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LAGRANGE–HERMITE INTERPOLATION ON THE REAL

SEMIAXIS

G. MASTROIANNI, I. NOTARANGELO AND P. PASTORE

Abstract. In order to approximate continuous functions on [0,+∞), we con-
sider a Lagrange–Hermite polynomial, interpolating a finite section of the func-

tion at the zeros of some orthogonal polynomials and, with its first (r − 1)

derivatives, at the point 0. We give necessary and sufficient conditions on the
weights for the uniform boundedness of the related operator. Moreover, we

prove optimal estimates for the error of this process in the weighted Lp and

uniform metric.

Keywords: Hermite–Lagrange interpolation; approximation by algebraic
polynomials; orthogonal polynomials; generalized Laguerre weights; real semi-

axis.

MCS classification (2000): 41A05, 41A10.

1. Introduction

In this paper we discuss the weighted polynomial interpolation of
continuous functions on [0,+∞), which are (r−1)−times differentiable

at 0 and can increase with order O
(

ex
β/2
)

, β > 1/2, for x→∞.

The case β = 1 has been treated in [1, 5, 15, 20, 22, 24, 25, 26],
where the Authors considered Lagrange polynomials based on Laguerre
zeros (see also [8]). Here we choose as a tool the orthonormal system
{pm(w)}m in (0,+∞) related to a generalized Laguerre weight of the

form w(x) = xαe−x
β
. From the numerical point of view, we observe

that the weight w is nonclassical in general and, for the construction
of the orthonormal system in the case β 6= 1, we can use the procedure
introduced in [2] (see also [16]).

The presence of the derivatives of the function in 0 leads in a natural
way to the construction of Lagrange–Hermite polynomial Lm,r(w, f)
based at the zeros of the polynomial pm(w), 0 as a multiple node and
another additional node. Applying the operator Lm,r(w) to a suitable
finite section of the function f , we obtain a new interpolation process,
that we will denote by L∗m,r(w). This new operator is not a projector
into the set of all polynomials of degree at most m + r, Pm+r, but
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2 G. MASTROIANNI, I. NOTARANGELO AND P. PASTORE

on a special subset P∗m+r ⊂ Pm+r that can replace the space Pm+r, in
the sense we are going to show. Thus the projector L∗m,r(w) can be
profitably used in quadrature rules and in the numerical treatment of
Boundary Value Problems on (0,∞) (see, e.g., [6, 27]).

We estimate the error of the process in weighted Lp and uniform met-
ric and compare it with the order of convergence of the best weighted
polynomial approximation (that can be found in [21]). The error esti-
mates are sharp for the considered classes of functions. All the results
of this paper are new and cover the ones in the literature.

The paper is structured as follows. In Section 2 we recall some basic
facts and give some preliminary results, in Section 3 we will state our
main results and in Section 4 we will prove them.

2. Preliminary results

In the sequel C will stand for a positive constant that can assume dif-
ferent values in each formula and we shall write C 6= C(a, b, . . .) when
C is independent of a, b, . . .. Furthermore A ∼ B will mean that if
A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such
that (A/B)±1 ≤ C. Finally, we denote by Pm the set of all algebraic
polynomials of degree at most m.

In order to introduce some interpolation processes we consider the
weight

(2.1) w(x) = xαe−x
β

, x ∈ (0,+∞),

with α > −1, β > 1
2
, and the corresponding sequence of orthonormal

polynomials {pm(w)}m, with positive leading coefficient γm. The zeros
xk = xm,k(w) of pm(w), m ≥ 1, are located as follows(√

am
m

)2

< x1 < x2 < . . . < xm < am

(
1− c

m2/3

)
,

where

am = am(
√
w) =

[
22β−2Γ(β)2

Γ(2β)

]1/β

(4m+ 2α + 1)1/β ∼ m1/β

is the Mhaskar–Rakhmanov–Saff number related to the weight
√
w (see

also [18, 19]). If β = 1 the nodes xk are the Laguerre zeros. Neverthe-
less, in general w is a nonstandard weight and, for the computation of
the zeros and the Christoffel numbers, we may use the Mathematica
package “OrthogonalPolynomials” introduced in [2].



LAGRANGE–HERMITE INTERPOLATION ON THE REAL SEMIAXIS 3

For any continuous function in [0,+∞), f ∈ C0([0,+∞)), and (r −
1)−times differentiable at 0, briefly f ∈ C0

r , r ≥ 1, we define the
Lagrange–Hermite polynomial Lm,r(w, f) as follows

Lm,r(w, f, xk) = f(xk) , k = 1, . . . ,m+ 1 ,

with xm+1 = am, and

Lm,r(w, f)(j)(0) = f (j)(0) , j = 0, 1, . . . , r − 1 ,

where f (0) ≡ f . Here we used also an idea introduced by J. Szabados
for Lagrange and Hermite–Fejér interpolation, adding the additional
node am (see [28]).

The polynomial Lm,r(w, f) can be written as

Lm,r(w, f, x) =
m+1∑
k=1

xr

xrk
`k(w, x)f(xk)

+(am − x)pm(w, x)
r−1∑
i=0

xi

i!

(
f

(am − ·)pm(w)

)(i)

(0),(2.2)

where

`k(w, x) =
pm(w, x)

(x− xk)p′m(w, xk)

(am − x)

(am − xk)
, k = 1, 2, . . . ,m ,

and

`m+1(w, x) =
pm(w, x)

pm(w, am)

are the fundamental Lagrange polynomials. It is easily seen that

Lm,r(w,P ) = P, P ∈ Pm+r,

and Lm,r(w) is a projector from C0
r into Pm+r.

We are now going to introduce another Lagrange–Hermite type oper-
ator L∗m,r(w), modifying the operator Lm,r(w). To this end, for a fixed
θ ∈ (0, 1) and for a sufficiently large m we define an index j = j(m, θ)
such that

(2.3) xj = min
k
{xk : xk ≥ θam} .

Of course if m is small we let j = m. Hence we define the new
Lagrange–Hermite type polynomial as follows

L∗m,r(w, f, x) =

j∑
k=1

xr

xrk
`k(w, x)f(xk)

+(am − x)pm(w, x)
r−1∑
i=0

xi

i!

(
f

(am − ·)pm(w)

)(i)

(0) .(2.4)
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By this definition,

L∗m,r(w, f, xk) = f(xk) , k = 1, . . . , j ,

L∗m,r(w, f, xk) = 0 , k = j + 1, . . . ,m+ 1 ,

and

L∗m,r(w, f)(i)(0) = f (i)(0) , i = 0, 1, . . . , r − 1 .

Moreover, we observe that L∗m,r(w) does not preserve all the polyno-
mials of degree at most m+ r, for example L∗m,r(w, 1) 6= 1.

