

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

A lost Tethyan evaporitic basin: Evidence from a Cretaceous hemipelagic meta-selenite - red chert association in the Eastern Mediterranean realm

This is a pre print version of the following article:	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/1728314	since 2020-02-18T17:58:13Z
Published version:	
DOI:10.1111/sed.12606	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the of all other works requires consent of the right holder (author or u	terms and conditions of said license. Use

(Article begins on next page)

protection by the applicable law.

A lost Tethyan evaporitic basin — Evidence from Cretaceous hemi-pelagic meta-selenite in the Eastern Mediterranean realm

Journal:	Sedimentology
Manuscript ID	Draft
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Scheffler, Franziska; Friedrich-Schiller-Universitat Jena, Otto Schott Institute of Materials Research; Universitat Potsdam Mathematisch- Naturwissenschaftliche Fakultat, Institute of Earth and Environmental Science Immenhauser, Adrian; Ruhr-Universität Bochum, Institute for Geology, Mineralogy and Geophysics Pourteau, Amaury; Curtin University - Perth City Campus, School of Earth and Planetary Sciences; Universitat Potsdam Mathematisch- Naturwissenschaftliche Fakultat, Institute of Earth and Environmental Science Natalicchio, Marcello; University of Torino, Department of Earth Sciences Candan, Osman; Dokuz Eylül Universitesi, Department of Geological Engineering Oberhänsli, Roland; Universitat Potsdam Mathematisch- Naturwissenschaftliche Fakultat, Institute of Earth and Environmental Science
Keywords:	Evaporites, Blueschist Metamorphism, Sedimentology, Depositional Environment, Pseudomorphism, Neotethys

SCHOLARONE[™] Manuscripts

2		
3	1	A lost Tethyan evaporitic basin — Evidence from Cretaceous hemi-
4		
5	2	pelagic meta-selenite in the Eastern Mediterranean realm
6		
7	3	
8	5	
9	4	Even with a Calcular Advice law as $\frac{3}{2}$ A second Develop $\frac{1.4}{1.4}$
10	4	Franziska Scheffler ^{1,2} , Adrian Immenhauser ³ , Amaury Pourteau ^{1,4} ,
11	5	Marcello Natalicchio ⁵ , Osman Candan ⁶ and Roland Oberhänsli ¹
12	5	
13	6	¹ University of Potsdam, Institute of Earth and Environmental Science, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany,
14		
15	7	² Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Department of Chemistry and Earth Sciences,
16	8	Fraunhoferstraße 6, 07743 Jena, Germany, Franzi.Scheffler@uni-jena.de
17	9	³ Ruhr-University Bochum, Institute of Geology, Mineralogy and Geophysics, Universitätsstraße 150, 44801 Bochum, Germany
18	5	
19	10	⁴ Curtin University, School of Earth and Planetary Sciences, Bentley, Perth, Australia
20	11	⁵ University of Torino, Department of Earth Sciences, via Valperga Caluso 35, 10125 Torino, Italy
21	11	University of Torino, Department of Earth Sciences, via Valperga Caluso 35, 10125 Torino, Italy
22 23	12	⁶ Dokuz Eylül Universitesi, Department of Geological Engineering, 35160 Bornova Izmir, Turkey
23 24	13	
25		
26	14	
27	14	
28	. –	
29	15	
30		
31	16	
32		
33	17	
34	1,	
35	10	
36	18	
37		
38	19	
39		
40	20	
41		
42	21	
43	21	
44		
45	22	
46		
47	23	
48 40		
49 50	24	
50 51		
52	25	
53		
54	26	
55	20	
56	77	
57	27	
58		
59		
60		

28 ABSTRACT

Ancient evaporite deposits are geological archives of depositional environments characterized by a long-term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia ('Rosetta Marble')-characterized by their exceptionally morphological preservation—and their 'marine' geochemical signatures are described and interpreted in a process-oriented context. These rocks recorded Late Cretaceous high-pressure/low-temperature, subduction-related metamorphism with peak conditions of 1.0-1.2 GPa and 300-400°C. Meter-scale, rock-forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal-to-distal transect. The cyclical alternation of selenite beds and radiolarian ribbon-bedded cherts in the distal portions are interpreted as a two type-of-seawater system. During arid intervals, shallow marine brines cascaded downwards into basinal settings and induced precipitation. During more humid times, upwelling-induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta-selenite geochemical data (δ^{13} C, δ^{18} O values and 87 Sr/ 86 Sr ratios) plot within the range of reconstructed middle Cretaceous sea water signatures. Possible sources for the ¹³C-enriched (mean 2.2‰) values include methanogenesis, gas hydrates, and cold seeps fluid exhalation. Spatially resolved component-specific analysis of a rock slab display isotopic variances between meta-selenite crystals (mean: δ^{13} C 2.2‰; δ^{18} O -0.7‰) and host matrix (mean: δ^{13} C 1.3‰; δ^{18} O -2‰). The Cretaceous evaporite-pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto-Atlantic and shares many attributes, including lateral distribution of 600km and stratigraphic thickness of 1.5–2km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best-preserved selenite pseudomorphs worldwide and have a clear potential to act as template for the study of meta-selenite in deep time.

57 Keywords Evaporites, Blueschist Metamorphism, Sedimentology, Depositional Environment,
 58 Pseudomorphism, Neotethys

Page 3 of 73

INTRODUCTION

Sedimentary rocks are exploited by means of proxy data that serve both for hindcasting purposes but also provide fundamentally important input parameters for climate models (e.g. Veizer et al., 1999; Fleitmann et al., 2004; Della Porta, 2015; Immenhauser et al., 2016). With reference to sediments and sedimentary rocks in oceanic basins, work performed in the context of ocean drilling has added significantly to our understanding of Earth's history, the evolution of life, and past climate dynamics (e.g. Zachos et al., 2001; Miall, 2013). This becomes particularly important when dealing with earth's deep time record that, in many cases, has seen variable degrees of diagenetic to metamorphic overprint. Deep burial and subsequent uplift or folding and thrusting in mountain belts affect sedimentary rocks and commonly alter their petrographic, mineralogical, or geochemical signatures (e.g. Schneider et al., 2008; Swart, 2015).

Evaporites are peculiar amongst earth's sedimentary archives as they represent a rather unique depositional environment. The nucleation of evaporite minerals and their morphologies is directly influenced by environmental parameters such as salinity, temperature, and availability of organic matter (e.g. Cody & Cody, 1988; Ortí, 2011; Aquilano et al., 2016; Warren, 2016). Further, evaporitic minerals have the potential to preserve the trace element distribution, fluid inclusion composition, and isotope ratios of brines from which they precipitated (e.g. Deer et al., 1992; Lu et al., 2001, 2002; Natalicchio et al., 2014; Warren, 2016), and, therefore, they represent an important archive for paleoenvironmental reconstructions (Warren, 1999). Nevertheless, evaporites are prone to dissolution, which may result in a preservation bias in the geological record. The authors here argued that the potential of meta-evaporites and their pseudomorphs as archives in the deep-time geological record has been hampered by a dearth of dedicated studies. To address this, the present paper explores the potential of metamorphosed Cretaceous evaporitic successions in Turkey. Meta-evaporites and related meta-sedimentary rocks, now present as marble fabrics and cherts, are regionally referred to as "Rosetta Marble", a casual catch-it-all-term that is applied throughout this paper. Previous studies (Scheffler et al., 2014, 2016) established the fundamental stratigraphic distribution, lithological associations, primary versus metamorphic mineralogies, and metamorphic pressure-temperature (P-T) evolution of the Rosetta Marble deposits and the reader is referred to these sources for details.

Building on previous work, this paper takes the next step and places these findings in a conceptual and process-oriented context by documenting macro- and mesoscopic sedimentary and stratigraphic features of the Rosetta meta-evaporites. This includes the distribution of different meta-selenite morphotypes in their respective depositional environments based on a conceptual model from proximal-to-distal settings. Subsequently, the Rosetta Marble deposits are compared

with non-metamorphosed analogue facies from the Middle (Badenian) and Late (Messinian) Miocene evaporite deposits of the Paratethys and the Mediterranean basins, respectively. Finally, light stable and radiogenic isotope data (δ^{13} C, δ^{18} O, 87 Sr/ 86 Sr) are combined with petrographic observations to assess the diagenetic pathways of these rocks and their corresponding proxy data from deposition via subduction to exhumation. The data shown here highlight the potential of Cretaceous meta-evaporites—conventionally not considered as suitable palaeoenvironmental archives due to their high degree of recrystallization—when placed in their paleoenvironmental context and direct implications for the Neotethyan palaeogeography and tectonic evolution of the Eastern Mediterranean are proposed. Beyond that, this paper is of clear generic importance for those interested in deep time archive research in general and has significance for reconstructions of seawater salinity over geological time.

106 PLATE TECTONIC SETTING, REGIONAL TECTONOSTRATIGRAPHIC FRAMEWORK, AND STUDY SITES

The Anatolian microplate formed due to the collision of several microcontinents during the closure of the Tethyan realm (e.g. Celâl & Yilmaz, 1981; Okay et al., 1986; Şengör, 1990). Whereas northern Anatolia is composed of Eurasia-derived units, the domains south of the Izmir-Ankara Suture Zone were derived from Gondwana, such as the Anatolide-Tauride Block (Fig. 1). The passive margin of this former microcontinent is represented by the metamorphic Ören–Afyon Zone and the thrust-and-folded, low-grade to non-metamorphosed Tauride Platform (Fig. 1). The Ören–Afyon Zone and Tauride Platform present a continuous Mesozoic stratigraphic sequence of Lower Triassic siliciclastic rocks to Middle Triassic to Upper Cretaceous carbonaceous (marine) sediments deposited in neritic to pelagic environments (e.g. Gutnic et al., 1979; Candan et al., 2005). The transition from neritic to pelagic deposition was constrained paleontologically to Valanginian-Aptian times (Özcan et al., 1988, 1989, 1990; Göncüoğlu, 2011). The uppermost pelagic carbonate formation correlates lithostratigraphically to the Cenomanian–Maastrichtian (Özcan et al., 1989; Göncüoğlu et al., 1992; Candan et al., 2005; Cohen et al., 2013). During the latest Cretaceous, the Oren–Afyon Zone were overlain by olistostromal formations and serpentinite mélanges (de Graciansky, 1972; Robertson & Ustaömer, 2009) and subducted (Pourteau et al., 2013). In this process, the Ören-Afyon Zone reached maximum metamorphism at around 70 Ma, coevally with ophiolite obduction onto the Tauride Platform (Collins & Robertson, 1997; Pourteau et al., 2016). From the Eocene to the Miocene, the westernmost extension of the Ören-Afyon Zone (Ören Unit) was transported southwards over the uplifting Menderes Massif (Güngör & Erdoğan, 2001; Rimmelé et al., 2003, 2006; van Hinsbergen et al., 2010; Pourteau et al., 2013). Former evaporite relicts within the pelagic carbonate formations are distributed widely in the Anatolide-Tauride Block (Scheffler et al., 2016).

 128 The present study focuses on the neritic to pelagic carbonate sequence (the "Rosetta Marble") of the 129 Ören Unit, which crops out near the villages of Fesleğen, Akçakaya, and Karaböğürtlen 130 (supplementary Fig. A).

132 CASE SETTING: THE ROSETTA MARBLE

Below we provide a condensed review of previous work that is relevant to the reader of this paper. Please consider cited work for details. This paper refers to what has been addressed as the 'Rosetta Marble' by Rimmelé et al. (2003), i.e. calcitic marble exhibiting three-dimensional, fan-shaped morphologies resembling typical selenite megacrystals (Scheffler et al., 2014, 2016). Rosetta Marble in Cretaceous strata are restricted to the Ören-Afyon Zone (Fig. 1), in which they form part of the upper Mesozoic hemi-pelagic sequence composed of marble-chert couplets. Analogues to this meta-evaporite are lacking in portions of the Tauride platform that have not been metamorphosed to an equal degree. So far, the sedimentary information archived in Rosetta Marble stratigraphic unit have been underappreciated. Previous detailed stratigraphic studies did not refer to the abundant, meter-sized crystal splays (Brunn et al., 1970; Bernoulli et al., 1974; Brinkmann, 1967; Poisson, 1977, 1984; Gutnic et al., 1979; Özkaya, 1990; Özer et al., 2001). Candan et al. (2005), Rimmelé et al. (2005), Oberhänsli et al. (2010), and Pourteau et al. (2010) described Rosetta Marble horizons and applied them as markers for stratigraphic correlation in the frame of regional tectonic reconstructions. Morphological attributes of calcitic Rosetta Marble crystals, revealing important similarities with selenite crystals, were described by Scheffler et al. (2014, 2016). Imprints of minerals with typical selenite morphologies in formerly soft, siliceous layers document the syn-depositional nature of these minerals. Based on arguments including crystal morphologies and paleo-depositional information, it is postulated that the Rosetta Marble represents pseudomorphs after selenite gypsum forming cm- to m-sized, three-dimensional fans (Scheffler et al., 2014, 2016). The authors inferred that selenite transformed to aragonite during early diagenesis and subsequent subduction, and aragonite was replaced by calcite during exhumation. In contrast, evidence that these radiating calcite rods represent former aragonitic mega-botryoides nucleating and precipitating on the seafloor is lacking altogether.

156 The Rosetta Marble deposits of the Ören Unit have been subjected to high-pressure/low-157 temperature (HP/LT), i.e. subduction-related metamorphism, as evidenced by (i) high Sr contents 158 measured in fibrous calcite, which represent pseudomorphs after aragonite fibers (Rimmelé *et al.*, 159 2003), (ii) aragonite inclusions in quartz (Scheffler *et al.*, 2016), (iii) *P*–*T* estimates for pelitic layers 160 enclosing the Rosetta Marble deposits (Scheffler *et al.*, 2016), and (iv) *P*–*T* estimates for adjacent

formations (Oberhänsli et al., 2001, Rimmelé et al., 2003, 2005; Pourteau et al., 2014). Peak P-T conditions were estimated as 1.0–1.2 GPa and 300–400°C (Fig. 2). Following Gillet & Goffé (1988), the overall lack of aragonite indicates that it was replaced by calcite above 200°C, i.e. at pressures >0.5 GPa (Fig. 2). No pseudomorphs after anhydrite were found in the Rosetta Marble units. The gypsum-to-carbonate transformation therefore took place before pressure-temperature conditions of stable anhydrite were reached. The replacement of gypsum by carbonate can be either induced by bacterial sulphate reduction or by thermochemical sulphate reduction (e.g. Machel, 2001). With reference to thermochemical sulphate reduction, thermodynamically stable conditions allow for gypsum to directly transform to aragonite along a subduction-type geothermal gradient (<160°C/GPa; Fig. 2). Moreover, thermochemical sulphate reduction allows the preservation of former evaporite morphologies as opposed to bacterial sulphate reduction that is usually attributed to fabric-destructive alteration (Fernández-Díaz et al., 2009). Additional evidence for thermochemical sulphate reduction as main mechanism transforming selenite to carbonate comes from the elevated Sr concentrations in calcite fibers (>3500 ppm) agreeing with an aragonitic replacement of selenite (Scheffler et al., 2016). Cathodoluminescence imaging of pseudohexagonal meta-gypsum crystals shows generally concentric zonation reflecting trace element variations from core to rim. Although gypsum was transformed into aragonite that was in turn pseudomorphed into calcite, a primary zoning of gypsum is preserved and suggests a relative immobility of the trace elements during metamorphism and neomorphosis (Scheffler et al., 2016).

181 MATERIALS AND METHODS

183 Field work and sample material

Extensive fieldwork was performed in the Ören Unit, south-west Turkey. Structural and stratigraphic data were collected along three measured sections. Particular care in sampling was taken to avoid a stratigraphic bias induced by faults and folds. Criteria to establish the lithostratigraphic orientation of strata in three dimensions included erosional surfaces, fluid-escape structures, and characteristic growth textures of evaporites. Rock samples of meta-carbonate, meta-sandstone, and meta-chert were collected and processed for petrographic examination (thin sections) and geochemical analysis.

Optical analyses

Page 7 of 73

Sedimentology

32 polished thin section were investigated with optical polarization microscopes at Potsdam University (Leica DMRXP) and Friedrich-Schiller-University Jena, both Germany (AXIO Zeiss Imager.M2m, AudioCam MRcS Zeiss). The HC6-LM Cathodoluminescence microscope at Potsdam University was used at 14 kV with a beam current of 0.2 mA and an operating vacuum of $5*10^{-4}$ mbar. A coupled polarized light microscope allows for navigation and documentation. Samples were carbon coated to avoid electrical charging. Cathodoluminescence images were used to choose appropriate minerals for isotope analysis, because altered and primary areas can be distinguished.

Geochemical analyses

184 rock powders for isotope analysis were produced by using a low-speed micro-drill equipped with diamond-studded drilling heads. Homogeneous sample sides were drilled on freshly cut and cleaned rock slabs. Micro-drilled carbonate powders were analyzed for their carbon (δ^{13} C) and oxygen (δ^{18} O) isotopic values using a Thermo Fisher Scientific Gasbench II carbonate device coupled to a Thermo Fisher Scientific Delta S Isotope Ratio Mass Spectrometer at Ruhr-University, Bochum, Germany. Isotopic values were standardized to V-PDB. See Christ et al. (2012) for details on lab-specific analytical procedures. The uncertainty on the plotted values is equal or smaller than 0.06‰ for $\delta^{13}C$ and 0.1‰ for δ^{18} O. Strontium isotopes (⁸⁷Sr/⁸⁶Sr) were analyzed using a Finnigan MAT 262 thermal-ionisation mass spectrometer (TIMS) at Ruhr-University Bochum, Germany. ⁸⁷Sr/⁸⁶Sr sample corrected to difference: NBS 987 value McArthur and NBS 987 Bochum mean value. Refer to Geske et al. (2012) for lab-specific analytical details. The maximal error for 87 Sr/ 86 Sr is $\pm 2\sigma_{mean} = 0.000008$. Stable and radiogenic isotope analytical results are given in the supplementary material.

- DATA PRESENTATION

Stratigraphy and Sedimentology

Two types of end member facies were identified. One is build up by gravish, thickly bedded (up to 2 m) marble successions with intercalated calcareous quartzite (medium to coarse grained meta-sandstone) beds and occasional whitish to gravish aligned nodular and ribbon bedded chert (Fig. 3A; type locality Feslegen: N 37°03.396" E 27°47.457"). Meta-sandstones locally display fine lamination, a fining-upward trend and they are occasionally overlying an irregular erosional surface. All of these attributes suggest a turbiditic origin of these beds. The other end member facies is present in the form of reddish, thinly bedded (cm's to a few dm's) marble-chert alterations, intercalated with thin

radiolarian-bearing meta-wackestones (Fig. 3C; type locality Karaböğürtlen: N 37°04.388" E 28°34.081"). Intermediate types include grayish marble beds (several dm's thick) alternating with whitish cherty beds and nodules (Fig. 3B; type locality Akçakaya: N 37°04.588" E 27°51.042"; supplementary Fig. A).

Three sections representing the three Rosetta Marble facies associations (type localities) were sampled for O, C, and ⁸⁷Sr/⁸⁶Sr isotope analysis: The Feslegen, the Karabögürtlen, and the Akçakaya sections. The Fesleğen section consists of thickly bedded marble beds, rarely intercalated with chert layers and nodules (Fig. 4 and supplementary Fig. C). In the stratigraphically lowermost part, calcareous-sandy turbiditic horizons are common features. The marble layers are mainly composed by fans of large selenite-pseudomorphs. Occasionally, these fans are embedded in a dark grey marble matrix. The upper part of the section contrasts with the lower intervals and is mainly built by a regular alternation of marble beds bearing gypsum-pseudomorphs and a few cm-thick chert layers. The Karabögürtlen section show two intervals characterized by their different facies associations. The lower one is composed of rather uniform thickly to moderately bedded meta-selenite-chert alternations (Fig. 5A, D and supplementary Fig. D). The frequency of chert beds increases upsection and their thickness decreases. The upper interval of the section consists of a reddish, thinly bedded marble-chert alternation (Fig. 5A, B and E). Chert ribbons are in part embedded in a host facies of meta-wackestones rich in radiolaria tests. The third section, located near the village of Akçakaya, shows a facies pattern that is intermediate between the Karaböğürtlen and Feslegen endmember sections. Based on its structural position, the Akçakaya section is most likely stratigraphically older than the Feslegen section. These rocks consist of very regular thickly to medium thickly bedded selenite-pseudomorph bearing marble-chert alternations but they are devoid of the turbiditic meta-sandstones typical for the Feslegen locality. Generally, these units are lithological homogeneous in their appearance relative to the more diverse other sections (supplementary Fig. E).

250 Morphological features and growth orientation of meta-selenites

251 Meta-selenite textures display a variety of systematic morphotypes (growth forms and crystal habit).

252 The most common ones are described in the following (Figs 6 to 8).

254 Selenite growth orientation

Page 9 of 73

Sedimentology

Four main growth orientations of selenite pseudomorphs, relative to the bedding plane, are recognized: (i) upward growth (Fig. 6A and B); (ii) downward growth (Fig. 6C), (iii) up- and downward growth (Fig.6D, E and F), and (iv) horizontal/in-plane orientation (Fig. 7A and B).

Upward growing meta-selenites ('Rosettas') are predominantly fan or dome shaped (Fig. 6A). Tilted crystal fans (subparallel to the bedding plane) are frequently observed (Fig. 6B). Downward growing meta-selenite fans/domes (Fig. 6C) are uncommon. Up- and downward oriented fans are comparable in size and symmetrical. The nucleation points are aligned with chert-ribbons and – nodules (Fig. 6A-D); often, the top of a lower crystal fan serves as nucleation for the next crystal dome (Fig. 6A) or they grow from impurity-rich surfaces (Fig. 6E). Selenite fans growing from a nucleation point devoid of silica are restricted by top and bottom chert/marble-layers (Fig. 6F).

