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Abstract
Self-regeneration is a fundamental property of biologicalmaterials, leading to enhancedmechanical
strength and toughness if subjected to stress and fatigue. Numerous efforts have been devoted to
emulate this property and various self-healingmaterials have been designedwith the aimof a practical
adoption in construction andmechanical engineering. To achieve this, it is important to understand
howdamage evolution and fracture propagation aremodified by self-healing and to evaluate how
mechanical behaviour is affected before failure. In this paper, we implement for thefirst time a self-
healing procedure in the random fusemodel, whose characteristic scaling properties have beenwidely
studied in the literature on damage evolutionmodelling.We identify some characteristic signatures of
self-healing, showing that it can delay the failure of amaterial undergoing loading, but it also lead to a
hard-to-predict,more catastrophic breakdown.

1. Introduction

An interesting feature ofmany biologicalmaterials is the capacity to repair theirmicroscopic traumas occurring
during fatigue cycles and stress events [1]. This property is called self-healing, which leads to an increase in the
time to complete fracture.Moreover, self-healing combinedwith amulti-level hierarchical structure, which is a
recurring feature in biologicalmaterials, allows to improve the globalmechanical properties of the system [2, 3].

These observations have triggered research on artificial self-healingmaterials, aiming to improve the
materials adopted in civil and structural engineering, with a potentially significant impact onmany practical
applications. From the seminal work ofWhite et al [4], by nowmany techniques have been introduced to design
andmanufacture artificial self-healingmaterials [5–14]. A comprehensive review can be found in references
[15–17].

The interest for these systems is not only limited to the investigation of artificial self-healingmaterials, but
also to the understanding of the behaviour near thefinal failure of structures undergoing continuous cycles of
fatigue, damage and reparation. The unexpected collapse of large scale structures (e.g. [18]), demonstrates the
importance of investigating damage evolution in structures of relevance for civil and structural engineering.

Since the first experimental realisation of a self-healingmaterial in 2001 [4], relatively few theoretical/
numerical studies of self-healing systems have been performed in the literature. Self-healing processes have been
included in the classical fibre bundlemodel (FBM) [19, 20] and its extension to the hierarchical case [21, 22]. The
self-healing formulation of FBMhas captured in general the synergy between self-healing and hierarchy that
leads to an increase of strength and fracture toughness [23].

Other approaches have concentrated on specific aspects of experiments, e.g. themodelization of the
fracturing ofmicro-capsules containing a healing agent, and subsequentflowof the latter. For example, Verberg
et al used a hybrid approachwith a coupled lattice Boltzmannmodel and a lattice springmodel (LSM) to
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describe themotion ofmicrocapsules on a substrate with an adhesive coating under the effect of an imposed flow
[24]. Bluhm et al also proposed amodelling approach for self-healing polymer composites based on the theory of
porousmedia, considering embedded catalysts, the liquid healing agents, the solid healedmaterial and the gas
phase in the cracks [25]. Li et al presented amodel to derive effectivemechanical properties for the
microcapsules in cement-matrix self-healingmaterials [26], whileMauludin et al treated the problemusing
cohesive elements [27]. On the other hand, Salib et al developed a hybrid computational approach using LSM
and the hierarchical Bellmodel to investigate themechanical properties and self-healing behaviour of nanogel
particles connected by stable and labile bonds [28], and the same approachwas used to address the problemof
designing strong and tough biomimetic polymer networks with the capability of reforming links in their chain
[29]. Guo et al focused on simulating the crack healingmechanism in hydrogels with chemical and physical
crosslinks [30], andAlsheghri et al proposed a cohesive zone damage-healingmodel to be implemented in a
finite element scheme to describe self-healing polymers [31]. Other approaches have concentrated onmodelling
of self-healing at themolecular scale, e.g.Maiti et al [32]used coarse-grainedmolecular dynamics to study the
behaviour of self-healing polymers and compute parameters such as the local elasticmodulus, reaction rates and
cure kinetics, for a continuummacroscopic scalemodel. A review of early attempts of applying numerical
methods to self-healingmaterials is given in [33], and amore recent review on computationalmodelling of
hierarchicalmaterials, including self-healing, is provided in [34].