Nevertheless, if we introduce the following set of polynomials

P∗m,r = {Q ∈ Pm+r : Q(xi) = 0, i > j} .

then it is easy to show that for any f ∈ C0
r , L∗m,r(w, f) ∈ P∗m,r and

for any Q ∈ P∗m,r, L∗m,r(w,Q) = Q, therefore L∗m,r(w, f) is a projector

from C0
r into P∗m,r.

In order to show some approximation properties of the projectors
defined above, we are going to define some function spaces.

2.1. Function spaces. Let us consider a weight of the form

(2.5) u(x) = xγe−x
β/2 , x ∈ (0,+∞) ,

with β > 1
2

and the following weighted function spaces associated to u.
For 1 ≤ p < ∞ and γ > −1/p, by Lpu we denote the set of all

measurable functions f such that

‖f‖Lpu := ‖fu‖p =

(∫ +∞

0

|fu|p(x) dx

)1/p

<∞ .

For p =∞ and γ ≥ 0, by a slight abuse of notation, we set

L∞u := Cu =

f ∈ C0(0,+∞) : lim
x→0+

x→+∞

f(x)u(x) = 0

 ,

and we equip this space with the norm

‖f‖L∞u := ‖fu‖∞ = sup
x∈(0,+∞)

|f(x)u(x)| .

Note that the Weierstrass theorem implies the limit conditions in the
definition of Cu.

Subspaces of Lpu, 1 ≤ p ≤ ∞, are the Sobolev spaces, given by

W p
s (u) =

{
f ∈ Lpu : f (s−1) ∈ AC(0,+∞), ‖f (s)ϕsu‖p <∞

}
, 1 ≤ s ∈ Z ,
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where AC(0,+∞) denotes the set of all functions which are absolutely
continuous on every closed subset of (0,+∞) and ϕ(x) =

√
x. We

equip these spaces with the norm

‖f‖W p
s (u) = ‖fu‖p + ‖f (s)ϕsu‖p .

In order to define some further function spaces, we consider the s−th
modulus of smoothness of f ∈ Lpu, 1 ≤ p ≤ ∞, s ≥ 1,

Ωs
ϕ(f, t)u,p = sup

0<h≤t

∥∥∆s
hϕ (f)u

∥∥
Lp(Irh)

,

where

∆s
hϕf(x) =

s∑
i=0

(−1)i
(
s

i

)
f (x+ (s− i)hϕ(x))

is the forward finite difference of order s with variable step hϕ(x),

ϕ(x) =
√
x and Ish = [8s2h2, Ch−

1
(β−1/2) ], h > 0.

Let f ∈ Lpu, 1 ≤ p ≤ ∞. Then the following estimate

(2.6) Ωs
ϕ(f, t)u,p ≤ C sup

0<h≤t
hs‖f (s)ϕsu‖Lp(Ish) ,

holds with C 6= C(f, t), provided the norm on the right-hand side is
finite (see [21]).

Using the previous moduli of smoothness we can define the Zygmund
spaces as

Zp
λ(u) =

{
f ∈ Lpu : sup

t>0

Ωs
ϕ(f, t)u,p

tλ
<∞, s > λ

}
, λ ∈ R , λ > 0 ,

with the norm

‖f‖Zpλ(u) = ‖fu‖p + sup
t>0

Ωs
ϕ(f, t)u,p

tλ
, s > λ .

Let us denote by

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p
the error of best weighted polynomial approximation in Lpu, 1 ≤ p ≤
∞. Estimates for the error of best weighted approximation have been
proved in [21]. In particular it has been shown that

(2.7) lim
m→∞

Em(f)u,p = 0 ∀f ∈ Lpu .

For our aims it is sufficient to recall the following weak Jackson
inequality

(2.8) Em(f)u,p ≤ C
∫ √

am
m

0

Ωs
ϕ(f, t)u,p

t
dt
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that holds for any function f ∈ Lpu, 1 ≤ p ≤ ∞.
In particular, if f ∈ Zp

λ, by (2.8) we deduce

(2.9) Em(f)u,p ≤ C
(√

am
m

)λ
sup
t>0

Ωs
ϕ(f, t)u,p

tλ
,

and by (2.6) we have

(2.10) Em(f)u,p ≤ C
(√

am
m

)s
‖f (s)ϕsu‖p ,

for any f ∈ W p
s , s ≥ 1 and 1 ≤ p ≤ ∞.

We are now able to show an important property of the polynomials
in P∗m,r. To this end we need some further notation. We say that PM
is a polynomial of quasi best approximation for f ∈ Lpu, 1 ≤ p ≤ ∞, if,
for some C ≥ 1,

‖(f − PM)u‖p ≤ CEM(f)u,p .

Moreover, we denote by

E∗m,r(f)u,p = inf
Q∈P∗m,r

‖(f −Q)u‖p,

the error of best approximation by means of polynomials of P∗m,r. The
relation between Em(f)u,p and E∗m(f)u,p is established by the following
Lemma.

Lemma 1. Let w, u be the weights defined in (2.1) and (2.5) with α >
−1, β > 1

2
and u ∈ Lp, 1 ≤ p ≤ ∞. Let f ∈ Lpu and PM ∈ PM one of

its polynomial of quasi best approximation, with

(2.11) M =

⌊(
θ

θ + 1

)
m

⌋
for a fixed θ ∈ (0, 1). Then we have
(2.12)
E∗m,r(f)u,p ≤ ‖[f − L∗m,r(w,PM)]u‖p ≤ C{EM(f)u,p + e−cm‖fu‖p} ,

where C, c are independent of m, r, f . Moreover, for s ≥ 1, we get
(2.13)(√

am
m

)s
‖L∗m,r(w,PM)(s)ϕsu‖p ≤ C

{
e−cm‖fu‖p +

∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t
dt

}
.

Using Lemma 1 and (2.7) it follows that the order of convergence
of E∗m,r(f)u,p is the same as that of Em,r(f)u,p. Therefore,

⋃
mP∗m,r is

dense in Lpu. In the next Section we will show the behaviour of the
operators Lm,r(w) and L∗m,r(w) in different function spaces.
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3. Main results

The following results hold true in weighted uniform norm. In order
to state it we need a further definition. We say that a function is quasi
increasing on I if there exists a constant C such that f(x) ≤ Cf(y) for
x < y, x, y ∈ I.

Theorem 2. Let w and u be the previously defined weights, with γ ≥ 0
and α > −1. For every f ∈ C0

r ∩ Cu, r ≥ 1, we have
(3.1)

‖Lm,r (w, f)u‖∞ ≤ C

{
(logm)‖fu‖∞ +

(√
am
m

)2γ r−1∑
i=0

|f (i)(0)|
i!

