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Abstract

Self-regeneration is a fundamental property of biological materials, leading to enhanced mechanical
strength and toughness if subjected to stress and fatigue. Numerous efforts have been devoted to
emulate this property and various self-healing materials have been designed with the aim of a practical
adoption in construction and mechanical engineering. To achieve this, it is important to understand
how damage evolution and fracture propagation are modified by self-healing and to evaluate how
mechanical behaviour is affected before failure. In this paper, we implement for the first time a self-
healing procedure in the random fuse model, whose characteristic scaling properties have been widely
studied in the literature on damage evolution modelling. We identify some characteristic signatures of
self-healing, showing that it can delay the failure of a material undergoingloading, butitalsoleadtoa
hard-to-predict, more catastrophic breakdown.

1. Introduction

An interesting feature of many biological materials is the capacity to repair their microscopic traumas occurring
during fatigue cycles and stress events [1]. This property is called self-healing, which leads to an increase in the
time to complete fracture. Moreover, self-healing combined with a multi-level hierarchical structure, which isa
recurring feature in biological materials, allows to improve the global mechanical properties of the system [2, 3].

These observations have triggered research on artificial self-healing materials, aiming to improve the
materials adopted in civil and structural engineering, with a potentially significant impact on many practical
applications. From the seminal work of White et al [4], by now many techniques have been introduced to design
and manufacture artificial self-healing materials [5-14]. A comprehensive review can be found in references
[15-17].

The interest for these systems is not only limited to the investigation of artificial self-healing materials, but
also to the understanding of the behaviour near the final failure of structures undergoing continuous cycles of
fatigue, damage and reparation. The unexpected collapse of large scale structures (e.g. [18]), demonstrates the
importance of investigating damage evolution in structures of relevance for civil and structural engineering.

Since the first experimental realisation of a self-healing material in 2001 [4], relatively few theoretical /
numerical studies of self-healing systems have been performed in the literature. Self-healing processes have been
included in the classical fibre bundle model (FBM) [19, 20] and its extension to the hierarchical case [21, 22]. The
self-healing formulation of FBM has captured in general the synergy between self-healing and hierarchy that
leads to an increase of strength and fracture toughness [23].

Other approaches have concentrated on specific aspects of experiments, e.g. the modelization of the
fracturing of micro-capsules containing a healing agent, and subsequent flow of the latter. For example, Verberg
et alused a hybrid approach with a coupled lattice Boltzmann model and a lattice spring model (LSM) to
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describe the motion of microcapsules on a substrate with an adhesive coating under the effect of an imposed flow
[24]. Bluhm et al also proposed a modelling approach for self-healing polymer composites based on the theory of
porous media, considering embedded catalysts, the liquid healing agents, the solid healed material and the gas
phase in the cracks [25]. Li et al presented a model to derive effective mechanical properties for the
microcapsules in cement-matrix self-healing materials [26], while Mauludin et al treated the problem using
cohesive elements [27]. On the other hand, Salib et al developed a hybrid computational approach using LSM
and the hierarchical Bell model to investigate the mechanical properties and self-healing behaviour of nanogel
particles connected by stable and labile bonds [28], and the same approach was used to address the problem of
designing strong and tough biomimetic polymer networks with the capability of reforming links in their chain
[29]. Guo et al focused on simulating the crack healing mechanism in hydrogels with chemical and physical
crosslinks [30], and Alsheghri et al proposed a cohesive zone damage-healing model to be implemented in a
finite element scheme to describe self-healing polymers [31]. Other approaches have concentrated on modelling
of self-healing at the molecular scale, e.g. Maiti et al [32] used coarse-grained molecular dynamics to study the
behaviour of self-healing polymers and compute parameters such as the local elastic modulus, reaction rates and
cure kinetics, for a continuum macroscopic scale model. A review of early attempts of applying numerical
methods to self-healing materials is given in [33], and a more recent review on computational modelling of
hierarchical materials, including self-healing, is provided in [34].

Our objective here is to adopt a different approach to most of the cited works, similar to thatin [35], i.e. to
address the modifications of the fracture mechanics behaviour of a self-healing material, including from a
statistical standpoint, on a macroscopic scale, independently of the specific healing mechanism at play. This is
important to understand the structure and the mechanical behaviour of biological materials subjected to fatigue
loading and characterised by self-healing and hierarchy, e.g. human tendons [36, 37], but modelling predictions
can also help the design of artificial self-healing materials [38]. For these objectives, it is fundamental to focus on
the improvement of the material mechanical properties, in particular the overall strength and toughness, the
statistical properties across the hierarchical levels and the effectiveness of different self-healing mechanisms.
Much work remains to be done in this field, in particular to understand how self-healing modifies the
characteristic scaling laws of the system and its fracture processes. These features are fundamental in the
practical application of self-healing materials.