Amongst the horizontally growing (in-plane) Rosetta fans (Fig. 7), three subtypes can be identified: (i) Radial Rosettas with long crystal rods radiating from a central nucleation site; (ii) flower-like Rosettas showing basal sections of crystals in the centers of the radiating fans. Small rods radiate away and gradually change to longer crystals with increasing distance to the center; and (iii) concentric Rosettas. Here, long rods start radiating from a certain distance to the rod-free center. The diameters of individual fans are remarkable and may reach 3 m. The length of individual meta-selenite crystals within fans range from a few cm's to 1.5 m's (Fig. 7A). Where fans compete for space, typical features of converging crystallization fronts are observed (Fig. 7B). Where fans are spatially separated, crystals grow idiomorphic and form mega-crystals.

275 Selenite crystal habits and morphotypes

The most common morphotypes and crystal habits of selenite pseudomorphs are cm- to meter-long, straight to curved-radiating rods composed of calcite crystals (morphotype i, Fig. 7). Many marble layers are mostly made up of calcite Rosettas with only limited amounts of fine-grained matrix (Fig. 7). Locally, calcite rods are embedded in a fine-crystalline homogeneous dark grey marble matrix (Fig. 8A). A thin layer of marly-quartzitic sediment often fringes individual calcite rods (Fig. 8A, Scheffler et al., 2016). Less common morphotypes are: (ii) stacked swallowtail crystals (Fig. 8B), (iii) fishbone-like crystals, restricted to coarse-grained sandy levels (Fig. 8C), (iv) Christmas-tree shaped selenites pseudomorphs similar to dendritic habits (Fig. 8D), (v) flower-like arranged curved sabre crystals (Fig. 8E), and (iv) crystals forming palisade layers (Fig. 8F).

286 Petrography and mineralogy: microscale crystal habits and their relation to matrix and meta287 radiolarites

The selenite pseudomorphs are composed of fibrous calcite that in turn is a pseudomorph after aragonite. The material that often fringes individual meta-selenite crystals comprises microcrystalline quartz, dolomite rhombs, mica, and opaque accessory phases (Fig. 9A and B). Monoclinic crystals habits (former gypsum) are visible in the case of small (mm-scale) rods floating in matrix meta-sediments (Fig. 9A to D). Crystal habits resemble elongated rods or pseudo-hexagonal sections (perpendicular to the c-axes of the rods) with crystallographic angles typical for gypsum (Buick & Dunlop, 1990; Fig. 9D). Within the pseudo-hexagonal crystal outlines calcitic pseudomorphs after aragonite fibers are mostly well preserved (Fig. 9E). The contact between meta-selenite marble and chert layers is usually distinct and rather abrupt (Figs 9F and 10A). Chert layers consist of a ribbon bedded or nodular siliceous core and an increasingly dolomitic outer zone (Fig. 9F). Insoluble material and minor calcite crystals increase in number towards the chert-rich center of individual beds (Fig. 10A). Raman spectroscopy indicates that dolomites were in part dedolomitized and are now calcitic or dissolved. Some of these dedolomitized rhombs exhibit an internal zonation. Molds with a rhombic habit are common on the weathered and fresh sample surfaces, most likely indicating former dolomite crystals. Calcified relicts of radiolarian tests are present in meta-wackestone layers (Fig. 10B) whereas microcrystalline silicified radiolarian tests are preserved within chert layers (Fig. 10C and D). The degree of preservation of altered radiolarian tests changes from locality to locality and ranges from neomorphosed but morphologically well-preserved to barely recognizable.

306 Under cathodoluminescence imaging, different crystallization stages and fluid-related 307 alteration are recognized. Authigenic carbonate after gypsum appears in dark bluish-blackish 308 luminescence colors, whereas the surrounding, recrystallized fine-grained matrix displays orange 309 luminescence (Fig. 11). Under normal light microscopy, zoning of pseudohexagonal crystals is not 310 obvious. These crystals show, however, four, arguably primary and distinct cathodoluminescence 311 zones (Fig. 11A). This is considered remarkable when taking the complex metamorphic pathway of 312 these rocks into consideration.

 314 Geochemical data

315 Carbon and oxygen isotope data of selenite pseudomorphs and stratigraphic patterns in carbon 316 isotope signatures

Sedimentology

Most of the bulk δ^{13} C values obtained from selenite pseudomorphs and their bulk sediments (*matrix*) plot within the range of reconstructed mean mid-Cretaceous sea water DIC (0.3 – 3.2 δ^{13} C) and even the oxygen isotope data are only moderately depleted in ¹⁸O (0 to -3.1 δ^{18} O; Fig. 12, Veizer *et al.*, 1999). Carbon and oxygen isotope data show cluster that fit with their sampling sites and stratigraphic levels (Fig. 12, Table 1). Although Bodrum samples are lacking selenite pseudomorphs, they yield similar values as the other localities in which selenite pseudomorphs are observed.

The data serve to test if stratigraphic facies changes are detectable in their bulk geochemical pattern. For details on the carbon, oxygen, and radiogenic strontium isotope data from all three sections, refer to figures 5, 12, 13 and tables 1 and 2. Additional figures and extended data tables can be found in the digital appendix. Below we briefly describe the isotope trends for each facies.

In the Feslegen section, the transition from the lower (selenite bearing marble layers with rare cherts and intercalated quartzite) to the upper (marble-chert couplets) section is well depicted by the isotope pattern (supplementary Fig. C). Carbon bulk isotope values from the upper part of the section yield slightly heavier values (mean: 2.2‰) than samples from the lower part of the section (mean: 2.0%; Table 1). In the Karaböğürtlen section, the upper part exhibits the most ¹³C-enriched carbon isotope (mean: 3.3‰) whereas the lower part is consistent with the majority of measured samples (mean: 1.7‰; Fig. 5E, Table 1, supplementary Fig. D). The oxygen isotope values are lower in the upper (mean: -2.7‰) than in the lower part of the section (mean: -1.3‰). Fife samples from the upper part of the section show the lowest oxygen isotope values (mean: -4.4%; Figs 12 and 13). In the Akçakaya section, C and O isotope values display an invariant pattern, mirroring the absence of major lithological changes (Table 1). Nevertheless, carbon (mean: 1.3‰) and oxygen (mean: -2‰) curves have their lows and highs at the same positions and hence display covariance (supplementary Fig. E). δ^{13} C values of all three sections plotted in one diagram show an offset of 4‰ in the upper portions (Fig. 13).

Although the ⁸⁷Sr/⁸⁶Sr isotope values in this study are limited, they show an interesting trend similar to those of carbon (and oxygen) isotope values. In the Feslegen section, ⁸⁷Sr/⁸⁶Sr isotope ratios are slightly less radiogenic in the upper part of the section (mean: 0.707522) and more radiogenic in the lower part (mean: 0.707551). In the upper red part of the Karaböğürtlen section the ⁸⁷Sr/⁸⁶Sr ratios continuously increase (mean: 0.7075578) with a peak value upsection, that coincide with a color change to yellow (Fig. 5E, Table 2). In the lower portion, lower ⁸⁷Sr/⁸⁶Sr values are measured (mean: 0.7074066). The Akçakaya section shows no chemostratigrahic variances in ⁸⁷Sr/⁸⁶Sr isotope values (mean: 0.707368).

350 Spatial distribution of carbon and oxygen isotope values across a selenite-pseudomorph and its host 351 sediment

A total of 36 samples for carbon and oxygen isotope analyses were drilled in a selenite-pseudomorph rock slab (Fig. 14). Carbon isotopes within meta-selenite-crystals (i) are clearly enriched in ¹³C (mean: 2.2‰), whereas the host sediment is depleted (mean: 1.7‰). The host sediment can be separated in (ii) matrix, (iii) matrix with small meta-selenite crystals and (iv) rod-fringing material. The matrix sensu stricto exhibits the lowest δ^{13} C values (mean: 1.3‰). Although δ^{18} O isotopes in metamorphic rocks are potentially strongly overprinted, a purely descriptive subdivision of different clusters of isotope data becomes obvious: (i) selenite-pseudomorphs (mean: -0.7‰), (ii) matrix (mean: -2‰), (iii) matrix with small meta-selenite crystals (mean: -1.2) and (iv) rod-fringing material (mean: -0.2%; supplementary figures F and G).

- 362 INTERPRETATION AND DISCUSSION

364 Sections studied in the bathymetric context of a lost Cretaceous evaporitic basin

Morphological features evidencing former selenite mega-crystals were reported from Rosetta Marble localities across the 400-km-long Ören–Afyon Zone (Scheffler et al., 2016). The widespread distribution of these peculiar stratigraphic intervals in the uppermost part of the Mesozoic carbonate sequence, bears witness to a middle Cretaceous evaporitic basin, now mostly lost in a subduction zone during Late Cretaceous to Early Paleocene times. Middle Aptian palaeogeographic reconstructions of the Mediterranean area (Barrier & Vrielynck, 2008) depicted the Ören–Afyon Zone as part of a deep-marine basin bordered to the south by extensive shallow-marine areas represented by the shelf carbonate sequences of the Tauride Platform. Remnants of the evaporitic, turbiditic, and siliceous sedimentary cover of this basin (or these basins) are now exposed in the sections discussed in the context of this paper. Acknowledging the considerable difficulties resulting from an attempt to reconstruct a former basin based on incomplete, spatially separated sections that are only indirectly dated by means of regional correlations (e.g. Özcan et al., 1989; Göncüoğlu et al., 1992; Candan et al., 2005), some tentative suggestions are made and their implications discussed. To reconstruct the internal architecture of the evaporitic basin, the three studied stratigraphic successions are restored along a proximal-to-distal transect (Fig. 15). The observed facies associations reflect slope to basinal domains. Thick-bedded, graded sandstone is ascribed to the relatively proximal, i.e. base-of-slope

Sedimentology

environments, whereas radiolarite (now chert) are pelagic deposits and generally a predominantcomponent of the most distal formations.

Meta-evaporites as such are not diagnostic of any specific bathymetric domain since evaporites precipitate from hypersaline water masses that may form on the shelf or in basins (Warren, 1999). Schmalz (1969) pointed out that the precipitation of evaporites in (marginal) basinal settings takes place where parental brines underlie waters of normal salinity. These dense fluids do not mix with marine surficial waters and sink to the floor of basins. Roveri et al. (2014) reported on recent Mediterranean high density fluids forming at shelf levels and cascade downwards to the basin center. These 'Dense Shelf Water Cascading' (DSWC) currents play an important role in shelf erosion and sub-marine canyon formation (Roveri et al., 2014). Two high-salinity-water-producing scenarios are proposed: (i) silled shallow sub-basins that suffered periodically spillovers and subsequent desiccation forming hypersaline brines or (ii) cascading semi-dense waters that accumulate in deep marine basins and get to the oversaturation state down there. On the base of these considerations, Roveri et al. (2014) supported a deep-water-deep-basin-model (e.g. Schmalz, 1969; Hsü et al. (1973) ; Debenedetti, 1982) for the long standing debate on the formation of Messinian saline giant.

The lower part of the Fesleğen section comprises predominantly thickly bedded (proximal) turbidite intervals. This significant terrigenous influx is evidence that the lower Fesleğen section represents the most proximal (landward) environment among the Rosetta Marble sections studied here (Fig. 15). Upsection, the proportion of meta-selenite and then of meta-radiolarite increases, depicting an overall deepening upward trend or an increasing production of radiolarian tests potentially assigned to enhanced upwelling.

Thickly bedded marble–chert couplets, such as exposed in the upper Felseğen section, the Akçakaya section, and the lower Karaböğürtlen section, represent occasional turbidite deposition alternating with prolonged periods of hemi-pelagic radiolarite sedimentation and agree with a more distal depositional environment. Bedded hemi-pelagic carbonate successions exposed on the Bodrum Peninsula and in the Taurides lack intercalations of meta-selenite deposits. The reason for this is not entirely understood but might suggest a more open and better circulated environment that did not allow for evaporitic brines to assemble.

The Karaböğürtlen section (Figs 5 and 15) consists of thinly-bedded meta-radiolarite-metaselenite couplets. Meta-wackestone layers fringing specific chert ribbons are common in the upper part of the section but absent in the lower part. The section is potentially indicative of a deepeningupward trend and may represent the most distal and most basinal setting of the transect studied.

414 Interpretation of the selenite–radiolarite couplets

The cyclical alternation of large selenite crystals with beds of radiolarian cherts is uncommon in the geological record (Warren, 1999) and requires discussion. The main problem lies in the fact that radiolarian facies commonly indicates an open shelf or even a basinal depositional environment whereas meter-scale selenite crystal formation is often typical of smaller marginal evaporitic settings (e.g. Babel, 1987; Ortí, 2011). When comparing the studied sections with the Messinian evaporites in the Mediterranean realm, selenite nucleation and growth is restricted to silled, marginal basins with bathymetries of not more than about 200 meters (Lugli et al., 2010). No examples of meter-long selenite crystals forming at these depths are known from the Cenozoic. Moreover, in bathymetric ranges below the neritic domain (> 200 m), the formation of sulphate evaporites is likely inhibited by high rates of bacterially-promoted sulphate reduction via degradation of organic matter (De Lange & Krijgsman, 2010; Garcia-Veigas et al., 2018).

In the most distal Rosetta Marble facies associations (upper Karabögürtlen section; Fig. 15), remarkably well-preserved radiolarian pseudormorphs in meta-chert and in radiolarian-rich meta-wackestone might be indicative of a higher abundancy of radiolaria and of higher productivity. Other factors such as overall lower sedimentation rates or differential pathways of silica diagenesis should not be excluded at this state. Occasionally, radiolaria thrive in neritic water masses, mainly in the context of upwelling systems (Nigrini & Caulet, 1992, and references therein) but the excellent preservation of sedimentary structures in these sections suggests a bathymetric range beneath the reach of storm waves (Immenhauser et al., 2008), i.e., water depths in excess of 100-200 meters or a shallower protected setting. The lack of fabric destructive bioturbation is perhaps best explained by elevated porewater salinity.

Deposition and preservation of shallow-water, siliceous radiolaria facies require two
boundary conditions: (i) a radiolarian bloom in the surficial water masses, and (ii) the absence of
significant amount of detrital and carbonate influx to the site of deposition of the radiolarian facies.
It must be emphasized that the rocks studied are not radiolarian limestones but genuine radiolarian
cherts.

Two tentative depositional scenarios offer themselves that might explain the alternation of chert-evaporite couplets (Fig. 15): (i) One scenario (the chert-turbiditic sandstone mode) reflecting more humid conditions in the hinterland with active riverine transport of siliciclastic material through turbidity currents in the more marginal setting. In more open shelf zones, upwelling of basinal water might have triggered radiolarian blooms resulting in the deposition of siliceous deposits. The dilution of coastal seawater by riverine influx combined with upwelling of normal marine seawater inhibited

Sedimentology

evaporite formation. (ii) The second scenario (the evaporite mode) involves more arid conditions leading and reduced riverine influx. This leads to the formation of near-costal evaporated water masses sinking downslope (density cascading) where they accumulate in marginal basins. The observation that Rosetta selenite crystals are large in size but low in number, points to a lower salinity and the formation of a limited number of selenite nuclei (e.g. Lugli *et al.*, 2010). A typical salinity range in modern selenite depositional environments is 110-300 g/l (e.g. Ortí, 2011; Natalicchio *et al.*, 2014), corresponding to typical Sr contents of 1000-2600ppm (Ortí *et al.*, 1984).

The cyclical alternation of carbonate-chert couplets may (or may not) be ascribed to astronomical-driven climatic fluctuations. By analogy with Messinian mudstone-gypsum precessional cycles of the Mediterranean Basin (e.g. Dela Pierre *et al.*, 2011; Manzi *et al.*, 2013), a 20-kyr duration of each evaporite-radiolarite cycle seems at least possible. In the absence of a reliable age model for these rocks, this debate, however, must remain entirely speculative at present.

460 Rosetta selenites interpreted in their environmental context and comparison with analogue461 deposits

462 Factors controlling gypsum morphologies

Laboratory experiments documented that gypsum morphologies are influenced by factors such as the degree of evaporation, the presence or absence of other evaporite minerals, the brine temperature, the amount of organic matter, and the seawater pH (e.g. Cody & Cody, 1988; Aquilano et al., 2016). Cody & Cody (1988) for example, argued the presence of significance amounts of organic matter may lead to rosette-shaped growth forms. Given that few (perhaps none?) natural evaporite depositional environments are devoid of organic matter, this notion seems difficult to place in context in the studied deposits. Moreover, crystals that precipitate from warmer seawater tend to be larger and more idiomorphic in nature (Cody & Cody, 1988). All of these considerations are potentially valuable but given that the interpretation of field evidence in these metamorphic rocks is less than trivial, it remains unclear to what degree these experiments can be applied to the case example described here. In the view of the authors, it is thus perhaps more helpful to make use of a contrast-comparison with the much better studied Messinian (Late Miocene) and Badenian (middle Miocene of the central Paratethys; Hohenegger et al., 2014; the top Burdigalian to the mid-Serravalian, i.e., 18.3 to 16.3 Ma) evaporite deposits (Figs 16 to 18).

478 Upward radiating selenite fans

One of the chief characteristics of the meta-selenites discussed here is the significant length of individual crystals reaching up to 1.5 meters. In order to allow for these large crystals to form, a precipitation environment that provides stable physico-chemical conditions over long periods (likely months and years) and a sufficient fluid oversaturation is required. In general, large crystals are the result of slow growth rates and salinity conditions close to equilibrium (e.g. Rosell et al., 1998). Upward-growing selenite gypsum fans form dome-like structures and are common both in modern and in ancient evaporitic environments (Bąbel, 2007; Lugli et al., 2010; Ortí, 2011). Crystal growth is initiated from a nucleation point at the sediment-water interface and crystals continue to grow in a radial array as long as open space and an SO₄-saturated brine is present. In the case of the meter-sized Rosetta meta-selenite fans, nucleation of crystalline gypsum took place on a seafloor formed by fine-grained siliceous sediments (Fig. 16A). Due to increasing weight of the selenite fans, the evaporites sunk into siliceous sediments at the seafloor creating load structures (Fig. 16A). This is considered clear evidence for a syndepositional, as opposed to diagenetic, origin of these features. Perhaps in analogy with the meta-selenites observed in the Anatolian Rosetta Marble, giant selenite crystals (Fig. 17C and D) and palisades made up of stacked swallow-tail twinned crystal (Fig. 17E and F) are a common texture of both Badenian (e.g. Babel, 1987) and Messinian (e.g. Lugli et al., 2010; Ortí, 2011) evaporite deposits. The abundant radiating fans of crystals observed in the Anatolian meta-selenite fabrics have similar analogues in the Miocene deposits represented by domal- or radial fan-like structures (Figs 18A and C). Tilted upward oriented selenite fans observed in the Rosetta Marble share similarities with such from the Badenian evaporites explained as the results of unidirectional currents (e.g. Babel, 2005). Sabre-like crystals are typical features of the Rosetta Marble and form bundles up to 1.5 m in length. Sabre-like curved crystals are frequently found in Miocene evaporite deposits and occur in bundles or as individual crystals with variable dimensions embedded in a fine-grained matrix (Fig. 19A to D).

504 Bedding-parallel selenite fans

Bedding-parallel selenite fans show a range of morphotypes (Fig. 16). Formation models that provide an explanation of all three categories (central point, flower-like and concentric) include the following: (i) cutting effects at the outcrop scale and (ii) restricted growth (Fig. 16D). In the first case, upward oriented, domal crystal arrays are amalgamated. Individual crystals within each fan can be straight or curved depending on the environmental conditions during growth. Truncation of these fans by erosion (turbidites or less saline waters causing a dissolution of the uppermost layers) may lead to central point (i) (straight rods) and flower-like (ii) (curved rods) horizontal crystal fans oriented parallel to bedding planes. In the latter case, bedding parallel growth is considered a primary feature

Sedimentology

resulting from a shallow pycnocline and a limited number of crystallization nuclei (e.g. Lugli et al., 2010). Small rods in the center of Rosetta textures were likely restricted by the shallow pycnocline and ceased to grow when reaching the upper boundary of the brine layer. A similar mechanism was proposed for the Messinian "branching selenite facies" (Lugli et al., 2010), a peculiar type of evaporite showing growth habits that are more laterally than vertically oriented. Concentric horizontal Rosettas may have formed on the seafloor when the pycnocline was extremely shallow. In addition, subsequent compaction by overlying sediments causing an extra flattening of these features cannot be excluded.

522 Downward-oriented selenite fans

With reference to downward-oriented selenite fans, only few analogues exist in the geological record (Ayllon-Quevedo et al., 2007) and in the Recent (Fig. 18A and C). Clearly, this growth fabric is the most challenging encountered in the Rosetta Marble facies, but perhaps also the most spectacular one. Similar to upward-oriented selenite fans, crystal growth is initiated from a central nucleation point at the seafloor and subsequently, selenite rods grow downwards and displace the host sediment. This processes as such is not an uncommon feature and the displaced host sediment can either be incorporated in the crystal lattice as solid inclusions or pushed away from the crystallization front. In a study from the Laguna Madre (Texas), McBride et al. (1992) describe two fabrics of gypsum growing in terrigenous sands in the phreatic zone. The former results from the slow (non-displacive) precipitation of gypsum between quartz sand grains forming a cement phase. The other fabric is the fast growth mode; here gypsum that is largely free from sand particles and displaces the host sandy sediment and forms limpid crystal clusters up to 50 cm large. If the Laguna Madre gypsum deposits represent to some degree analogue precipitates, then the downward-oriented radial arrays typify periods of very rapid, displacive gypsum growth from highly-supersaturated pore fluids in very soft siliceous sediment and a pycnocline that was essentially at the seafloor. Nevertheless, these replacive or displacive fabrics are not well understood in terms of their formation and problems were discussed for mainly calcitic syntaxial overgrowth cements. It seems at least possible that that the original sediment was made up of gypsum-rich ooze subsequently replaced by the diagenetic selenites. Modern case examples documenting perhaps similar processes include the 'Daisy-head gypsum' from Texas and the 'Daiys-bed gypsum' from Cumbria, UK (Warren et al., 1990). There, phreatic fluids slowly infiltrate an anhydrite bed and radiating gypsum crystals grow pervasively, often with a dolomite crystal as nucleation center. Brecciation is a typical phenomenon in evaporitic rocks witnessing solution-induced collapse (e.g. Swennen et al., 1990). In the pseudomorphosed

546 meta-selenite unit in Turkey, brecciation of fine laminated gypsum layers was recognized in at least547 one outcrop (Fig. 18 E and F).