(√
am
m

)2i
}
,

where C 6= C(m, f), if and only if

(3.2)
α

2
+

1

4
≤ γ + r ≤ α

2
+

5

4
.

Moreover, under the assumptions (3.2), if
∣∣f (i)

∣∣ is quasi increasing on
[0, αm], with αm = am/m

2 and i = 0, 1, . . . , r − 1, we get
(3.3)

‖[f − Lm,r (w, f)]u‖∞ ≤ C(logm)Em+r(f)u,∞ +O

((√
am
m

)r−1
)

where C 6= C(m, f) and the constant in “O” is independent of m.

Therefore, in weighted spaces of continuous functions, the behaviour
of the operators {Lm,r (w)}m is comparable with similar interpolation
processes based on Jacobi zeros on bounded intervals (see, e.g., [15,
17]).

We emphasize that if r and γ are given, then, in order to approximate
a function f , we can always choose some α such that the Lagrange–
Hermite polynomial converges with the order of the best polynomial
approximation times the extra factor logm. In fact, we can rewrite
(3.2) as follows

2r + 2γ − 5

2
≤ α ≤ 2r + 2γ − 1

2
.

Moreover, since the Lebesgue constants related to the processes {L∗m,r(w)}m
are bounded by the ones related to {Lm,r(w)}m, by Theorem 2 and
Lemma 1, we deduce the following error estimate for the “truncated”
process.
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Corollary 3. Let θ ∈ (0, 1), γ and α as in Theorem 2. Then, for every
f ∈ C0

r , r ≥ 1, for m sufficiently large (say m > m0) we have∥∥[f − L∗m,r (w, f)
]
u
∥∥
∞ ≤ C(logm)EM(f)u,∞ +O

((√
am
m

)r−1
)
,

where M given by (2.11), C 6= C(m, f) and the constant in “O” is
independent of m.

In weighted Lp− spaces the behaviour of {Lm,r (w)}m is not optimal,

while for the new process
{
L∗m,r (w)

}
m

we can state the following

Theorem 4. Let u ∈ Lp, 1 < p <∞ and θ ∈ (0, 1) be fixed. Then, for
every function f ∈ C0

r , r ≥ 1, we have

∥∥L∗m,r (w, f)u
∥∥
p
∼

(
j∑

k=1

∆xk|fu|p(xk)

)1/p

+

(√
am
m

)2(γ+1/p) r−1∑
i=0

|f (i)(0)|
i!

(√
am
m

)2i

(3.4)

if and only if

(3.5)
α

2
+

1

4
− 1

p
< γ + r <

α

2
+

5

4
− 1

p
,

where the constants in “∼” depend on θ and are independent of m and
f .

If the function f ∈ Lpu fulfills the additional assumption

(3.6)
Ωs
ϕ(f, t)u, p

t1+1/p
∈ L1

for some s ≥ 1, then f is continuous in (0,+∞) (see [21]). Moreover,
using the same arguments as in [22], we obtain(

j∑
k=1

∆xk|fu|p(xk)

)1/p

≤ C

[
‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t1+1/p
dt

]
.

Hence, if f ∈ Lpu fulfills (3.6) and is (r − 1)−times differentiable at 0,
the bound (3.4) becomes∥∥L∗m,r (w, f)u

∥∥
p
≤ C

[
‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t1+1/p
dt(3.7)

+

(√
am
m

)2(γ+1/p) r−1∑
i=0

|f (i)(0)|
i!

(√
am
m

)2i
]
,
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where C depends on θ ∈ (0, 1) (fixed) and is independent of m and f .
Note that if f ∈ P∗m,r, (3.7) becomes an equivalence.

Theorem 5. Under the assumptions (3.5), let f ∈ Lpu ∩ C0
r satisfy

(3.6) for some s ≥ r and
∣∣f (i)

∣∣ be quasi increasing on [0, αm], with
αm = am/m

2 and i = 0, 1, . . . , r − 1. Then, for m > m0, we have
(3.8)

‖[f−L∗m,r(w, f)]u‖p ≤ C
(√

am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t1+1/p
dt+O

((√
am
m

)r−1
)

where C depends on θ and is independent of m and f , the constant in
“O” is independent of m.

In particular, under the assumptions of Theorem 5, if f ∈ Zp
λ(u),

1/p < λ ≤ r − 1, the error estimate (3.8) becomes∥∥[f − L∗m,r (w, f)
]
u
∥∥
p

= O

((√
am
m

)λ)
,

where the constant in O is independent of m and f , that is the order
of the best approximation in Zp

λ(u) (see (2.9)).
Analogously, if f ∈ W p

s (u), s ≤ r − 1, from Theorem 5 we get

‖[f − L∗m,r(w, f)]u‖p = O
((√

am
m

)s)
,

where the constant in O is independent of m and f (see (2.10)). While,
for f ∈ W p

r (u), the following corollary holds.

Corollary 6. Under the assumptions (3.5), let f ∈ W p
r (u) ∩ C0

r , 1 <
p < ∞, such that

∣∣f (i)
∣∣ is quasi increasing on [0, αm], αm = am/m

2,
for i = 0, 1, . . . , r− 1 and m sufficiently large (say m > m0). Then we
have

(3.9)
∥∥L∗m,r (w, f)u

∥∥
p
≤ C

{
‖fu‖p +

(√
am
m

)r
‖f (r)ϕru‖p

}
and
(3.10)∥∥[f − L∗m,r (w, f)

]
u
∥∥
p
≤ C

{(√
am
m

)r
‖f (r)ϕru‖p + e−cm‖fu‖p

}
where C, c depend on θ and are independent of m and f .

Finally, the following remark is of some interest.

Remark 7. The behaviours of the two interpolation processes {Lm,r(w)}m
and {L∗m,r(w)}m are essentially equivalent in weighted uniform norm.



10 G. MASTROIANNI, I. NOTARANGELO AND P. PASTORE

Nevertheless, the “truncated” process {L∗m,r(w)}m has the advantage of
dropping cm terms, c < 1. This turns out to be useful in the numerical
treatment of functional equations, since the dimension of the matrices
obtained from the discretization of operators are strongly reduced with
an evident computational saving.

On the other hand, the two operators behave in a completely different
way in weighted Lp−norm. In fact, the equivalence (3.4) of Theorem 4
is not true for the “nontruncated” operator {Lm,r(w)}m.

Moreover, all the constants in Corollary 3, Theorems 4 and 5 are
independent of m and f , but depend on θ. For instance, the constant
in the upper bound of (3.4) is O

(
(1− θ)−3/4

)
for θ → 1 and so θ cannot

assume value 1.
We refer to Section 4 for more details.

4. Proofs

First of all we recall some weighted polynomial inequalities with the
weight u defined in (2.5) which will be used in the sequel (see [21]).