We thus adopt an approach analogous to that presented in [23, 37], except the that numerical evaluation tool
here is the random fuse model (RFM). The RFM has been extensively used in the literature to model damage
evolution [39, 40], and provides scaling laws as a function of the system size that are well-known [41,42] in the
absence of self-healing. A limited number of works, starting from Cowie [43, 44], also considered repair effects
in the RFM, mostly in connection with the post-slip healing of fracture faults in earthquakes or fatigue failure of
asphalt [45], but not in self-healing materials as such. Our aim is thus to understand the modification of the RFM
scaling laws by introducing a self-healing mechanism whose observation may help to understand the universal
signature of self-healing processes. Since it has been already demonstrated that self-healing improves the global
mechanical strength and toughness of the system, we will focus on other effects occurring before failure,
showing that the final rupture of a self-healing system can occur in a more catastrophic manner, despite the
longer lifetime.

The paper is organised as follows: in section 2, we introduce the REM algorithm with the self-healing
extension. In section 3, we present the results for various observables, in particular in section 3.1, the RFM
characteristic current—voltage curve, which is analogous to the stress—strain curve in mechanical systems; in
section 3.2, the results for maximum current and voltage, in 3.3 results of avalanche distributions and in 3.4 the
crack roughness. Finally, in section 4, a final discussion of results is presented.

2.Random fuse model

We implement the REM in a square lattice of L x L resistors with conductivity ¢ = 1 (figure 1(a)). As shown in
the figure A1, the choice of a square lattice instead of a diamond lattice, used elsewhere in the literature, does not
modify the overall qualitative behaviour. A voltage difference Vis applied along the horizontal direction between
the two sides of the lattice, while periodic boundary conditions are set in the vertical direction. Each resistor has a
breaking threshold x; on the current, randomly extracted at the beginning of the simulation from a Weibull
probability distribution W (x, A, k) = kX 1(x/\)fle=/ M where the scale parameterissetto A = 1and the
shape parameter tok = 2.

The algorithm is the following: starting from zero, the voltage is progressively increased by steps of AV. At
each step, the Kirchoff system of equations is solved to find the local currents I; flowing in each resistor jand,
consequently, the total current I flowing through the lattice. If some local currents [; exceed the thresholds, the
resistor with maximum ratio I;/x;is eliminated and its conductivity is set to ¢ = 0. The system of equations is
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Figure 1. (a) Schematic of the random fuse model on a square lattice. (b) Characteristic I(V') curve obtained from a single simulation
of the REM model with L = 60 and the notations used in the text.

solved again with the same voltage to find how the currents are redistributed. This procedure is repeated until
there are no more resistors whose threshold is exceeded. After this, the voltage can be increased by another step
AVand the whole algorithm is repeated. The overall system fails when a fracture of broken resistors extends
across the whole lattice and the total current drops to zero.

This algorithm is implemented using an in-house developed C++ code. The Kirchoff system of equations is
solved by inverting the matrix of the linear system using the C++- library Armadillo, directly embedded in the
code, adopting a LU decomposition algorithm. In the following simulations, we set the voltage step
AV = 0.001. We have verified that this does not affect the results and the duration time of the simulations. If
ruptures do not occur at some potential, the system of equations is not solved again; and since it is linear,
currents in all fuses are scaled proportionally by the same factor of the potential, i.e. (V + AV)/V.

Thus, in a single simulation we obtain a characteristic function I(V), as in figure 1(b), showing the total
current as a function of the voltage (corresponding to stress as a function of strain). From this curve, many
observables can be extracted: the peak value is the maximum current I, (strength), the corresponding voltage
of the peak is V(I ,.x), while the final voltage is V.. The total dissipated energy E is the area under the curve. We
denote with n,,, the number of total fuses of the system, which can be calculated as 71,,; = 2> — L, and n is the
number of broken fuses at a given voltage. Thus, we define the total damage of the lattice as d = 1,/

To gain insight in the statistical properties of the system, one can study the avalanche distribution: the
number s of broken resistors at a given voltage is the size of a single avalanche event, so that a histogram
displaying the number of avalanches of size s can be obtained from a single simulation. A reliable estimate of all
these observables can be obtained through repeated simulations, and we denote by (...) this statistical average.