549 Interpretation of meta-selenite geochemical data in the context of subduction and exhumation 550 pathways

551 Bulk carbon isotope data

552 Bulk $\delta^{13}C_{meta-selenite}$ data (mean: +1.8‰) plot within the range of reconstructed middle Cretaceous 553 seawater DIC values (Fig. 12; Veizer *et al.*, 1997). Obviously, this comparison must be taken with care 554 as the Veizer *et al.* (1997) data are chiefly based on biogenic calcite as opposed to the rock samples 555 discussed here.

The transformation of selenite to aragonite during burial diagenesis and following metamorphism in the context of subduction clearly affected the isotope signatures of the meta-selenites. Bacterial sulphate reduction and thermochemical sulphate reduction are the most common processes known to guide the transformation reaction from sulphate to carbonate (Machel, 2001). Both processes are expected to lead to ¹³C-depleted carbon isotope values (Rouchy et al., 1998). Bacterial sulphate reduction is a process that commonly obliterates the former gypsum crystal morphologies (Machel, 2001). In the case of Anatolia's Rosetta Marble, even subtle morphological features of the gypsum crystals (swallow-tails, skeletal-fibrous crystals, twin planes etc.), are preserved. Hence, bacterial sulphate reduction is ruled out here. Conversely, thermochemical sulphate reduction is known to result in gypsum pseudomorphs that preserve morphological features of their precursor minerals (Fenandés-Díaz et al., 2009). Thermochemical sulphate reduction along a subduction geotherm takes place at temperatures of 100-180°C (Machel, 2001) but within the pressure field of aragonite (Fig. 2). This interpretation is in line with the observation that Sr concentrations of the selenite pseudomorphs (up to 3500 ppm) are elevated. Given that the calcite crystal lattice does not favor the incorporation of Sr, in contrast to that of aragonite (Katz et al., 1972), the direct transformation of selenite to aragonite is favored here. The obvious problem in this chain of arguments lays with the interpretation of the what seem marine seawater DIC ratios of the Rosetta Marble which requires a discussion of the carbon sources during selenite-to-carbonate transformation.

575 In the context of transformation processes during subduction, several possible carbon 576 sources must be considered. Seawater stratification combined with a restricted exchange of oxygen-577 depleted brines with marginal basins—as well as suboxic intraformational brines—favors the

Page 19 of 73

Sedimentology

accumulation of organic-rich deposits (e.g. Roveri et al., 2016). Whereas the Messinian deep-water evaporites exhibit a high petroleum potential (Roveri et al., 2016), the TOC of the Rosetta Marble is low (<0.18%) but organic material rapidly decomposes at temperatures about ca. 160°C (Machel, 2001) and it is mainly kerogen and bitumen that remains. During the subduction (Fig. 2), the well-defined pressure-temperature field is reached where most organic matter has transformed to gas and bitumen has been transformed to graphite (Staplin, 1969). Methane as a possible reactant is reactive, mobile, and is largely available (Machel, 2001). Methane is the final product of several disintegration processes, indicating that larger molecules could be the primary source of CH_4 . To interpret the rather ¹³C-enriched values of the Rosetta Marbles, several carbon sources have to be taken into account. Most CH_4 sources display strongly ¹³C-depleted values (Peckmann & Thiel 2004): These include biogenic, bacterial and microbial methane (between -50‰ and -110‰; Whiticar et al., 1986; Whiticar, 1999), thermogenic and non-bacterial methane (-30‰ to -50‰; Sackett, 1978), geothermal, hydrothermal and crystalline methane (-20%; Botz et al., 2002 and references therein), and petroleum (-25‰ to -35‰; Roberts and Aharon, 1994). These CH₄ isotope signatures may result in carbonate rocks with distinctive and highly variable δ^{13} C values such as the gas hydrates associated carbonates (-60‰; Bohrmann et al., 1998; Greinert et al., 2001), and the mud volcanoes and methane seep carbonates (-60‰ to +36‰; Clari et al., 2004; 2009; Pekmann and Thiel, 2004; Natalicchio et al., 2012; Tassi et al., 2012; Oppo et al., 2013;). In addition, a mantle-derived carbon source exhibits δ^{13} C values in the range of -3‰ to -8‰ (Pineau & Javoy, 1983; Des Marais & Moore, 1984; Mattey et al., 1984). Gas mixtures of different carbon sources due to vertical or lateral gas and fluid migration and diffusion are common and complicates the interpretation of the isotope data obtained here. In the following, the carbon isotope fractionation processes related to thermogenic and bacterial methane production (methanogenesis) and to gas hydrates and cold seep carbonates formation are considered in more detail.

The $\delta^{13}C_{CH_4}$ of thermogenic gases becomes progressively enriched in ${}^{13}C$ with increasing maturity, eventually approaching the ${}^{13}C/{}^{12}C$ of the original organic matter or kerogen (and rarely even heavier) (Whiticar, 1999). However, the resulting values remain negative. In situ produced CH_4 by methanogenesis (CH₃-A + H₂O \rightarrow CH₄ + CO₂ + A-H) is a common reaction in modern wetlands (Whiticar, 1999). The CO₂ and CH₄ byproducts generated through methanogenesis (bacterial methane formation by carbonate reduction) show very distinct carbon isotopic compositions with ¹³C-rich CO₂ and ¹³C-poor CH₄ products (Whiticar, 1999; Pierre *et al.*, 2002; Natalicchio *et al.*, 2012). This might imply that CO₂ instead of CH₄ was involved in the sulphate reduction reaction of Anatolian precursor gypsum. This is because, in-layer produced C could be isotopically similar to rock-buffered δ^{13} C values. Molecules with lower isotopic mass diffuse and react more rapidly and thus are utilized more frequently than the isotopically heavier species (Whiticar, 1999). In a rock dominated system,

613 the preferential removal of the isotopically lighter molecules from the carbon pool during 614 methanogenesis results in a progressive shift in the residual substrate towards heavier, ¹³C-enriched 615 values (Whiticar, 1999) and fractionation factors decreased with increasing temperature during 616 subduction.

In marine sediments, a distinct diagenetic zonation for CH₄ is observed: a sulphate reduction (methane consumption) zone in the uppermost meters, followed by a CH_4 oxidation zone, and a CH_4 formation/production zone at the bottom (Claypool & Kaplan, 1974; Whiticar et al., 1986). Usually anaerobic oxidation of methane (Boetius et al., 2000) at the base of the sulphate zone is responsible for active, albeit incomplete, CH₄ removal. For complete sulphate reduction, the CH₄ influx from deeper levels must have been higher than the consumption rates. Analogous to methanogenesis, the bacterial uptake of CH₄ is associated with a kinetic isotope effect that enriches the residual CH₄ in the heavier isotope. A similar diagenetic zonation is a possible scenario that might explain the ¹³C variances in upper and lower parts of the Rosetta Marble sections studied here.

626 Cold seep carbonates are generally typified by low δ^{13} C values since they inherit the strong 627 13 C-depletion relative to the methane gas (Peckmann & Thiel, 2004). However, δ^{13} C values > +5‰ 628 have been also reported for individual carbonates from ancient seep deposits (Gaillard *et al.*, 1992; 629 Peckmann *et al.*, 1999, 2002, 2003; Natalicchio *et al.*, 2012); these values likely result from the 630 formation of 13 C-enriched carbonate minerals in the zone of methanogenesis (Peckmann & Thiel, 631 2004). With regard to the 13 C-enriched values of the Rosetta marble meta-selenites, a carbon source 632 from methanogenesis should not be excluded *a priori*.

With reference to gas hydrates, Pierre et al. (2002) report on chemostratigraphic patterns from Late Miocene deposits that might be comparable with those found in the case of the Feslegen and Karaböğürtlen sections. The carbon isotopes show a distinct shift to ¹³C-enriched values in the lower part (up to 9.25‰), whereas the δ^{18} O values display the opposite trend. Generally, these concepts might explain the patterns and absolute values of meta-carbonates measured in the context of this section. Care must be taken, however, as these rocks have suffered significantly more pervasive overprint during burial and metamorphosis compared to the case examples documented in Pierre et al. (2002). Carbonates that precipitate during gas hydrate formation are ¹³C-enriched, whereas decomposition of gas hydrates lead to low δ^{13} C values in carbonates. Gas hydrates are therefore a possible source for the heavy carbon in the selenite-to-aragonite reaction of the Rosetta Marble. It must be emphasized that tangible evidence for the presence of former gas hydrates in these sections is lacking. This does not rule out, however, that deeper seated gas hydrates released ¹³C-enriched carbon into the system subsequently to be built into the meta-selenites under study.

Concluding, these carbon isotope data seem to support a seawater- and rock-dominated

Sedimentology

geochemical system resulting in meta-selenites that preserved a seawater- and rock-dominated geochemical system resulting in meta-selenites that preserved their depositional isotope signature. The problem lies with the transition from gypsum to aragonite during subduction that is usually related to strongly ¹³C-depleted CH₄. Hence, even when mineralogy-driven (aragonite) fractionation is taken into account (Waite & Swart, 2015), one or several sources of ¹³C-enriched carbon should be considered. Given the limited outcrop conditions and the generally dispersed and incomplete rock record of these metamorphic units, all of these considerations must at present remain on the level of working hypotheses. Potentially, component-specific carbon isotope analysis has the potential to shed light on these complex processes. This, however, must be the topic of further research.

657 Bulk oxygen isotope data

Mean bulk $\delta^{18}O_{meta-selenite}$ isotope ratios (-1.6‰) fall within the boundaries of well-preserved marine carbonate materials of middle Cretaceous age. Generally, evaporation of seawater leads to ¹⁸O enriched values (up to +6‰), but depleted δ^{18} O values in evaporite mineral fluid inclusions have been reported too (mixing with meteoric fluids; Knauth & Beeunas, 1986). Concentration of a hypersaline brine show a shift in the δ^{18} O values of about +4.0‰ (Longinelli, 1979). Crystallization of gypsum further shifts the δ^{18} O to +5.5‰ (Longinelli, 1979). Dehydration of gypsum at temperatures of $>50^{\circ}$ C during transformation to anhydrite could be potentially significant during the subduction of the evaporite-chert successions, but no evidences of anhydrite morphologies could be found. Isotopically, water in the crystal lattice of gypsum is enriched in ¹⁸O by about 4‰ relative to the water from which it precipitates (Knauth & Beeunas, 1986). The exceptional preservation of the morphological attributes of the meta-selenite crystals is considered convincing evidence for that direct transformation of gypsum to aragonite without an anhydrite stage. In the case of the successions discussed here, the fluid is predominantly seawater engulfed in the subduction zone and pore-fluid contained within the rock units. The question is, however, to which degree the aquifer fluid and its geochemical properties are isolated from the small volumes of diagenetic fluid at the site of micro-scale dissolution-precipitation processes (Pingitore, 1982) that govern the gypsum to anhydrite neomorphism?

675 Regarding temperature, the sulphate-to-carbonate-reaction is exothermic, i.e., bacterial 676 sulphate reduction yields energy of $F^225^{\circ}C = -40.6$ kcal per mole of reacting sulphate (Decker *et al.*, 677 1970). The produced energy increased the bulk rock and fluid temperature and might thus induce a 678 fractionation towards ¹⁸O-depleted values (Pierre & Rouchy, 1988). Elevated temperatures might 679 induce the energy required to neomorphose gypsum to aragonite rather than calcite during sulphate

reduction reaction even outside of the thermodynamic stable field of aragonite. Volume-for-volume mineral replacement of sulphate (74.31 cm³/mole) by aragonite (34.16 cm³/mole) must have taken place under partly open system conditions as otherwise the generation of secondary porosity, *in situ* brecciation and collapse phenomena must be expected (Berner, 1971; Pierre & Rouchy, 1988). This is, with very rare exception not the case in the section studied here.

Circumstantial evidence for the oxygen isotope signature of the rocks discussed here comes from Carrara marbles that has seen deep burial and metamorphic overprint and temperatures of 200-350°C. Carrara marbles bulk oxygen isotope value plot in the field of 'normal' marine values (Ferry et al., 2002; Ritter et al., 2015). The most likely interpretation is that of low porosity rock units with fluid-to-solid ratios being essentially that of a rock buffered system (Ritter et al., 2015; Pingitore, 1982; Berger et al., 2016). Temperature-dependent oxygen isotope fractionation decays as 1/T-squared rather than 1/T at increasingly higher temperatures and approaches nil at around 300°C. Hence, expecting very depleted oxygen isotope values is not in concert with the fundamentals of thermodynamics. Moreover, at these P-T conditions, diagenetic fluids are an admixture of CO₂ and H₂O and aqueous diffusion is a dominant factor. All of these factors represent a warning that conventional models applied to evaporite and carbonate diagenesis cannot be used here.

697 ⁸⁷Sr/⁸⁶Sr isotope ratios and Sr elemental concentrations

Calcite pseudomorphs after gypsum preserve the initial Sr elemental concentration as well as the initial ⁸⁷Sr/⁸⁶Sr isotope ratios (e.g. Palaeozoic anhydrite pseudomorphs from Belgium up to 2500 ppm; Dejonghe *et al.*, 1998). More radiogenic 87 Sr/ 86 Sr ratios may be caused by two reasons: (i) significant in situ⁸⁷Rb decay following pseudomorphism; or (ii) addition of radiogenic Sr (continental runoff) (Dejonghe et al., 1998). The Sr elemental abundances are consistent with Cretaceous sea water values. Similarly to what was above argued for other geochemical properties, this is best explained by a rock-dominated system. Averaged ⁸⁷Sr/⁸⁶Sr (bulk) ratios obtained from samples in the Feslegen section agree with Late Cretaceous sea water values (McArthur et al., 2001). The potentially stratigraphically older Akçakaya section yields averaged ⁸⁷Sr/⁸⁶Sr values, that are in better agreement with Mid-Late Cretaceous seawater ratios. The averaged ⁸⁷Sr/⁸⁶Sr ratio of Karaböğürtlen is intermediate in nature and invariant throughout the section.

509 Summing up, it is tempting to observe that reconstructed regional stratigraphic ages agree 510 with relative ages based on ⁸⁷Sr/⁸⁶Sr ratios and the McArthur *et al.* (2001) look-up table. Given that 511 these are metamorphic rock that have seen subduction and uplift accompanied with mineralogical 512 change from gypsum to aragonite and finally calcite, skepticism remains. Moreover, semi-restricted

Sedimentology

basins, that might have been the site of gypsum precipitation as studied here, may deviate in their seawater ⁸⁷Sr/⁸⁶Sr signature from the global ocean system (e.g. Roveri *et al.*, 2016). In the Messinian marginal basins, for instance, the progressive isolation from the Atlantic Ocean led to a progressive stepwise decrease in ⁸⁷Sr/⁸⁶Sr ratios, while the global ocean values remained constant (e.g. Roveri et al., 2016). Essentially, two end-member solutions for the Cretaceous Rosetta Marble deposits offer themselves: (i) either these rocks— despite very significant mineralogical alteration—preserved their near-pristine ⁸⁷Sr/⁸⁶Sr ratios to the present day in a closed system behavior; or (ii) a poorly understood diagenetic and metamorphic pathway resulted in diagenetic ⁸⁷Sr/⁸⁶Sr ratios that, due to the admixture of more or less radiogenic Sr sources, by coincidence, mimic Cretaceous seawater values. At present, the first interpretation seems more reasonable but implies processes that are not well investigated.

725 Arguments for a Mid-Late Cretaceous salinity crisis in the Middle Tethys and comparison with 726 Aptian evaporites in the Proto-Atlantic

Data shown here are considered evidence for the existence of what are now lost (subducted) basins in the middle Tethys experiencing a salinity crisis perhaps during the Albian. The wide occurrence (ca. 600 km in extension) of these meta-selenites all along the Ören-Afyon zone plead for an over regional, basin-wide event that affected significant portions of a middle Tethyan branch. The stratigraphic thickness of the Rosetta Marble unit extends 1500-2000 meters, an observation that points towards a long-lasting salinity crisis. The studied meta-selenites were deposited in a hemi-pelagic sequence, established by abundant tests of radiolarians in the most distal part and turbiditic intervals in the relatively proximal part of the basin. According to paleo-geographic reconstructions (Dercourt et al., 2000) the Tethyan basin was not entirely closed (rather bordered by continents and sills). Warm climatic conditions are reported for the Aptian-Albian times including a gradual warming into the Cenomanian (Frakes, 1999; Clarke & Jenkyns, 1999; Huber et al., 1995; Pucéat et al., 2003, 2007). In the upper Aptian, marginal salt deposits of 1 to 2 km stratigraphic thickness precipitated during the earliest opening stages of the Atlantic (Burkes, 1975; Chaboureau et al., 2012) and may, time wise, correlate with Anatolias selenite-pseudomorph units reported here. The Atlantic evaporite units are interpreted with intermittent spillovers into sub-sea-level grabens over a period of 1 to 5 Myr (Burke, 1975; Davison, 1999). Spillovers from different oceans over structural sills produced massive evaporite units including horizontal and vertical cycles at least for the evaporites south of the Equator. For the northern Aptian Atlantic evaporites, a hydrothermal origin is proposed by some authors (Hardie, 1990; Chaboureau et al., 2012). For the southern Atlantic salt, a desiccation model (Torsvic et al., 2009; Chaboureau et al., 2012) as well as deep water brines are proposed (Burke,

1975). Among these, the Atlantic evaporites are perhaps best comparable to the Rosetta Marble
meta-selenite case example and therefore, contribute to very significant seawater evaporation that
has a bearing on global-ocean element mass balances of carbon and sulphur (Wortman &
Chernyavsky, 2007).

752 Conclusions

This paper reports on Cretaceous metamorphosed selenite pseudomorphs from western Anatolia (causally termed 'Rosetta Marble') that stand out by their exceptionally well preserved morphological features and 'marine' geochemical signatures. The extraordinary preservation of delicate textures, typical for selenite, suggests a thermochemical rather than biological sulphate reduction.

These rocks have seen high-pressure/low-temperature, i.e. subduction-related metamorphism and peak P-T conditions are estimated as 1.0-1.2 GPa and 300-400°C. Depending on the locality studied, meta-selenites alternate with meta-radiolarites. In terms of their lateral extension (600 km) and stratigraphic thickness (1.5-2 km), the rock-forming meta-selenite deposits of Anatolia provide evidence for a lost Mid to Late Cretaceous salinity crisis in the middle Tethys and must be considered in global ocean element mass balance calculations for this time interval. The Rosetta Marble of Anatolia is, to the knowledge of the authors, the best preserved and largest (in lateral dimension, thickness, and rock-forming character) rock body formed predominantly of selenite pseudomorphs known to science so far.

Carbon and oxygen isotopic values of bulk selenite pseudomorphs fall in the range of reconstructed Cretaceous sea water values. Carbon and oxygen isotope values show systematic variances in meta-selenites and host matrix, indicating a phase-depended timing of mineral replacement. The Sr concentration of the calcitized meta-selenites is in agreement with pristine gypsum values and ⁸⁶Sr/⁸⁷Sr ratios that can be correlated to Cretaceous seawater values. These observations are contrasted by the meta-selenites complex diagenetic and metamorphic pathways (gypsum to aragonite to calcite) and perhaps best understood in the context of a fluid-lean, i.e. rock-dominated system controlled by aqueous diffusion and thin CO₂-H₂O fluid films at crystal boundaries that are essentially isolated from the bulk subduction aquifer.