Our objective here is to adopt a different approach tomost of the citedworks, similar to that in [35], i.e. to
address themodifications of the fracturemechanics behaviour of a self-healingmaterial, including from a
statistical standpoint, on amacroscopic scale, independently of the specific healingmechanism at play. This is
important to understand the structure and themechanical behaviour of biologicalmaterials subjected to fatigue
loading and characterised by self-healing and hierarchy, e.g. human tendons [36, 37], butmodelling predictions
can also help the design of artificial self-healingmaterials [38]. For these objectives, it is fundamental to focus on
the improvement of thematerialmechanical properties, in particular the overall strength and toughness, the
statistical properties across the hierarchical levels and the effectiveness of different self-healingmechanisms.
Muchwork remains to be done in this field, in particular to understand how self-healingmodifies the
characteristic scaling laws of the system and its fracture processes. These features are fundamental in the
practical application of self-healingmaterials.

We thus adopt an approach analogous to that presented in [23, 37], except the that numerical evaluation tool
here is the random fusemodel (RFM). The RFMhas been extensively used in the literature tomodel damage
evolution [39, 40], and provides scaling laws as a function of the system size that arewell-known [41, 42] in the
absence of self-healing. A limited number of works, starting fromCowie [43, 44], also considered repair effects
in the RFM,mostly in connectionwith the post-slip healing of fracture faults in earthquakes or fatigue failure of
asphalt [45], but not in self-healingmaterials as such. Our aim is thus to understand themodification of the RFM
scaling laws by introducing a self-healingmechanismwhose observationmay help to understand the universal
signature of self-healing processes. Since it has been already demonstrated that self-healing improves the global
mechanical strength and toughness of the system, wewill focus on other effects occurring before failure,
showing that the final rupture of a self-healing system can occur in amore catastrophicmanner, despite the
longer lifetime.

The paper is organised as follows: in section 2, we introduce the RFMalgorithmwith the self-healing
extension. In section 3, we present the results for various observables, in particular in section 3.1, the RFM
characteristic current–voltage curve, which is analogous to the stress–strain curve inmechanical systems; in
section 3.2, the results formaximum current and voltage, in 3.3 results of avalanche distributions and in 3.4 the
crack roughness. Finally, in section 4, a final discussion of results is presented.

2. Random fusemodel

We implement the RFM in a square lattice of L× L resistors with conductivity c=1 (figure 1(a)). As shown in
thefigure A1, the choice of a square lattice instead of a diamond lattice, used elsewhere in the literature, does not
modify the overall qualitative behaviour. A voltage differenceV is applied along the horizontal direction between
the two sides of the lattice, while periodic boundary conditions are set in the vertical direction. Each resistor has a
breaking threshold xj on the current, randomly extracted at the beginning of the simulation from aWeibull
probability distribution l l l= l- - -W x k k x, , ek x1 1 k( ) ( ) ( ) , where the scale parameter is set toλ=1 and the
shape parameter to k=2.

The algorithm is the following: starting from zero, the voltage is progressively increased by steps ofΔV. At
each step, the Kirchoff systemof equations is solved tofind the local currents Ijflowing in each resistor j and,
consequently, the total current Iflowing through the lattice. If some local currents Ij exceed the thresholds, the
resistor withmaximum ratio Ij/xj is eliminated and its conductivity is set to c=0. The systemof equations is
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solved againwith the same voltage tofind how the currents are redistributed. This procedure is repeated until
there are nomore resistors whose threshold is exceeded. After this, the voltage can be increased by another step
ΔV and thewhole algorithm is repeated. The overall system fails when a fracture of broken resistors extends
across thewhole lattice and the total current drops to zero.

This algorithm is implemented using an in-house developedC++ code. TheKirchoff systemof equations is
solved by inverting thematrix of the linear systemusing theC++ library Armadillo, directly embedded in the
code, adopting a LUdecomposition algorithm. In the following simulations, we set the voltage step
ΔV=0.001.We have verified that this does not affect the results and the duration time of the simulations. If
ruptures do not occur at some potential, the systemof equations is not solved again; and since it is linear,
currents in all fuses are scaled proportionally by the same factor of the potential, i.e. (V+ΔV )/V.

