

ever/never smokers ntycx for each of these combinations as follows:   

n1yc1=n1yc+×0.8n1yc0=n1yc+×0.2n0yc1=n0yc+×0.1n0yc0=n0yc+

×0.9.n1yc1=n1yc+×0.8n1yc0=n1yc+×0.2n0yc1=n0yc+×0.1n0yc0=n0yc+×0.

9. 

A preliminary analysis was conducted in order to check what possible values of sensitivity and 

specificity could have led to the misclassified odds ratio.23 Let πYCπYC be the proportion of 

subjects truly ever-smokers andπYC∗πYC* the proportion of subjects classified as ever-smokers 

in the different strata of Y and C. Then:   

πYC=πYC∗+Sp−1Se+Sp−1πYC=πYC*+Sp−1Se+Sp−1 

The proportions πYCπYC must fall in the range from 0 to 1, which implies the following 

restrictions: 

If se + sp > 1   

Se>maxYC(π∗YC) and Sp>maxYC(1−π∗YC)Se>maxYC(πYC*

) and Sp>maxYC(1−πYC*) 

If Se + Sp < 1   

Se<minYC(π∗YC) and Sp<minYC(1−π∗YC)Se<minYC(πYC*) 

and Sp<minYC(1−πYC*) 

Table 2 shows the proportions of subjects classified as ever-smokers πYC∗πYC* and never-

smokers 1-πYC∗1-πYC* in strata of Y and C. The restrictions onSe and Sp become: 

If Se + Sp > 1   

Se>π∗11 (i.e.Se>0.76) and Sp>1−π∗00 (i.e.Sp>0.59)Se>π11

* (i.e.Se>0.76) and Sp>1−π00* (i.e.Sp>0.59) 



If Se + Sp < 1   

Se<π∗00 (i.e.Se<0.41) and Sp<1−π∗11 (i.e.Sp<0.24)Se<π00

* (i.e.Se<0.41) and Sp<1−π11* (i.e.Sp<0.24) 

As we assumed that self-reported smoking status was classified better than chance, we only 

considered the case where Se + Sp > 1. 

Results 

The ‘true’ odds ratio of lung cancer for ever-smokers vs never-smokers adjusted for sex in the 

original dataset was OR = 8.18 (95% CL: 5.86, 11.43) [log odds ratio (ln OR) = 2.10, (95% CL: 

1.77, 2.44)]. After misclassifying the smoking status with a sensitivity of 0.8 and a specificity of 

0.9, the estimated OR was 3.08 (95% CL: 2.40, 3.96) [ln OR = 1.13 (95% CL: 0.87, 1.38)]. Tables 

3 and 4 give the results obtained with the different methods using fixed-parameter and probabilistic 

bias analyses, respectively. 

When assuming sensitivity values (Se0) between 0.7 and 0.9 and specificity values (Sp0) between 

0.8 and 1, SS FBA produced adjusted ORs ranging from 3.96 to 15.67 and DI FBA produced 

adjusted ORs between 3.88 and 17.72. Lower 95% SS and DI FBA limits went down to 2.84 and 

2.97, respectively, whereas upper SS and DI FBA limits went up to 44.60 and 26.30, respectively. 

As expected, for larger values of Se0 and Sp0, the OR obtained with SS FBA became closer to the 

OR obtained with the misclassified smoking status. The OR estimate appeared more sensitive to 

changes in the sensitivity than in the specificity of the measured exposure. When Se0 was 0.7, the 

sensitivity was replaced by 0.77 in step (ii) of the algorithm (see Appendix A). 

Similarly, DI FBA produced adjusted ORs closer to the OR obtained with the misclassified 

smoking status when we assumed higher sensitivity and specificity. However, the adjusted OR was 

more sensitive to the value given to the OR of lung cancer in women ORTY(C = 0) than to the values 

given to the sensitivity and specificity. When the values given to the sensitivity and the specificity 

were equal to the actual sensitivity and specificity of the introduced misclassification 

(Se = 0.8, Sp = 0.9), the OR obtained with DI FBA was very close to the value given to 

ORTY(C = 0). 

