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An Adaptive LOOCV-based Algorithm for

Solving Elliptic PDEs via RBF Collocation⋆

R. Cavoretto[0000−0001−6076−4115] and A. De Rossi[0000−0003−1285−3820]

Department of Mathematics “Giuseppe Peano”, University of Torino
Via Carlo Alberto 10, 10123 Torino, Italy

{roberto.cavoretto,alessandra.derossi}@unito.it

Abstract. We present a new adaptive scheme for solving elliptic par-
tial differential equations (PDEs) through a radial basis function (RBF)
collocation method. Our adaptive algorithm is meshless and it is charac-
terized by the use of an error indicator, which depends on a leave-one-out
cross validation (LOOCV) technique. This approach allows us to locate
the areas that need to be refined, also including the chance to add or
remove adaptively any points. The algorithm turns out to be flexible
and effective by means of a good interaction between error indicator and
refinement procedure. Numerical experiments point out the performance
of our scheme.

Keywords: Meshfree methods · Adaptive algorithms · Refinement tech-
niques · Poisson problems.

1 Introduction

In this paper we present a new adaptive refinement algorithm for solving 2D
elliptic partial differential equations (PDEs) such as Poisson type problems. Our
adaptive scheme is applied to Kansa’s method, which is known as a nonsym-
metric radial basis function (RBF) collocation scheme [6]. This approach has
spawned several works, which engaged practitioners and scientists coming from
many areas of science and engineering. Several adaptive techniques are used for
modeling PDE problems through different RBF methods (see e.g. [2,9]). Basi-
cally, our adaptive algorithm is characterized by the use of a leave-one-out cross

validation (LOOCV) technique, which was originally proposed by Rippa [10].
While the LOOCV was introduced to find an optimal value of the RBF shape
parameter (see [4]), in this work it is used as an error indicator within the re-
finement procedure. This strategy enables us to identify which areas need to be
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refined by adding new points. After that phase, we further refine the discretiza-
tion points based on information arising from another error estimate. This stage
of adaptive refinement extends the residual subsampling method proposed in [3],
thus allowing us to get an improvements in terms of accuracy. In our numeri-
cal experiments we show the performance of our algorithm, which is tested by
solving a few Poisson problems. For solving large scale problems one could also
think of applying our LOOCV-based scheme to local collocation methods [12].

The paper is organized as follows. In Section 2 we briefly describe Kansa’s
RBF collocation method. In Section 3 we present the adaptive refinement scheme
proposed for solving elliptic PDE problems. Section 4 illustrates numerical ex-
periments carried out to show the performance of our algorithm.

2 Kansa’s Collocation Method

Given a domain Ω ⊂ R
d and a linear elliptic partial differential operator L, we

define a PDE of the form

Lu(x) = f(x), x ∈ Ω, (1)

with Dirichlet boundary conditions

u(x) = g(x), x ∈ ∂Ω. (2)

For Kansa’s approach we express the approximate solution û as a linear
combination of basis functions as commonly happens for RBF interpolation (see
e.g. [4]), i.e.

û(x) =

N
∑

j=1

cjφε(||x− zj ||2), (3)

where cj denote unknown real coefficients, || · ||2 is the Euclidean norm, and
φε : [0,∞) → R is some RBF depending on a positive shape parameter ε such
that

φε(||x− z||2) = φ(ε||x− z||2), ∀x, z ∈ Ω.

As an example, globally supported RBFs that are commonly used for solving
PDEs are listed below along with their smoothness degrees (see [11]):

φε(r) = (1 + ε2r2)−1/2, Inverse MultiQuadric C∞,

φε(r) = exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6.

Note that the value of ε significantly affects stability and accuracy of a RBF
method. In particular, in (3) the accuracy is typically high (low) when ε is small
(large), but the ill-conditioning is severe (acceptable). For further details, see [4].

In (3) we distinguish between centers ZN = {z1, . . . , zN} and collocation

points XN = {x1, . . . ,xN} ⊂ Ω. Even though such sets of points can formally
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be distinct, for the following discussion we assume that ZN = XN (see [4]). Then,
for our purposes we split the set XN in the two subsets XNI

of interior points
and XNB

of boundary points, with XN = XNI
∪ XNB

, NI and NB indicating
the number of interior and boundary points, respectively.

When matching the differential equation (1) and the boundary conditions (2)
at the collocation points XN , we get the collocation system of linear equations

Ac = u,

where A is the collocation matrix

A =

[

ÂL

Â

]

, (4)

whose two blocks in (4) are given by

(ÂL)ij = Lφ(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZN ,

Âij = φ(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZN ,

while u is the vector of entries

ui =

{

f(xi), xi ∈ XNI
,

g(xi), xi ∈ XNB
.

Kansa’s approach is known to be a nonsymmetric collocation method. The-
oretical analysis and further considerations on this popular RBF method can be
found, for instance, in [5,8].

