Approximate Bayesian Computation methods to
model Multistage Carcinogenesis

Metodi di Approximate Bayesian Computation per
modellare la Cancerogenesi Multistadiale

Consuelo R. Nava, Cinzia Carota, Jordy Bollon, Corrado Magnani, Francesco
Barone-Adesi

Abstract A direct modelling of Multistage Carcinogenesis (MC), avoiding math-
ematical approximations, is here proposed. We take advantage of Approximate
Bayesian Computation methods to estimate MC unknown parameters of interest.
A simulation of a fictitious cohort of people exposed to a carcinogen is proposed.
We show performances of our approach with and without the use of a semi-automatic
ABC selection of summary statistics.

Abstract Si propone una modellizzazione diretta della cancerogenesi multistadi-
ale (MC), evitando approssimazioni matematiche. Metodi di Approximate Bayesian
Computation vengono utilizzati per stimare i parametri di interesse della MC. Si
simula una coorte fittizia di persone esposte a un agente cancerogeno. Si mostrano
le performance del nostro approccio con e senza l'uso di tecniche di selezione
semiautomatica delle statistiche descrittive.
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1 Introduction

The theory of multistage carcinogenesis (MC) assumes that the transformation of a
normal cell into a neoplastic one does not take place in a single step, but rather consists
of a multi-stage process [17]. In each stage, normal cells undergo a sequence of
genetic mutations which gradually cause the acquisition of tumor cell characteristics
[2]. A time-homogeneous birth process governs the transition probability from the
i-th to the i+ 1-th stage at time 7, with # =0,...,7 [1]. Approximated formulas
of MC are available to predict cancer rates at different times [16, 3] ], avoiding
algebraically cumbersome computations resulting from the system of stochastic
differential equations which model MC. Accurate predictions of cancer risk rates are
useful [18] to plan health surveillance programs for carcinogenic agents. However,
epidemiological studies using MC are presently limited, and they usually rely only
on approximated formulas [12, 5, 21].

Different authors pointed out that in some situations the use of approximated
formulas, indeed, can lead to an overestimation of hazard rates [16]. Hence, it would
be desirable to use the “exact” MC model to evaluate the evolution of cancer risk
with the age and, eventually, with long-term carcinogenic exposure. However, due to
its high complexity, MC does not allow to define a likelihood function. A possible
solution is represented by Bayesian methods, now increasingly used in population
genetics [13]. Specifically, Approximate Bayesian Computation (ABC) methods
[14, 19] compare observed data with simulated data not through the likelihood
function — assumed to be unavailable — but rather with selected summary statistics,
such as means, hazard ratios (etc.), obtained through simulations from the same
original model — assumed to be known [11, 13]. Even if recent ABC applications
can be found in population genetics [9, 23, 22], infectious disease models [15], and
systems biology [20, 26], its use in epidemiology is still limited [24, 27, 6].

As an alternative to approximated formulas [5], we propose ABC methods to
model MC and to estimate its unknown parameters 6 of interest. We propose a
suitable Rejection algorithm [25] enriched with a semi-automatic variable selection
method [10]. A code in R has been developed to model MC to estimate 6: the
transition rates among the different stages (which can vary during the exposure to a
carcinogen) and the elimination rates of the carginogen from the organism.

To this aim, the article is structured as follows. In Section 2, we present ABC
techniques to illustrate how ABC can be integrated to model MC and how summary
statistics can be selected. In Section 3, we propose a simulation example which
mimics a cohort of subjects exposed to a carcinogen and we present some preliminary
results. Section 4 concludes the article with some remarks and suggesting future
research.
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2 Methodology

In epidemiology and population genetics, limits in the use of frequentist model-based
inference arise due to the necessity to include prior information and to explicit the
likelihood function.

The first issue could be overcome taking advantage of Bayesian methods. Indeed,
estimates of @ given observed data D are obtained sampling from the posterior dis-
tribution (8| D), proportional to L(D|0) 7(0), respectively the likelihood function
and the prior distribution of 6.

The second issue could be overcome using ABC methods as a rejection technique
[19, 25, 23] to compute the likelihood function via simulation. Let’s assume that an
underlying stochastic process M given @ generates 9 on which k summary statistics
of the data S = {S),...,S¢} are defined. ABC, in its simplest form, “proposes” a
(pseudo)-randomly drawn parameter value 0™ from n(@) withn=1,...,N. Hence,
simulated artificial data D™ are generated from M given 8. 8" are accepted only
if D™ is “similar enough” to D and used to approximate 7(6|D) with the ABC
posterior, 7(6]D™). To this aim, an acceptance criterion of §" might be based
on p(D, D) < &, where p(-,-) is a suitable metric and & > 0 is a tolerance level.
Given the high-dimensional data generated in our case, the acceptance criterion
should be substituted by p(S.S™) < & with ™ = {5\, ..., s}, a small number

of suitable summary statistics defined on D™ In such a way, we combine both the
computational convenience of using S to approximate 7(6|S") instead of (8| D),
and main Bayesian inference advantages in epidemiology [8].