Along a reconstructed proximal-to-distal transect, the most distal (hemi-pelagic) association
of meta-selenite-radiolarite couplets has, to the knowledge of the authors, no analogue in Recent or
Cenozoic marine basins. An alternation of a radiolarian bloom stage, caused by upwelling of basinal

Page 25 of 73

Sedimentology

1		
2 3	779	waters and an evaporite deposition stage induced by density cascading brines that formed during
4	780	arid conditions in the coastal area is proposed. The formation of massive gypsum deposit in a hemi-
5 6	781	pelagic environment may provide support to the deep-water-deep-basin model suggested for the
7	782	
8		deposition of the Mediterranean evaporites during the Messinian Salinity Crisis.
9 10	783	From a conceptual point of view, it is suggested that metaselenites are perhaps
11	784	underexplored archives in palaeoenvironmental research and merit considerably more attention.
12		
13 14	785	
15	786	Acknowledgements
16	700	Actiowicagements
17 18	787	We thank Marcel Horning for help with the thin section preparation and isotope sampling, Dr. Dieter
19	788	Buhl and Dr. Andrea Niedermayr for light stable and radiogenic isotope analysis at the Ruhr-
20		University Bochum and Philipp Balling for assistance in the field. This project is financed by DFG
21 22	789	
23	790	project OB80/50 IM444/14.
24	791	
25 26	792	
27	793	References
28	794	
29 30	795	Aquilano, D., Otálora, F., Pastero, L., and García-Ruiz, J. M. (2016). Three study cases of growth
31	796	morphology in minerals: Halite, calcite and gypsum. Prog. Cryst. Growth Charact. Mater., 62, 227-
32	797	251.
33 34	798	Ayllon-Quevedo, F., Souza-Egipsy, V., Sanz-Montero, M. E., and Rodríguez-Aranda, J. P. (2007).
34 35	799	Fluid inclusion analysis of twinned selenite gypsum beds from the Miocene of the Madrid basin
36	800	(Spain). Implication on dolomite bioformation. <i>Sedim. Geol.,</i> 201 , 212–230.
37	801	Bąbel, M. (1987) Giant gypsum intergrowths from the Middle Miocene evaporates of southern
38 39	802	Poland. <i>Acta Geol. Pol.</i> , 37 , 1–20.
40	803	Babel, M. (2005) Event stratigraphy of the Badenian selenite evaporites (Middle Miocene) of the
41	804 805	northern Carpathian Foredeep. Acta Geol. Pol., 55 , 9–29.
42 43	805	Bąbel, M. (2007) Depositional environments of a salina-type evaporite basin recorded in the Badenian gypsum facies in the northern Carpathian Foredeep. <i>Geological Society, London, Special</i>
44	807	Publications, 285, 107–142.
45	808	Berger, A., Ebert, A., Ramseyer, K., Gnos, E. and Decrouez, D. (2016) Dolomite microstructures
46 47	809	between 390° and 700°C: Indications for deformation mechanisms and grain size evolution. J. Struct.
47 48	810	Geol., 89 , 144–152.
49	811	Berner, R.A. (1971) Principles of chemical sedimentology.
50	812	Bernoulli, D., de Graciansky, P.C. and Monod, O. (1974) The extension of the Lycian Nappes (SW
51 52	813	Turkey) into the southeastern Aegean Islands. <i>Eclogae Geol. Helv</i> , 67 , 39–90.
53	814	Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R.,
54	815	Jørgensen, B.B., Witte, U. and Pfannkuche, O. (2000) A marine microbial consortium apparently
55 56	816	mediating anaerobic oxidation of methane. <i>Nature</i> , 407 , 623–626.
57		
58		
59		

Botz, R., Wehner, H., Schmitt, M., Worthington, T.J., Schmidt, M. and Stoffers, P. (2002) Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, New Zealand. Chem. Geol., 186, 235-248. Brinkmann, R. (1967) Die Südflanke des Menderes-Massivs bei Milas, Bodrum und Ören, Sci. Rep. Fac. Sci., Ege Univ., Izmir, Turkey. Brunn, J.H., de Graciansky, P.C., Gutnic, M., Juteau, T., Lefevre, R., Marcoux, J., Monod, O. and Poisson, A. (1970) Structures majeures et corrélations stratigraphiques dans les Taurides occidentales. Bulletin de la Societe geologique de France, 7, 515–556. Buick, R. and Dunlop, J.S.R. (1990) Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. *Sedimentology*, **37**, 247–277. Burke, K. (1975) Atlantic evaporites formed by evaporation of water spilled from Pacific, Tethyan, and Southern oceans. Geology, 3, 613-616. Candan, O., Çetinkaplan, M., Oberhänsli, R., Rimmelé, G. and Akal, C. (2005) Alpine high-P/low-T metamorphism of the Afyon Zone and implications for the metamorphic evolution of Western Anatolia, Turkey. Lithos, 84, 102–124. Celâl, A.M. and Yilmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241. Chaboureau, A.C., Donnadieu, Y., Sepulchre, P., Robin, C., Guillocheau, F. and Rohais, S. (2012) The Aptian evaporites of the South Atlantic: a climatic paradox? Climate of the Past, 8, 1047–1058. Christ, N., Immenhauser, A., Amour, F., Mutti, M., Tomas, S., Agar, S. M., Alway, R. and Kabiri, L. (2012). Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco). Sedimentology, 59, 249–290. Clari, P., Cavagna, S., Martire, L. and Hunziker, J. (2004) A Miocene mud volcano and its plumbing system: a Chaotic complex revisited. J. Sed. Res., 74, 662-676. Clari, P., Pierre, F.D., Martire, L. and Cavagna, S. (2009) The Cenozoic CH₄-derived carbonates of Monferrato (NW Italy): a solid evidence of fluid circulation in the sedimentary column. Marine Geology, 265, 167-184. Clarke, L.J. and Jenkyns, H.C. (1999) New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. *Geology*, **27**, 699–702. Claypool, G.E. and Kaplan, I.R. (1974) The origin and distribution of methane in marine sediments. In Natural gases in marine sediments, pp. 99–139, Springer, Boston, MA. Cody, R.D. and Cody, A.M. (1988) Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sed. Res., 58. Cohen, K.M., Finney, S.C., Gibbard, P.L. and Fan, J.X. (2013) The ICS international chronostratigraphic chart. Episodes, 36, 199–204 Collins AS and Robertson AH (1997) Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. *Geology*, **25**, 255–258. Davison, I. (1999) Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin. Geol. Soc., London, Special Publications, 153, 133–151. Debenedetti, A. (1982). The problem of the origin of the salt deposits in the Mediterranean and of their relations to the other salt occurrences in the Neogene formations of the contiguous regions. Marine Geology, 49, 91–114. Decker, K., Jungermann, K. and Thauer, R.K. (1970) Energy production in anaerobic organisms. Angewandte Chemie International Edition, 9, 138–158. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock-forming minerals (Vol. 696). Hong Kong: Longman Scientific & Technical.

Sedimentology

De Graciansky, P. (1972). Recherches géologiques dans le Taurus lycien occidental (Turquie du SW) (Doctoral dissertation, Thèse Univ. Paris-Sud (Orly), 896, 1–762. Dejonghe, L., Demaiffe, D. and Weis, D. (1998) Strontium isotope geochemistry of anhydrites and calcite pseudomorphs after anhydrite from Palaeozoic formations in Belgium. Chemical geology, 144, 63-71. Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M. and Violanti, D. (2011) The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): the Alba section revisited. Palaeogeogr. Palaeoclimatol. Palaeoecol., 310, 238-255. De Lange, G.J. and Krijgsman, W. (2010) Messinian salinity crisis: a novel unifying shallow gypsum/deep dolomite formation mechanism. Mar. Geol., 275, 273–277. Della Porta, G. (2015) Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geol. Soc., London, Special Publications, **418**, 17–68. Dercourt, J., Gaettani, M., Vrielynck, B., Barrier, E., Biju-Duval, B. and Brunet, M.F. (2000). Atlas peri-Tethys, paleogeographical maps, Commission for the Geologic Map of the World (CCGM/CGMW, 24 maps and explanatory notes). Des Marais, D.J. and Moore, J.G. (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth and Planetary Science Letters, 69, 43-57. Fernández-Díaz, L., Pina, C.M., Astilleros, J.M. and Sánchez-Pastor, N. (2009) The carbonatation of gypsum: Pathways and pseudomorph formation. Am. Mineral., 94, 1223–1234. Ferry, J.M., Wing, B.A., Penniston-Dorland, S.C. and Riumble, D.I. (2002) The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Redazzo aureoles, northern Italy, and a global review. Contrib. Mineral Petrol, 142, 679–699. Fleitmann, D., Matter, A., Pint, J.J. and Al-Shanti, M.A. (2004) The speleothem record of climate change in Saudi Arabia. Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia. Frakes, L.A. (1999) Estimating the global thermal state from Cretaceous sea surface and continental temperature data. Geol. Soc. America Spec. Publ., 49–58. Gaillard, C., Rio, M., Rolin, Y. and Roux, M. (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios, 451–465. García-Veigas, J., Cendón, D.I., Gibert, L., Lowenstein, T.K., and Artiaga, D. (2018). Geochemical indicators in Western Mediterranean Messinian evaporites: Implications for the salinity crisis. Mar. Geol., 403, 197-214. Geske, A., Zorlu, J., Richter, D.K., Buhl, D., Niedermayr, A. and Immenhauser, A. (2012) Impact of diagenesis and low grade metamorphosis on isotope (δ 26 Mg, δ 13 C, δ 18 O and 87 Sr/86 Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem. Geol., 332, 45–64. Gillet, P. and Goffé, B. (1988) On the significance of aragonite occurrences in the Western Alps. Contrib. Mineral. Petrol., 99, 70–81. Göncüoğlu, M.C. (2011) Geology of the Kütahya–Bolkardağ Belt. Bulletin of The Mineral Research and *Exploration*, **142**, 223–277. Göncüoğlu, M.C., Özcan, A., Turhan, N. and Işık, A. (1992) Stratigraphy of Kütahya region, ISGB-92 Field Guide Book, MTA, Ankara, pp 3–11. Greinert, J., Bohrmann, G. and Suess, E. (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. Natural gas hydrates: Occurrence, distribution, and detection, 99–113.

2		
3	909	Gutnic, M., Monod, O., Poisson, A. and Dumont, J.F. (1979) Géologie des Taurides occidentales
4	910	(Turquie), <i>Mém. Soc. Géol. France</i> , 137 , 1–112.
5	911	Güngör, T. and Erdoğan, B. (2001) Emplacement age and direction of the Lycian nappes in the Söke-
6 7	912	Selçuk region, western Turkey. Int. J. Earth Sci., 89, 874–882.
8	913	Hardie, L.A. (1990) The roles of rifting and hydrothermal $CaCl_2$ brines in the origin of potash
9	914	evaporites; an hypothesis. Am. J. Sci., 290 , 43–106.
10	915	Hohenegger, J., Ćorić, S. and Wagreich, M. (2014) Timing of the middle miocene Badenian stage of
11	916	the central Paratethys. <i>Geol. Carpath.</i> , 65 , 55–66.
12	917	Huber, B.T., Hodell, D.A. and Hamilton, C.P. (1995) Middle–Late Cretaceous climate of the southern
13	918	high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. <i>Geol. Soc. Am.</i>
14	919	Bull., 107 , 1164–1191.
15 16		
16 17	920	Hsü, K.J., Ryan, W.B.F. and Cita, M.B. (1973) Late Miocene desiccation of the Mediterranean.
18	921	Nature, 242 , 240–244.
19	922	Immenhauser, A., Holmden, C. and Patterson, W.P. (2008) Interpreting the carbon-isotope record of
20	923	ancient shallow epeiric seas: lessons from the recent. Dynamics of epeiric seas, 48, 135–174.
21	924	Immenhauser, A., Schöne, B.R., Hoffmann, R. and Niedermayr, A. (2016) Mollusc and brachiopod
22	925	skeletal hard parts: Intricate archives of their marine environment. Sedimentology, 63, 1–59.
23	926	Katz, A., Sass, E., Starinsky, A. and Holland, H.D. (1972) Strontium behavior in the aragonite-calcite
24	927	transformation: An experimental study at 40–98 C. Geochim. Cosmochim. Acta, 36, 481–496.
25 26	928	Knauth, L.P. and Beeunas, M.A. (1986) Isotope geochemistry of fluid inclusions in Permian halite
26 27	929	with implications for the isotopic history of ocean water and the origin of saline formation waters.
28	930	<i>Geochim. Cosmochim. Acta</i> , 50 , 419–433.
29		
30	931	Longinelli, A. (1979) Isotope geochemistry of some Messinian evaporates: paleoenvironmental
31	932	implications. <i>Palaeogeogr. Palaeoclimatol. Palaeoecol.</i> , 29 , 95–123.
32	933	Lugli, S., Manzi, V., Roveri, M. and Schreiber, B.C. (2010) The Primary Lower Gypsum in the
33	934	Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis.
34 35	935	Palaeogeogr. Palaeoclimatol. Palaeoecol., 297 , 83–99.
36	936	Lu, F.H., Meyers, W.J. and Schoonen, M.A. (2001) S and O (SO4) isotopes, simultaneous modeling,
37	937	and environmental significance of the Nijar Messinian gypsum, Spain. Geochim. Cosmochim. Acta, 65,
38	938	3081–3092.
39	939	Lu, F.H., Meyers, W.J. and Hanson, G.N. (2002) Trace elements and environmental significance of
40	940	Messinian gypsum deposits, the Nijar Basin, southeastern Spain. Chem. Geol., 192 , 149–161.
41	941	Machel, H.G. (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and
42	942	new insights. <i>Sed. Geol.</i> , 140 , 143–175.
43 44	943	Mattey, D.P., Carr, R.H., Wright, I.P. and Pillinger, C.T. (1984) Carbon isotopes in submarine basalts.
44	944	<i>Earth Planet. Sci. Lett.</i> , 70 , 196–206.
46		
47	945	McArthur, J.M., Howarth, R.J. and Bailey, T.R. (2001) Strontium isotope stratigraphy: LOWESS
48	946	version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for
49	947	deriving numerical age. <i>The Journal of Geology</i> , 109 , 155–170.
50	948	McBride, E.F., Honda, H., Abdel-Wahab, A.A., Dworkin, S. and McGilvery, T.A. (1992) Fabric and
51	949	origin of gypsum sand crystals, Laguna Madre, Texas.
52 53	950	Miall, A.D. (2013) Principles of sedimentary basin analysis. Springer Science & Business Media.
55 54	951	Natalicchio, M., Birgel, D., Dela Pierre, F., Martire, L., Clari, P.A., Spötl, C. and Peckmann, J. (2012)
55	952	Polyphasic carbonate precipitation in the shallow subsurface: insights from microbially-formed
56	953	authigenic carbonate beds in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy).
57	954	Palaeogeogr. Palaeoclimatol. Palaeoecol., 329 , 158–172.
58		
59		

2		
3	955	Natalicchio, M., Pierre, F.D., Lugli, S., Lowenstein, T.K., Feiner, S.J., Ferrando, S., Manzi, V., Roveri,
4	956	M. and Clari, P. (2014). Did Late Miocene (Messinian) gypsum precipitate from evaporated marine
5	957	brines? Insights from the Piedmont Basin (Italy). Geology, 42, 179–182.
6	958	Nigrini, C. and Caulet, J.P. (1992) Late Neogene radiolarian assemblages characteristic of Indo-Pacific
7	959	areas of upwelling. <i>Micropaleontology</i> , 139–164.
8 9	960	Oberhänsli, R., Partzsch, J., Candan, O. and Cetinkaplan, M. (2001) First occurrence of Fe-Mg-
9 10	961	· · · · · ·
11		carpholite documenting a high-pressure metamorphism in metasediments of the Lycian Nappes, SW
12	962	Turkey. Int. J. Earth Sci., 89 , 867–873.
13	963	Oberhänsli, R., Candan, O., Bousquet, R., Rimmelé, G., Okay, A. and Goff, J. (2010) Alpine high
14	964	pressure evolution of the eastern Bitlis complex, SE Turkey. Geol. Soc. London Spec. Publ., 340, 461-
15	965	483.
16	966	Okay, A., Satir, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. and Akyüz, S. (1996) Paleo-and
17	967	Neo-Tethyan events in northwestern Turkey: Geologic and geochronologic constraints. World Reg.,
18	968	420-441.
19	969	Oppo, D., Capozzi, R. and Picotti, V. (2013) A new model of the petroleum system in the Northern
20 21	970	Apennines, Italy. Mar. Petrol. Geol., 48, 57–76.
22	971	Ortí, F. (2011) Selenite facies in marine evaporites: A review. Quaternary carbonate and evaporite
23		
24	972	sedimentary facies and their ancient analogues: A Tribute to Douglas James Shearman, 431–463.
25	973	Ortí, F., Pueyo, J.J., Geisler, D. and Dulau, N. (1984) Evaporitic sedimentation in the coastal
26	974	salinas of Santa Pola (Alicante, Spain): Diputación Provincial de Barcelona, Instituto de
27	975	Investigaciones Geológicas, Revista, 38–39 , 169–220.
28	976	Özcan, A., Göncüoğlu, M.C., Turhan, N., Uysal, Ş., Şentürk, K. and Işik, A. (1988) Late Paleozoic
29	977	evolution of the Kütahya-Bolkardağ belt. <i>METU J. Pure Appl. Sci.,</i> 21 , 211–220
30 31	978	Özcan, A., Turhan, N. and Göncüöğlu, M.C. (1989) Kütahya-Çifteler-Bayat- I'hsanye yöresinin Temel
32	979	Jeologisi: Maden Tetkik ve Arama Genel Müdürlüğü Report no: 8974(8188), 142 s, Ankara
33	980	(unpublished).
34	981	Özer S, Sözbilir H, Özkar İ, Toker V and Sari B (2001) Stratigraphy of Upper Cretaceous-Palaeogene
35		
36	982	sequences in the southern and eastern Menderes Massif (western Turkey). Int. J. Earth Sci., 89, 852–
37	983	866.
38	984	Özkaya, İ. (1990) Origin of the allochthons in the Lycien Belt, Southwest Turkey. Tectonophysics, 177,
39	985	367–379.
40	986	Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L. and Reitner, J. (1999) Cold
41 42	987	seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern
42	988	Italy): microbially induced authigenic carbonates. Int. J. Earth Sci., 88, 60–75.
44	989	Peckmann, J., Goedert, J.L., Thiel, V., Michaelis, W. and Reitner, J. (2002) A comprehensive
45	990	approach to the study of methane-seep deposits from the Lincoln Creek Formation, western
46	991	Washington State, USA. Sedimentology, 49 , 855–873.
47	992	Peckmann, J., Goedert, J.L., Heinrichs, T., Hoefs, J. and Reitner, J. (2003) The Late Eocene'Whiskey
48		
49	993	Creek'methane-seep deposit (western Washington State). Facies, 48 , 241.
50	994	Peckmann, J. and Thiel, V. (2004) Carbon cycling at ancient methane–seeps. Chem. Geol., 205, 443–
51 52	995	467.
52 53	996	Pierre, C. and Rouchy, J.M. (1988) Carbonate replacements after sulfate evaporites in the middle
55	997	Miocene of Egypt. J. Sed. Res., 58.
55	998	Pierre, C., Rouchy, J.M. and Blanc-Valleron, M.M. (2002) Gas hydrate dissociation in the Lorca Basin
56	999	(SE Spain) during the Mediterranean Messinian salinity crisis. Sed. Geol., 147, 247–252.
57		· · · · · · · · ·
58		
59		

1		
2	1000	Pineau, F. and Javoy, M. (1983) Carbon isotopes and concentrations in mid-oceanic ridge basalts.
3 4	1000	<i>Earth Planet. Sci. Lett.</i> , 62 , 239–257.
5	1001	Pingitore, Jr N.E. (1976) Vadose and phreatic diagenesis: processes, products and their recognition in
6	1002	corals. J. Sed. Res., 46.
7	1005	Pingitore, Jr N.E. (1982) The role of diffusion during carbonate diagenesis. <i>J. Sed. Res.</i> , 52 .
8	1004	Poisson, A. (1977) Recherches géologiques dans les Taurides occidentales (Turquie). Universite de
9 10	1005	Paris-Sud (Centre D'orsay).
11	1000	Pourteau, A., Candan, O. and Oberhänsli, R. (2010) High-pressure metasediments in central Turkey:
12	1007	constraints on the Neotethyan closure history. <i>Tectonics</i> , 29 .
13	1008	Pourteau, A., Sudo, M., Candan, O., Lanari, P., Vidal, O. and Oberhänsli, R. (2013) Neotethys closure
14	1009	history of Anatolia: insights from 40Ar–39Ar geochronology and P–T estimation in high-pressure
15 16	1010	metasedimentary rocks. J. Metamorph. Geol., 31 , 585–606.
17	1011	
18		Pourteau, A., Bousquet, R., Vidal, O., Plunder, A., Duesterhoeft, E., Candan, O. and Oberhänsli, R.
19	1013	(2014) Multistage growth of Fe-Mg-carpholite and Fe-Mg-chloritoid, from field evidence to
20	1014	thermodynamic modelling. <i>Contrib. Mineral. Petrol.</i> , 168 , 1–25.
21 22	1015	Pourteau, A., Oberhänsli, R., Candan, O., Barrier, E. and Vrielynck, B. (2016) Neotethyan closure
22	1016	history of western Anatolia: a geodynamic discussion. <i>Int. J. Earth Sci.</i> , 105 , 203–224.
24	1017	Pucéat, E., Lécuyer, C., Sheppard, S.M., Dromart, G., Reboulet, S. and Grandjean, P. (2003) Thermal
25	1018	evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish
26	1019	tooth enamels. Paleoceanography, 18.
27 28	1020	Pucéat, E., Lécuyer, C., Donnadieu, Y., Naveau, P., Cappetta, H., Ramstein, G., Huber, B.T. and
28 29	1021	Kriwet, J. (2007) Fish tooth δ 180 revising Late Cretaceous meridional upper ocean water
30	1022	temperature gradients. <i>Geology</i> , 35 , 107–110.
31	1023	Rimmelé, G., Jolivet, L., Oberhänsli, R. and Goffé, B. (2003) Deformation history of the high-pressure
32	1024	Lycian Nappes and implications for tectonic evolution of SW Turkey. <i>Tectonics</i> , 22 .
33 34	1025	Rimmelé, G., Parra, T., Goffé, B., Oberhänsli, R., Jolivet, L. and Candan, O. (2005) Exhumation paths
35	1026	of high-pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes
36	1027	Massif (SW Turkey): a multi-equilibrium approach. J. Petrol., 46, 641–669.
37	1028	Rimmelé, G., Oberhänsli, R., Candan, O., Goffé, B. and Jolivet, L. (2006) The wide distribution of HP-
38	1029	LT rocks in the Lycian Belt (Western Turkey): implications for accretionary wedge geometry. Geol.
39 40	1030	Soc. London Spec. Publ., 260 , 447–466.
40 41	1031	Ritter, A.C., Kluge, T., Berndt, J., Richter, D.K., John, C.M., Bodin, S. and Immenhauser, A. (2015)
42	1032	Application of redox sensitive proxies and carbonate clumped isotopes to Mesozoic and Palaeozoic
43	1033	radiaxial fibrous calcite cements. Chem. Geol., 417, 306–321.
44	1034	Roberts, H.H. and Aharon, P. (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf of
45 46	1035	Mexico continental slope: a review of submersible investigations. <i>Geo-Marine Lett.</i> , 14 , 135–148.
46 47	1036	Robertson, A.H. and Ustaömer, T. (2009) Upper Palaeozoic subduction/accretion processes in the
48	1037	closure of Palaeotethys: evidence from the Chios Melange (E Greece), the Karaburun Melange (W
49	1038	Turkey) and the Teke Dere Unit (SW Turkey). Sed. Geol., 220, 29–59.
50	1039	Rosell, L., Ortí, F., Kasprzyk, A., Playa, E. and Peryt, T.M. (1998) Strontium geochemistry of Miocene
51 52	1040	primary gypsum: Messinian of southeastern Spain and Sicily and Badenian of Poland. J. Sed. Res., 68.
52 53	1041	Rouchy, J.M., Taberner, C., Blanc-Valleron, M-M., Sprovieri, R., Russell, M., Pierre, C., Di Stefano,
55	1042	E., Pueyo, J.J., Caruso, A., Dinarès-Turell, J., Gomis-Coll, E., Wolff, G.A., Cespuglio, G., Ditchfield, P.,
55	1043	Pestrea, S., Combourieu-Nebout, N., Santisteban, C. and Grimalt, J.O. (1998) Sedimentary and
56	1044	diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the
57 59	1045	Messinian. Sed. Geol., 121, 23–55.
58 59		
60		