Let 1 ≤ p ≤ ∞ and am = am(u) ∼ m1/β. For any Pm ∈ Pm, the
restricted range inequalities

(4.1) ‖Pmu‖p ≤ C‖Pmu‖Lp(Im) , Im =
[
c
am
m2

, am

]
,

and

(4.2) ‖Pmu‖Lp[am(1+δ),+∞) ≤ Ce−cm‖Pmu‖p, δ > 0,

hold with C 6= C(m,Pm) and c 6= c(m,Pm). Moreover, we recall the
Bernstein and Markov inequalities

(4.3) ‖P ′mϕu‖p ≤ C
m
√
am
‖Pmu‖p , ϕ(x) =

√
x,

and

(4.4) ‖P ′mu‖p ≤ C
m2

am
‖Pmu‖p ,

where C 6= C(m,Pm) in both cases. Finally, for 1 ≤ p < ∞, we will
need the following Nikolskii inequality

(4.5) ‖Pmu‖∞ ≤ C
(
m2

am

) 1
p

‖Pmu‖p , C 6= C(m,Pm).

We also need some estimates for the polynomials of the orthonormal
system {pm(w)}m∈N, where w is the weight defined in (2.1). The gener-
alized Laguerre weights w is a nonstandard weight and the estimates for
the related orthogonal polynomials can be deduced by [7, 11, 12, 21, 22].
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The estimate (which can be deduced from [9], see also [21, 19])

(4.6) |pm(w, x)|
(
x+

am
m2

)α
2

+ 1
4

e−
xβ

2 4

√
|am − x|+

am
m2/3

∼ |x− xd|
∆xd±1

holds with x ∈ [0,+∞) and xd a zero closest to x. From (4.6) it follows
that

(4.7) |pm(w, x)|
√
w(x)

√
x(am − x) ≤ C , x ∈ Im .

Moreover, the following proposition will be useful.

Proposition 8. Let w be the weight defined by (2.1) and {pm(w)}m its
related orthonormal system. Then we have

(4.8) |pm(w, 0)| ∼
(

m
√
am

)α+ 1
2 1

4
√
am

,

(4.9) |p(k)
m (w, 0)| ≤ C

(
m
√
am

)2k

|pm(w, 0)| ,

and

(4.10)

∣∣∣∣∣
(

1

pm(w)

)(k)

(0)

∣∣∣∣∣ ≤ C
(

m
√
am

)2k
1

|pm(w, 0)|
,

where C and the constant in “ ∼′′ are independent of m.

Proof. Equivalence (4.8) easily follows from (4.6) for x = 0.
In order to prove (4.9) we set

g(x) =
(
x+

am
m2

)α
2

+ 1
4

e−
xβ

2 4

√
|am − x|+

am
m2/3

.

Then, using (4.4) with u replaced by g, by (4.6), we obtain

|p(k)
m (w, x)| ≤ C

(
m
√
am

)2k ‖pm(w)g‖∞
|g(x)|

≤ C
(

m
√
am

)2k
1

|g(x)|
.

Hence, for x = 0, by (4.8), we get

|p(k)
m (w, 0)| ≤ C

(
m
√
am

)2k
1(√

am
m

)α+ 1
2

4
√
am

≤ C
(

m
√
am

)2k

|pm(w, 0)| .

Finally, let us show (4.10) by induction. For k = 1, by (4.9) we have∣∣∣∣( 1

pm(w)

)′
(0)

∣∣∣∣ =
|p′m(w, 0)|
|pm(w, 0)|2

≤ C
(

m
√
am

)2
1

|pm(w, 0)|
.
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For k > 1, from the identity(
1

pm(w)
pm(w)

)(k)

(0) =
k∑
i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0) = 0

it follows that

−
(

1

pm(w)

)(k)

(0)pm(w, 0) =
k−1∑
i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0)

Then, using the induction hypothesis and (4.9), we obtain

|pm(w, 0)|

∣∣∣∣∣
(

1

pm(w)

)(k)

(0)

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
i=0

(
k

i

)(
1

pm(w)

)(i)

(0)p(k−i)
m (w, 0)

∣∣∣∣∣
≤ C

(
m
√
am

)2k

,

which completes the proof. �

Furthermore, the following relation will be useful (see [10, 21])

(4.11)
1

|p′m(w, xk)|
√
w(xk)

∼ ∆xk 4
√
xk

4

√
|am − xk|+

am
m2/3

.

By (4.6) and (4.11) if x ∈
[(√

am
m

)2

, am

]
we have

(4.12)

u(x)
|`k(w, x)|
u(xk)

≤ C
(
x

xk

)γ−α
2
− 1

4
(
am − xk
am − x

)1/4
∆xk
|x− xk|

, (x 6= xk).

Moreover, if xd is a node closest to x, we get (see [4])

(4.13) u(x)
|`d(w, x)|
u(xd)

∼ 1.

Proof of Lemma 1. We are going to prove (2.12) only for p <∞, since
the case p =∞ is simpler.

Let PM ∈ PM , with M =
⌊
θm
θ+1

⌋
, be a polynomial of quasi best

approximation for f ∈ Lpu. So we can write

E∗m,r(f)u,p ≤
∥∥[f − L∗m,r(w,PM)

]
u
∥∥
p
.

Since

(4.14) L∗m,r(w,PM) = PM −
m∑

k=j+1

`k(w, x)xr

xrk
PM(xk)
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then, letting vr(x) = xr, we get

E∗m,r(f)u,p ≤ CEM(f)u,p +

∥∥∥∥∥
m∑

k=j+1

`k(w)vru

vr(xk)u(xk)
(PMu)(xk)

∥∥∥∥∥
p

.

By (4.1) the second summand on the right-hand side is dominated by

Ca1/p
m ‖PMu‖L∞[θam,+∞) sup

x∈Im

m∑
k=j+1

|`k(w, x)|vr(x)u(x)

vr(xk)u(xk)
,

and, using (4.12) and (4.13), we have

(4.15) sup
x∈Im

m∑
k=j+1

|`k(w, x)|vr(x)u(x)

vr(xk)u(xk)
≤ Cmτ ,

for some τ > 0. Moreover, by (4.2) and (4.5), we obtain∥∥∥∥∥
m∑

k=j+1

`k(w)vru

vr(xk)u(xk)
(PMu)(xk)

∥∥∥∥∥
p

≤ Cmτa1/p
m ‖PMu‖L∞[θam,+∞)

≤ Cmτa1/p
m e−cm‖PMu‖∞

≤ Cmτ+ 2
p e−cm‖PMu‖p

≤ Ce−cm‖fu‖p .(4.16)

Let us now prove (2.13). By (4.14) we have(√
am
m

)r
‖L∗m,r(w,PM)(r)ϕru‖p

≤
(√

am
m

)r
‖P (r)

M ϕru‖p +

(√
am
m

)r ∥∥∥∥∥∥
(

m∑
k=j+1

`k(w)vr

vr(xk)
PM(xk)

)(r)

ϕru

∥∥∥∥∥∥
p

For the first term on the right-hand side we use the following estimate
(see [21]) (√

am
m

)r
‖P (r)

M ϕru‖p ≤ C
∫ √am/m

0

Ωr
ϕ (f, t)u,p

t
dt .