3 Adaptive LOOCV-based Scheme

3.1 Basics on LOOCV

The idea of LOOCV for Kansa’s method can be depicted in the following way.
At first, the data are split into two distinct sets: a training set {u(x1), . . .,
u(xk−1), u(xk+1), . . . , u(xN )}, and a validation set that is merely made of the
single value u(xk), i.e. the one left out when generating the training set [4].

Given an index k ∈ {1, . . . , N} and a fixed value of ε, the partial RBF
approximant is given by

û[k](x) =
N
∑

j=1, j 6=k

c
[k]
j φε(||x− zj ||2),

whose coefficients c
[k]
j are found by collocating the training data, that is

Lû[k](xi) = f(xi), xi ∈ XNI
,

û[k](xi) = g(xi), xi ∈ XNB
,

for i = 1, . . . , k − 1, k + 1, . . . , N.
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In order to give a measure of the quality of this attempt, we define the
absolute error

ek = |u(xk)− û[k](xk)|, (5)

at that validation point xk, which is not used to determine the approximant.
Now, if we compute the error in (5), for all k = 1, . . . , N , we get a vector
e = (e1, . . . , eN )T , which can be viewed as an error indicator to identify the
regions which require to be refined by adding any points in the neighborhood of
the selected point. However, instead of using (5), the computation of the error
components can be done in a more efficient way without solving N collocation
problems, each of size (N − 1) × (N − 1). In fact, in [10] Rippa shows that the
computation of the error terms can be simplified to a single formula. The rule
(5) can thus be rewritten as

ek =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N, (6)

where ck is the k-th coefficient of the full approximate solution (3) and A−1
kk is

the k-th diagonal element of the inverse of the corresponding N ×N collocation
matrix A in (4).

3.2 Error Indicator and Refinement via LOOCV

At the beginning of our adaptive scheme, we define an initial set X1
N(1) ≡ XN =

{x
(1)
1 , . . . ,x

(1)

N(1)} of grid collocation points. It is then split into two subsets,

i.e. the set X1

N
(j)
I

= {x
(j)
1 , . . . ,x

(j)

N
(j)
I

} of interior points, and the set X1

N
(j)
B

=

{x
(j)
1 , . . . ,x

(j)

N
(j)
B

} of boundary points, where j = 1, 2, . . . identifies the iteration

of the adaptive algorithm. Observe that the superscript 1 above denotes the first
phase of our scheme, while the subscript N(j) defines the number of collocation
points in the j-th iteration of that same phase.

Then, for a fixed tolerance τ > 0 in our adaptive process, from (6) we can
iteratively define an error indicator via LOOCV given by

e
(j)
k =

∣

∣

∣

∣

ck

A−1
kk

∣

∣

∣

∣

, k = 1, . . . , N (j), j = 1, 2, . . . , (7)

where in the absolute value argument any reference to the iteration is omitted to

avoid confusion in the notation. If the error indicator (7) is such that e
(j)
k > τ ,

then a refinement is applied in the neighborhood of xk. However, in order to do
that, first we have to compute the so-called separation distance

qX1

N(j)
=

1

2
min
u6=v

||x(j)
u − x(j)

v ||2, x(j)
u ,x(j)

v ∈ X1
N(j) , j = 1, 2, . . . , (8)

and then we sum up or subtract the quantity in (8) to one (both) coordinate(s) of
the point xk. In particular, defining explicitly the coordinates of xk, i.e. setting
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xk = (xk,1,xk,2), the refinement strategy consists in the addition of four points
around xk. More precisely, the coordinates of these four points are (xk,1,xk,2 +
qX1

N(j)
), (xk,1 − qX1

N(j)
,xk,2), (xk,1,xk,2 − qX1

N(j)
) and (xk,1 + qX1

N(j)
,xk,2). The

refinement procedure stops when all components of error terms in (7) are less
than or equal to the tolerance τ .

3.3 Further Adaptive Refinement

At the second phase of the algorithm we further refine the collocation points
based on other information coming from a new error estimate. Here, this adaptive
refinement is a sort of extension of the residual subsampling method given in
[3], and later modified for RBF partition of unity collocation [1]. Basically, our
procedure is obtained by means of an efficient combination between an error
indicator and a refinement technique, which consists in solving, estimating and
finally adding or removing adaptively any points in the areas selected by the
process.

Therefore, we start from the output of the previous phase described in Sub-
section 3.2 and re-name that final set as X2

N(1) , where the superscript 2 denotes
the second stage of our adaptive process. Then, for k = 1, 2, . . ., we compute
iteratively two solutions of the form (3), called û and ûa, respectively. In partic-
ular, û is found by considering the set X2

N(k) of collocation points, while ûa is
obtained by taking the same set X2

N(k) with additional boundary points outside

the domain. The resulting set is denoted as X2,a
N(k) . Further details on this strat-

egy of adding points, which is here used to get two approximate RBF solutions,
can be found in [4, Chapter 39].

