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FOURIER INTEGRAL OPERATORS ALGEBRA AND
FUNDAMENTAL SOLUTIONS TO HYPERBOLIC SYSTEMS
WITH POLYNOMIALLY BOUNDED COEFFICIENTS ON R”

ALESSIA ASCANELLI AND SANDRO CORIASCO

AsstrACT. We study the composition of an arbitrary number of Fourier integral
operators Aj, j=1,...,M, M = 2, defined through symbols belonging to the so-
called SG classes. We give conditions ensuring that the composition Aj o --- 0 Ay
of such operators still belongs to the same class. Through this, we are then able
to show well-posedness in weighted Sobolev spaces for first order hyperbolic sys-
tems of partial differential equations in SG classes, by constructing the associated
fundamental solutions. These results expand the existing theory for the study of
the properties “at infinity” of the solutions to hyperbolic Cauchy problems on R"
with polynomially bounded coefficients.
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1. INTRODUCTION

We deal with a class of Fourier integral operators globally defined on IR”, namely,
the SG Fourier integral operators (SG FIOs, for short, in the sequel), that is, the
class of FIOs defined through symbols belonging to the so-called SG classes.

The class S"#(IR*") of SG symbols of order (m,u) € R? is given by all the
functions a(x,&) € C*(R" x R") with the property that, for any multi-indices
a, B € Z" , there exist constants C,s > 0 such that the conditions

(1.1 DEDSa(x, )] < Cop)" P10, (x,&) e R x R,

hold. Here (x) = (1 + |x[*)'/> when x € R", and Z, is the set of non-negative
integers. These classes, together with corresponding classes of pseudo-differential
operators Op(S™*), were first introduced in the '70s by H.O. Cordes [10] and
C. Parenti [27], see also R. Melrose [26]. They form a graded algebra with respect
to composition, i.e.,

Op(Sml’“l) o Op(SmZ'“Z) c Op(sml-s-mz,m-s-uz)’
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whose residual elements are operators with symbols in

S—oo,—oC(]R2n> _ ﬂ Sm,y(]RZn> _ S(IRZ”),
(m,u)eR?

that is, those having kernel in S(IR*"), continuously mapping S'(R") to S(R").

Operators in Op(S™#) are continuous on S(IR"), and extend uniquely to con-
tinuous operators on &'(R") and from H*°(R") to H>~"°~#(R"), where H"?(R"),
1,0 € IR, denotes the weighted Sobolev (or Sobolev-Kato) space

H"(R") = {ue S'(R"): [ul, = [<)D)ulr> < oo}

An operator A = Op(a), is called elliptic (or S™H-elliptic) if a € S™#(R*") and
there exists R > 0 such that

CRO™E <lalx, &), |x[+]&] =R,

for some constant C > 0. An elliptic SG operator A € Op(S™*#) admits a parametrix
P e Op(S~"™~*) such that

PA=1+K;, AP=1+K,,

for suitable Kq, K> € Op(S*OO'*OO(]RZ”)), where I denotes the identity operator. In
such a case, A turns out to be a Fredholm operator on the scale of functional spaces
H™(R"),r,0€ R.

In 1987, E. Schrohe [29] introduced a class of non-compact manifolds, the so-
called SG manifolds, on which a version of SG calculus can be defined. Such
manifolds admit a finite atlas, whose changes of coordinates behave like symbols
of order (0, 1) (see [29] for details and additional technical hypotheses). A relevant
example of SG manifolds are the manifolds with cylindrical ends, where also the
concept of classical SG operator makes sense, see, e.g. [7, 15, 20, 23, 25, 26]. With
il denoting the Fourier transform of u € S(R"), given by

(1.2) i) = Je’ix'gu(x) dx,

for any a € S"#(IR*"), ¢ € P — the set of SG phase functions, see Section 2 below —,
the SG FIOs are defined, for u € S(IR"), as

(1.3) u— (Op,,(a)u)(x) = (2m) " f e a(x, )iI(E) dE,
and
9 e Op@ @ = @) [ [ Ty Futy) dude.

Here the operators Op,,(2) and Op:; (a) are sometimes called SG FIOs of type I and
type II, respectively, with symbol a and SG phase function ¢. Note that a type II
operator satisfies Op (1) = Op,,(a)*, that is, it is the formal L?-adjoint of the type
I operator Op,,(a).