Page 31 of 73

Sedimentology

2		
3	1046	Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F.M., Gennari, R., Lugli, S. and Schreiber, B.C. (2014)
4	1047	Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity
5	1048	crisis. <i>Am. J. Sci.</i> , 314 , 751–784.
6 7	1049	Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., Riva, A., Rossi, M.E. and
8	1050	Sackett, W.M. (1978) Carbon and hydrogen isotope effects during the thermocatalytic production of
9	1051	hydrocarbons in laboratory simulation experiments. Geochim. Cosmochim. Acta., 42, 571–580.
10	1052	Scheffler, F., Oberhänsli, R., Pourteau, A., Candan, O. and Di Lucia, M. (2014) The Rosetta Marbles
11	1053	from Fesleğen, Ören Unit, SW Anatolia. <i>Int. J. Earth Sci.</i> , 103 , 485.
12	1054	Scheffler, F., Oberhänsli, R., Pourteau, A., Immenhauser, A. and Candan, O. (2016) Sedimentologic
13	1055	to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble
14 15	1056	of Anatolia. <i>Int. J. Earth Sci.</i> , 105 , 225–246.
16	1057	Schmalz, R.F. (1969) Deep-water evaporite deposition: a genetic model. AAPG Bulletin, 53, 798–823.
17	1057	Schneider, J., Bakker, R.J., Bechstädt, T. and Littke, R. (2008) Fluid evolution during burial diagenesis
18		
19	1059	and subsequent orogenetic uplift: The La Vid Group (Cantabrian zone, northern Spain). J. Sed. Res.,
20	1060	78 , 282–300.
21	1061	Staplin, F.L. (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence.
22 23	1062	Bull. Can. Petrol. Geol., 17 , 47–66.
23 24	1063	Swart, P.K. (2015) The geochemistry of carbonate diagenesis: The past, present and future.
25	1064	Sedimentology, 62 , 1233–1304.
26	1065	Swennen, R., Viaene, W. and Cornelissen, C. (1990) Petrography and geochemistry of the Belle
27	1066	Roche breccia (lower Visean, Belgium): evidence for brecciation by evaporite dissolution.
28	1067	Sedimentology, 37 , 859–878.
29	1068	Şengör, A.M.C. (1990) Plate-tectonics and orogenic research after 25 years—a tethyan perspective.
30 31	1069	Earth Sci, Rev., 27 , 1–201.
32	1070	Tassi, F., Bonini, M., Montegrossi, G., Capecchiacci, F., Capaccioni, B. and Vaselli, O. (2012) Origin of
33	1071	light hydrocarbons in gases from mud volcanoes and CH 4-rich emissions. Chem. Geol., 294, 113–126.
34	1072	van Hinsbergen, D.J., Dekkers, M.J., Bozkurt, E. and Koopman, M. (2010) Exhumation with a twist:
35	1073	Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western
36	1074	Turkey. <i>Tectonics</i> , 29 .
37 38	1075	Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O.G., Carden, G.A., Jasper, T., Korte, C.,
30 39	1075	Strauss, H. and Ala, D. (1997) Oxygen isotope evolution of Phanerozoic seawater. <i>Palaeogeogr.</i>
40	1070	Palaeoclimatol. Palaeoecol., 132 , 159–172.
41		
42	1078	Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth,
43	1079	S., Godderis, Y. and Jasper, T. (1999) 87Sr/86Sr, δ 13C and δ 18O evolution of Phanerozoic seawater.
44	1080	Chem. Geol., 161 , 59–88.
45 46	1081	Waite, A.J. and Swart, P.K. (2015) The inversion of aragonite to calcite during the sampling of
40 47	1082	skeletal archives: Implications for proxy interpretation. Rapid Communications in Mass Spectrometry,
48	1083	29 , 955–964.
49	1084	Warren, J.K., Havholm, K.G., Rosen, M.R. and Parsley, M.J. (1990) Evolution of gypsum karst in the
50	1085	Kirschberg Evaporite Member near Fredericksburg, Texas. J. Sed. Res., 60.
51	1086	Warren, J.K. (1999) Evaporites: their evolution and economics. Wiley-Blackwell.
52	1087	Warren, J.K. (2016) Evaporites: A Geological Compendium. Springer.
53 54	1088	Whiticar, M.J., Faber, E. and Schoell, M. (1986). Biogenic methane formation in marine and
54 55	1089	freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence. Geochim.
56	1090	Cosmochim. Acta, 50 , 693–709.
57		
58		
59		

2		
3	1091	Whiticar, M.J. (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation
4	1092	of methane. <i>Chem. Geol.</i> , 161 , 291–314.
5	1093	Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, rhythms, and aberrations
6	1094	in global climate 65 Ma to present. <i>Science, 292,</i> 686-693.
7	1095	
8 9	1096	
9 10		
10	1097	
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25 26		
26 27		
27		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41 42		
42		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55 56		
50 57		
58		
59		

1098 FIGURE CAPTIONS

 Fig. 1. Tectonic map of Turkey in an UTM36N coordinate system (based on Okay 2008, Pourteau *et al.*, 2010, Oberhänsli *et al.*, 2010, Çetinkaplan *et al.*, 2014, Scheffler *et al.*, 2016). Green stars represent Cretaceous Rosetta Marble localities, which are restricted to the Ören–Afyon Zone. The study area is outlined by a whitish box.

Fig. 2. Simplified pressure-temperature (P-T) diagram (after Scheffler et al., 2016) showing the three-stage evolution of the Rosetta Marble formation during subduction and exhumation. Conditions for thermochemical sulphate reduction (TSR) are located in the aragonite and gypsum stability field. A combination of high-Si phengite-quartz-water thermobarometric modeling from white mica within the Rosetta Marble of Feslegen (Dubacq et al., 2010; Scheffler et al., 2016), P-T calculations of adjacent units based on multi-equilibrium calculationns (Rimmelé et al., 2005) and calculated P-T conditions of the western and eastern Afyon Zone (Pourteau et al., 2014) determine the maximum P-T conditions (high pressure (HP) metamorphism). The retrograde path is initiated by the crossing of the aragonite–calcite transition line (Hacker *et al.*, 2005) at >200°C to account for the overall lack of preserved aragonite. Gypsum-bassanite-anhydrite reaction curves are from Yamamoto & Kennedy (1969). See supplementary Fig. B for background data.

Fig. 3. Three different facies types according to increasing distal position in the paleo-basin: (A) Type-locality Feslegen. Selenite pseudomorph-containing marble, referred to as "Rosetta Marble", is interbedded with meta-calc-arenitic (quartzite) units and aligned chert nodules. The upper layer boundary of the meta-arenitic beds is marked by an erosive surface. (B) Type–locality Akçakaya. Rosetta Marble thickly alternates with nodular and ribbon bedded chert and form a typical pelagic-appearing sequence in m-scale. (C) Type–locality Karaböğürtlen. Thin-bedded (a few cm's) Rosetta Marble layers interbedded with radiolarian-rich chert and meta-wackestone. Scale: field book, 20 cm long; hammer length: 56.5 cm, finger width: 1.7 cm.

Fig. 4. Feslegen stratigraphic section. The lower part of the section is characterized by layered arenitic intervals with erosive surfaces. Upsection, meta-chert proportion increases. The upper part of the section consists of a regular selenite-pseudomorph bearing marble-chert alternation. On most exposed bedding planes dm- to m-wide radial textures can be observed. Perpendicular to the bedding, fan textures are restricted to certain levels.

Fig. 5. Karabögürtlen section and corresponding isotope data set. (A) Sampled section. The uppermost 11 meters represent the red pelagic part of the section. The lower part of the section is characterized by yellowish thickly bedded selenite-pseudomorph containing marble-chert alternations. (B) Detailed stratigraphic section of the uppermost 11 meters showing regular selenite pseudomorph-containing marble-chert couplets. (C) Close up of the uppermost 11 meters of the studied section. (D) Close up of the yellowish part of the outcrop. (E) Chemostratigraphy of isotope data. The uppermost 11 meters clearly differ in their δ^{13} C, δ^{18} O and 87 Sr/ 86 Sr isotope values from the lower part of the section. Maximal errors for oxygen-, carbon- and Sr-isotopes are smaller than the chosen symbol-size.

Fig. 6. Growth orientations of selenite pseudomorphs. Arrows point to stratigraphic upwards. (A)
 Dome-shaped fan growing on top of a previous fan. (B) Subparallel to leaning crystals. (C)

Downwards growing crystal fan with nucleation point at the bottom of an overlaying chert layer. (D)
Up- and downward oriented fans with chert nodule as central nucleation point. (E) Radiating rods
radiating from an impurity-rich central surface. Growth is confined by upper and lower chert layers.
(F) Radiating rods initiating from a central point. Hammer length is 56.5 cm. Fesleğen surroundings,
Ören Unit.

Fig. 7. Large scale horizontal/in-plane meta-selenite textures at bedding planes. (A) Radial
 appearance of selenite-pseudomorph fans. (B) Complex interactions of textures due to space
 competitions. Hammer length is 56.5 cm. Feslegen surroundings, Ören Unit.

Fig. 8. Crystal habits and morphotypes of selenite-pseudomorphs. (A) Rod-like crystal habits in grey marble matrix. Rods consist of fibrous calcites. Note the pushed forward brown material on top of the rods. (B) Swallowtail stacked crystals. (C) Fishbone-like radiating crystals in a quartzitic matrix. (D) Christmas-tree shaped selenite pseudomorphs approaching dendritic habits. (E) Skeletal texture (bunches of sabre-like crystals). (F) Crystal fronts. Hammer length is 56.5 cm, hammer shaft is 3 cm wide; coin diameter is ~2.6 cm; pen length is 16 cm.

Fig. 9. Selenite-pseudomorphs and meta-chert in micro-scale. (A) Elongated crystal habits outlined by fine grained marl. Feslegen, transmitted light. (B) Elongated crystal shapes. The marly material here mainly consists of microcrystalline quartz and dolomite rhombs. Karaböğürtlen (lower section), crossed polarizers. (C) Elongated crystals that grow from different directions. Free space is filled with smaller crystals. Karaböğürtlen (upper section), transmitted light. (D) Elongated crystal habits in the upper part of the picture and pseudo-hexagonal basal sections (c-axis towards viewer) in the central part. Karaböğürtlen (upper section), transmitted light. (E) Transition between selenite-pseudomorphs and meta-chert layers is characterized by an accumulation of partly zoned dolomite rhombs of different sizes. Feslegen, crossed polarizers. (F) Sharp transition between a selenite-pseudomorph and a meta-chert layer. Chert layers comprise less dolomites towards the layer centers. Karaböğürtlen, transmitted light.

Fig. 10. (A) Calcite fibres (pseudomorph after aragonite) in a siliceous-carbonaceous matrix. Fesleğen, crossed polarizers. (B) Calcified radiolarian relics in a meta-wackestone. Karaböğürtlen, transmitted light. (C) Chert containing silicified radiolarian relics and zoned dolomite rhombs. Karaböğürtlen, transmitted light. (D) Transition between a meta-wackestone and a chert layer. Both contain equally sized radiolarian relics. Karaböğürtlen, transmitted light.

Fig. 11. Cathodoluminescence images. (A, B) Despite recrystallization zonation of gypsum habits are
preserved. (C, D) Variable growth directions of the meta-selenites. (E) Primary and altered areas are
only distinguishable. (F) Selenite crystal habits replaced by a single calcite crystal (no aragonite fibers
are preserved here). Samples are from Karaböğürtlen.

Fig. 12. δ^{13} C– δ^{18} O cross plot. Sample sites are shape coded, stratigraphic level within sections is color coded. Almost all samples plot in the 69% confident field of mean mid-Cretaceous sea water. Most of the samples plot within the mean Cretaceous sea water reconstruction of Veizer (1999). Feslegen and Karaböğürtlen sections show clusters according to the stratigraphic position of the samples. Dark red and light red circles are sampled in the upper part of the Karabögürtlen section, orange circles in the lower part. Medium green triangles belong to samples coming from the upper part of the

Feslegen section, light green triangles to the lower part. Dark green triangles refer to samples taken close to the Feslegen section, but not within.

Fig. 13. δ^{13} C data of all three sections (corresponding to different facies) in comparison. The sections are not temporally comparable to each other. The stratigraphic younger parts of the sections differ in their δ^{13} C values significantly. The stratigraphic older parts of the sections approximate each other. Color coding within sections refers to the stratigraphic position of sampling and is consistent with Fig. 12.

Fig. 14. Carbon isotope mapping of a Rosetta Marble rock slab. Note the clustering according to the sampled material.

Fig. 15. Depositional environmental model. (A) Gypsum growth mode. Regular spillovers of cascading brines serve as ion-supplies to the deeper and more distal parts. Gypsum growth takes place in restricted ponds and size of selenites correlate to the distance to the shore line. (B) Turbidite/Radiolarite deposition mode. Humid climate prevents wide evaporation. Upwelling water masses on shelf area serve for nutrient-rich water surface conditions that promote radiolarian bloom. Turbidites and radiolarites form at that stage. (C) Simplified stratigraphic sections corresponding from proximal to distal localities in the paleo basin.

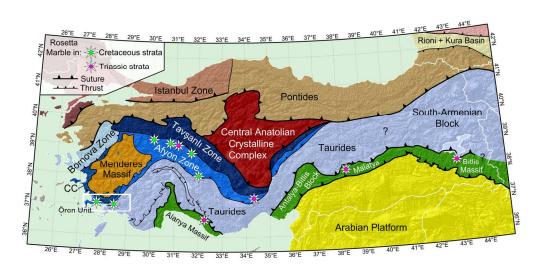
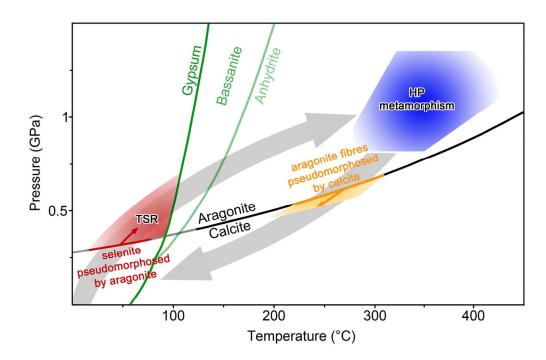

Fig. 16. Observed growth geometries are documented and classified in the first column. Based on that, the primary growing conditions were reconstructed in the second column. (A) Upwards oriented fans grow at the sea floor (t_0-t_1) and can be restricted by the pycnocline level (t_1) . An alternation of fan-growing layers with Si-rich layers is causing the final appearance of the rock (t_3) (B) Downward oriented fans grow displacive into the soft substratum (t_0), which can be either Si-rich or Si-depleted. (C) A combination of A and B conditions is able to produce up- and downward oriented fans that are spherical in shape. (D) The most common horizontal radial crystals are either explained by cutting effects (1. Scenario), by restricted growth due to a shallow pycnocline level (2. Scenario), or, a combination of both scenarios.

Fig. 17. Textural comparison of Neogene selenitic gypsum deposits from the Mediterranean and the Paratethys basins, left column, with Cretaceous selenite pseudomorphs from Anatolia, right column. (A) Climate-driven alternations of gypsum and shale layers. Messinian, Sicily, Italy. (B) Regular selenite-pseudomorph-marble – meta-chert couplets. (C) Giant selenite intergrowth. Badenian, near Kraków, Poland. (D) Selenite pseudomorphs resembling giant intergrowth. (E) Stacked swallow-tail crystals (columnar symmetrical twins). Messinian, Piedmont, Italy. (F) Gypsum pseudomorphs resembling swallowtail twins. Hammer shaft width is 3 cm.

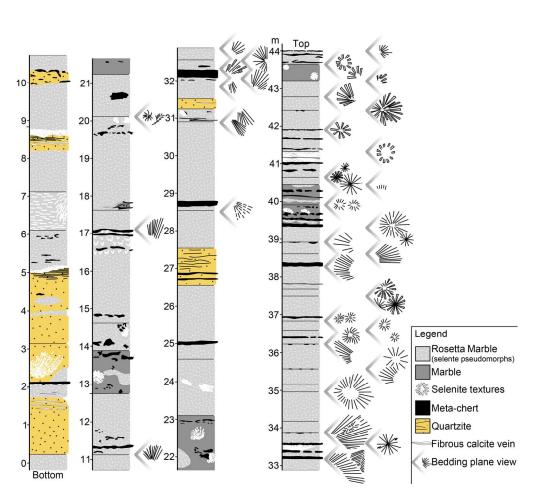
Fig. 18. Textural comparison of Neogene selenitic gypsum deposits, left column, with Cretaceous selenite pseudomorphs from Anatolia, right column. (A) Radiating gypsum crystals around tree trunks. Badenian, near Kraków, Poland. (B) Radiating selenite-pseudomorphs on a bedding plane. (C) Radiating selenite crystals perpendicular (up- and downward) to the bedding plane. Messinian, Sicily, Italy. (D) Radiating selenite pseudomorph crystals perpendicular (up- and downward) to the bedding plane. Picture is tilted, see original in Fig. 5. (E) Layerd gypsum with in-situ brecciation. Badenian, near Kraków, Poland. (F) Layerd marble (meta-gypsum) with in-situ brecciation.


Sedimentology

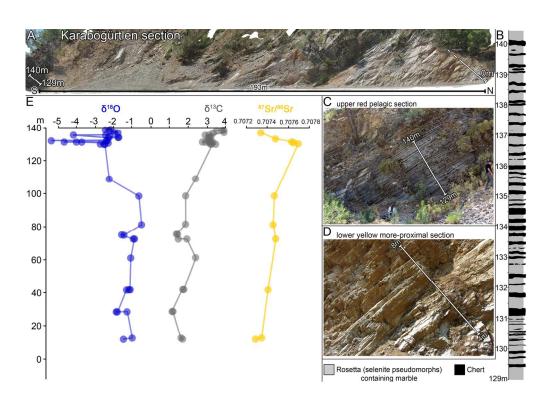
1		
2	1218	Fig. 19. Textural comparison of Neogene selenitic gypsum deposits with Cretaceous selenite
3		
4 5	1219	pseudomorphs from Anatolia. (A) Large sabre-like selenite crystal in a gypsum matrix. Bedenian,
6	1220	Kraków, Poland. (B) Large sabre-like selenite pseudomorh crystal in a marble matrix. (C) Curved sabre
7	1221	selenite crystals in a gypsum matrix. Bedenian, Kraków, Poland. (D) Curved sabre-like selenite
8	1222	psuedomroph crystal in a marble matrix. Note the calcite fibres that are pseudomorphic after
9	1223	aragonite. (E) Growing surfaces within a twinned selenite crystal. Arrow indicates growing direction.
10	1224	Messinian, Piedmont, Italy. (F) Growing surfaces of selenite pseudomorph crystals. (G) Re-entrant
11	1225	angle (dark gray portion) and twinning plane of a swallow-tail selenite crystal. Bedenian, Kraków,
12	1226	Poland. (H) Dark grey line (arrow) within swallowtail selenite pseudomorph crystals as relict of an
13 14	1227	impurity-rich twin plane.
15		
16	1228	
17		
18	1229	TABLE HEADINGS
19	1230	
20		
21	1231	Table 1
22 23		
23	1232	Oxygen and Carbon isotope data. An outlier from Akçakaya was excluded: $\delta^{13}C = -0.64\%$ and $\delta^{18}O =$
25		
26	1233	-6.65‰. An outlier from "All samples Feslegen" was excluded, probably a secondary vein was
27	1234	sampled: $\delta^{13}C = -0.75\%$ and $\delta^{18}O = -3.01\%$.
28		
29	1235	
30 31	1236	Table 2
32		
33	1237	Strontium isotope data.
34	1237	
35	1220	
36	1238	
37		
38 39		
40		
41		
42		
43		
44		
45		
46 47		
48		
49		
50		
51		
52		
53		
54 55		
56		
57		
58		
59		

Tectonic map of Turkey in an UTM36N coordinate system (based on Okay 2008, Pourteau et al., 2010, Oberhänsli et al., 2010, Çetinkaplan et al., 2014, Scheffler et al., 2016). Green stars represent Cretaceous Rosetta Marble localities, which are restricted to the Ören–Afyon Zone. The study area is outlined by a whitish box.

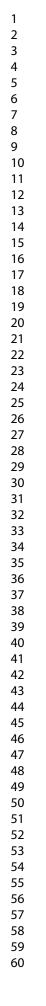
170x81mm (300 x 300 DPI)

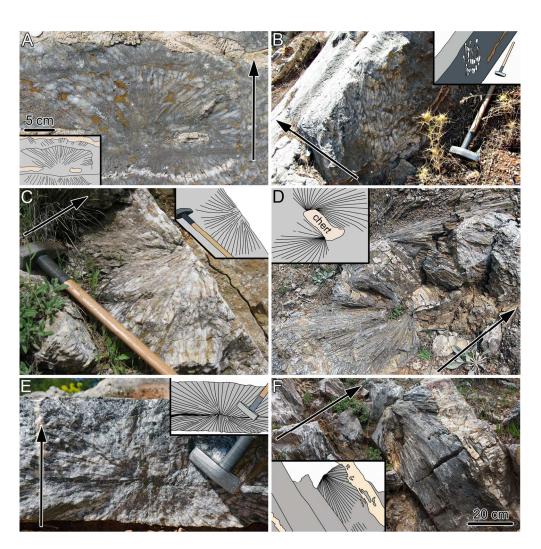

Simplified pressure-temperature (P–T) diagram (after Scheffler et al., 2016) showing the three-stage evolution of the Rosetta Marble formation during subduction and exhumation. Conditions for thermochemical sulphate reduction (TSR) are located in the aragonite and gypsum stability field. A combination of high-Si phengite-quartz-water thermobarometric modeling from white mica within the Rosetta Marble of Fesleğen (Dubacq et al., 2010; Scheffler et al., 2016), P–T calculations of adjacent units based on multi-equilibrium calculationns (Rimmelé et al., 2005) and calculated P–T conditions of the western and eastern Afyon Zone (Pourteau et al., 2014) determine the maximum P–T conditions (high pressure (HP) metamorphism). The retrograde path is initiated by the crossing of the aragonite–calcite transition line (Hacker et al., 2005) at >200°C to account for the overall lack of preserved aragonite. Gypsum–bassanite–anhydrite reaction curves are from Yamamoto & Kennedy (1969). See supplementary Fig. B for background data.