Thus, in a single simulationwe obtain a characteristic function I(V ), as infigure 1(b), showing the total
current as a function of the voltage (corresponding to stress as a function of strain). From this curve,many
observables can be extracted: the peak value is themaximum current Imax (strength), the corresponding voltage
of the peak isV(Imax), while the final voltage isVmax. The total dissipated energy E is the area under the curve.We
denotewith ntot the number of total fuses of the system,which can be calculated as = -n L L2tot

2 , and nb is the
number of broken fuses at a given voltage. Thus, we define the total damage of the lattice as d=nb/ntot.

To gain insight in the statistical properties of the system, one can study the avalanche distribution: the
number s of broken resistors at a given voltage is the size of a single avalanche event, so that a histogram
displaying the number of avalanches of size s can be obtained from a single simulation. A reliable estimate of all
these observables can be obtained through repeated simulations, andwe denote by á ñ... this statistical average.

2.1. Self-healing
Wenow suppose that the broken resistors can be restored by some self-healing process.We are addressing the
self-healing process from a generic theoretical point of view, without considering any specificmechanism. The
focus is on the effect of the self-healing process, i.e. the repair of a localmicrocrack,modelled as the
reattachment of a broken link of the lattice, and on the time delay of this repair. These two features are common
to all self-healing processes, with different parameter values, and can be included in the framework of the RFM,
independently of the specific features of the practicalmethod adopted to achieve self-healing in applications.

We define the self-healing rate η as the ratio between the number of restored resistors, namely nsh, and of
broken ones nb, h = n nsh b. Thus, for η=0 the case without self-healing is recovered, and for η=1, all fuses
are repaired. In ourmodel, the self-healing rate η corresponds to the probability that a broken resistor will be
repaired.

In [23], link restorationwas assumed instantaneous, while in this paperwe assume that there can be a delay
in the regeneration of a broken resistor, i.e. broken links are restored after a certain amount of time. Since the
RFM is a quasistaticmodel, there is no real time evolution, but the applied voltage can be considered equivalent
to time: if a time unit is associatedwith a voltage step, simulationswith a linearly increasing voltage correspond
to a linearly increasing time (in the RFM, any rupture and current redistribution is considered instantaneous
with respect to the voltage step). Thus, a delay time can be expressed in voltage units of the simulation. If a
resistor is broken at voltageV0 and its regeneration delay isVsh, it is restoredwhen the applied voltage is
V0+Vsh.

Figure 1. (a) Schematic of the random fusemodel on a square lattice. (b)Characteristic I(V ) curve obtained from a single simulation
of the RFMmodel with L=60 and the notations used in the text.
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In a real life phenomenon, this is connected to a characteristic time of the self-healing process. For example,
in some applications,microcracks are repaired by a healing agent contained in small capsules inside thematerial
itself. In this case, the delay timewould be the characteristic time scale for the healing agent to polymerise and
close themicrocraks. This time scale is present in principle in all self-healing processes, so it can be added
phenomenologically in themodel from a generic point of view.

We assign the delay of each resistor by extracting it from aWeibull distributionW(x,Δsh, ksh), where the
scale parameterΔsh is the characteristic delay and ksh is the shape parameter.When a resistor is restored, its
conductivity is set again to c=1 and a new breaking thresholdmust be extracted from theWeibull distribution
of the thresholdsW(x,λ′, k), but the scale parametersmust be rescaled so that the resistor is not instantaneously
burnt. Thus, we set l l¢ = + Ij

0, where Ij
0 is the current flowing through it at themoment of the previous

breakage. In this way, the global statistical properties of the resistors are unchanged by self-healing. A resistor can
be broken and restored any number of times. The rest of the algorithmworks as in the case without self-healing.

In this paper, we focus on the effects of the delay in the case η=1, i.e. all resistors can potentially be restored.
If not explicitly stated, all simulations are therefore performedwith η=1. The self-healing delay, expressed in
voltage units, can be comparedwith the average value ofVmax of the system. For l á ñVsh max the case of ‘fast’
self-healing occurs, i.e. a broken resistor has a high probability of being restored before the failure of the system,
and vice versa, for l á ñ Vsh max the case of ‘slow’ self-healing occurs.Wewill explore both of these limits. It is
convenient to define the healing rapidity G º D1 sh, so that the case without self-healing is obtained forΓ=0.