The analysis of SG FIOs started in [11], where composition results with the
corresponding classes of pseudodifferential operators, and of SG FIOs of type I
and type Il with regular phase functions, have been proved, as well as the basic
continuity properties in S(IR") and §’(IR") of operators in the class. A version of the
Asada-Fujiwara L?(IR")-continuity theorem was also proved there, for operators
Op, (a) with symbol a € S"°(R*) and regular SG phase function ¢ € P, see
Definition 2.4. Applications to SG hyperbolic Cauchy problems were initially
givenin [12, 17].

Many authors have, since then, expanded the SG FIOs theory in various direc-
tions. To mention a few, see, e.g., G.D. Andrews [1], M. Ruzhansky, M. Sugimoto
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[28], E. Cordero, F. Nicola, L Rodino [Y], and the recent works by S. Coriasco and
M. Ruzhansky [18], S. Coriasco and R. Schulz [19, 20]. Concerning applications
to SG hyperbolic problems and propagation of singularities, see, e.g., A. Ascanelli
and M. Cappiello [2, 3, 4], M. Cappiello [8], S. Coriasco, K. Johansson, ], Toft [13],
S. Coriasco, L. Maniccia [14]. Concerning applications to anisotropic evolution
equations of Schrodinger type see, e.g., A. Ascanelli, M. Cappiello [5].

Here our aim is to expand the results in [11, 12], through the study of the
composition of M > 2 SG FIOs A; := Op%, (aj) with regular SG phase functions
®; € Pr(1;) — see Definition 2.4 below — and symbols a; € S"i#/(R*"), j = 1,...,M.
To our best knowledge, the composition of SG FIOs with different phase functions
of the type that we consider in this paper has not been studied by other authors.

First, we shall prove, under suitable assumptions, the existence of a SG phase
function ¢ € P,(7), called the multi-product of the SG phase functions ¢, ..., @um,
and of a symbol a € S"#(IR*"), with m := my + - -+ + mp, g := 1 + - + pp, such
that

(1.5) A :Opq)(a) =Aj0---0ApM,

see Theorem 4.3 below for the precise statement.

Subsequently, we apply such result to study a class of hyperbolic Cauchy pro-
blems. We focus on first order systems of partial differential equations of hyperbolic
type with (¢, x) —depending coefficients in SG classes. By means of Theorem 4.3, we
construct the fundamental solution {E(t, s) }o<s<t<T to the system. The existence of
the fundamental solution provides, via Duhamel’s formula, existence and unique-
ness of the solution to the system, for any given Cauchy data in the weighted
Sobolev spaces H"?(IR"). A remarkable feature, typical for these classes of hyper-
bolic problems, is the well-posedness with loss/gain of decay at infinity, observed for
the first time in [2], see also Section 5 below. We need these results in the study of
certain stochastic equations, which will be treated in the forthcoming paper [6].

This paper is organized as follows. Section 2 is devoted to fixing notation and
recalling some basic definitions and known results on SG symbols and Fourier
integral operators, which will be used throughout the paper. In Section 3 we
perform the first step of the proof of our main result, Theorem 4.3, defining and
studying the multi-product of M > 2 regular SG phase functions. In Section 4 we
prove Theorem 4.3, showing the existence, under suitable hypotheses, of ¢ € P,
and a € S™* such that (1.5) holds. Finally, in Section 5 we obtain the fundamental
solution to SG hyperbolic first order systems.
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ziali a Derivate Parziali di Evoluzione e Stocastiche” (Coordinator: S. Coriasco,
Dep. of Mathematics “G. Peano”, University of Turin).

2. SG sYMBOLS AND FOURIER INTEGRAL OPERATORS

In this section we fix some notation and recall some of the results proved in [11],
which will be used below. SG pseudodifferential operators a(x, D) = Op(a) can be
introduced by means of the usual left-quantization

(Op(@)u)(x) = (2ﬂ)7”f€ix'éﬂ(x/ &u(é)de, ue S(RY),

with i the Fourier transform of u defined in (1.2), starting from symbols a(x, &) €
C*(R" x R") satisfying (1.1). Symbols of this type belong to the class denoted by
S™H(R*"), and the corresponding operators constitute the class Op(S"™#(R*")). In
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the sequel we will often simply write S™#, fixing the dimension of the base space
ton. Form,ueR,leZ,,ae S™", the quantities

llafl"* = max sup (xy~" ey ga ol a(x, €)
la+BI<l y geRn ¢

are a family of seminorms, defining the Fréchet topology of S™#. The continuity
properties of the elements of Op(S™+#) on the scale of spaces H"?, m, u,t,p € R,
is expressed more precisely in the next Theorem 2.1 (see [10] and the references
quoted therein for the result on more general classes of SG type symbols).