2.1. Self-healing

We now suppose that the broken resistors can be restored by some self-healing process. We are addressing the
self-healing process from a generic theoretical point of view, without considering any specific mechanism. The
focus is on the effect of the self-healing process, i.e. the repair of a local microcrack, modelled as the
reattachment of a broken link of the lattice, and on the time delay of this repair. These two features are common
to all self-healing processes, with different parameter values, and can be included in the framework of the REM,
independently of the specific features of the practical method adopted to achieve self-healing in applications.

We define the self-healing rate n) as the ratio between the number of restored resistors, namely ng,, and of
broken ones ny,, 7 = 1, /ny. Thus, for ) = 0 the case without self-healing is recovered, and for ) = 1, all fuses
are repaired. In our model, the self-healing rate 7 corresponds to the probability that a broken resistor will be
repaired.

In [23], link restoration was assumed instantaneous, while in this paper we assume that there can be a delay
in the regeneration of a broken resistor, i.e. broken links are restored after a certain amount of time. Since the
RFM is a quasistatic model, there is no real time evolution, but the applied voltage can be considered equivalent
to time: if a time unit is associated with a voltage step, simulations with a linearly increasing voltage correspond
to alinearly increasing time (in the RFM, any rupture and current redistribution is considered instantaneous
with respect to the voltage step). Thus, a delay time can be expressed in voltage units of the simulation. Ifa
resistor is broken at voltage V° and its regeneration delay is Vi, it is restored when the applied voltage is
VO 4 Vi
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In areal life phenomenon, this is connected to a characteristic time of the self-healing process. For example,
in some applications, microcracks are repaired by a healing agent contained in small capsules inside the material
itself. In this case, the delay time would be the characteristic time scale for the healing agent to polymerise and
close the microcraks. This time scale is present in principle in all self-healing processes, so it can be added
phenomenologically in the model from a generic point of view.

We assign the delay of each resistor by extracting it from a Weibull distribution W(x, Ag,, ks,), where the
scale parameter Ay, is the characteristic delay and kg, is the shape parameter. When a resistor is restored, its
conductivity is set again to ¢ = 1 and a new breaking threshold must be extracted from the Weibull distribution
of the thresholds W(x, X, k), but the scale parameters must be rescaled so that the resistor is not instantaneously
burnt. Thus, weset N = A + I JQ , where I is the current flowing through it at the moment of the previous
breakage. In this way, the global statistical properties of the resistors are unchanged by self-healing. A resistor can
be broken and restored any number of times. The rest of the algorithm works as in the case without self-healing.

In this paper, we focus on the effects of the delay in the case 7 = 1, i.e. all resistors can potentially be restored.
If not explicitly stated, all simulations are therefore performed with 7 = 1. The self-healing delay, expressed in
voltage units, can be compared with the average value of V.., of the system. For Ay, < (Vjax) the case of ‘fast’
self-healing occurs, i.e. a broken resistor has a high probability of being restored before the failure of the system,
and vice versa, for Ay, 2 (Viax) the case of ‘slow’ self-healing occurs. We will explore both of these limits. It is
convenient to define the healing rapidity I' = 1/Ay,, so that the case without self-healing is obtained for I' = 0.

In [23], an analytical calculation was performed to describe the evolution of damage in a FBM with self-
healing in the limit of the Daniel’s theory [ 19, 20], and to provide an approximate expression for its strength. The
resulting expressions are approximated, since no account for damage or healing localisation is present, but they
still provide a useful analytical benchmark. According to [23], the relation between stress o (current I) and strain
€ (voltage V') can be written as:

o =E ¢ e~ De/e)", (1)

where €, and m are the scale and the shape parameter of the Weibull threshold distribution, respectively, and E is
the Young’s modulus. In the presence of a delay, a modified version of equation (1) can be provided if an effective
strain-dependent self-healing rate 7).¢is adopted in place of 1, accounting for an average characteristic time delay
"' in the healing process. In particular, results are fitted with a good approximation by the phenomenological
law:

Te)m
Negr (€) ~ N ()
eff 1+ (FE )m
which provides a simple expression with the correct asymptotic behaviour: the case I' = 0, i.e. an infinite time
delay, is equivalent to the case without self-healing, and the case I" — oo is equivalent to an instantaneous self-
healingasin [23]. For intermediate values of the delay, the maximum strength is reduced with respect to the
instantaneous self-healing.