In [23], an analytical calculationwas performed to describe the evolution of damage in a FBMwith self-
healing in the limit of theDaniel’s theory [19, 20], and to provide an approximate expression for its strength. The
resulting expressions are approximated, since no account for damage or healing localisation is present, but they
still provide a useful analytical benchmark. According to [23], the relation between stressσ (current I) and strain
ò (voltageV ) can bewritten as:

s = h-  E e , 11 m
0 ( )( )( )

where ò0 andm are the scale and the shape parameter of theWeibull threshold distribution, respectively, and E is
the Young’smodulus. In the presence of a delay, amodified version of equation (1) can be provided if an effective
strain-dependent self-healing rate ηeff is adopted in place of η, accounting for an average characteristic time delay
Γ−1 in the healing process. In particular, results arefittedwith a good approximation by the phenomenological
law:

h h~
G

+ G
 

1
2

m

meff ( ) ( )
( )

( )

which provides a simple expressionwith the correct asymptotic behaviour: the caseΓ=0, i.e. an infinite time
delay, is equivalent to the case without self-healing, and the case G  ¥ is equivalent to an instantaneous self-
healing as in [23]. For intermediate values of the delay, themaximum strength is reducedwith respect to the
instantaneous self-healing.

3. Results

3.1. Characteristic I(V ) curve
Themaximumvoltage and the peak current both increase with self-healing. This is shown infigure 2 by the
characteristic I(V ) curve for various self-healing rates. In particular, by increasing the value ofΓ, the curves
approach the ideally linear case I∝V, inwhich the last catastrophic fracture event, leading to the failure of the
system, occurs immediately after the peak current and involves a large avalanche of ruptures. Thus, a signature of
the self-healing process in the RFM is an increase inmaximum strength and ultimate strain, but also a vanishing
plastic phase and perfectly brittle behaviourwith a catastrophic final event.

To bemore quantitative, infigure 3(a)we report the behaviour of themean total damage á ñd of the system as
a function of applied voltage. In standard RFM simulations, the damage approximately increases linearly up to
thefinal larger event. For slow self-healing values, i.e.D á ñ Vsh max , the curve lies over the standard case. For
fast self-healing the slope of the curve progressively decreases and the spike due to the last catastrophic event
increases, and for the fastest self-healing case the spread of damage is inhibited up to failure. Infigure 3(b), we
report the statistics of the number of broken fuses and restored ones at the end of the test. By increasingΓ, the
number of broken fuses decreases andmost of them are fractured at the last rupture event. These results suggest
that with a fast self-healing rate the systemdamagemay appear limited despite a catastrophic rupture avalanche
is imminent.

The abrupt failure of the system is not due to aweakness of the restored links, since on average only about ten
percent of the final broken links have been previously restored. Links are repaired in an unstressed state, so that
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they have larger thresholds. Thus, wemust conclude that with a self-healing delayΓ2, the systemmay display
a limited damage, but be in a critical state inwhich a single rupture can trigger the total failure.

We observe also that an imminent failure cannot be easily predicted from the statistical distribution of the
currents.We define the effective current as sumover all unbroken links of the local currents normalised by their
threshold values, i.e with the notation of section 2 = - å-I n n I j x jjeff tot b

1( ) ( ) ( ). This is an averagemeasure
of the imminence to the failure of the links. Another observable is also the fraction of linkswhose ratio I( j)/x( j)
is above the percentage p, namely rp, so that, for example, r0.95 indicates a link current of 95%of its threshold.
This is an estimate of howmany links are very close to failure. For both observables, results before the failure in
the presence of self-healing display only a small percentage increase with respect to the standard case, as shown
infigure 4, so that apparently these kinds of observables are not effective in indicating that the system is in a
critical state close to failure. Average global quantities cannot capture this phenomenon because, in this case, the

Figure 2.Comparison of the characteristic I(V ) curve between different self-healing rates obtained for a single RFM simulationwith
L=60.