Both the SS FBA and DI FBA interval estimates obtained after adjustment were wider on the 

logarithmic scale than the intervals obtained with the ‘standard’ analysis using misclassified 



smoking status. The intervals became narrower when increasing the sensitivity and specificity and 

when decreasing ORTY(C = 0) for DI FBA. The intervals were wider when using SS FBA than 

when using DI FBA, as SS FBA also attempted to account for the uncertainty in estimating the 

prevalence of subjects classified as ever-smokers p∗p*. 

When assuming 95% prior limits of 0.68 and 0.90 for the sensitivity, of 0.80 and 0.96 for the 

specificity and an average for ORTY(C = 0) of 6.93, 95% of the odds ratios from SS PBA were 

between 2.99 and 23.17; whereas 95% from Bayesian analysis 1 (Table 1) were between 4.44 and 

48.51. Using DI PBA, 95% of the odds ratios were between 3.06 and 26.07; whereas from Bayesian 

analysis 2, 95% were between 4.23 and 21.78. As expected, prior means for the sensitivity and the 

specificity equal to the actual misclassification sensitivity and specificity gave the closest median 

ORs to the ‘true’ OR. 

In SS PBA, out of 10 000 draws of initial sensitivity Se0, 8,799 (88%), 3128 (31%), 4283 (43%) and 

76 (0.76%) values for prior distributions 1, 2, 3 and 4, respectively, were lower or equal to 0.76 and 

were adjusted to 0.77. In draws of initial specificity Sp0 from prior distribution 3, 415 (4%) were 

lower or equal to 0.59 and were adjusted to 0.60. An increase of the prior means for the sensitivity 

and specificity resulted in a decrease of the median ORs. When expanding the 95% limits for the 

sensitivity and specificity, the median ORs increased slightly, moving away from the ‘true’ OR, and 

the 95% simulation intervals (95% SI) were much wider. For DI PBA, as for DI FBA, an increase 

in the prior means for the sensitivity and the specificity still resulted in a decrease of the median 

ORs; whereas increasing the prior mean for ORTY(C = 0) considerably increased the median ORs. 

Expanding the 95% limits for the sensitivity and the specificity slightly increased the median ORs 

and the 95% SI. Both SS and DI MCSA intervals were much wider than the interval estimates 

obtained with the original and the misclassified smoking status. 

As with SS PBA, median ORs obtained from fully Bayesian analysis 1 decreased when increasing 

the sensitivity and the specificity. However, median ORs obtained from Bayesian analysis 1 were 

higher than median ORs obtained with SS PBA; 95% credibility intervals (95% CI) obtained from 

Bayesian analysis 1 were also wider than the 95% SI obtained with SS PBA, suggesting that SS 

PBA underestimates the uncertainty in the prevalence of true smokers in strata of T and Y. 

In comparison with median ORs obtained from DI PBA, median ORs obtained from Bayesian 

analysis 2 were more sensitive to the prior means assigned to the sensitivity and specificity and less 

sensitive to the prior mean assigned to ORTY(C = 0). Credibility intervals (95% CI) obtained from 

Bayesian analysis 2 were slightly narrower than DI PBA 95% SI. 



When the means assigned to sensitivity and specificity equalled the actual misclassification 

sensitivity and specificity, the informative prior distributions used in Bayesian analysis 2 yielded 

median ORs closer to the ‘true’ OR than in Bayesian analysis 1. Credibility intervals were narrower 

after Bayesian analysis 2 than after Bayesian analysis 1. 

Discussion 

We have illustrated the use of several currently available methods for bias analysis which can be 

implemented using standard statistical software. Sensitivity/specificity (SS) imputation analysis has 

the advantage of requiring only the specification of a priori values for sensitivities and specificities. 