119x78mm (300 x 300 DPI)

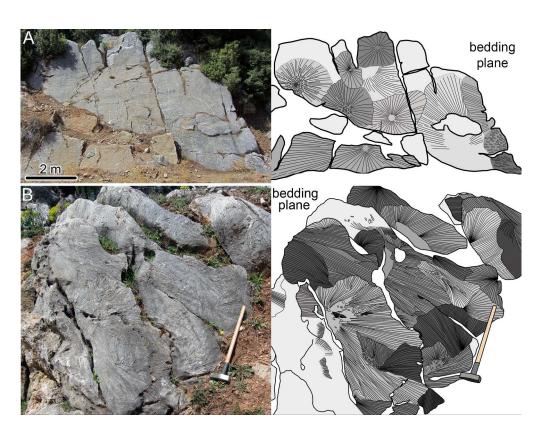

Three different facies types according to increasing distal position in the paleo-basin: (A) Type–locality Fesleğen. Selenite pseudomorph–containing marble, referred to as "Rosetta Marble", is interbedded with meta-calc-arenitic (quartzite) units and aligned chert nodules. The upper layer boundary of the metaarenitic beds is marked by an erosive surface. (B) Type–locality Akçakaya. Rosetta Marble thickly alternates with nodular and ribbon bedded chert and form a typical pelagic-appearing sequence in m-scale. (C) Type– locality Karaböğürtlen. Thin-bedded (a few cm's) Rosetta Marble layers interbedded with radiolarian-rich chert and meta-wackestone. Scale: field book, 20 cm long; hammer length: 56.5 cm, finger width: 1.7 cm.

170x37mm (300 x 300 DPI)


Fesleğen stratigraphic section. The lower part of the section is characterized by layered arenitic intervals with erosive surfaces. Upsection, meta-chert proportion increases. The upper part of the section consists of a regular selenite-pseudomorph bearing marble-chert alternation. On most exposed bedding planes dm- to m-wide radial textures can be observed. Perpendicular to the bedding, fan textures are restricted to certain levels.

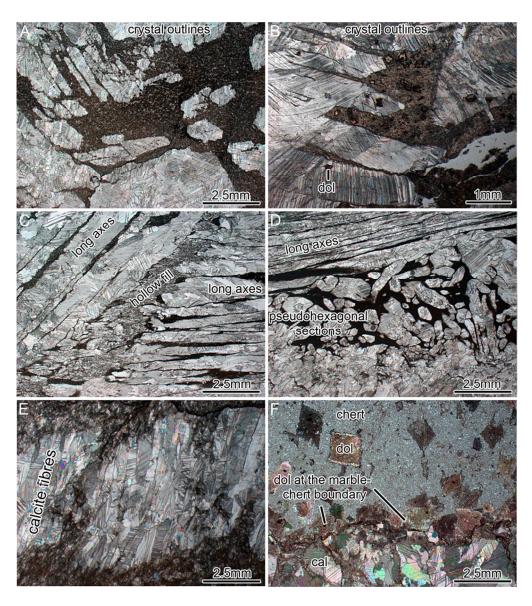

170x153mm (300 x 300 DPI)

Karaböğürtlen section and corresponding isotope data set. (A) Sampled section. The uppermost 11 meters represent the red pelagic part of the section. The lower part of the section is characterized by yellowish thickly bedded selenite-pseudomorph containing marble-chert alternations. (B) Detailed stratigraphic section of the uppermost 11 meters showing regular selenite pseudomorph-containing marble-chert couplets. (C) Close up of the uppermost 11 meters of the studied section. (D) Close up of the yellowish part of the outcrop. (E) Chemostratigraphy of isotope data. The uppermost 11 meters clearly differ in their δ13C, δ18O and 87Sr/86Sr isotope values from the lower part of the section. Maximal errors for oxygen-, carbon-and Sr-isotopes are smaller than the chosen symbol-size.

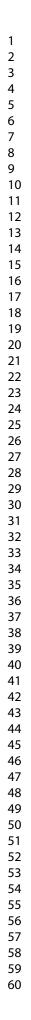

170x119mm (300 x 300 DPI)

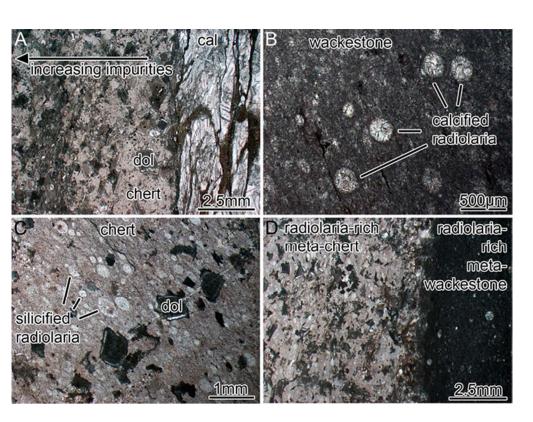
Growth orientations of selenite pseudomorphs. Arrows point to stratigraphic upwards. (A) Dome-shaped fan growing on top of a previous fan. (B) Subparallel to leaning crystals. (C) Downwards growing crystal fan with nucleation point at the bottom of an overlaying chert layer. (D) Up- and downward oriented fans with chert nodule as central nucleation point. (E) Radiating rods radiating from an impurity-rich central surface. Growth is confined by upper and lower chert layers. (F) Radiating rods initiating from a central point. Hammer length is 56.5 cm. Fesleğen surroundings, Ören Unit.

170x169mm (300 x 300 DPI)

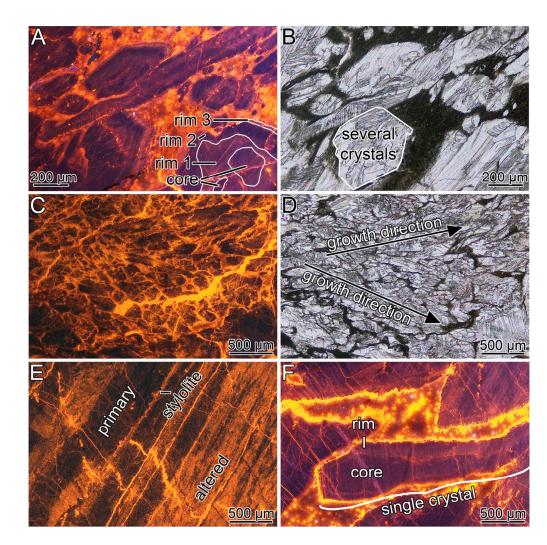

Large scale horizontal/in-plane meta-selenite textures at bedding planes. (A) Radial appearance of selenitepseudomorph fans. (B) Complex interactions of textures due to space competitions. Hammer length is 56.5 cm. Fesleğen surroundings, Ören Unit.

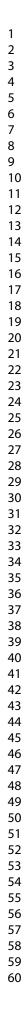
245x188mm (300 x 300 DPI)

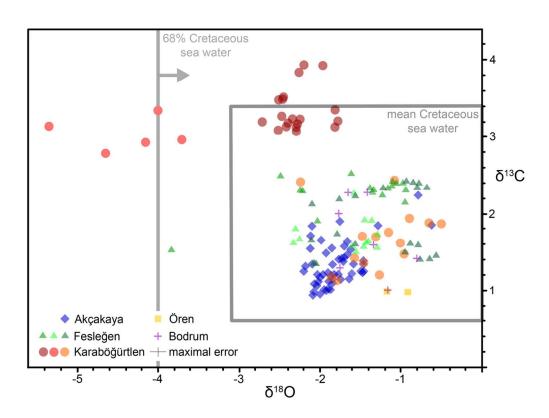

Crystal habits and morphotypes of selenite-pseudomorphs. (A) Rod-like crystal habits in grey marble matrix. Rods consist of fibrous calcites. Note the pushed forward brown material on top of the rods. (B) Swallowtail stacked crystals. (C) Fishbone-like radiating crystals in a quartzitic matrix. (D) Christmas-tree shaped selenite pseudomorphs approaching dendritic habits. (E) Skeletal texture (bunches of sabre-like crystals). (F) Crystal fronts. Hammer length is 56.5 cm, hammer shaft is 3 cm wide; coin diameter is ~2.6 cm; pen length is 16 cm.


170x158mm (300 x 300 DPI)

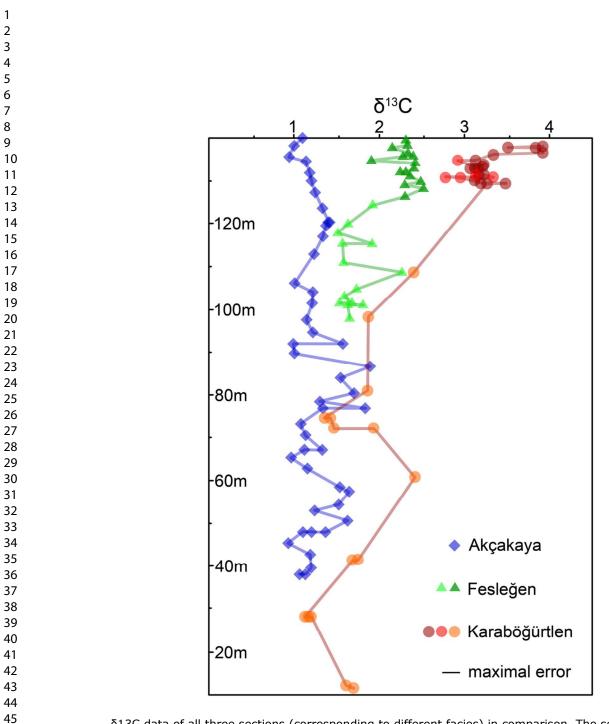
Selenite-pseudomorphs and meta-chert in micro-scale. (A) Elongated crystal habits outlined by fine grained marl. Fesleğen, transmitted light. (B) Elongated crystal shapes. The marly material here mainly consists of microcrystalline quartz and dolomite rhombs. Karaböğürtlen (lower section), crossed polarizers. (C) Elongated crystals that grow from different directions. Free space is filled with smaller crystals. Karaböğürtlen (upper section), transmitted light. (D) Elongated crystal habits in the upper part of the picture and pseudo-hexagonal basal sections (c-axis towards viewer) in the central part. Karaböğürtlen (upper section), transmitted light. (E) Transition between selenite-pseudomorphs and meta-chert layers is characterized by an accumulation of partly zoned dolomite rhombs of different sizes. Fesleğen, crossed polarizers. (F) Sharp transition between a selenite-pseudomorph and a meta-chert layer. Chert layers comprise less dolomites towards the layer centers. Karaböğürtlen, transmitted light.


170x191mm (150 x 150 DPI)

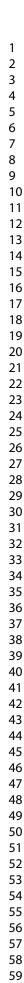

(A) Calcite fibres (pseudomorph after aragonite) in a siliceous-carbonaceous matrix. Fesleğen, crossed polarizers. (B) Calcified radiolarian relics in a meta-wackestone. Karaböğürtlen, transmitted light. (C) Chert containing silicified radiolarian relics and zoned dolomite rhombs. Karaböğürtlen, transmitted light. (D) Transition between a meta-wackestone and a chert layer. Both contain equally sized radiolarian relics. Karaböğürtlen, transmitted light. (D)


120x89mm (150 x 150 DPI)

Cathodoluminescence images. (A, B) Despite recrystallization zonation of gypsum habits are preserved. (C, D) Variable growth directions of the meta-selenites. (E) Primary and altered areas are only distinguishable. (F) Selenite crystal habits replaced by a single calcite crystal (no aragonite fibers are preserved here). Samples are from Karaböğürtlen.


119x119mm (300 x 300 DPI)

 δ 13C- δ 18O cross plot. Sample sites are shape coded, stratigraphic level within sections is color coded. Almost all samples plot in the 69% confident field of mean mid-Cretaceous sea water. Most of the samples plot within the mean Cretaceous sea water reconstruction of Veizer (1999). Fesleğen and Karaböğürtlen sections show clusters according to the stratigraphic position of the samples. Dark red and light red circles are sampled in the upper part of the Karaböğürtlen section, orange circles in the lower part. Medium green triangles belong to samples coming from the upper part of the Fesleğen section, light green triangles to the lower part. Dark green triangles refer to samples taken close to the Fesleğen section, but not within.


119x89mm (300 x 300 DPI)

 δ 13C data of all three sections (corresponding to different facies) in comparison. The sections are not temporally comparable to each other. The stratigraphic younger parts of the sections differ in their δ 13C values significantly. The stratigraphic older parts of the sections approximate each other. Color coding within sections refers to the stratigraphic position of sampling and is consistent with Fig. 12.

80x124mm (300 x 300 DPI)

5 cm

60

А

 $\delta^{13}C$

В

-2.5

-2.0

2

-1.5 -1.0 δ¹⁸Ο

-2.5 -2.3

2.1 1.9

1.7

1.3

1.1

-0.9

-0.7

0.5

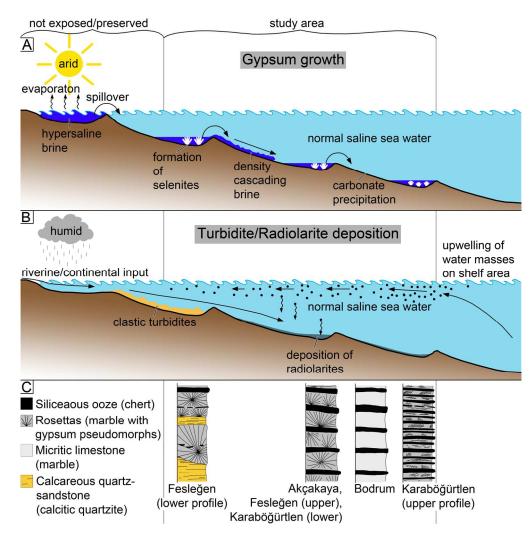
-0.5

δ¹³C 1.5

> Matrix

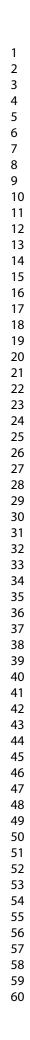
0

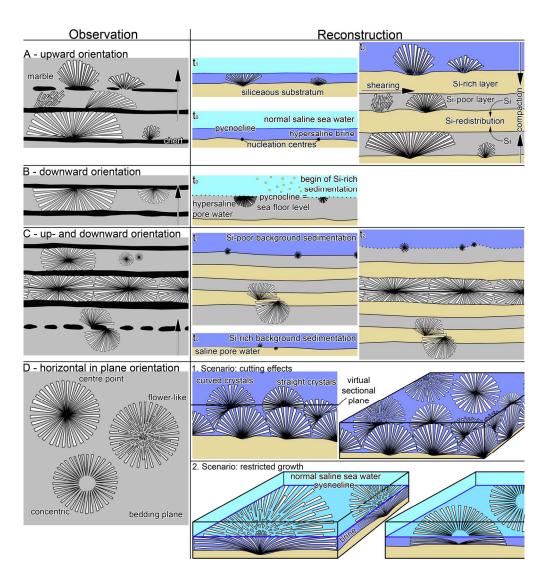
Meta-Selenite


Rod-fringing material

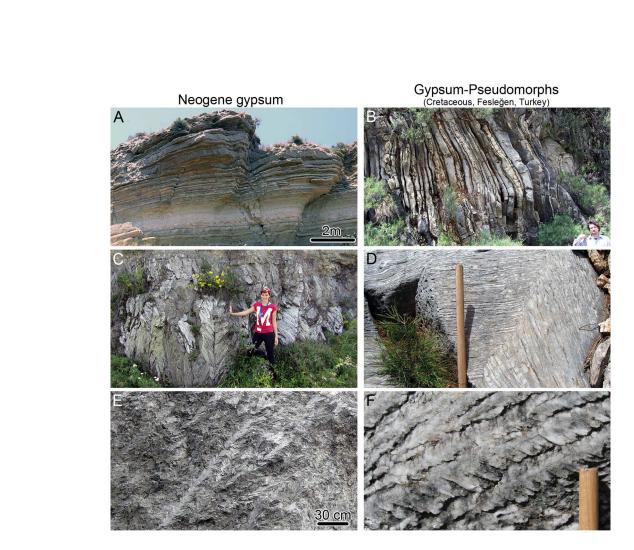
Carbon isotope mapping of a Rosetta Marble rock slab. Note the clustering according to the sampled

material.


146x126mm (300 x 300 DPI)

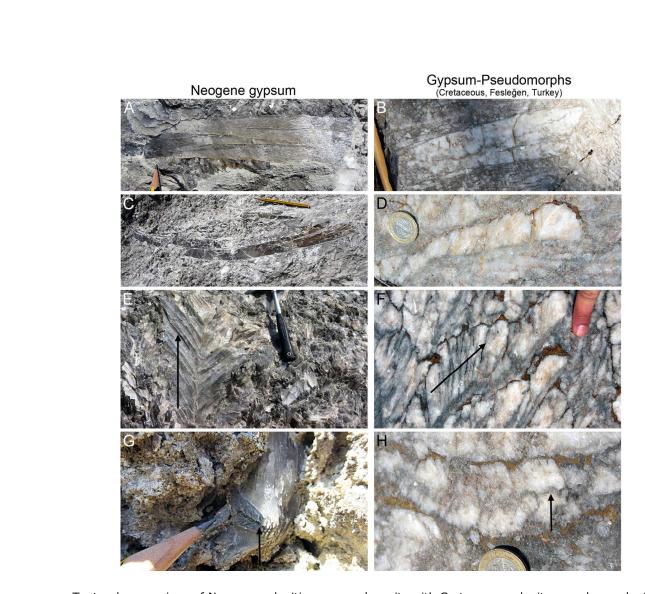

Matrix-Mix

Depositional environmental model. (A) Gypsum growth mode. Regular spillovers of cascading brines serve as ion-supplies to the deeper and more distal parts. Gypsum growth takes place in restricted ponds and size of selenites correlate to the distance to the shore line. (B) Turbidite/Radiolarite deposition mode. Humid climate prevents wide evaporation. Upwelling water masses on shelf area serve for nutrient-rich water surface conditions that promote radiolarian bloom. Turbidites and radiolarites form at that stage. (C) Simplified stratigraphic sections corresponding from proximal to distal localities in the paleo basin.


170x171mm (300 x 300 DPI)


Observed growth geometries are documented and classified in the first column. Based on that, the primary growing conditions were reconstructed in the second column. (A) Upwards oriented fans grow at the sea floor (t0-t1) and can be restricted by the pycnocline level (t1). An alternation of fan-growing layers with Sirich layers is causing the final appearance of the rock (t3) (B) Downward oriented fans grow displacive into the soft substratum (t0), which can be either Si-rich or Si-depleted. (C) A combination of A and B conditions is able to produce up- and downward oriented fans that are spherical in shape. (D) The most common horizontal radial crystals are either explained by cutting effects (1. Scenario), by restricted growth due to a shallow pycnocline level (2. Scenario), or, a combination of both scenarios.

170x179mm (300 x 300 DPI)


Textural comparison of Neogene selenitic gypsum deposits from the Mediterranean and the Paratethys basins, left column, with Cretaceous selenite pseudomorphs from Anatolia, right column. (A) Climate-driven alternations of gypsum and shale layers. Messinian, Sicily, Italy. (B) Regular selenite-pseudomorph-marble – meta-chert couplets. (C) Giant selenite intergrowth. Badenian, near Kraków, Poland. (D) Selenite pseudomorphs resembling giant intergrowth. (E) Stacked swallow-tail crystals (columnar symmetrical twins). Messinian, Piedmont, Italy. (F) Gypsum pseudomorphs resembling swallowtail twins. Hammer shaft width is 3 cm.

170x152mm (300 x 300 DPI)

Iextural comparison of Neogene selenitic gypsum deposits, left column, with Cretaceous selenite pseudomorphs from Anatolia, right column. (A) Radiating gypsum crystals around tree trunks. Badenian, near Kraków, Poland. (B) Radiating selenite-pseudomorphs on a bedding plane. (C) Radiating selenite crystals perpendicular (up- and downward) to the bedding plane. Messinian, Sicily, Italy. (D) Radiating selenite pseudomorph crystals perpendicular (up- and downward) to the bedding plane. Picture is tilted, see original in Fig. 5. (E) Layerd gypsum with in-situ brecciation. Badenian, near Kraków, Poland. (F) Layerd marble (meta-gypsum) with in-situ brecciation.

170x152mm (300 x 300 DPI)

Textural comparison of Neogene selenitic gypsum deposits with Cretaceous selenite pseudomorphs from Anatolia. (A) Large sabre-like selenite crystal in a gypsum matrix. Bedenian, Kraków, Poland. (B) Large sabre-like selenite pseudomorh crystal in a marble matrix. (C) Curved sabre selenite crystals in a gypsum matrix. Bedenian, Kraków, Poland. (D) Curved sabre-like selenite psuedomroph crystal in a marble matrix. Note the calcite fibres that are pseudomorphic after aragonite. (E) Growing surfaces within a twinned selenite crystal. Arrow indicates growing direction. Messinian, Piedmont, Italy. (F) Growing surfaces of selenite pseudomorph crystals. (G) Re-entrant angle (dark gray portion) and twinning plane of a swallow-tail selenite crystal. Bedenian, Kraków, Poland. (H) Dark grey line (arrow) within swallowtail selenite pseudomorph crystals as relict of an impurity-rich twin plane.

170x168mm (300 x 300 DPI)

 Table 1. Oxygen and Carbon isotope data. An outlier from Akçakaya was excluded: $\delta^{13}C = -0.64\%$ and $\delta^{18}O = -6.65\%$. An outlier from "All samples Feslegen" was excluded, probably a secondary vein was sampled: $\delta^{13}C = -0.75\%$ and $\delta^{18}O = -3.01\%$.