Theorem 2.1. Let a € S™*(R"), m,u € R. Then, for any r,p € R, Op(a) €
L(H"(R"), H~"™P~H(IR")), and there exist a constant C > 0 and an integer {, depending
only on n,m, i, p, such that

m,u

@1) IOP(@) | £t oy r—o-sreyy < Cllall!

We now introduce the class of SG phase functions. Here and in what follows,
A = Bmeansthat A < Band B < A, where A < Bmeans that A < ¢- B, for a suitable
constant ¢ > 0.

Definition 2.2 (SG phase function). A real valued function ¢ € C*(R*") belongs to
the class P of SG phase functions if it satisfies the following conditions:

(1) @ & SV (IR2");

(2) {pi(x,&)) =&y as |(x, )| — oo

) {p(x, &) = (xpas |(x, )] — oo

Functions of class P are those used in the construction of the SG FIOs calculus.
The SG FIOs of type I and type II, Op(a) and Op;;(b), are defined as in (1.3)
and (1.4), respectively, with ¢ € # and a,b € 5. The next Theorem 2.3 about
composition between SG pseudodifferential operators and SG FIOs was originally
proved in [11], see also [13, 16, 22].

Theorem 2.3. Let ¢ € P and assume p € S"*(R*"), a,b € S™*#(R*"). Then,
Op(p) o Op, (@) = Op, (¢1 + 1) = Op, (c1) mod Op(S~*~*(R¥)),

Op(p) o Op};(b) = Opj(c2 +12) = Op(c2) mod Op(S~*~*(R™)),
Op,, (@) o Op(p) = Op, (¢ + 13) = Op,(c3) mod Op(S~*~*(R*)),

Op; (b) © Op(p) = Opj(cs +14) = Opy(cs) mod Op(S™~*(R*)),
for some cj € S"THIT(R?), r; e ST TP(RM), j=1,...,4
To obtain the composition of SG FIOs of type I and type II, some more hypotheses

are needed, leading to the definition of the classes £, and P, (1) of regular SG phase
functions.

Definition 2.4 (Regular SG phase function). Let 7 € [0,1) and r > 0. A function
@ € P belongs to the class P, (1) if it satisfies the following conditions:

(1) |det(g”,)(x,&)| > 1, V(x, &);

(2) the function J(x, &) := @(x,&) — x - & is such that

DD (x, &)

sup PRRETENET] < T
xeeRr (H)IIBICEY
la+B|<2

2.2)

If only condition (1) holds, we write ¢ € P;.
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Remark 2.5. Notice that condition (2.2) means that J(x, &)/t is bounded with constant
1in S, Notice also that condition (1) in Definition 2.4 is authomatically fulfilled when
condition (2) holds true for a sufficiently small T € [0, 1).

For ¢ € IN, we also introduce the seminorms

DeDL (. ©)|
Ue= D] sup ——————,
2<|a+p| <2+ (XE)ER™ <X>Hﬁ‘<5>l !
and
DD (x, )
sup  ——————
weeR (O ICE)
la+pl<1
We notice that ¢ € P,(7) means that (1) of Definition 2.4 and |[||o < 7 hold, and
then we define the following subclass of the class of regular SG phase functions:

Definition 2.6. Let 7 € [0,1), r > 0, £ > 0. A function ¢ belongs to the class P, (7, {) if
@ € P(1) and ||]|¢ < T for the corresponding J.

I7le = + Jll2,¢-

Theorem 2.7 below shows that the composition of SG FIOs of type I and type I
with the same regular SG phase functions is a SG pseudodifferential operator, see
[11] for a detailed proof.

Theorem 2.7. Let ¢ € P, and assume a € S™(IR*"), b e ' (R*"). Then,
Op,,(a) 0 Op5(b) = Op(cs + 15) = Op(cs) mod Op(S~ %),

Op}(b) © Op, (a) = Op(cs + 1) = Op(cs) - mod Op(S~*~%),

for some c; € SMHEHHT(R™M), r; € SO ~*(RM), j =5,6.