3. Results

3.1. Characteristic I(V) curve

The maximum voltage and the peak current both increase with self-healing. This is shown in figure 2 by the
characteristic I(V') curve for various self-healing rates. In particular, by increasing the value of T', the curves
approach the ideally linear case I o< V, in which the last catastrophic fracture event, leading to the failure of the
system, occurs immediately after the peak current and involves a large avalanche of ruptures. Thus, a signature of
the self-healing process in the RFM is an increase in maximum strength and ultimate strain, but also a vanishing
plastic phase and perfectly brittle behaviour with a catastrophic final event.

To be more quantitative, in figure 3(a) we report the behaviour of the mean total damage (d) of the system as
afunction of applied voltage. In standard REM simulations, the damage approximately increases linearly up to
the final larger event. For slow self-healing values, i.e. Ay, 2 (Vinax)» the curve lies over the standard case. For
fast self-healing the slope of the curve progressively decreases and the spike due to the last catastrophic event
increases, and for the fastest self-healing case the spread of damage is inhibited up to failure. In figure 3(b), we
report the statistics of the number of broken fuses and restored ones at the end of the test. By increasing I', the
number of broken fuses decreases and most of them are fractured at the last rupture event. These results suggest
that with a fast self-healing rate the system damage may appear limited despite a catastrophic rupture avalanche
is imminent.

The abrupt failure of the system is not due to a weakness of the restored links, since on average only about ten
percent of the final broken links have been previously restored. Links are repaired in an unstressed state, so that
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Figure 2. Comparison of the characteristic (V') curve between different self-healing rates obtained for a single RFM simulation with
L = 60.
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Figure 3. (a) Mean value of the total damage of the system for different delay values. In this case (Vina) = 11.77(1), so that the value of
T" dividing the regimes of fast and slow self-healingis I" ~ 0.085. (b) Statistics of the broken and restored resistors at the end of the test.
For fast self-healing values most of the final broken resistors are due to the last rupture avalanche. These simulations were performed

for L = 30 and averaged over twenty repetitions.

they have larger thresholds. Thus, we must conclude that with a self-healing delay I 2> 2, the system may display
alimited damage, but be in a critical state in which a single rupture can trigger the total failure.

We observe also that an imminent failure cannot be easily predicted from the statistical distribution of the
currents. We define the effective current as sum over all unbroken links of the local currents normalised by their
threshold values, i.e with the notation of section 2 Ig = (#1yoy — 1)~ > il @) /x( 7). This is an average measure
of the imminence to the failure of the links. Another observable is also the fraction of links whose ratio I( j)/x( )
is above the percentage p, namely r,, so that, for example, 7, o5 indicates a link current of 95% of its threshold.
This is an estimate of how many links are very close to failure. For both observables, results before the failure in
the presence of self-healing display only a small percentage increase with respect to the standard case, as shown
in figure 4, so that apparently these kinds of observables are not effective in indicating that the system isin a
critical state close to failure. Average global quantities cannot capture this phenomenon because, in this case, the
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fracture propagates due to local current spikes (i.e. stress concentrations) around links that are progressively
broken by the final avalanche. We have verified that this behaviour is not an artifact due to the choice of the
elementary step AV. Thus, we must conclude that this is a critical feature of the system for large self-healing
values.

3.2. Peak current and maximum voltage

The scaling law of the peak current with the total size of the lattice in RFM is consistent with (I,..x) = qL® + o,
where ¢; and ¢, are constants and the exponent estimate is o ~ 0.96 [46], obtained both with diamond and
triangular lattices. Our data in the standard case, obtained using a square lattice in the range 12 < L < 160, leads
to o = 0.954(1), which is consistent with the value of the literature. The other constants are ¢, = 0.308(2) and

¢, = 0.487(10).

A similar scaling law holds for the maximum voltage, which may be associated with the average lifetime of
the system. For 30 < L < 160, we find a scalinglaw (Vi) = 6L + ¢4, with s = 0.39(1), ¢, = 2.2(1)and
exponent 3 = 0.941(8). Tables of datasets used for these fits are reported in the tables A1—-A3. These results are
stable, i.e. removing the larger lattices from the fitted range does not modify the results. This demonstrates that
finite size effects are negligible.