While, for the second term on the right-hand side, using k times the
Bernstein inequality (4.3) and (4.16), we obtain(√

am
m

)r ∥∥∥∥∥∥
(

m∑
k=j+1

`k(w)vr

vr(xk)
PM(xk)

)(r)

ϕru

∥∥∥∥∥∥
p

≤ C

∥∥∥∥∥
m∑

k=j+1

`k(w)vr

vr(xk)
PM(xk)u

∥∥∥∥∥
p

≤ Ce−cm‖fu‖p .
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Hence we get (2.13). �

We recall the following estimate, concerning the distance ∆xk be-
tween two consecutive zeros (see [10, 21]):

(4.17) ∆xk = xk+1 − xk ∼
am
m

√
xk

1√
am − xk + amm−2/3

,

where the constants in “∼” are independent of m and k. We remark
that from (4.17), with j given by (2.3), it follows that

∆xk ∼
√
am
m

√
xk k = 1, 2, . . . j .

Now, letting

(4.18) σm(f) =
r−1∑
i=0

f (i)(0)

i!

(√
am
m

)2i

and

(4.19) A(x) = (am − x)pm(w, x)
r−1∑
i=0

xi

i!

(
f

(am − ·)pm(w)

)(i)

(0) ,

we can state the following proposition:

Proposition 9. With the notation (4.18) and (4.19), we have

(4.20) ‖Au‖∞ ≤ C
(√

am
m

)2γ

σm(f), C 6= C(m, f),

if and only if

(4.21)
α

2
+

1

4
≤ γ + r ≤ α

2
+

5

4
.

Moreover, for p ≥ 1, we get

(4.22) ‖Au‖p ≤ C
(√

am
m

)2(γ+1/p)

σm(f), C 6= C(m, f),

if and only if

(4.23)
α

2
+

1

4
− 1

p
≤ γ + r ≤ α

2
+

5

4
− 1

p
.

Proof. We first prove (4.20). Recalling (4.19), we may write

(4.24) |A(x)u(x)| ≤
r−1∑
i=0

bi
|Di|
i!
,

where
bi = ‖(am − ·)pm(w, ·)uvi‖∞, vi(x) = xi
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and

|Di| =

∣∣∣∣∣
(

f

(am − ·)pm(w)

)(i)

(0)

∣∣∣∣∣
=

∣∣∣∣∣
i∑

η=0

(
i

η

)
f (η)(0)

(
1

(am − ·)pm(w, ·)

)(i−η)

(0)

∣∣∣∣∣ .
By (4.10) and (4.11) we get

∣∣∣∣∣
(

1

(am − ·)pm(w, ·)

)(i−η)

(0)

∣∣∣∣∣ =

∣∣∣∣∣
i−η∑
j=0

(
i− η
j

)
1

(am)j+1

(
1

pm(w, ·)

)(i−η−j)

(0)

∣∣∣∣∣
≤ C
|pm(w, 0)|

i−η∑
j=0

(
i− η
j

)
1

(am)j+1

(
m
√
am

)2(i−η−j)

=
C

am|pm(w, 0)|

(
1

am
+
m2

am

)i−η
≤C

(
m
√
am

)2i−2η
1

am|pm(w, 0)|
.

Then we have

(4.25) |Di| ≤
C

am|pm(w, 0)|

i∑
η=0

(
i

η

)
|f (η)(0)|

(
m
√
am

)2i−2η

.

On the other hand, by (4.1), (3.2) and (4.6) , we get

bi ≤ Cmax
x∈Im

∣∣∣√w(x)pm(w, x)(am − x)xi+γ−
α
2

∣∣∣
≤ Cmax

x∈Im

∣∣∣(am − x)
3
4xi+γ−

α
2
− 1

4

∣∣∣
≤ C(am)

3
4

(√
am
m

)2i+2γ−α− 1
2

∼ am

(√
am
m

)2i+2γ

|pm(w, 0)|.(4.26)
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Combining (4.25) and (4.26) in (4.24), we obtain

|A(x)u(x)| ≤ C
(√

am
m

)2γ r−1∑
i=0

1

i!

i∑
η=0

(
i

η

)
|f (η)(0)|

(√
am
m

)2η

= C
(√

am
m

)2γ r−1∑
i=0

r−1∑
η=0

(i− η)0
+|f (η)(0)|

(√
am
m

)2η (
i

η

)
1

i!

= C
(√

am
m

)2γ r−1∑
η=0

(√
am
m

)2η

|f (η)(0)|
r−1∑
i=0

(i− η)0
+

(
i

η

)
1

i!

∼
(√

am
m

)2γ r−1∑
ν=0

|f (ν)(0)|
ν!

(√
am
m

)2ν

,

since
r−1∑
i=η

(
i

η

)
1

i!
∼ 1.

Let us now show (4.22). Recalling (4.25), we have that

‖(am − ·)pm(w)uvi‖p ≤ C‖(am − ·)pm(w)uvi‖Lp(Im)

= C‖
√
wpm(w)(am − ·)vi+γ−

α
2 ‖Lp(Im)

≤ C‖(am − ·)
3
4vi+γ−

α
2
− 1

4‖Lp(Im)

≤ C(am)
3
4

(√
am
m

)2i+2γ−α− 1
2

+ 2
p

= C
(√

am
m

)2i+2γ+ 2
p

am|pm(w, 0)|

where we have applied (4.1), (4.6), (4.8) and considered the assumption
(4.23). Then, we deduce (4.22).

The necessity of the conditions (4.21) and (4.23) can be proved using
standard arguments (see [22]). We omit the details. �

Proof of Theorem 2. Let us first prove that conditions (3.2) imply in-
equality (3.1). Recalling (2.2) and Proposition 9, it remains to prove
that ∣∣∣∣∣

m+1∑
k=1

u(x)
xr

xrk

`k(w, x)

u(xk)
f(xk)u(xk)

∣∣∣∣∣ ≤ C(logm) max
1≤i≤m+1

|fu|(xi) .
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Let x ∈ Im =
[
cam
m2 , am

]
and xd be a zero closest to x. By using (4.7),

(4.11) and (4.13), we get

m+1∑
k=1

u(x)
xr

xrk

|`k(w, x)|
u(xk)

f(xk)u(xk)

≤ C

[
|pm(w, x)|

√
w(x)

√
x(am − x)

∑
k 6=d,m+1

(
x

xk

)r+γ−α
2
− 1

4
(
am − x
am − xk

) 3
4 ∆xk
|x− xk|

+ 1 +

∣∣∣∣ pm(w, x)

pm(w, am)

∣∣∣∣ xrarm u(x)

u(am)

]
max

1≤i≤m+1
|fu|(xi) .