Furthermore, asymptotic formulae can be given forc;, j = 1,...,6, in terms of @,
p,aand b, see [11]. A generalization of Theorems 2.3 and 2.7 to operators defined
by means of broader, generalized SG classes was proved in [13, 22], together with
similar asymptotic expansions, studied by means of the criteria obtained in [21].

Remark 2.8. In particular, in Section 5 we will make use of the following (first order)
expansion of the symbol of c1, coming from [11]:

e1(x,€) = p(x, Pl(x, E)alx, &) +5(x,£), s € ST (R,

Finally, when a € S™* is elliptic and ¢ € #,, the corresponding SG FIOs admit a
parametrix, that is, there exist by, b, € S™"7# such that

(2.3) Op,,(a) o Opy(b1) = Op;,(b1) ©Op,,(a) =1 mod Op(S~*~7),
(24)  Opj(a) o Op,(b2) = Op,,(b2) oOpy(a) =1 mod Op(S~ %),

where [ is the identity operator, see again [11, 13, 22].

In this paper we extend the existing theory of SG FIOs, dealing with the com-
position of SG FIOs of type I with different phase functions. We then apply it to
compute the fundamental solution to SG hyperbolic systems with coefficients of
polynomial growth.

The following result is going to be used in Sections 3 and 5. Given a symbol
a e C([0,T]; S') with € € [0, 1], let us consider the eikonal equation

orp(t,s,x, &) =a(t,x, ¢L(t,s,x,&)), tel0,To]
@(s,5,x,&) =x-¢&, s € [0, Tol,

with 0 < Ty < T. By an extension of the theory developed in [12], it is possible to
prove that the following Proposition 2.9 holds true.

(2.5)
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Proposition 2.9. For any small enough Ty € [0,T], equation (2.5) admits a unique
solution ¢ € C'([0, Tol7,, "' (R} ,)), satisfying | € C'([0, ToJ?,, S*' (R, ,)) and

(26) as(P(t/ 5, X, 6) = 7&(5, (Pé(tl S, X, 5)/ é)/
forany t,s € [0, To]. Moreover, for every h = 0 there exist ¢, = 1 and Tj, € [0, To] such
that (t,s,x,&) € Prcp|t — s|), with ||J|lon < cult —s| forall 0 < s <t < Ty,

In the sequel we will sometimes write ¢ (x, &) 1= @(t,5,x, &), for a solution ¢ of
(2.5).

3. MuLriPrODUCTS OF SG PHASE FUNCTIONS

The first step in our construction is to define the multi-product of regular SG
phase functions and to analyze its properties, which we perform in the present
section, following mainly [24].

Let us consider a sequence {¢;} ;~1 of regular SG phase functions ¢;(x, &) € P, (7;)
with

e}
(3.1) ditj =170 < 1/4.
j=1

By Definition 2.4 and assumption (3.1) we have that the sequence {Ji(x, &) /T }k>1
is bounded in S'"! and for every ¢ € IN that there exists a constant ¢, > 0 such that

o0
(3.2) Ulae < cete and > Jklae < ceto.
k=1

Notice that from (2.2) we have ¢y = 1. This will be useful in the proof of Theorem
3.10 at the end of the present section.

Example 3.1. A simple realization of a sequence {@;} =1 satisfying (3.1) and (2.2) can be
obtained using the phase function @(t,s, x, &) solving the eikonal equation (2.5). Indeed, it
is sufficient to take a partition
S=tpp <t <--- <t <ty =14
of the interval [s, t] and define
ti,t,x, &) 1< t+1
(x 5) ( ]— 1 ] ) ]
x-& j=0+2.

In fact, from Proposition 2.9 we know that @; € P,(t;) with t; = co(tj—1 — t;) for
1<j<{C+1andwitht; =0 for j > € + 2. Condition (3.1) is fulfilled if we choose T
small enough, since

{+1

1
ZTJ:Z (ti1 —t) = cot —s) < co"[0<Z

]=
if To < (4co)~t. Moreover, again from Proposition 2.9, we know that |J;|20 < coltj —
tii]l =tjforalll < j<{€+1and]; = 0forj= €+2,s0each one of the |; satisfies (2.2).