In the presence of self-healing, these scaling laws are modified and cannot be fitted with a simple power-law
behaviour. In figure 5, we report the maximum current increase as a function of I for different lattice sides L. For
slow self-healing values, the increase of the maximum current with respect to the case without self-healing
follows a power-law Al = (Iax (1)) — (Inax(0)) ~ (TL)*, where the exponent value is a ~ 2. This power-law
behaviour in the presence of self-healing is found in the approximated theory [23, 47], and the quadratic
behaviour is consistent with equations (1), (2) for small I". The collapse on the same curve for all L is clear from I"
L < 2.This can be derived by considering that V,,,,, ~ 0.38L and the condition of slow self-healingis I"

Vimax < 1, so that combining them we find the same condition.

For fast self-healing values, data depends on the lattice side L, which explains the modification of the scaling
law of (I;,.x). However, the slope of the curve is decreasing with respect to the smallest values. This implies that
by reducing the delay A, the self-healing process is progressively less effective.

In figure 6, we report for a comparison of the maximum current as a function of I for various ) values and
L = 30. These results are qualitatively consistent with a fit derived from inserting ¢ of equation (2) into
equation (1) and calculating the maximum strength. A quantitative good agreement is found for the smaller self-
healing rateand I" < A. Moreover, results for various 7 collapse on the same curve, at least for slow self-healing
values, by plotting AI/n, which is captured by equation (2).

3.3. Avalanche distributions

When a resistor is burned, the currents are redistributed inside the lattice and rupture avalanches can be
triggered. The number s of resistors burned at the same voltage is the size of a single avalanche event. By iterating
the simulations, the distribution p(s) of the avalanche sizes can be sampled, representing the probability of
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having an avalanche of size s. The avalanche distribution displays a decreasing power-law behaviour with a final
peak due to the last catastrophic event involving many resistors (figure 7(a)). If the final avalanche is removed,
the distribution can be written in the form of a decreasing power-law with an upper cut-off:

p(s) = s77g(s/50) 3

where 7 is the power-law exponent, and s is the cut-off, which can be written as a function of the lattice size as

so = L, Dbeing the fractal dimension of the avalanche. The exponent 7 can be analytically calculated in the
FBM, where it assumes exactly the value 7 = 5/2. In the REM, it has been evaluated in [41], resultingin 7 = 2.75
for adiamond lattice and 7 = 3.05 for a triangular lattice, with fractal dimension of about D = 1.18 for both.

A robust method to extract these results from data is suggested in [41, 48]: once the last catastrophic event is
removed, the gth moment of the distribution M, = (s%) is evaluated as a function of the lattice size. These
quantities have a power-law behaviour M, ~ L%, from which an exponent o, can be evaluated. If the
distribution coincides with equation (3), then the following conditions should be verified: ifg < 7 — 1,0, = 0,
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various self-healing delay values with the same side L = 30. In the inset, the same distribution without the final peak are reported,
showing the modification of the cut-off and the decrease of the power-law slope for larger self-healing delay values. All results have
been obtained by averaging about 4 x 10" repetitions.

Table 1. Table reporting the exponents of the avalanche distributions
for various self-healing delay values. For I" = 0, 0.05 the estimate was
obtained with the method described in the text, while for larger I" it was
derived from the direct fit of the avalanche distribution, averaged on

different lattice sides.
T 0 0.05 0.5 1.0 2.0
T 3.00(8) 2.86(8) 2.78 (4) 2.76 (4) 2.70(2)

whileforq > 7 — 10, = gD + D(1 — 7). Thus, from the plot of o, as a function of g, both 7and D can be
evaluated.

Our data are consistent with these results: we obtain D = 1.07(4) and 7 = 3.00(8). This is close to the value
found for a triangular lattice, which is analogous to our case with a non-uniform starting current distribution on
the lattice. With these results, the collapse of the avalanche distributions on the same scaling function can be
obtained, as shown in the inset of figure 7(a).

In the presence of self-healing, the avalanche distribution is modified, as shown in figure 7(b) for various
self-healing delay values. As observed in the previous sections, the peak due to the last catastrophic events
increases with I, and for fast self-healing values, there are substantial modifications. If we repeat the procedure
to extract 7and D, for fast self-healing values, the data rescaled do not collapse on the same curve. On the
contrary, for slow self-healing there is a perfect collapse and, for example, forI' = 0.05 we obtain D = 0.95(2)
and 7 = 2.86(8). In the inset of figure 7(b) we report the comparison of the avalanche distribution once the last
events are removed. The slope of the distributions decreases with fast self-healing values. An estimate can be
obtained by fitting the first points of the avalanche distribution, where the cut-off function is less influential, and
averaging it over the lattice sides. Results are shown in table 1.