Sample sites	Spezification	Numb er of	δ ¹⁸ 0				δ ¹³ C			
		sample s	min	max	mean	±s	min	max	mean	±s
Fesleğen	All samples	50	-3.84‰	-0.56‰	-1.46‰	0.1	+1.35‰	+2.52‰	+1.97‰	0.05
	Upper profile	16	-2.48‰	-0.93‰	-1.44‰	0.1	+1.91‰	+2.52‰	+2.32‰	0.04
	Lower profile	14	-3.84‰	-1.28‰	-1.79‰	0.9	+1.51‰	+2.27‰	+1.72‰	0.05
Karaböğürtlen	Upper profile	23	-5.35‰	-1.78‰	-2.72‰	0.07	+2.78‰	+3.93‰	+3.29‰	0.05
	Lower profile	15	-2.24‰	-0.50‰	-1.28‰	0.08	+1.13‰	+2.42‰	+1.67‰	0.05
Akçakaya		52	-2.20‰	-0.63‰	-1.79‰	0.09	+0.93‰	+2.24‰	+1.32‰	0.06
Bodrum		7	-1.77‰	-0.81‰	-1.41‰	0.06	0.99‰	2.27‰	+1.69‰	0.04
Ören		2	-0.925‰	-1.177‰	-1.051‰	0.1	0.973‰	0.980‰	+0.976‰	0.03

Page 57 of 73

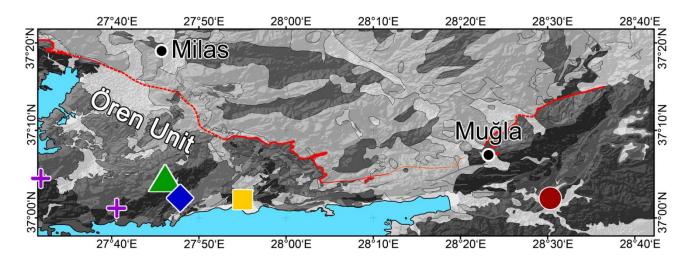
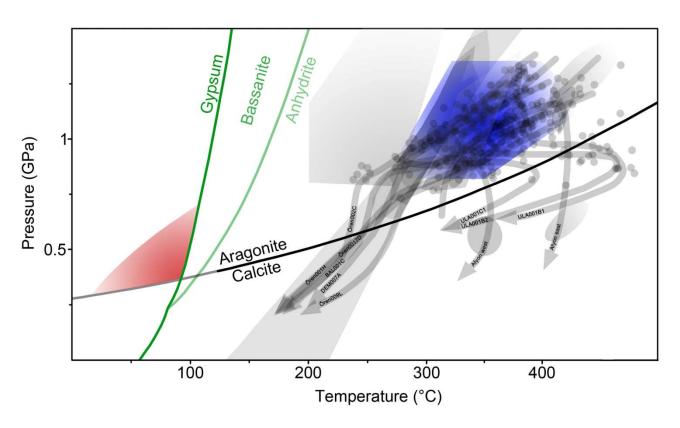
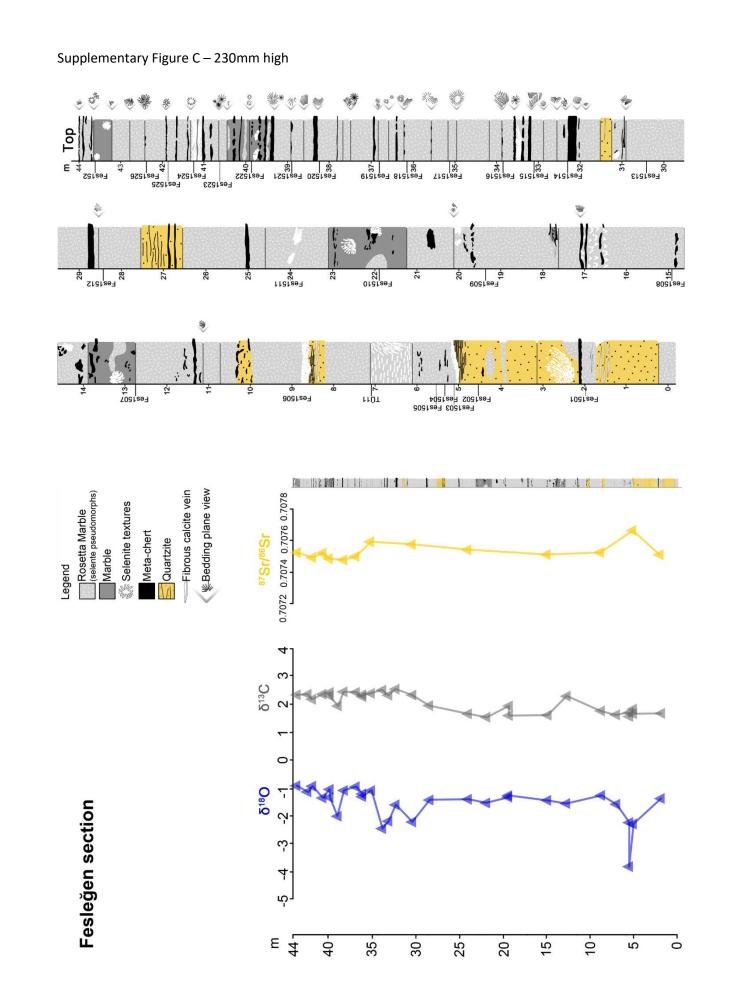

Sedimentology

Table 1. Strontium isotope data.

Sample site	Detailed sample	Numbe r of	⁸⁷ Sr/ ⁸⁶ Sr			
	site	sample	min	max	mean	$\pm 2 \sigma_{mean}$
Fesleğen	Upper profile	8	0.707479	0.707593	0.707522	0.00008
	Lower profile	5	0.707511	0.707664	0.707551	0.00008
Karaböğürtl en	Upper profile	5	0.7073379	0.7076933	0.7075578	0.00008
	Lower profile	6	0.7072873	0.7074792	0.7074066	0.00008
Akçakaya	Profile	12	0.707276	0.707664	0.707368	0.000008

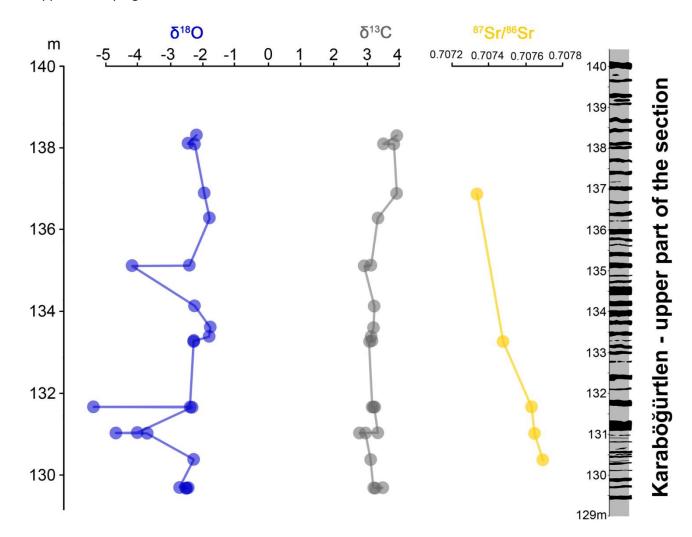

Supplementary Material

Supplementary Figure A – 170mm

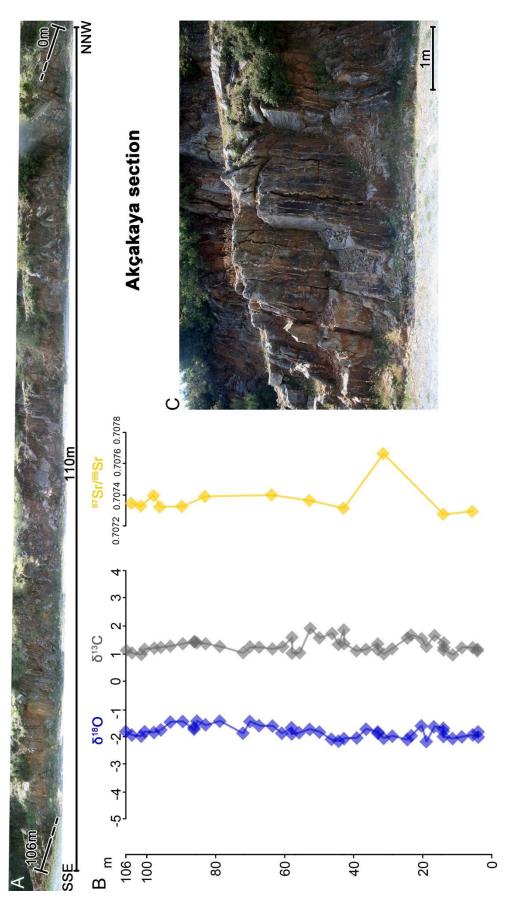

Fig. A. Sample location overview (see main text for coordinates). The map is based on Rimmelé *et al.* (2005), the official geological map of Turkey (MTA 2002) and Scheffler *et al.* (2016). Green triangle: Fesleğen, Blue rhomb: Akçakaya, Red circle: Karaböğürtlen, Yellow square: Ören, Violet crosses: Bodrum.

Supplementary Figure B – 170mm

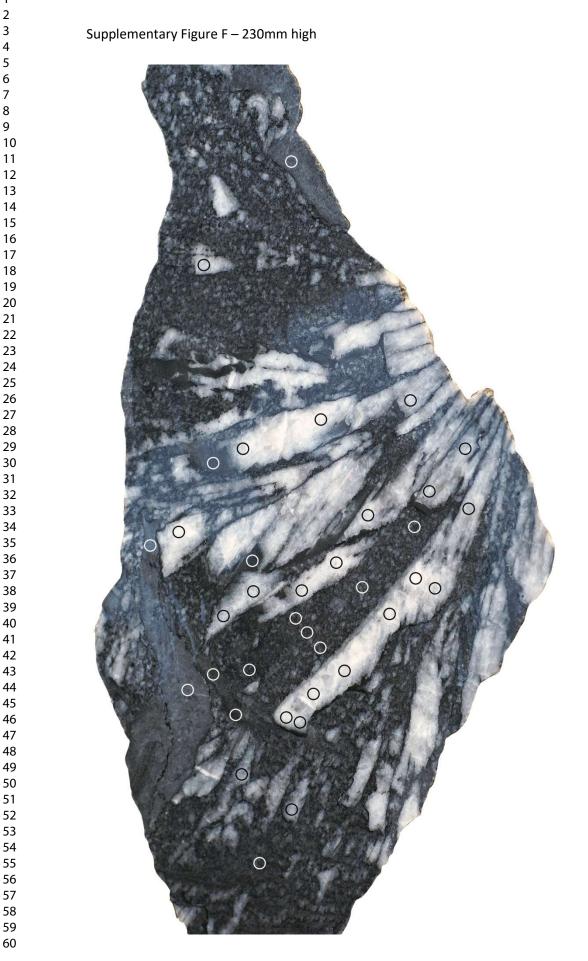
Fig. B. PT-diagram including all data points published by Rimmelé *et al.* (2005) from the samples DEM007A + BAL001C (both are located north of the Akçakaya fault and represent the closest samples to the Fesleğen and Akçakaya samples), Ören0017D + Ören002C + Ören001H (all three locations are south of the Akçakaya fault) and ULA001B1 + ULA001B2 + ULA001C1 (all three locations are the closest samples to Karaböğürtlen). The arrows for these samples are suggested by Rimmelé *et al.* (2005). Furthermore, data from Pourteau *et al.* (2014) were included and suggested PT-path-arrows delineated. Quartz-water-phengite-thermobarometry calculations from Scheffler *et al.* (2016) are shown in transparent-grey, whereas the darkest grey area represents the field of highest probability. The data for this calculation are directly taken from Fesleğen-samples. Since the DEM007A + BAL001C samples, the western Afyon zone PT-path and the quartz-water-phengite-data are the most nearest to the location of interest, the blue area that is representing the peak PT-conditions, is mostly oriented on these data.


Dubacq, B., Vidal, O. and **De Andrade, V.** (2010) Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contrib. Mineral. Petrol., **159**, 159–174

Sedimentology


Fig. C. δ^{18} O, δ^{13} C and 87 Sr/ 86 Sr data of the Fesleğen profile. The y-axis represents the distance in the profile and correlates with the shown log on the right side of the figure. Note that the isotope data of the first 15 meters correlate with the thin and regular selenite pseudomorph bearing marble – meta-chert layers of the profile. Downsection the marble beds become thicker, the meta-chert layers decrease and quartzitic layers occur more frequently. For a more detailed sedimentological description of the lower part of this log, see Scheffler *et al.* (2016). Maximal errors for oxygen-, carbon- and Sr-isotopes are smaller than the chosen symbol-size.

Supplementary Figure D – 170mm


Fig. D. δ^{18} O, δ^{13} C and 87 Sr/ 86 Sr data of the upper part of the Karaböğürtlen section. The y-axis represents the distance in the profile and correlates with the shown log on the right side of the figure. Grey layers are selenite pseudomorph bearing marble, black layers are meta-hert intervals with occasionally meta-wackestone rims. Maximal errors for oxygen-, carbon- and Sr-isotopes are smaller than the chosen symbol-size.

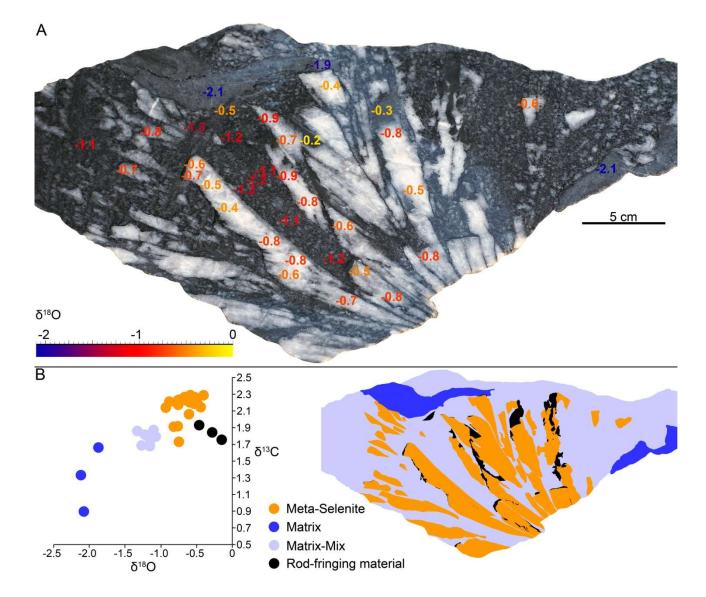

Sedimentology

 Fig. E. δ^{18} O, δ^{13} C and 87 Sr/ 86 Sr data of the Akçakaya profile. The y-axis represents the distance in the profile and correlates with the shown photograph of the sampled section. (A). The isotopes of this very regular profile are very homogeneous. The oxygen- and carbon-curves slightly follow the same up- and downs. (C) Character of the marble-chert-alternations of this profile in a close-up view. Maximal errors for oxygen-, carbon- and Sr-isotopes are smaller than the chosen symbol-size.

Fig. F. Rosetta Marble rock slab. Radiating white calcite rods are pseudomorphs after selenite. Circles mark the exact sampling spots of micro-drilling for ¹³C and ¹⁸O analysis.

Supplementary Figure G – 170mm

Fig. G. Oxygen isotope mapping of a Rosetta Marble rock slab. Note the clustering according to the sampled material.

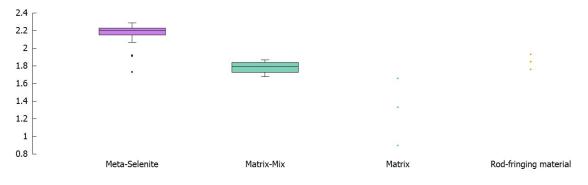
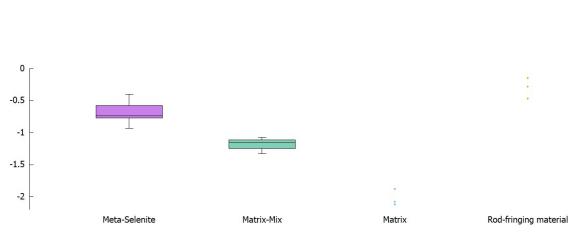
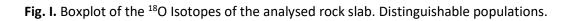




Fig. H. Boxplot of the ¹³C Isotopes of the analysed rock slab. Distinguishable populations.

Supplementary Figure I – 170mm

Sedimentology

Supplementary Data Table A: Carbon and Oxygen isotopes

The Table shows all Carbon and Oxygen data that were included in graphs and calculations of the paper. Not shown are data that have not fulfilled the quality criteria (too high max. amplitude, not enough CaCO₃ content for the measurement) and were therefore excluded. From samples that were measured twice, a mean value was calculated.

corrected values

					orrected	values				
sample name	Nr.	sample weight [mg]	max. Amplitude [V]	d ¹³ С _{РDB} [%]	± s	d ¹⁸ O _{PDB-} carbonate [‰]	±s	date	Position in the profile [cm]	Corresponding Sr ratios
Karaböğürtlen I	Profile								14000	
Kar1531	GB 55210	0.60	9715	3,93	0,03	-2,20	0,07	03.03.2016	13829	
Kar1412-B	GB 54698	0.40	4111	3,52	0,03	-2,45	0,03	14.01.2016	13809	
Kar1512-A	GB 54697	0.41	4971	3,84	0,05	-2,26	0,06	14.01.2016	13807	
Kar1515	GB 54359	0.43	6975	3,93	0,03	-1,97	0,05	16.12.2015	13688	0,707337856
Kar1536	GB 55212	0.61	9859	3,35	0,04	-1,81	0,05	03.03.2016	13627	
Kar1508-A	GB 54382	1.26	4245	3,13	0,05	-2,42	0,05	16.12.2015	13512	
Kar1508-B	GB 54693	1.80	3419	2,93	0,05	-4,16	0,07	14.01.2016	13510	
Kar1534	GB 55216	0.55	7877	3,23	0,03	-2,25	0,02	03.03.2016	13412	
Kar1537	GB 55211	0.52	8089	3,20	0,04	-1,78	0,05	03.03.2016	13360	
Kar1535	GB 55214	0.62	8747	3,13	0,02	-1,81	0,04	03.03.2016	13338	
Kar1505-B	GB 54696	0.41	6422	3,17	0,04	-2,28	0,06	14.01.2016	13327	0,707477868
Kar1505-A	GB 54695	0.40	5512	3,07	0,04	-2,29	0,05	14.01.2016	13325	
Kar1518-C	GB 54373	0.47	6847	3,17	0,02	-2,40	0,02	16.12.2015	13167	
Kar1518-A	GB 54687	0.40	6409	3,14	0,04	-5,35	0,04	14.01.2016	13166	0,707631826
Kar1518-B	GB 54371	0.44	6393	3,23	0,05	-2,34	0,05	16.12.2015	13166	
Kar1503-D	GB 54684	0.42	5517	3,34	0,03	-4,00	0,04	14.01.2016	13103	
Kar1503-A	GB 54363	0.41	6861	2,78	0,03	-4,65	0,03	16.12.2015	13102	0,707648277
Kar1503-B	GB 54364	0.48	7565	2,96	0,03	-3,71	0,06	16.12.2015	13102	
Kar1501	GB 54688	0.41	5413	3,12	0,04	-2,29	0,06	14.01.2016	13037	0,707693279
Kar1502-D	GB 54692	0.55	4676	3,19	0,03	-2,71	0,05	14.01.2016	12969	
Kar1502-C	GB 54690	0.40	5696	3,48	0,04	-2,51	0,04	14.01.2016	12969	
Kar1502-B	GB 54379	1.73	6948	3,49	0,03	-2,46	0,06	16.12.2015	12969	
Kar1502-A	GB 54689	0.41	5606	3,27	0,04	-2,47	0,05	14.01.2016	12968	
Kar1519	GB 54342	0.42	7431	2,41	0,03	-2,24	0,08	15.12.2015	10898	
Kar1520-A	GB 54201	0.41	8928	1,87	0,02	-0,65	0,07	23.11.2015	9860	0,707467854
Kar1521	GB 54346	0.43	7781	1,87	0,04	-0,50	0,05	15.12.2015	8125	0,707453847
Kar1522-A	GB 54343	0.48	7437	1,36	0,03	-1,46	0,06	15.12.2015	7493	
Kar1522-B	GB 54344	0.42	7279	1,42	0,03	-1,58	0,05	15.12.2015	7490	
Kar1523-B	GB 54339	0.38	6693	1,47	0,03	-0,96	0,06	15.12.2015	7246	
Kar1523-A	GB 54338	0.41	7425	1,94	0,03	-0,90	0,05	15.12.2015	7245	0,707479239
Kar1525A	GB 54329	0.38	6337	2,42	0,05	-1,08	0,05	15.12.2015	6109	
Kar1526	GB 54326	0.39	6236	1,75	0,02	-1,15	0,07	15.12.2015	4171	0,707406819
Kar1527-A	GB 54334	0.39	6185	1,69	0,03	-1,31	0,05	15.12.2015	4152	
Kar1527-B	GB 54335	0.38	4580	1,13	0,03	-1,79	0,07	15.12.2015	2847	