Figure 3. (a)Mean value of the total damage of the system for different delay values. In this case á ñ =V 11.77 1max ( ), so that the value of
Γ dividing the regimes of fast and slow self-healing isΓ;0.085. (b) Statistics of the broken and restored resistors at the end of the test.
For fast self-healing valuesmost of thefinal broken resistors are due to the last rupture avalanche. These simulationswere performed
for L=30 and averaged over twenty repetitions.
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fracture propagates due to local current spikes (i.e. stress concentrations) around links that are progressively
broken by thefinal avalanche.We have verified that this behaviour is not an artifact due to the choice of the
elementary stepΔV. Thus, wemust conclude that this is a critical feature of the system for large self-healing
values.

3.2. Peak current andmaximumvoltage
The scaling law of the peak current with the total size of the lattice in RFM is consistent with á ñ = +aI c L cmax 1 2,
where c1 and c2 are constants and the exponent estimate isα; 0.96 [46], obtained bothwith diamond and
triangular lattices. Our data in the standard case, obtained using a square lattice in the range 12�L�160, leads
toα=0.954(1), which is consistent with the value of the literature. The other constants are c1=0.308(2) and
c2=0.487(10).

A similar scaling law holds for themaximumvoltage, whichmay be associatedwith the average lifetime of
the system. For 30�L�160, we find a scaling law á ñ = +bV c L cmax 3 4, with c3=0.39(1), c4=2.2(1) and
exponentβ=0.941(8). Tables of datasets used for thesefits are reported in the tables A1–A3. These results are
stable, i.e. removing the larger lattices from the fitted range does notmodify the results. This demonstrates that
finite size effects are negligible.

In the presence of self-healing, these scaling laws aremodified and cannot be fittedwith a simple power-law
behaviour. Infigure 5, we report themaximumcurrent increase as a function ofΓ for different lattice sides L. For
slow self-healing values, the increase of themaximum current with respect to the case without self-healing
follows a power-law hD º á ñ - á ñ ~ GI I I L0 a

max max( ) ( ) ( ) , where the exponent value is a; 2. This power-law
behaviour in the presence of self-healing is found in the approximated theory [23, 47], and the quadratic
behaviour is consistent with equations (1), (2) for smallΓ. The collapse on the same curve for all L is clear fromΓ

L2 . This can be derived by considering thatVmax≈0.38L and the condition of slow self-healing isΓ
Vmax1, so that combining themwe find the same condition.

For fast self-healing values, data depends on the lattice side L, which explains themodification of the scaling
law of á ñImax . However, the slope of the curve is decreasingwith respect to the smallest values. This implies that
by reducing the delayDsh, the self-healing process is progressively less effective.

Infigure 6, we report for a comparison of themaximumcurrent as a function ofΓ for various η values and
L=30. These results are qualitatively consistent with afit derived from inserting ηeff of equation (2) into
equation (1) and calculating themaximum strength. A quantitative good agreement is found for the smaller self-
healing rate andΓλ.Moreover, results for various η collapse on the same curve, at least for slow self-healing
values, by plottingΔI/η, which is captured by equation (2).

3.3. Avalanche distributions
When a resistor is burned, the currents are redistributed inside the lattice and rupture avalanches can be
triggered. The number s of resistors burned at the same voltage is the size of a single avalanche event. By iterating
the simulations, the distribution p(s) of the avalanche sizes can be sampled, representing the probability of

Figure 4. (a)Mean value of effective current for various self-healing rates. For the largestΓ, inwhich the damage is very limited (see
figure 3), there is a small percentage increase with respect to the standard case. (b)Percentage of linkswhose current is above 95%of
their threshold. Simulations were performed for L=30 and averaged over fifty repetitions.
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having an avalanche of size s. The avalanche distribution displays a decreasing power-law behaviourwith afinal
peak due to the last catastrophic event involvingmany resistors (figure 7(a)). If the final avalanche is removed,
the distribution can bewritten in the formof a decreasing power-lawwith an upper cut-off:

= t-p s s g s s , 30( ) ( ) ( )

where τ is the power-law exponent, and s0 is the cut-off, which can bewritten as a function of the lattice size as
s0=LD,D being the fractal dimension of the avalanche. The exponent τ can be analytically calculated in the
FBM,where it assumes exactly the value τ=5/2. In the RFM, it has been evaluated in [41], resulting in τ=2.75
for a diamond lattice and τ=3.05 for a triangular lattice, with fractal dimension of aboutD=1.18 for both.