We can conclude that in general the exponent of the avalanche distribution decreases with the addition of
self-healing, i.e. there is a higher probability of larger rupture avalanches. For slow self-healing values,
equation (3) is still valid, while for fast self-healing values there are substantial modifications to the cut-off
expression.

3.4. Crack roughness

At the end of the simulation, the lattice is split into two regions by a winding crack that is roughly perpendicular
to the flow of current, i.e. along the vertical direction. It is possible to study the ‘fractality’ of the crackin a
quantitative way by means of different observables [49], which should give similar results provided that the crack
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Figure 8. (a) Plot of the crack width for various lattice sizesand I" = 0. The continuous black line is the linear fit of the extremal value for
each series, representing the global width W. The power-law behaviour W ~ L perfectly fits the data, with ¢ = 0.791(1). The dashed line
represent the linear fit for the smaller values of I for the lattice with L = 100, showing that the exponent ¢}, is smaller than (. Results of these
fits introducing self-healing are reported in table 2. (b) Plot of the crack length as a function of the lattice size for various I values. The dashed
lines of the corresponding colour are the power-law fit [, = L,L° + I, for the extremal cases ' = 0and T" = 2.0, whose results for § are
6 = 1.16(1)and 6 = 1.11(2), respectively.

Table 2. { exponents obtained through the fit of W and estimates of (j, for various self-healing

delay values.

r 0 0.05 0.333 0.5 1.0 2.0

¢ 0.791(1) 0.795(3) 0.802(2) 0.818(2) 0.840(3) 0.851(3)
x*/d.o.f. 0.9 0.3 0.7 2.1 5.6 14

Gloc 0.70(2) 0.75(5) 0.68(1) 0.68(2) 0.67(2) 0.70(2)

is indeed self-affine. For comparison between different self-healing rates, we choose the crack width whose
scaling law has been investigated in [41].

The first step is to obtain a single-valued function f(y) to describe the crack, where y € [0, L] is the vertical
coordinate of the lattice and f(y) € [0, L] is the coordinate of the crack point along the horizontal direction. In
our case, we identify the links belonging to the crack as those connecting points of the two split regions of the
lattice. In order to obtain a single value for f(y), from this set we take only the vertical link that has minimum f(y)
for each value of y. This is a conventional choice that does not affect the scaling laws.

Hence, we can define the crack widthas w? = ((f(y) — f(»))?), where the average f is performed over an
interval of size ] < Land (...)is the statistical average over all the samples. The global width W = w(L) is
expected to scale as a power-law W ~ L where (is the fractal exponent of the crack.

In the REM, an anomalous scaling has been observed [41], i.e. there is another local exponent (o, so that for
regions of size | < L, the scalinglaw is w (I) ~ [%cL¢~Soc, with ¢ = 0.80 and (jo = 0.7 for a diamond lattice. In
the case without self-healing, our data are in good agreement with this. In figure 8(a), the crack width is plotted as
afunction of / for various lattice sizes. From the fit of the global width Wwe obtain ¢ = 0.791(1). The exponent
Cloc can be estimated from a fit on the region I < L of the case L = 100 and we obtain ¢, =~ 0.70.

In table 2, results introducing self-healing are reported. The power-law behaviour of the crack width is
confirmed except for the largest values of I', whose goodness of fit decays in the same range of L € [12, 100]. This
can be explained by the larger rupture avalanche at the system failure, so that the crack does not propagate as in
the standard case, rather it is formed almost simultaneously. In any case, the { exponent increases, since the
lattice regions with restored links have smaller rupture probability, so that the final crack propagates around
them with a winding path. Thus, on large lattices there is also a larger probability that the winding path
amplitudes increase and, in other words, that the crack width increases with L at greater rate.

On the contrary, we do not observe significant variations of the local exponent (j,, since the previous effect
isless influential on local scales. The invariance of the local scaling properties is confirmed by another
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observable, i.e. the total crack length I, reported in figure 8(b). This can be calculated as the number of links
connecting points belonging to the two split parts of the lattice. In the standard case, we find a power law-
behaviour . = I,L® + Iy, with § = 1.16(1). This is another measure of crack tortuosity, since it indicates super-
linear length increase of a one-dimensional curve with system size. In the self-healing case, the value of total
crack length increases, but the scaling exponent ¢ does not exhibit substantial modifications. This implies that
the tortuosity of the crack on local scales is not affected significantly by self-healing.