With a fixed integer M > 1, we denote
(X, B) = (x0,X1, -+, XM, &1, -+ EMmy EM1) = (x,T,0,&),
(T,®) = (x1,...,xm,&1,-- -, EM),
and define the function of 2(M + 1)n real variables

(3.3) X, 8) = Z @j(xj-1,&}) = xj - &) + Qa1 (X, Enirr)-
j=1
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For every fixed (x, &) € R*", the critical points (Y, N) = (Y, N)(x, &) of the function
of 2Mn variables (T,0) = (x, T, 0, &) are the solutions to the system

EDE/(X/H) =§0;;5(xj71,5j)—xj=0 i=1...,M,

lP;,-(X/ ) = (P;H,x(xj, &iv1)—&=0 j=1,...,.M,

in the unknowns (T,0). Thatis (Y, N) = (Y1,...,Ym, N1,...,Nm)(x, &) satisfies, if
M=1,

o [z

G4 {Yl = ¢},c(x.Ny)

N1 = ¢;.(Y1,8),

or,if M = 2,

Yy = (Pi,g(fol)

Yj=¢' (Yi,Np),  j=2,....M

Nj = <P}+1,X(YirNj+1), j=1,...M—-1
Num = (P;\/I+1,X(YM, £).

In the sequel we will only refer to the system (3.5), tacitly meaning (3.4) when
M = 1. Definition 3.2 below of the multi product of SG phase functions is analogous
to the one given in [24] for (local) symbols of Hérmander type.

Definition 3.2 (Multi-product of SG phase functions). If, for every fixed (x,&) € R*",
the system (3.5) admits a unique solution (Y, N) = (Y,N)(x, &), we define

(3.6) P(x, &) = (Pr -+ Fom1)(x, &) == P(x, Y(x, &), N(x, &), £).
The function ¢ is called multi-product of the SG phase functions @1, ..., @am1.

(3.5)

Example 3.3. The simplest case of a well-defined multi-product of SG phase functions is
given by the sharp product ¢ § o, where @ € Py and @o(x, &) = x - & Indeed, the critical
points (Y, N) of the function

~

P(x1,&1) = P(x,x1,E1,8) = (x, &) —x1- &1+ x1 - &
are given by (Y,N)(x, &) = (@ (x, &), &). The multi-product ¢ § o is so defined by

P, &) = Y(x, 9(x, ), & &) = 9(x, &) = ¢ (x, E)(E = &) = p(x, ).
Similarly, the multi-product @o § @ is well defined. Indeed, the function

~

Y(x1,&1) = P(x,x1,81,8) =x- & —x1- &1+ @(x1, &)
has critical points (Y,N)(x,&) = (x, ¢(x,&)), and
G(x, &) = P(x, X%, ¢(x,8), &) = (x = x) - 94(x, &) + p(x, &) = (x, &)
Notice that we have proved here above that for every ¢ € P, the identity
Pioo=potp=¢

holds true. That is, the multi-product of SG phase functions defined in (3.6) admits the
trivial phase function @o(x, &) = x - & as identity element.

Example 3.4. A situation where (3.6) is well defined, which is interesting for applications,
see Section 5, is given by the multi-product of solutions to the eikonal equation (2.5) on
different, neighboring time intervals. Indeed, the critical points (Y, N)(x, &) of the function

Urer(x1, &1) 1= i (%, X1, E1, &) = @(t,5,%,&1) — x1 - &1 + (5,7, %1, &)
are given by

(3 7) Hbi'st,xl (x/xlf ‘Slr 5) = _él + @;(Srr/xlf é) =0
’ ll}:‘st,él (x/xll cE‘l/ é) = (Pé(t,s,x, él) — X1 = 0



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 8

The Jacobian matrix with respect to (x1, &1) of the system (3.7) is

_ [ Palsmx, ) I
](t,sl r/x/xll él/ (S) - < _I (ng(tlsrxr 51) 7

where I is the (n x n)-dimensional unit matrix. By (2.5), det]J(t,r,1,x,x1,&1,&) = 1.
Thus, taking a small interval [0, To| such that det](t,s,r,x,x1,&1,&) > 0 for all 1,s, ¢
such that 0 < r < s < t < Tp and all (X,E) € R*, by the implicit function theorem
it follows that the system (3.7) admits a unique solution (Y,N)wy = (Yisr, Nisy)(x, &) =
(Y(t,s,1,x,&),N(t,s,1,%x,&)). The multi-product

¢tsr(xr CS) = <P(t, 51X, CS) = ((Pts ﬁ (Psr)(xr CS) = wtsr(x/ Ytsr(xr CE)/ Ntsr(xr CE)/ é)
= @(t,5,% Nisr(x,E)) = Yisr(x, &) - Nisy (%, E) + (5,1, Yisr (%, ), &)

is then well defined. Moreover, it is quite simple to show, in view of to Proposition 2.9, that
the multi-product @ § @s satisfies the associative law