By (4.6) the last summand on the right-hand side is bounded by
(

x
am

)r+γ−α
2
− 1

4

and so the whole right-hand side is dominated by

C

( ∑
k 6=d,m+1

(
x

xk

)r+γ−α
2
− 1

4
(
am − x
am − xk

) 3
4 ∆xk
|x− xk|

+ 1 +

(
x

am

)r+γ−α
2
− 1

4

)
max

1≤i≤m+1
|fu|(xi) .

Therefore, if the parameters r, γ and α fulfill the assumptions (3.2), the
sum on the right-hand side is bounded by C(logm) and the last term
is bounded by 1.

Let us now prove that inequality (3.1) implies conditions (3.2). To
this aim, for any f ∈ Cu, consider the piecewise linear function f1

defined as follows
(4.27) f

(i)
1 (0) = 0, i = 0, 1, . . . , r − 1,
f1(xk) = −|f(xk)| sgn{p′m(w, xk)} 6= 0 , for 1 ≤ xk ≤ 2,
f1(xk) = 0, otherwise.

By (3.1) we have
(4.28)
C(logm) max

1≤xi≤2
|f1u|(xi) ≥ ‖Lm,r(w, f1)u‖∞ ≥ ‖Lm,r(w, f1)u‖L∞[0,1],

where, for x ∈ [0, 1] and xk ∈ [1, 2],

Lm,r(w, f1, x)u(x) = −
∑

1≤xk≤2

xr

xrk

pm(w, x)|f1u|(xk)
|p′m(w, xk)|(x− xk)

(
am − x
am − xk

)
u(x)

u(xk)

=
∑

1≤xk≤2

xr

xrk

pm(w, x)|fu|(xk)
|p′m(w, xk)||x− xk|

(
am − x
am − xk

)
u(x)

u(xk)
,
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since x − xk < 0. Now, if x ∈ [0, 1] and xk ∈ [1, 2], then |x − xk| ≤ 2
and am−x

am−xk
∼ 1. Hence, setting

Ã(x) = pm(w, x)

√
w(x)

√
x (am − x)

and using (4.11), we get
(4.29)

‖Lm,r(w, f1)u‖L∞[0,1] ≥ C‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1]

∑
1≤xk≤2

∆xk|fu|(xk)

x
r+γ−α

2
− 1

4
k

.

Combining (4.28) and (4.29), we obtain

‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1]

∑
1≤xk≤2

∆xk|fu|(xk)

x
r+γ−α

2
− 1

4
k

≤ C(logm) max
1≤xi≤2

|fu|(xi)

with C 6= C(m, f), whence letting bi = |fu|(xi) and ‖b ‖∗∞ = max
1≤xi≤2

bi,

we have

‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1]

∑
1≤xk≤2

∆xk

x
r+γ−α

2
− 1

4
k

bk
‖b ‖∗∞

≤ C(logm), C 6= C(m, f)

and then

‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1] sup
‖d ‖∗∞=1

∑
1≤xk≤2

∆xk

x
r+γ−α

2
− 1

4
k

dk ≤ C(logm), C 6= C(m, f) .

Hence we get

‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1]

∑
1≤xk≤2

∆xk

x
r+γ−α

2
− 1

4
k

≤ C(logm).

Obviously the sum on the left-hand side is ∼ 1. Moreover, by (4.6), we
have

‖Ãvr+γ−
α
2
− 1

4‖L∞[0,1] ≥
∣∣∣Ã(am

m2

)
vr+γ−

α
2
− 1

4

(am
m2

)∣∣∣ ∼ (am
m2

)r+γ−α
2
− 1

4
.

So, from (am
m2

)r+γ−α
2
− 1

4 ≤ C(logm)

it follows that r + γ ≥ α
2

+ 1
4
.

In order to prove the necessity of the other inequality in (3.2), we
introduce the piecewise linear function f2 defined as

(4.30)

 f
(i)
2 (0) = 0, i = 0, 1, . . . , r − 1,
f2(xk) = |f(xk)| sgn{p′m(w, xk)}, for 0 < xk ≤ 1,
f2(xk) = 0, otherwise.
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Using similar arguments we obtain

‖Ãvr+γ−
α
2
− 1

4‖L∞[1,2]

∑
0<xk≤1

∆xk

x
r+γ−α

2
− 1

4
k

≤ C(logm) .

Now, the sum on the left-hand side is ∼
∫ 1

x1
x−r−γ+α

2
+ 1

4 dx, while the
norm is bounded. So, from∫ 1

x1

x−r−γ+α
2

+ 1
4 dx ≤ C

∑
0<xk≤1

∆xk

x
r+γ−α

2
− 1

4
k

≤ C(logm)

we deduce r + γ ≤ α
2

+ 5
4

and the first part of the theorem follows.

Let us now prove (3.3). Since
∣∣f (i)

∣∣ is quasi increasing on [0, αm],
with i ∈ {0, 1, . . . , r − 1} and αm = am/m

2, we have

αi+γm

∣∣f (i)(0)
∣∣ ≤ Cαi+γm

∣∣∣f (i)
(αm

2

)∣∣∣ ≤ Cαi+γm

∥∥f (i)
∥∥
L∞[αm

2
,αm]

.

Recalling a formula in [3, p. 15], it follows that

αi+γm

∣∣f (i)(0)
∣∣ ≤ Cαγm ‖f‖L∞[αm

2
,αm] + Cαr−1+γ

m

∥∥f (r−1)
∥∥
L∞[αm

2
,αm]

≤ C ‖fu‖L∞[αm
2
,αm] + C

(√
am
m

)r−1 ∥∥f (r−1)ϕr−1u
∥∥
L∞[αm

2
,αm]

.

Hence (3.1) becomes

‖Lm,r (w, f)u‖∞ ≤ C(logm)‖fu‖∞ +O

((√
am
m

)r−1
)
.