4, Conclusions

We have implemented for the first time a formulation of the REM that includes self-healing processes and have
investigated the modifications occurring for various statistical properties. In general, we must distinguish two
regimes of self-healing, indicated for simplicity as ‘fast’ self-healing regime, if the healing of broken links occurs
over a much smaller time scale than the life time of the system, and ‘slow” self-healing regime, if the two are
comparable.

For slow self-healing values, there is an improvement in the maximum strength and life time, with small
modifications to the statistics of damaged links, avalanche distributions and magnitude of the final events
leading to the failure of the system. A scaling law for the increase of the peak current with respect to the standard
caseisfound, Al ~ (I" L)” with exponent a ~ 2. The avalanche distribution without final events before failure
follows the same scaling law p(s) ~ s~ " with a decreasing T exponent.

For fast self-healing values, the damage of the system at any applied potential is reduced by increasing the
value of the healing rapidity I', and the characteristic voltage-current curve tends to the ideal elastic case leading
to a final catastrophic event, whose average size is increased. This is a crucial aspect, since the system may not
appear critically damaged even up to a few steps before the catastrophic failure. The maximum current increases
with areduced slope, so that self-healing becomes progressively less effective. The avalanche distribution, in
particular the cut-off expression, is modified and the scaling law for the standard case cannot be used to collapse
the data set. Further studies are required to identify a new expression, however results herein show that the
power-law exponent has a decreasing trend, i.e. that there is a higher probability of larger avalanches even before
system failure.

The self-healing process does not substantially modify the exponent of the scaling laws for the local crack
width and the total fracture length. An increase of the scaling exponent of the global crack width is found, which
can be ascribed to the presence of regions of restored links not intersected by the crack. For this reason, we expect
this to be a universal signature of a self-healing process.

An interesting extension of this study can be to determine reliable precursors to the failure of the system in
the presence of fast self-healing, which is of obvious relevance for the practical applications of self-healing
materials. Since the effectiveness of self-healing is progressively reduced, our results suggest that a maximum
self-healing rate would not necessarily be an optimal solution in all cases.

A biological implication of this study is that self-healing occurring on smaller time scales than the damage
rate increases strength and toughness but can lead to abrupt, brittle failures. This could be useful for lizards like
salamanders, which use autotomy (i.e. self-amputation) as a defense mechanism to escape predators: in this
case, a sharp, rapid fracture process is required when the tail is subjected to a high stress, such as a predator
bite [50].
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Figure Al. Comparison between square and diamond lattice results for the relative increase of the peak current Al/ ;. (left) and the
final number of broken resistors ny,/ 1., (right) for various self-healing I values. Despite small relative variations, the qualitative

Table Al. Table of results for lattices with L = 10, 20, 30 and various self-healing I values, reporting the mean values of peak current and
maximum voltage, with the corresponding number of sampled repetitions.

L=10 L=20 L =30
r
Neonf (Fnax) (Vinax) Neont (Imax) (Vimax) Neonf {Imax) (Vinax)
0 3x10°  3253(1)  5.651(2) 10° 5.849(2) 8.799(3) 10° 8.378(2) 11.776(5)
0.025 10* 8.417(5) 11.782(11)
0.04 10° 3.263(1) 5.645(3) 5 x 10* 5.884(2) 8.797(5) 10* 8.469(6) 11.789(12)
0.05 7 x 10* 3.271(2) 5.644(4) 4 x 10* 5.905(3) 8.794(5) 2 x 10* 8.511(4) 11.780(8)
0.06 4 % 10* 3.281(2) 5.641(5) 2 x 10* 5.944(4) 8.792(8) 10* 8.604(8) 11.794(15)
0.1 4x10* 3310  5.6295) 2 x10* 6.055(5) 8.793(8) 10* 8.856(6) 11.846(10)
0.16 4 x 10" 3.407Q2) 5.603(5) 10* 6.349(7) 8.811(11) 4 x 10° 9.378(13) 11.951(18)
0.25 2 x 10* 3.565(4) 5.588(7) 2 x 10* 6.743(5) 8.876(7) 10* 9.984(8) 12.113(10)
0.3 10* 3.821(4) 5.599(7) 10° 7.130(2) 8.953(3) 10° 10.491(3) 12.267(3)
0.5 10* 4.164(5) 5.633(6) 10° 7.650(3) 9.068(3) 6 x 10* 11.129(4) 12.472(5)
1.0 4x 10" 4.869(4)  5761(4) 8 x 10 8.524(3) 9.330(3) 4 x 10* 12.080(5) 12.821(6)
2.0 4 x 10" 5.542(5) 5.959(4) 8 x 10* 9.219(3) 9.601(3) 2 x 10* 12.779(7) 13.135(7)
10.0 2 x 10* 6.317(7) 6.373(7) 10* 9.946(11) 10.003(11) 10° 13.484(40) 13.541(40)
20.0 10° 6.436(6) 6.456(6) 10* 10.031(11) 10.055(11) 10° 13.599(37) 13.622(37)
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Table A2. Table of results for lattices with L = 40, 60, 100 and various self-healing I" values, reporting the mean values of peak currentand
maximum voltage, with the corresponding number of sampled repetitions.