After defining a set Y (k) = {y
(k)
1 , . . . ,y

(k)

N(k)} of check points, we validate the
results via the error indicator defined by

E
(k)
i = |û(y

(k)
i )− ûa(y

(k)
i )|, y

(k)
i ∈ Y (k). (9)

At the moment we fix two thresholds τlow and τupp, such that 0 < τlow < τupp,
which allow us to refine the set of discretization points when the estimate indi-
cator (9) does not give precise enough result, or coarsen the set of discretization
points if the level of accuracy achieved is under the tolerance τlow. This process
thus leads to an addition or removal of points, thus making this scheme adaptive.
The iterative procedure stops once the refinement process is completed.

4 Numerical Results

In this section we show some results derived from application of our adaptive
algorithm, which is implemented in Matlab. All results are carried out on a
laptop with an Intel(R) Core(TM) i7-6500U CPU 2.50 GHz processor and 4GB
RAM.

In the following we restrict our attention on solution of some 2D elliptic PDE
problems with Kansa’s collocation method. More precisely, we consider some
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Poisson problems, taking the Laplace operator L = −∆ in (1). To analyze the
performance of our adaptive scheme, we take two test problems defined on the
domain Ω = [0, 1]2 (see [1,7]). The analytic solutions of such Poisson problems
are given by

u1(x1, x2) =
1

20
exp(4x1) cos(2x1 + x2),

u2(x1, x2) = sinh(0.3(4x1 − 4) sin(8x2 − 4) exp(−(4x1 − 2.1)4)),

while their graphical representation is shown in Figure 1.

Fig. 1. Exact solutions of Poisson problems u1 (left) and u2 (right).

Moreover, we remark that in the second stage of the algorithm we used
Halton points [4] as check points. It is however obvious that the choice of these
validation points is absolutely arbitrary and other possible distributions can be
used.

In our tests we illustrate the performance of the adaptive algorithm applied
to Kansa’s approach by using RBFs of different smoothness as Inverse Multi-
Quadric C∞ (IMQ) and Matérn C6 (M6) functions (see Section 2). In these
experiments we begin the iterative process by considering N = 225 grid collo-
cation points, consisting of NI = 169 interior points and NB = 56 boundary
points. In order to investigate the accuracy of the adaptive scheme, we compute
the Root Mean Square Error (RMSE), i.e.

RMSE =

√

√

√

√

1

Neval

Neval
∑

i=1

|u(ξi)− û(ξi)|2,

where the ξi, i = 1, . . . , Neval, constitute a set of grid evaluation points and
Neval = 40 × 40. Further, to analyze the stability of the numerical method,
we evaluate the Condition Number (CN) of the collocation matrix A in (4) by
making use of the Matlab command cond.



Adaptive RBF Collocation for Solving Elliptic PDEs 7

After carrying out a preliminary analysis of the algorithm behavior with
different values of ε in the interval [1, 6], in Table 1 we show a summary of all
results obtained by using IMQ and M6 with ε = 4, also indicating the total
number Nfin of collocation points obtained to achieve the final result. While the
value of τ associated with the LOOCV is related to the PDE problem, the values
of (τlow, τupp) = (10−8, 10−4) are kept fixed. In Figure 2 we show some graphs
with the final configurations of discretization points, while Figure 3 shows some
plots of the absolute error for RBF solution, i.e. |u(ξi)− û(ξi)|, i = 1, . . . , Neval,
computed on the grid of Neval = 40× 40 evaluation points.

Problem RBF Nfin RMSE CN no. iter τ

u1 M6 547 9.22e−6 7.57e+11 6 0.05
u1 IMQ 810 4.54e−5 5.88e+15 9 0.05

u2 M6 1086 2.97e−5 3.91e+11 6 0.1
u2 IMQ 695 2.23e−5 3.50e+14 4 0.1

Table 1. Results obtained by starting from N = 225 grid collocation points and using
various RBFs with ε = 4 and (τlow, τupp) = (10−8, 10−4).
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Fig. 2. Final discretization points for u1 (left) and u2 (right) using M6 with ε = 4.

From an analysis of the numerical results, we can note that our adaptive re-
finement scheme works well for both differential problems. The algorithm iden-
tifies the areas of Ω with significant variations, increasing the number of collo-
cation points only in those domain parts in which the accuracy is not enough.
As regards the stability, we remark that the CN assumes values around 10+11–
10+15. Even though RBF-based methods can suffer from severe ill-conditioning
(see e.g. [4]), we observe as a good refinement strategy allows us to control it,
thus avoiding the number of discretization points increasing by too much. Fi-
nally, in Table 1 we indicate the number of iteration required, observing that
our iterative algorithm completes its refinement process in only a few seconds.
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Fig. 3. Absolute error for u1 (left) and u2 (right) using M6 with ε = 4.
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