Letting Pm+r ∈ Pm+r be the polynomial of best approximation for
f ∈ Cu, it follows that

‖[f − Lm,r (w, f)]u‖∞ = ‖[f − Pm+r − Lm,r (w, f − Pm+r)]u‖∞

≤ C(logm)Em+r(f)u,∞ +O

((√
am
m

)r−1
)
,

i.e. (3.3). �

In order to prove Theorem 4 we recall some known results concerning
the Hilbert transform H(f, t). The Hilbert transform related to the
interval (0, a) is defined as follows

H(f, t) =

∫ a

0

f(x)

x− t
dx, t ∈ (0, a) , a > 0 ,

where the integral is understood in the Cauchy principal value sense.
Letting vρ(x) = xρ and 1 < p <∞, the bound

(4.31) ‖(Hf)vρ‖Lp(0,1) ≤ C‖fvρ‖Lp(0,1), C 6= C(f),
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holds for any f such that fvρ ∈ Lp(0, a) if and only if −1
p
< ρ < 1− 1

p

(see [23]).
The following lemma, that can be found in [21] (see also [8]), will be

also useful in the proof of Theorem 4.

Lemma 10. Let 0 < θ < 1, j be given by (2.3), u ∈ Lp, 1 ≤ p < ∞
and ∆xk = xk+1 − xk. Then, for an arbitrary polynomial P ∈ Plm
(where l is a fixed integer), there exists θ̄ ∈ (θ, 1) such that

(4.32)

j∑
k=1

∆xk|Pu|p(xk) ≤ C
∫ θ̄am

x1

|Pu|p(x) dx,

with C 6= C(m, f).

We want to emphasize that the first Marcinkiewicz inequality (4.32)
does not hold if the sum on the left-hand side is extended to all the
zeros of pm(w), i.e. k = 1, . . . ,m (see [13, 14]).

Proof of Theorem 4. Taking into account Proposition 9 it remains to
estimate the Lpu-norm of the first term in (2.4). Letting vr(x) = xr and

L∗m(w, f, x) =

j∑
k=1

`k(w, x)f(xk) , `k(w, x) =
pm(w, x)

(x− xk)p′m(w, xk)

(am − x)

(am − xk)
,

this term can be rewritten as vrL∗m
(
w, f

vr

)
. So, using (4.1), we have∥∥∥∥vrL∗m(w, fvr

)
u

∥∥∥∥
p

≤ C
∥∥∥∥ vrL∗m(w, fvr

)
u

∥∥∥∥
Lp(Im)

= C sup
‖g‖q=1

∣∣∣∣∫
Im

xrL∗m

(
w,

f

xr
, x

)
u(x)g(x) dx

∣∣∣∣
=: sup

‖g‖q=1

|Γ(g)| ,(4.33)

where Im = [c amm
−2, am] and

Γ(g) =

∫
Im

xr
j∑

k=1

`k(w, x)

xrk
f(xk)g(x)u(x) dx

=

j∑
k=1

f(xk)u(xk)

p′m(w, xk)(am − xk)u(xk)xrk

∫
Im

(am − x)pm(w, x)xrg(x)u(x)

x− xk
dx .
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By using (4.11), we have

|Γ(g)| ≤ C
j∑

k=1

∆xk|fu|(xk)

(am − xk)
3
4x

r+γ−α
2
− 1

4
k

∣∣∣∣∫
Im

(am − x)pm(w, x)xrg(x)u(x)

x− xk
dx

∣∣∣∣
≤ C

a
3/4
m

j∑
k=1

∆xk|fu|(xk)

x
r+γ−α

2
− 1

4
k

∣∣∣∣∫
Im

(am − x)pm(w, x)xrg(x)u(x)

x− xk
dx

∣∣∣∣ .
Denoting by G(xk) the integral on the right-hand side and using the
Hölder inequality, we get
(4.34)

|Γ(g)| ≤ C
a

3/4
m

(
j∑

k=1

∆xk|fu|p(xk)

)1/p( j∑
k=1

∆xk

∣∣∣∣∣ G(xk)

x
r+γ−α/2−1/4
k

∣∣∣∣∣
q)1/q

.

For any polynomial 0 < Q ∈ Plm, with l a fixed integer, we can write

G(xk) =∫
Im

(am − x)pm(w, x)Q(x)− (am − xk)pm(w, xk)Q(xk)

x− xk
xrg(x)u(x)

Q(x)
dx

and G(t) is a polynomial of degree m+ lm. Thus, using Lemma 10, we
have

B =

(
j∑

k=1

∆xk

∣∣∣∣∣ G(xk)

x
r+γ−α/2−1/4
k

∣∣∣∣∣
q)1/q

≤

(∫
Iθ̄m

∣∣∣∣ G(t)

tr+γ−α/2−1/4

∣∣∣∣ q dt

)1/q

,

where 0 < θ < θ̄ < 1 and Iθ̄m = [c amm
−2, θ̄am]. Then we obtain

B ≤

(∫
Iθ̄m

∣∣∣∣t−r−γ+α/2+1/4

∫
Im

(am − x)pm(w, x)xr(gu)(x)

x− t
dx

∣∣∣∣q dt

)1/q

+

(∫
Iθ̄m

∣∣∣∣t−r−γ+α/2+1/4(am − t)pm(w, t)Q(t)

∫
Im

xr(gu)(x)

(x− t)Q(x)
dx

∣∣∣∣q dt

)1/q

=: B1 +B2 .(4.35)

Let us estimate the term B1. By (4.7) we have∣∣∣Ã(x)
∣∣∣ := |pm(w, x)|

√
w(x)

√
x(am − x) ≤ C , x ∈ Im .
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Moreover, under the assumptions (3.5), t−r−γ+α
2

+ 1
4 ∈ Lq and tr+γ−

α
2
− 1

4 ∈
Lp, we can apply (4.31), obtaining

B1 ≤

(∫
Im

∣∣∣∣∣ t−r−γ+α
2

+ 1
4

∫
Im

(am − x)
3
4 Ã(x)xr+γ−

α
2
− 1

4 g(x)

x− t
dx

∣∣∣∣∣
q

dt

)1/q

≤ C
(∫

Im

∣∣∣(am − x)
3
4 Ã(t)g(t)

∣∣∣q dt

)1/q

≤ Ca
3
4
m‖g‖Lq(Im) .(4.36)

In order to estimate B2 we can construct a polynomial Q ∈ Plm such
that Q(x) ∼ xru(x) for x ∈ Im. So, using (4.7), we have∣∣t−r−γ+α/2+1/4(am − t)pm(w, t)Q(t)

∣∣ ≤ Ca3/4
m .

Then, by (4.31), we get
(4.37)

B2 ≤ Ca3/4
m

(∫
Im

∣∣∣∣∫
Im

xr(gu)(x)

(x− t)Q(x)
dx

∣∣∣∣q dt

)1/q

≤ Ca3/4
m ‖g‖Lq(Im).