A robustmethod to extract these results fromdata is suggested in [41, 48]: once the last catastrophic event is
removed, the qthmoment of the distribution º á ñM sq

q is evaluated as a function of the lattice size. These
quantities have a power-law behaviour ~ sM Lq q, fromwhich an exponentσq can be evaluated. If the
distribution coincides with equation (3), then the following conditions should be verified: if q<τ−1,σq=0,

Figure 5.Rescaled plot of the peak current increase with respect to the standard case for various self-healing delay values. The data
collapse on the same power-law forΓ L2 , i.e. for slow self-healing values. The dashed line is the power-law fit on these data, whose
result for the exponent is a=1.96(7). For fast self-healing values, the slope of all curves decreases.

Figure 6.Results of the increase of the peak current as a function ofΓ obtained for various self-healing rates η. For each series, the
dashed line is the fit performed by inserting the expression (2) into equation (1) and calculating itsmaximum. In the inset, the same
plot rescaled by η is reported.
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while for q>τ−1σq=qD+D(1−τ). Thus, from the plot ofσq as a function of q, both τ andD can be
evaluated.

Our data are consistent with these results: we obtainD=1.07(4) and τ=3.00(8). This is close to the value
found for a triangular lattice, which is analogous to our case with a non-uniform starting current distribution on
the lattice.With these results, the collapse of the avalanche distributions on the same scaling function can be
obtained, as shown in the inset offigure 7(a).

In the presence of self-healing, the avalanche distribution ismodified, as shown infigure 7(b) for various
self-healing delay values. As observed in the previous sections, the peak due to the last catastrophic events
increases withΓ, and for fast self-healing values, there are substantialmodifications. If we repeat the procedure
to extract τ andD, for fast self-healing values, the data rescaled do not collapse on the same curve. On the
contrary, for slow self-healing there is a perfect collapse and, for example, forΓ=0.05we obtainD=0.95(2)
and τ=2.86(8). In the inset offigure 7(b)we report the comparison of the avalanche distribution once the last
events are removed. The slope of the distributions decreases with fast self-healing values. An estimate can be
obtained by fitting the first points of the avalanche distribution, where the cut-off function is less influential, and
averaging it over the lattice sides. Results are shown in table 1.

We can conclude that in general the exponent of the avalanche distribution decreases with the addition of
self-healing, i.e. there is a higher probability of larger rupture avalanches. For slow self-healing values,
equation (3) is still valid, while for fast self-healing values there are substantialmodifications to the cut-off
expression.

3.4. Crack roughness
At the end of the simulation, the lattice is split into two regions by awinding crack that is roughly perpendicular
to theflowof current, i.e. along the vertical direction. It is possible to study the ‘fractality’ of the crack in a
quantitative way bymeans of different observables [49], which should give similar results provided that the crack

Figure 7. (a)Avalanche size distribution for various lattice sizes including thefinal events before fracture, represented by the peak for
larger sizes. In the inset, the same data rescaledwithout thefinal peak collapse on the same curve. (b)Avalanche distributions for
various self-healing delay values with the same side L=30. In the inset, the same distributionwithout the final peak are reported,
showing themodification of the cut-off and the decrease of the power-law slope for larger self-healing delay values. All results have
been obtained by averaging about 4 × 104 repetitions.

Table 1.Table reporting the exponents of the avalanche distributions
for various self-healing delay values. ForΓ=0, 0.05 the estimate was
obtainedwith themethod described in the text, while for largerΓ it was
derived from the directfit of the avalanche distribution, averaged on
different lattice sides.

Γ 0 0.05 0.5 1.0 2.0

τ 3.00(8) 2.86(8) 2.78 (4) 2.76 (4) 2.70 (2)
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is indeed self-affine. For comparison between different self-healing rates, we choose the crackwidthwhose
scaling law has been investigated in [41].

Thefirst step is to obtain a single-valued function f (y) to describe the crack, where yä[0, L] is the vertical
coordinate of the lattice and f (y)ä[0, L] is the coordinate of the crack point along the horizontal direction. In
our case, we identify the links belonging to the crack as those connecting points of the two split regions of the
lattice. In order to obtain a single value for f (y), from this set we take only the vertical link that hasminimum f (y)
for each value of y. This is a conventional choice that does not affect the scaling laws.