When one wishes to account for uncertainty about these values, one can specify prior distributions 

for the values and then sample from those.2,13,17 

Nonetheless, the apparent simplicity of the SS approach has its own difficulties, since seemingly 

intuitive guesses for sensitivity and specificity may turn out to be highly implausible when 

compared with what one might deduce by considering the actual classification mechanism and 

background literature, particularly when covariates are also taken into account. Furthermore, prior 

distributions for sensitivity and specificity in PBA require restriction to the range of values 

compatible with the data (because some values may be impossible given the observed data) whereas 

fully Bayesian methods automatically accommodate such restrictions.15,17 

Direction imputation (DI) analysis directly models predictive values, thus eliminating the need for 

constraints on sensitivity and specificity.3 Its main limitation is that the user needs to specify values 

or prior distributions for coefficients about which there may be poor prior information, such as the 

association of interest (here, the odds ratio of lung cancer for being ever-smoker), and the resulting 

adjusted estimate can be very sensitive to that distribution. 

Both SS and DI methods have been applied using fixed-parameter bias-sensitivity analysis (FBA) 

and probabilistic bias-sensitivity analysis (PBA). FBA is simpler and faster to run, since one only 

needs to specify fixed values. It is also very useful to check which values are compatible with the 

data in the SS method. Nonetheless, it does not account for uncertainty in the specification of the 

bias parameters. PBA takes this uncertainty into account and as a result produces wider interval 

estimates, thus producing inferences less sensitive to misspecification of the bias parameters. 

Rough allowance for uncertainty due to random error in PBA can be made via the addition of a 

random number to estimates during simulation. This shortcut thus leads to fast run times, but should 



be used with caution as it may seriously underestimate the actual contribution of random error to 

uncertainty about the TY association; this underestimation will be a problem if uncertainty due to 

random error is not minor compared with uncertainty about the classification parameters. Bootstrap 

or jackknife methods for adding random error are preferable, but can lead to long run times; 

bootstrapping in particular can also encounter technical problems in small samples.21 

The choice between SS and DI depends on what information is available. In particular, one needs to 

evaluate the amount and the quality of prior information to decide between setting priors on 

sensitivity and specificity or on regression coefficients for predictive values. When both validation 

data and prior information are available, all the information can be combined using data 

augmentation3,24–26 in which prior distributions are translated into new data records and added to the 

validation data. Such an approach enables analysis with standard methods for missing data. 

Bayesian procedures may be preferable to PBA, especially when one feels comfortable assigning 

priors to parameters beyond the classification model.15 Our Bayesian analyses indicated that the 

uncertainty in the prevalence of exposure might be underestimated when using SS PBA. In addition, 

unlike SS PBA, Bayesian analyses do not require truncation of the prior distributions when the 

sensitivity or specificity prior extends below the range compatible with the data. For further 

analysis and contrast of SS PBA and Bayesian analyses, see Maclehose and Gustafson.15 

It has been remarked that most epidemiologists write their methods and results sections as 

frequentists and their introduction and discussion sections as Bayesians.3,27 In their methods and 

results sections, they analyse their data as if those are the only data that exist, and as if there is no 

bias left uncontrolled by the study design or by covariate adjustment (i.e. they implicitly use point-

null priors on hidden bias parameters3). In the discussion, they then assess their results relative to 

background information, examining consistency with previous studies, biological plausibility and 

the possibility of various biases. It has been lamented, however, that in the latter discussions they 

severely overweight their own results, and tend to understate biases in these results, displaying 

especially poor intuitions about potential misclassification and measurement-error effects.2,13,17,28 

These problems can be mitigated by including bias analyses.2,3,13,29 FBA is particularly simple and 

may be useful for initial bias analyses, but we recommend PBA or Bayesian analyses when doing a 

risk assessment that must account for all sources of uncertainty. We have reviewed and illustrated 

several methods feasible using standard statistical software. We hope that sensitivity and bias 

analyses will become options in standard statistical packages to supplement existing methods, 



facilitating their conduct and presentation before inferences are offered. This will enable readers to 

better quantitatively assess the uncertainty warranted in the face of methodological problems.29 
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