L =40 L =060 L =100
r
Neonf (Inax) (Vinax) Neonf (Imax) (Vinax) Neonf (Imax) (Vinax)

0 4 x 10* 10.868(4) 14.744(8) 2 x 10* 15.777(6) 20.572(12) 2 x 10° 25.365(35) 31.866(70)
0.025 10* 25.85(22) 32.07(35)
0.04 10* 11.035(7) 14769(14) 5 x 10°  16.172(17)  20.631(30)

005 3 x10° 11.129(45)  14.798(8) 10* 16.405(11)  20.717(18) 102 2725(22)  32.38(33)
0.06 10° 11312(8)  14.848(13) 2 x 10°  16.774(23)  20.814(37)

0.1 10* 11.687(9) 14.900(13) 2 x 10° 17.539(26) 21.063(37)

0.16 5% 10°  12.492(14)  15.129(19) 2 x 10° 18.795(29)  21.507(36)

0.25 10* 13.272(11)  15.402(14) 2 x 10°  19.778(32)  21.867(38)

0.3 2 x 10*  13.836(7) 15.582(8) 2 x 10 20.442(11)  22.140(12) 10° 33.393(77)  34.993(84)
0.5 2 x 10 14.557(8) 15.851(8) 10* 21.252(14)  22.481(15) 10° 34.164(86)  35.291(90)
1.0 2 x 10*  15.572(9) 16.273(9) 10* 22.375(20)  23.026(21) 8 x 10> 35.26(13) 35.85(14)
2.0 2 x 10*  16.265(10)  16.602(10) 5 x 10°  23.008(24)  23.325(25) 5 x 10°  36.19(14) 36.49(14)
10.0 10° 17.01(18) 17.03(18)

20.0 10° 17.13(18) 17.18(18) 2 x 102 23.33(26) 23.64(26)

Table A3. Table of datasets used to fit the scaling laws as a function of L for Imax and V/,,,, without self-healing reported in section 3.2. The
datasets to fit the scaling laws of the global crack width and the fracture length shown in section 3.4 are also reported.

r=o0 =05 =20

L
Tnax Vinax w I w I w I.

12 3.780(1) 6.331(1) 0.787 6(5) 0.773(2)
16 4.818(1) 7.585(3) 0.977(2) 0.953(2)
20 5.849(2) 8.799(3) 1.183(2) 29.25(1) 1.173(2) 29.84(2) 1.165(2) 30.31(2)
30 8.378(2) 11.776(5) 1.625(2) 46.10(2) 1.637(4) 47.68(3) 1.647(4) 48.74(3)
36 9.878(3) 13.557(7) 1.875(3) 56.67(2) 1.904(4) 59.06(3) 1.921(7) 60.29(7)
40 10.868(4) 14.744(8) 2.040(4) 63.86(3) 2.079(5) 66.89(4) 2.097(5) 68.24(4)
50 13.331(4) 17.671(9) 2.440(5) 82.49(4) 2.487(9) 86.90(7) 2.525(15) 88.72(13)
60 15.777(6) 20.572(12) 2.813(8) 101.58(6) 2.861(10) 107.36(9) 2.893(13) 109.62(13)
100 25.365(35) 31.866(70) 4.211(50) 182.70(41) 4.157(83) 194.72(56) 4.258(78) 196.51(83)
160 39.09(35) 47.73(60)
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