Hence, we can define the crackwidth as º á - ñw f y f yl
2 2( ( ) ( )) , where the average f is performed over an

interval of size l�L and á ñ... is the statistical average over all the samples. The global width ºW w L( ) is
expected to scale as a power-lawW∼L ζ, where ζ is the fractal exponent of the crack.

In the RFM, an anomalous scaling has been observed [41], i.e. there is another local exponent ζloc so that for
regions of size l=L, the scaling law is ~ z z z-w l l Lloc loc( ) , with ζ=0.80 and ζloc=0.7 for a diamond lattice. In
the casewithout self-healing, our data are in good agreement with this. Infigure 8(a), the crackwidth is plotted as
a function of l for various lattice sizes. From the fit of the global widthWwe obtain ζ=0.791(1). The exponent
ζloc can be estimated from afit on the region l=L of the case L=100 andwe obtain ζloc; 0.70.

In table 2, results introducing self-healing are reported. The power-law behaviour of the crackwidth is
confirmed except for the largest values ofΓ, whose goodness offit decays in the same range of Lä[12, 100]. This
can be explained by the larger rupture avalanche at the system failure, so that the crack does not propagate as in
the standard case, rather it is formed almost simultaneously. In any case, the ζ exponent increases, since the
lattice regionswith restored links have smaller rupture probability, so that thefinal crack propagates around
themwith awinding path. Thus, on large lattices there is also a larger probability that thewinding path
amplitudes increase and, in other words, that the crackwidth increases with L at greater rate.

On the contrary, we do not observe significant variations of the local exponent ζloc, since the previous effect
is less influential on local scales. The invariance of the local scaling properties is confirmed by another

Figure 8. (a)Plot of the crackwidth for various lattice sizes andΓ=0. The continuous black line is the linearfit of the extremal value for
each series, representing the globalwidthW. Thepower-lawbehaviourW∼L ζperfectlyfits the data,with ζ=0.791(1). The dashed line
represent the linearfit for the smaller values of l for the latticewithL=100, showing that the exponent ζloc is smaller than ζ. Results of these
fits introducing self-healing are reported in table 2. (b)Plot of the crack length as a functionof the lattice size for variousΓ values. Thedashed
lines of the corresponding colour are thepower-lawfit lc=l1L

δ+l0 for the extremal casesΓ=0 andΓ=2.0,whose results for δ are
δ=1.16(1) and δ=1.11(2), respectively.

Table 2. ζ exponents obtained through thefit ofW and estimates of ζloc for various self-healing
delay values.

Γ 0 0.05 0.333 0.5 1.0 2.0

ζ 0.791(1) 0.795(3) 0.802(2) 0.818(2) 0.840(3) 0.851(3)

χ2/d.o.f. 0.9 0.3 0.7 2.1 5.6 14

ζloc 0.70(2) 0.75(5) 0.68(1) 0.68(2) 0.67(2) 0.70(2)
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observable, i.e. the total crack length lc, reported infigure 8(b). This can be calculated as the number of links
connecting points belonging to the two split parts of the lattice. In the standard case, we find a power law-
behaviour lc=l1L

δ+l0 , with δ=1.16(1). This is anothermeasure of crack tortuosity, since it indicates super-
linear length increase of a one-dimensional curvewith system size. In the self-healing case, the value of total
crack length increases, but the scaling exponent δ does not exhibit substantialmodifications. This implies that
the tortuosity of the crack on local scales is not affected significantly by self-healing.

4. Conclusions

Wehave implemented for the first time a formulation of the RFM that includes self-healing processes and have
investigated themodifications occurring for various statistical properties. In general, wemust distinguish two
regimes of self-healing, indicated for simplicity as ‘fast’ self-healing regime, if the healing of broken links occurs
over amuch smaller time scale than the life time of the system, and ‘slow’ self-healing regime, if the two are
comparable.

For slow self-healing values, there is an improvement in themaximum strength and life time, with small
modifications to the statistics of damaged links, avalanche distributions andmagnitude of thefinal events
leading to the failure of the system. A scaling law for the increase of the peak current with respect to the standard
case is found,ΔI∼(Γ L)awith exponent a≈2. The avalanche distributionwithoutfinal events before failure
follows the same scaling law p(s)∼s− τwith a decreasing τ exponent.