So, taking into account (4.36), (4.37) and (4.35), it follows that(∫
Iθ̄m

∣∣∣∣ G(t)

tr+γ−α/2−1/4

∣∣∣∣ q dt

)1/q

≤ Ca3/4
m ‖g‖Lq(Im),

and combining with (4.34) and (4.33) the first term in (2.4) is bounded
by

C

(
j∑

k=1

∆xk|fu|p(xk)

)1/p

.

Therefore, recalling (4.22), we have that (3.5) implies (3.4).
In order to prove that (3.4) implies (3.5) we use arguments similar

to those in the proof of Theorem 4. So, we are going to show only the
main steps. Considering the function f1 as in (4.27) we can write

‖L∗m,r(w, f1)u‖Lp[c amm−2,1] ≤ ‖L∗m,r(w, f1)u‖p ≤ C

( ∑
1≤xk≤2

∆xk|f1u|p(xk)

)1/p

,

where [c amm
−2, 1] = [0, 1]∩Im. Recalling the expression of L∗m,r(w, f1, x)

for x ∈ [c amm
−2, 1], with∣∣∣Ã(x)

∣∣∣ = |pm(w, x)|
√
w(x)

√
x(am − x) ,
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we obtain
(4.38)

‖Ãvr+γ−
α
2
− 1

4‖Lp[amm−2,1]

∑
1≤xk≤2

∆xk|f1u|(xk)

x
r+γ−α

2
− 1

4
k

≤ C

( ∑
1≤xk≤2

∆xk|f1u|p(xk)

)1/p

.

Now, to simplify the notation, we set

ak =
(∆xk)

1/q

x
r+γ−α

2
− 1

4
k

, bk = (∆xk)
1/p|f1u|(xk), ‖b ‖∗p =

( ∑
1≤xk≤2

bpk

)1/p

.

Hence (4.38) becomes

‖Ãvr+γ−
α
2
− 1

4‖Lp[c amm−2,1]

∑
1≤xk≤2

ak
bk
‖b ‖∗p

≤ C, C 6= C(m, f).

Taking the supremum on b, we get

‖Ãvr+γ−
α
2
− 1

4‖Lp[c amm−2,1]

( ∑
1≤xk≤2

|ak|q
)1/q

≤ C,

which implies r + γ − α
2
− 1

4
> −1

p
, taking into account that, by (4.7),∣∣∣Ã(x)

∣∣∣ ≤ C, x ∈ [c amm
−2, 1].

Analogously, considering the function f2 defined in (4.30), we get

‖Ãvr+γ−
α
2
− 1

4‖Lp[1,2]

( ∑
0<xk≤1

|ak|q
)1/q

≤ C,

i.e.

‖Ãvr+γ−
α
2
− 1

4‖Lp[1,2]

( ∑
0<xk≤1

∆xk

x
(r+γ−α/2−1/4)q
k

)1/q

≤ C,

whence −r − γ + α
2

+ 1
4
> −1

q
that is r + γ − α

2
− 1

4
< 1 − 1

p
, which

completes the proof. �

Proof of Theorem 5. Since
∣∣f (i)

∣∣ is quasi increasing on [0, αm], with i ∈
{0, 1, . . . , r−1} and αm = am/m

2, using the Hölder inequality, we have

αi+γ+1/p
m

∣∣f (i)(0)
∣∣ ≤ Cαi+γ+1/p

m

∣∣∣f (i)
(αm

2

)∣∣∣ ≤ Cαi+γ+1/p−1
m

∫ αm

αm
2

∣∣f (i)(x)
∣∣ dx

≤ Cαi+γm

∥∥f (i)
∥∥
Lp[αm

2
,αm]

.
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Recalling a formula in [3, p. 15], it follows that

αi+γ+1/p
m

∣∣f (i)(0)
∣∣ ≤ Cαγm ‖f‖Lp[αm

2
,αm] + Cαr−1+γ

m

∥∥f (r−1)
∥∥
Lp[αm

2
,αm]

≤ C ‖fu‖Lp[αm
2
,αm] + C

(√
am
m

)r−1 ∥∥f (r−1)ϕr−1u
∥∥
Lp[αm

2
,αm]

.

So inequality (3.7) becomes

∥∥L∗m,r (w, f)u
∥∥
p
≤ C

[
‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t1+1/p
dt

+

(√
am
m

)r−1 ∥∥f (r−1)ϕr−1u
∥∥
Lp[0,αm]

]
.(4.39)

Let PM ∈ PM , with M =
⌊
θm
θ+1

⌋
, be a polynomial of quasi best

approximation for f ∈ Lpu, and set Q = L∗m,r(w,PM). Hence, by (4.39),
we get

‖[f − L∗m,r(w, f)]u‖p ≤ C

[
‖(f −Q)u‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f −Q, t)u,p

t1+1/p
dt

+

(√
am
m

)r−1 ∥∥∥(f −Q)(r−1) ϕr−1u
∥∥∥
Lp[0,αm]

]
Now, to estimate the first summand at the right-hand side we can use
(2.12) and (2.8). For the second summand we note that

Ωs
ϕ(f −Q, t)u,p ≤ Ωs

ϕ(f, t)u,p + ts
∥∥Q(s)ϕsu

∥∥
p
.

So, by (2.13), taking into account that∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t
dt ≤

(√
am
m

)1/p ∫ √
am
m

0

Ωs
ϕ(f, t)u,p

t1+1/p
dt ,

inequality (3.8) follows. �

Proof of Corollary 6. Proceeding as in the proof of Theorem 5, since∣∣f (i)
∣∣ is quasi increasing on [0, αm], with i ∈ {0, 1, . . . , r− 1} and αm =

am/m
2, and f ∈ W p

r (u), we get

αi+γ+1/p
m

∣∣f (i)(0)
∣∣ ≤ Cαγm ‖f‖Lp[αm

2
,αm] + Cαr+γm

∥∥f (r)
∥∥
Lp[αm

2
,αm]

≤ C ‖fu‖Lp[αm
2
,αm] + C

(√
am
m

)r ∥∥f (r)ϕru
∥∥
Lp[αm

2
,αm]

.(4.40)

Hence, by (3.7), (2.6) and (4.40), we obtain (3.9).
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Now, in order to prove (3.10), let Q = L∗m,r(w,PM), where PM ∈
PM , with M =

⌊
θm
θ+1

⌋
, is a polynomial of quasi best approximation for

f ∈ Lpu. By (3.9) we have∥∥[f − L∗m,r (w, f)
]
u
∥∥
p
≤ C ‖(f −Q)u‖p +

∥∥L∗m,r (w, f −Q)u
∥∥
p

≤ C ‖(f −Q)u‖p +

(√
am
m

)r ∥∥f (r)ϕru
∥∥
p

+

(√
am
m

)r ∥∥Q(r)ϕru
∥∥
p
.

Using Lemma 1, (2.10) and (2.6), we obtain (3.10). �
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