Rejection-sampling method [19] needs a small number k of suitable summary
statistics [7] to avoid a low acceptance rate or a distorting increment of & [4] (small
values of ¢ allow an approximately calibrated ABC [14, 10]). The complexity of MC
and the long follow-up of patients do not accommodate this requirement, making
the selection of S difficult and/or reducing estimation accuracy. Thus, based on a re-
gression adjustment — namely, the robust semi-automatic ABC projection technique
[10] — we added an extra stage to the algorithm in [19] in order to overcome this
issue and to derive summary statistics within our ABC for MC.

The semi-automatic ABC consist of the following steps: (i) run a pilot ABC based
on summary statistics chosen subjectively to identify a region of non-negligible
posterior mass, i.e. a training region to simulate parameter values. This is a suitable
step when uninformative or improper n(6) are considered; (ii) simulate sets of
parameter values 6" from the prior truncated to the training region and generate
artificial data D™; (iii) use 8" and D™ to estimate summary statistics fitting
regressions; (iv) select the best model, according to model selection criteria (as
BIC), and run ABC with selected summary statistics.

Regressions of step (iii) are the linear ones [10] which have as dependent variables
the simulated values of the " parameter, HEI),...,GE") .. .,GEN), with i = 1,2,3. A
vector-valued function of (non-linear) transformations of the input statistics of the
artificial data, f (S(")) = [S("),S(")Z,S(")3,S(")4] — here all first, second, third and
fourth powers of individual data point — represents the set of explanatory variables.
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The following model is fitted using least squares
6; = E(@ilﬂ)-l-fi = ﬂi()-i-ﬁif(S)-i-Ei Vi=1,23

where ¢ is a white noise error. The fitted function Sio + ,i?i f(S) is an estimate of
E(6;|D). Neglecting the constant, the i’ summary statistic for ABC is 3; f(S). Note
that the input statistics, S, could include raw data and (non-linear) transformations.

In general, we assume J stages in MC, denoted with E;, with j =1,...,J, and a
constant transition rate for the cell to go from the state E; to the state Ej 1, E; — Ej1q
[16]. Here, ry is the transition rate E; — E», if the individual is not exposed to a
carcinogen. We assume that ry represents also the transition rates across all the other
stages, E; — Ej,1, with j =2,...,J—1. Thus, besides the Ej, transition rates are
assumed to be constant (ry). | = a-ry denotes the accelerated cell transition rate
Ey — E, which is observed during the exposure to a carcinogen in Ej, while A
represents the clearance of slowly eliminated carcinogens such as asbestos [3, 5]).
Hence, 6 = {ry, r1, 1} is the vector of unknown MC parameters of interest as proposed
in (1). Given that a likelihood function cannot be defined to model MC, ABC methods
allow to approximate the posterior distribution 7(6|D).

E E2 —> S —. —> E J no carcinogen exposure
1o
ey
ﬂ — Ez T e E _] carcinogen exposure
ro
Under MC and assuming constant clearance A of the internal dose, d;, of the car-
cinogen overtime, the transition rate, r;, at time ¢ is:

1
log(r)) = a+B ) (d ™),
i=0

3 Simulations and preliminary results

We describe a model M for carcinogen exposure to show how the proposed ABC
methods accurately estimate @ and to construct a general approach to deal with MC.
We simulate a fictitious cohort of 5,000 subjects, each of which was observed for a
time 7" = 100, where ¢ = 0 is the year of birth. A cancer develops if at least one cell
reaches the last stage. We assume, without lack of generality, J = 4. The carcinogen
exposure, consecutive or not, between 15 and 64 years old, could mimic, for instance,
the asbestos exposure in an occupational setting [3]. We set 6 = {7- 107°,7-1073, 0.2}
and we assume that 50% of workers were exposed to asbestos. Hazard ratios for
each year are computed as summary statistics and used comparatively with the
semi-automatic ABC selection method given f(S). We run 200,000 simulations
with & = 0.005, and uninformative priors 7(6;) = Unif(0, 1) Vi = 1,2,3, given an own
elaborated R code for MC which also recalls EasyABC and abctools packages. Table 1
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shows the obtained ABC preliminary estimates of 8 from the approximated posterior
means, with and without the semi-automatic ABC selection. The former approach
results to be more accurate and closer to the original values of the parameters of
interest than the one with arbitrarily selected summary statistics (hazard ratio for
t = {35,40,85,95}). Estimations with multiple combinations of summary statistics
are carried out. No meaningful improvement of the ABC performance with respect
to the one here proposed were obtained.

Table 1 Posterior means approximated with ABC rejection. Standard errors are in parentheses.
Summary statistics without semi-automatic selection are hazard ratio of selected years.

Semi-automatic selection ) r A
No 6.14-107°(9-1077)  6.17-107 (1.84-107) 0.114 (0.078)
Yes 721079 (7-1077)  6.64-1075 (1.45-107%)  0.216 (0.078)

4 Conclusion

We show that part of the appeal of the proposed ABC approach is its flexibilityWe
are planning to apply the proposed methodology to a real cohort of workers exposed
to asbestos to predict future mesothelioma rates. The here proposed methodology
can be easily implemented to any carcinogen exposure under MC. The code written
in R is general enough to accommodate other epidemiological assumptions, such
as the asbestos clearance. Future research will be aimed to extend this approach to
include more sophisticated ABC methods (MCMC or sequential ABC).
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