For fast self-healing values, the damage of the system at any applied potential is reduced by increasing the
value of the healing rapidityΓ, and the characteristic voltage-current curve tends to the ideal elastic case leading
to afinal catastrophic event, whose average size is increased. This is a crucial aspect, since the systemmay not
appear critically damaged even up to a few steps before the catastrophic failure. Themaximumcurrent increases
with a reduced slope, so that self-healing becomes progressively less effective. The avalanche distribution, in
particular the cut-off expression, ismodified and the scaling law for the standard case cannot be used to collapse
the data set. Further studies are required to identify a new expression, however results herein show that the
power-law exponent has a decreasing trend, i.e. that there is a higher probability of larger avalanches even before
system failure.

The self-healing process does not substantiallymodify the exponent of the scaling laws for the local crack
width and the total fracture length. An increase of the scaling exponent of the global crackwidth is found, which
can be ascribed to the presence of regions of restored links not intersected by the crack. For this reason, we expect
this to be a universal signature of a self-healing process.

An interesting extension of this study can be to determine reliable precursors to the failure of the system in
the presence of fast self-healing, which is of obvious relevance for the practical applications of self-healing
materials. Since the effectiveness of self-healing is progressively reduced, our results suggest that amaximum
self-healing ratewould not necessarily be an optimal solution in all cases.

A biological implication of this study is that self-healing occurring on smaller time scales than the damage
rate increases strength and toughness but can lead to abrupt, brittle failures. This could be useful for lizards like
salamanders, which use autotomy (i.e. self-amputation) as a defensemechanism to escape predators: in this
case, a sharp, rapid fracture process is requiredwhen the tail is subjected to a high stress, such as a predator
bite [50].
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Appendix. Tables of results

Figure A1.Comparison between square and diamond lattice results for the relative increase of the peak currentΔI/Imax (left) and the
final number of broken resistors nb/ntot (right) for various self-healingΓ values. Despite small relative variations, the qualitative
behaviours are similar.

TableA1.Table of results for lattices with L= 10, 20, 30 and various self-healingΓ values, reporting themean values of peak current and
maximumvoltage, with the corresponding number of sampled repetitions.

Γ
L=10 L=20 L=30

Nconf á ñImax á ñVmax Nconf á ñImax á ñVmax Nconf á ñImax á ñVmax

0 3×105 3.253(1) 5.651(2) 105 5.849(2) 8.799(3) 105 8.378(2) 11.776(5)

0.025 104 8.417(5) 11.782(11)

0.04 105 3.263(1) 5.645(3) 5×104 5.884(2) 8.797(5) 104 8.469(6) 11.789(12)

0.05 7×104 3.271(2) 5.644(4) 4×104 5.905(3) 8.794(5) 2×104 8.511(4) 11.780(8)

0.06̄ 4×104 3.281(2) 5.641(5) 2×104 5.944(4) 8.792(8) 104 8.604(8) 11.794(15)

0.1 4×104 3.310(2) 5.629(5) 2× 104 6.055(5) 8.793(8) 104 8.856(6) 11.846(10)

0.16̄ 4×104 3.407(2) 5.603(5) 104 6.349(7) 8.811(11) 4×103 9.378(13) 11.951(18)

0.25 2×104 3.565(4) 5.588(7) 2×104 6.743(5) 8.876(7) 104 9.984(8) 12.113(10)

0.3̄ 104 3.821(4) 5.599(7) 105 7.130(2) 8.953(3) 105 10.491(3) 12.267(3)

0.5 104 4.164(5) 5.633(6) 105 7.650(3) 9.068(3) 6× 104 11.129(4) 12.472(5)

1.0 4×104 4.869(4) 5.761(4) 8×104 8.524(3) 9.330(3) 4×104 12.080(5) 12.821(6)

2.0 4×104 5.542(5) 5.959(4) 8×104 9.219(3) 9.601(3) 2×104 12.779(7) 13.135(7)

10.0 2×104 6.317(7) 6.373(7) 104 9.946(11) 10.003(11) 103 13.484(40) 13.541(40)

20.0 105 6.436(6) 6.456(6) 104 10.031(11) 10.055(11) 103 13.599(37) 13.622(37)
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