Kar1527-C	GB 54337	0.42	5780	1,18	0,04	-1,86	0,09	15.12.2015	2846	
Kar1528-A	GB 54323	0.40	6342	1,20	0,04	-1,27	0,05	15.12.2015	2845	
Kar1528-B	GB 54325	0.39	6344	1,61	0,03	-1,01	0,05	15.12.2015	1245	0,707344830
Kar1530	GB 54328	0.42	6875	1,70	0,03	-1,48	0,05	15.12.2015	1180	0,707287252
Excluded beca	use of very nega	tive O values	:							
Kar1509-B	GB 54361	0.39	6774	2,91	0,03	-13,25	0,05	16.12.2015		
Akçakaya Prof	ile									
Fes1580	GB 54220	0.37	7354	1,10	0,04	-1,85	0,08	24.11.2015	10600	
Fes1579	GB 54218	0.39	7896	1,00	0,03	-1,95	0,08	24.11.2015	10436	0,707345247
Fes1578-B	GB 54214	0.39	7605	0,94	0,05	-2,01	0,07	24.11.2015	10167	0,707328856
Fes1577	GB 54219	0.41	8313	1,14	0,04	-1,85	0,06	24.11.2015	10072	
Fes1576	GB 54217	0.39	7989	1,18	0,04	-1,87	0,07	24.11.2015	9795	0,707393825
Fes1575-A	GB 54216	0.40	8048	1,20	0,03	-1,78	0,09	24.11.2015	9605	0,707321823
Fes1574-A	GB 54262	0.40	7081	1,25	0,02	-1,49	0,06	30.11.2015	9328	
Fes1573A	GB 54222	0.43	8594	1,33	0,02	-1,47	0,07	24.11.2015	8964	0,707326233
Fes1572-A	GB 54224	0.39	7538	1,40	0,03	-1,77	0,08	24.11.2015	8644	
Fes1572-B	GB 54225	0.41	8521	1,42	0,05	-1,71	0,07	24.11.2015	8644	
Fes1571-A	GB 54265	0.40	7391	1,37	0,03	-1,47	0,04	30.11.2015	8557	
Fes1570	GB 54215	0.40	7571	1,34	0,04	-1,59	0,07	24.11.2015	8306	0,707387865
Fes1569-A	GB 54294	0.41	8053	1,24	0,03	-1,46	0,07	30.11.2015	7900	
Fes1567-A	GB 54395	0.38	7063	1,01	0,06	-1,90	0,05	16.12.2015	7225	
Fes1566-A	GB 54287	0.40	7534	1,22	0,02	-1,48	0,05	30.11.2015	7017	
Fes1565-A	GB 54295	0.41	8084	1,21	0,02	-1,61	0,05	30.11.2015	6757	
Fes1564-A	GB 54362	0.40	6477	1,15	0,05	-1,64	0,05	16.12.2015	6368	0,707399845
Fes1563-A	GB 54299	0.42	7726	1,22	0,03	-1,90	0,06	30.11.2015	6082	
Fes1562-A	GB 54291	0.40	7521	1,57	0,02	-1,70	0,05	30.11.2015	5805	
Fes1562-B	GB 54293	0.43	8237	0,99	0,02	-1,92	0,08	30.11.2015	5805	
Fes1561-B	GB 54298	0.42	6917	1,00	0,03	-1,87	0,06	30.11.2015	5589	
Fes1560	GB 54290	0.40	7918	1,89	0,05	-1,76	0,07	30.11.2015	5277	0,707363844
Fes1559	GB 54289	0.39	7571	1,55	0,03	-1,86	0,03	30.11.2015	5009	
Fes1558-A	GB 54202	0.39	8134	1,70	0,03	-2,12	0,08	23.11.2015	4645	
Fes1557	GB 54347	0.42	7163	1,30	0,03	-2,18	0,06	15.12.2015	4455	
Fes1556-A	GB 54332	0.40	6843	1,83	0,01	-2,10	0,03	15.12.2015	4299	0,707314849
Fes1556-B	GB 54333	0.40	6318	1,33	0,04	-2,10	0,03	15.12.2015	4299	
Fes1555	GB 54341	0.40	6605	1,08	0,04	-2,07	0,09	15.12.2015	3936	
Fes1554-A	GB 54388	0.39	6288	1,13	0,04	-1,75	0,03	16.12.2015	3659	
Fes1553-A	GB 54284	0.41	5910	1,33	0,04	-1,85	0,05	30.11.2015	3321	
Fes1553-B	GB 54285	0.42	7918	1,12	0,02	-1,89	0,05	30.11.2015	3321	
Fes1552	GB 54286	0.43	8036	0,97	0,03	-2,08	0,03	30.11.2015	3148	0,707663834
Fes1551	GB 54331	0.40	6745	1,16	0,03	-2,00	0,05	15.12.2015	2897	
Fes1550-A	GB 54330	0.40	6873	1,54	0,05	-2,12	0,05	15.12.2015	2464	
Fes1549	GB 54241	0.42	8756	1,65	0,03	-1,99	0,09	24.11.2015	2352	
Fes1548-B	GB 54376	0.40	6549	1,52	0,05	-1,63	0,08	16.12.2015	2049	
Fes1547	GB 54248	0.39	6211	1,24	0,03	-2,20	0,09	24.11.2015	1910	
Fes1546	GB 54282	0.41	7830	1,63	0,02	-1,67	0,04	30.11.2015	1677	
Fes1545-A	GB 54270	0.41	7319	1,37	0,03	-1,72	0,03	30.11.2015	1408	0,707275867
Fes1545-B	GB 54271	0.40	7492	1,20	0,04	-1,83	0,04	30.11.2015	1408	
Fes1545-C	GB 54272	0.40	7591	1,10	0,02	-2,02	0,04	30.11.2015	1408	
Fes1544	GB 54252	0.44	8746	0,93	0,03	-2,09	0,09	24.11.2015	1149	

Sedimentology

1 2											
3											
4	Fes1543	GB 54251	0.40	8107	1,19	0,03	-2,03	0,08	24.11.2015	880	
5	Fes1541-A	GB 54247	0.42	8277	1,20	0,02	-1,97	0,08	24.11.2015	569	0,707293272
6	Fes1540-A	GB 54246	0.45	9136	1,06	0,03	-2,03	0,09	24.11.2015	422	
7	Fes1540-B	GB 54394	0.45	7465	1,14	0,03	-1,85	0,02	16.12.2015	422	
8 9	excluded outli										
10	Fes1548-A	GB 54374	0.40	6796	-0,64	0,02	-6,65	0,03	16.12.2015		
11	Fesleğen profil	e								4400	
12	Fes1527	GB 54268	0.41	8049	2,31	0,03	-0,93	0,04	30.11.2015	4361	0,707524836
13	Fes1526	GB 54264	0.39	6291	2,33	0,02	-1,15	0,04	30.11.2015	4238	
14 15	Fes1525	GB 54238	0.42	8471	2,15	0,04	-0,94	0,07	24.11.2015	4186	0,707493842
16	Fes1523	GB 54239	0.42	8328	2,34	0,02	-1,37	0,07	24.11.2015	4062	0,707521856
17	Fes1522-A	GB 54278	0.39	7648	2,40	0,03	-1,06	0,08	30.11.2015	3986	0,707487226
18	Fes1522-B	GB 54281	0.38	7712	2,28	0,03	-1,34	0,04	30.11.2015	3986	
19	Fes1521	GB 54277	0.41	7579	1,91	0,02	-2,02	0,03	30.11.2015	3890	
20	Fes1520	GB 54229	0.41	8206	2,42	0,04	-1,10	0,08	24.11.2015	3824	0,707478821
21 22	Fes1519	GB 54230	0.41	8145	2,40	0,02	-0,97	0,10	24.11.2015	3680	0,707501233
23	Fes1518-A	GB 54242	0.41	8223	2,25	0,04	-1,22	0,07	24.11.2015	3614	
24	Fes1518-B	GB 54243	0.40	8326	2,31	0,02	-1,33	0,08	24.11.2015	3614	
25	Fes1517	GB 54234	0.41	8359	2,36	0,02	-1,10	0,08	24.11.2015	3512	0,707592845
26	Fes1516	GB 54233	0.41	8482	2,49	0,03	-2,48	0,09	24.11.2015	3385	
27 28	Fes1515	GB 54236	0.41	8731	2,30	0,03	-2,21	0,06	24.11.2015	3312	
20	Fes1514	GB 54275	0.44	8395	2,52	0,03	-1,61	0,06	30.11.2015	3230	
30	Fes1513	GB 54261	0.41	7282	2,31	0,04	-2,23	0,03	30.11.2015	3041	0,707576871
31	Fes1512	GB 54227	0.41	8629	1,92	0,02	-1,45	0,08	24.11.2015	2843	
32	Fes1511	GB 54276	0.42	7908	1,63	0,05	-1,42	0,06	30.11.2015	2401	0,707543254
33 34	Fes1510	GB 54274	0.39	7252	1,51	0,04	-1,55	0,05	30.11.2015	2190	
35	Fes1509A	GB 54232	0.43	8652	1,91	0,03	-1,35	0,09	24.11.2015	1936	
36	Fes1509B	GB 54237	0.41	8016	1,57	0,03	-1,29	0,07	24.11.2015	1936	
37	Fes1508	GB 54226	0.42	8965	1,58	0,04	-1,45	0,07	24.11.2015	1493	0,707512856
38	Fes1507	GB 54283	0.41	7753	2,27	0,03	-1,57	0,05	30.11.2015	1275	
39	Fes1506	GB 54228	0.39	8737	1,74	0,04	-1,28	0,08	24.11.2015	882	0,707525849
40 41	TÜ11 A				1,59	0,02	-1,59	0,04		709	
42	Fes1505-A	GB 54273	0.41	7605	1,68	0,05	-2,25	0,05	30.11.2015	558	
43	Fes1505-B	GB 54389	0.43	7811	1,53	0,03	-3,84	0,05	16.12.2015	558	
44	Fes1503-A	GB 54385	0.41	6906	1,81	0,02	-2,30	0,04	16.12.2015	512	0,707663834
45	Fes1503-B	GB 54386	0.42	5829	1,63	0,03	-2,32	0,05	16.12.2015	511	
46 47	Fes1501-A	GB 54266	0.41	7075	1,65	0,05	-1,39	0,05	30.11.2015	197	0,707511246
48	Additional Fes	leğen samples fo	or the C-O plo	t (close but no	ot part of th	e profile):				
49	TU14A	GB 45233	0.40	4728	2,41	0,02	-0,85	0,06	18.07.2013		
50	TU14B	GB 45234	0.39	4659	2,34	0,02	-0,80	0,04	18.07.2013		
51	TU14C	GB 45235	0.41	5075	2,40	0,04	-0,78	0,03	18.07.2013		
52 53	TU14D	GB 45236	0.40	5248	2,34	0,03	-0,68	0,04	18.07.2013		
54	TÜ15-A	GB 47214	0.42	6033	1,41	0,03	-0,65	0,07	15.04.2014		
55	TÜ15-B	GB 47216	0.41	5006	1,41	0,03	-0,76	0,06	15.04.2014		
56	TÜ15-C	GB 47217	0.50	6422	1,46	0,02	-0,56	0,05	15.04.2014		
57	TÜ15-D	GB 47218	0.55	6993	1,59	0,01	-0,79	0,05	15.04.2014		
58	TÜ11-B	GB 47229	0.40	6073	1,66	0,03	-2,11	0,03	15.04.2014		
59 60	TÜ11	GB 45231	0.40	4588	1,74	0,04		0,06	18.07.2013		
	TÜ11-A	GB 47226	0.41	5915	1,58	0,02	-1,63		15.04.2014		

TÜ11-A	GB 47227	0.42	6109	1,61	0,02	-1,56	0,04	15.04.2014
TÜ16-A	GB 47231	0.61	8888	1,50	0,02	-0,95	0,05	15.04.2014
Fes1303-A	GB 47238	0.38	5122	1,36	0,03	-2,08	0,08	15.04.2014
Fes1303-A	GB 47239	0.40	5329	1,35	0,01	-2,05	0,03	15.04.2014
Fes1303-B	GB 47240	0.50	7788	1,62	0,02	-0,89	0,02	15.04.2014
Fes1304-B	GB 47260	0.48	6497	2,19	0,02	-1,76	0,03	16.04.2014
Fes1304-B	GB 47261	0.48	6569	2,23	0,03	-1,57	0,04	16.04.2014
Fes1304-D	GB 47251	0.45	6214	2,34	0,04	-1,22	0,08	15.04.2014
TU2	GB 45245	0.51	6169	2,13	0,04	-2,10	0,06	18.07.2013
TU1.2	GB 45230	0.38	4841	2,43	0,04	-0,93	0,04	18.07.2013
Bodrum								
Bod1506	GB 54312	0.49	7559	2,00	0,04	-1,77	0,02	15.12.2015
Bod1507	GB 54313	0.49	7877	1,59	0,04	-1,34	0,04	15.12.2015
Bod1505	GB 54683	0.51	7079	1,41	0,03	-0,81	0,04	14.01.2016
Bod1501-A	GB 54318	0.47	4810	2,27	0,04	-1,42	0,03	15.12.2015
Bod1501-B	GB 54319	0.47	6039	2,27	0,03	-1,65	0,05	15.12.2015
Bod1504	GB 54321	0.44	7358	0,99	0,02	-1,16	0,04	15.12.2015
Bod1502	GB 54322	0.48	5745	1,28	0,03	-1,76	0,06	15.12.2015
Ören								
Ören1502-A	GB 54244	0.40	7357	0,98	0,03	-1,18	0,08	24.11.2015
Ören1502-B	GB 54245	0.42	8590	0,97	0,03	-0,93	0,10	24.11.2015
Rock slab mapp	ing							
FesBig A	GB 60483	0.1215	5208	2,20	0,04	-0,59	0,07	11.01.2017
FesBig B	GB 60479	0.124	5445	2,19	0,04	-0,48	0,03	11.01.2017
FesBig C	GB 60474	0.1085	4294	2,15	0,07	-0,44	0,03	11.01.2017
FesBig D	GB 60470	0.1175	5138	2,18	0,07	-0,75	0,03	11.01.2017
FesBig E	GB 60466	0.115	4833	2,23	0,05	-0,77	0,03	11.01.2017
FesBig F	GB 60460	0.116	5085	2,29	0,07	-0,58	0,06	11.01.2017
FesBig G	GB 60484	0.1045	4153	2,23	0,07	-0,74	0,04	11.01.2017
FesBig H	GB 60480	0.116	4662	1,73	0,05	-0,75	0,06	11.01.2017
FesBig I	GB 60476	0.1185	4742	2,18	0,06	-0,53	0,04	11.01.2017
FesBig J	GB 60471	0.132	5493	1,78	0,02	-1,16	0,05	11.01.2017
FesBig K	GB 60467	0.128	4635	1,80	0,05	-1,07	0,05	11.01.2017
FesBig L	GB 60461	0.119	4581	1,82	0,05	-1,22	0,06	11.01.2017
FesBig M	GB 60485	0.123	4724	1,69	0,06	-1,27	0,08	11.01.2017
FesBig N	GB 60481	0.121	4462	1,76	0,04	-1,13	0,03	11.01.2017
FesBig O	GB 60477	0.1445	5407	1,68	0,04	-1,15	0,07	11.01.2017
FesBig P	GB 60472	0.1185	5110	1,92	0,06	-0,77	0,02	11.01.2017
FesBig Q	GB 60468	0.1095	4652	2,21	0,09	-0,87	0,04	11.01.2017
FesBig R	GB 60464	0.1135	4969	2,27	0,08	-0,67	0,05	11.01.2017
FesBig S	GB 60493	0.1125	5403	2,15	0,06	-0,93	0,05	17.01.2017
FesBig T	GB 60482	0.1175	4814	2,10	0,04	-0,71	0,04	11.01.2017
FesBig U	GB 60478	0.1185	3120	1,76	0,06	-0,15	0,14	11.01.2017
FesBig V	GB 60473	0.113	909					signal too small
FesBig V	GB 60579	0.516	5366	1,33	0,06	-2,12	0,03	23.01.2017
FesBig W	GB 60469	0.1165	4999	2,23	0,06	-0,63	0,03	11.01.2017
I CODIG VV								
FesBig X	GB 60465	0.1135	3749	1,93	0,04	-0,47	0,02	11.01.2017
0	GB 60465 GB 60494	0.1135 0.1245	3749 5695	1,93 1,91	0,04 0,06	-0,47 -0,82	0,02 0,06	11.01.2017 17.01.2017

Sedimentology

FesBig 3	GB 60498	0.1215	4519	1,96	0,05	-1,12	0,03	17.01.2017
FesBig 4	GB 60499	0.1155	4408	1,86	0,10	-1,33	0,04	17.01.2017
FesBig 5	GB 60500	0.1155	3723	1,85	0,04	-0,28	0,06	17.01.2017
FesBig 6	GB 60501	0.1105	5356	2,20	0,07	-0,79	0,03	17.01.2017
FesBig 7	GB 60502	0.1115	4956	2,27	0,05	-0,52	0,06	17.01.2017
FesBig 8	GB 60504	0.1270	6031	2,18	0,03	-0,76	0,04	17.01.2017
FesBig 9	GB 60505	0.1105	5262	2,29	0,07	-0,40	0,05	17.01.2017
FesBig 10	GB 60506	0.1125	1250					signal too small
FesBig 10	GB 60580	0.4135	5229	1,66	0,06	-1,88	0,04	23.01.2017
FesBig 11	GB 60507	0.1420	6842	2,07	0,05	-0,61	0,04	17.01.2017
FesBig 12	GB 60508	0.1390	995					signal too small
FesBig 12	GB 60583	0.5030	4813	0,90	0,02	-2,08	0,02	23.01.2017
Excluded becaus	se they are loca	ted too far fror	n the main map	oing are	ea:			
FesBig 1	GB 60496	0.1105	4963	1,87	0,08	-1,10	0,03	17.01.2017
FesBig 2	GB 60497	0.1365	6815	1,94	0,06	-0,79	0,04	17.01.2017

Supplementary Data Table B: Sr isotopes

Dec 15					
Standards	Value McArthur	Mean Value Bochum	±2 s standard error	±2s standard diviation	number of repetitions [n]
NIST NBS 987	0,710247	0,710241	0,000002	0,000032	345
USGS EN-1	0,709175	0,709161	0,000002	0,000030	301

sample name or number	⁸⁷ Sr/ ⁸⁶ Sr measured	±2s _{mean}	87 Sr/ 86 Sr sample corrected to difference: NBS 987 value McArthur and NBS 987	87 Sr/ 86 Sr sample corrected to difference: USGS EN-1 value McArthur and USGS EN-1	⁸⁷ Sr/ ⁸⁶ Sr sample corrected to difference: NBS 987 value McArthur and NBS 987 Bochum mean value	87 Sr/ 86 Sr sample corrected to difference: USGS EN-1 value McArthur and USGS EN-1
			measured with sample	measured with sample		Bochum mean value
NIST NBS	0,710241	0,000005				
987			0,710247	0,710211	0,710247	0,710255
Fes1578-B	0,707323	0,000005	0,707329	0,707293	0,707329	0,707337
Fes1570	0,707382	0,000006	0,707388	0,707352	0,707388	0,707396
Fes1575-A	0,707316	0,000005	0,707322	0,707286	0,707322	0,707330
Fes-1576	0,707388	0,000005	0,707394	0,707358	0,707394	0,707402
Fes1508	0,707507	0,000005	0,707513	0,707477	0,707513	0,707521
Fes1506	0,707520	0,000005	0,707526	0,707490	0,707526	0,707534
Fes1520	0,707473	0,000005	0,707479	0,707443	0,707479	0,707487
USGS EN-1	0,709205	0,000006	0,709211	0,709175	0,709211	0,709219
NIST NBS	0,710223	0,000005				
987			0,710247	0,710239	0,710229	0,710237
Fes1517	0,707587	0,000006	0,707611	0,707603	0,707593	0,707601
Fes1525	0,707488	0,000005	0,707512	0,707504	0,707494	0,707502

Sedimentology

Fes1523	0,707516	0,000005	0,707540	0,707532	0,707522	0,707530
Fes1513	0,707571	0,000005	0,707595	0,707587	0,707577	0,707585
Fes1527	0,707519	0,000005	0,707543	0,707535	0,707525	0,707533
Fes1545-A	0,707270	0,000005	0,707294	0,707286	0,707276	0,707284
Fes1552	0,707372	0,000005	0,707396	0,707388	0,707378	0,707386
Fes1560	0,707358	0,000005	0,707382	0,707374	0,707364	0,707372
USGS EN-1	0,709159	0,000005	0,709183	0,709175	0,709165	0,709173
NIST NBS	0,710231	0,000005				
987			0,710247	0,710221	0,710237	0,710245
Kar1528-B	0,707339	0,000006	0,707355	0,707329	0,707345	0,707353
Kar1526	0,707401	0,000005	0,707417	0,707391	0,707407	0,707415
Fes1556-A	0,707309	0,000006	0,707325	0,707299	0,707315	0,707323
Kar1521	0,707448	0,000005	0,707464	0,707438	0,707454	0,707462
Kar1515	0,707332	0,000005	0,707348	0,707322	0,707338	0,707346
Fes1564-A	0,707394	0,000005	0,707410	0,707384	0,707400	0,707408
USGS EN-1	0,709185	0,000005	0,709201	0,709175	0,709191	0,709199
NIST NBS	0,710236	0,000005				
987			0,710247	0,710249	0,710242	0,710250
Kar1518-A	0,707626	0,000006	0,707637	0,707639	0,707632	0,707640
Fes1503-A	0,707658	0,000005	0,707669	0,707671	0,707664	0,707672
Kar1520-A	0,707462	0,000005	0,707473	0,707475	0,707468	0,707476
Kar1505-B	0,707472	0,000005	0,707483	0,707485	0,707478	0,707486
USGS EN-1	0,709162	0,000005	0,709173	0,709175	0,709168	0,709176

June 2016

Standards	Value McArthur	Mean Value Bochum	±2 s standard error	±2s standard diviation	number of repetitions [n]
NIST NBS 987	0,710247	0,710241	0,000002	0,000032	359
USGS EN-1	0,709175	0,709160	0,000002	0,000030	319

sample name or number	⁸⁷ Sr/ ⁸⁶ Sr measured	±2s _{mean}	87 Sr/ 86 Sr sample corrected to difference: NBS 987 value McArthur and NBS 987 measured with sample	87 Sr/ 86 Sr sample corrected to difference: USGS EN-1 value McArthur and USGS EN-1 measured with sample	⁸⁷ Sr/ ⁸⁶ Sr _{sample} corrected to difference: NBS 987 value McArthur and NBS 987 Bochum mean value	87 Sr/ 86 Sr sample corrected to difference: USGS EN-1 value McArthur and USGS EN-1 Bochum mean value
NIST NBS 987	0,710253	0,000005	0,710247	0,710278	0,710259	0,710268
Kar 1530	0,707281	0,000005	0,707275	0,707306	0,707287	0,707296
Fes 1522-A	0,707481	0,000008	0,707475	0,707506	0,707487	0,707496
Fes 1541-A	0,707287	0,000005	0,707281	0,707312	0,707293	0,707301
Fes 1511	0,707537	0,000005	0,707531	0,707562	0,707543	0,707552
Kar 1523-A	0,707473	0,000005	0,707467	0,707498	0,707479	0,707488
Fes 1573A	0,707320	0,000005	0,707314	0,707345	0,707326	0,707335
Fes 1501-A	0,707505	0,000005	0,707499	0,707530	0,707511	0,707520

0,707339

0,707642

0,707687

0,707495

0,709150

Fes 1579

Kar 1501

Fes 1519

USGS EN-1

Kar 1503-A

0,000006

0,000006

0,000005

0,000005

0,000005

0,707333

0,707636

0,707681

0,707489

0,709144

Sedimentology

0,707364

0,707667

0,707712

0,707520

0,709175

0,707345

0,707648

0,707693

0,707501

0,709156

0,707354

0,707657

0,707702

0,707510

0,709165

1	
1	
2	
2	
5	
4	
3 4 5	
5	
6	
7	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
51	
32	
33	
55	
34	
35	
55	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	