(3.8) Qs B Psr = 1, 0<r <5<t < T
Indeed, ¢(t,s,t,x, &) does not depend on s:

%[‘P(tr 5,1,%,&)] = (0:0)(t,5,%, Nisr (%, &) + @ (£, 5, X, Nir (x, £)) - (ON) (£, 5, 1, x, &)
—(0sY)(t,s,1,x,&) - N(t,s,1,x,&) — Y(t,8,7,x,&) - (GN)(t,5,7,x,&)
+ (0 (5,1, Yisr(x,£), &) + @l (5,7, Yier (%, &), €) - (8:Y) (1,5, 1,%, &) = 0,
since, by (2.5), (2.6) and the definition (3.7) of the critical point (Y, N)ys,, we have
Q45,1 Yisr(x, &), &) = N(t,5,1,x, ),
@i (t,s, % Nise(x, &) = Y(t,5,7,%,E),
(0 p) (s, 1, Yisr(x, &), &) = a(s, Yise(x, &), 9u(s, 1, Yisr(x, &), E))
a(s, Yisr(x, &), Nisr(x, €)),
(0s)(t,5,%, Nisr(x, £)) = —a(s, P (t,5,%, Nisy (x, &), Nigr (%, €))
—a(s, Yisr(x, &), Nisr (x, xi)).

a
This gives, with po(x, &) = x - &,

(P1s 8 @sr)(x, &) = P(t,5,1,%,&) = P(t,1,1,%,&) = (@ § @) (X, &) = (Q1r § P0) (x, &)
= (Ptr (x/ 5)/
by Example 3.3, as claimed.
Now we want to show that under assumption (3.1) the multi-product ¢(x, &) of
Definition 3.2 is well defined on R?", and it is a regular SG phase function itself. To
this aim, we switch from the system (3.5) in the unknown (Y, N) to the equivalent

system (3.10) in the unknown (Y,N) = (y1,...,ym, M, ---,qm) € R*M" as follows.
Define

20:=0
zl = ,](:1]/;(, i=1....M

U= m, j=1...,.M
CM+1 =0,

(3.9)

and then consider the system

{yk —JarFLER T, k=1,

3.10 .
(10 M= (r 2 E+ T, k=1,...,

S

We have that:
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Lemma 3.5. For every fixed (x,&) € R*", (Y,N)(x, &) is a solution of (3.5) if and only if
(Y,N)(x,&) = (y1,---, ym, M1, - - -, 1) (x, &), defined by

y1=Y1—x

yi=Yi—Yi1 j=2,...,M

ni=Nj—=Nj1 j=1,...,M—1

v =Num =&,

(3.11)

is a solution of (3.10).
Proof. Substituting (3.11) in (3.9), we immediately get the relation
Y = j
(3.12) jzxtz
N; =&+ 0.
By this, it follows that (Y, N) is a solution of (3.5) if and only if
x+zf‘=(p;.,5(x+zf_1',£+cf') ji=1,...,M
E+U=9, (x+2,&+ gthy j=1,...,.M;
by substituting ;(x, &) = J;(x, &) + x - £ we obtain
Zj—Zj_1=];-é(x+Zj_1/£+Cj) ]zl//M
Cj_Cj+1 =];+1/x(x+zj,5+cj+l) j=1/“'IM/
which is exactly (3.10), in view of (3.9). O
We are then reduced to prove the following Theorem 3.6.

Theorem 3.6. Under the assumption (3.1), for every fixed (x,&) € R*" there exists a

<)
,N

unique solution (Y,N)(x, &) of (3.10). Moreover, the solution (Y, N) satisfies
4 4
(3.13) vl < 3o, I < gends), k=1...M,

and the functions zj and C; in (3.9) satisfy
a1 G 1 .
(3.14) |z/| < §<x>, || < §<5>, j=1,...,M.

Remark 3.7. We aim at obtaining a solution (Y,N) such that ¢ = ¢(.,Y,N,.) € P.(7).
By Definition 3.2, recalling that ¥ a smooth function, it is enough to show that (Y,N)
is of class C*(R*"), that Y; € S0, N; € S%, and that (Yj(x,&)) = (x) as |x| — o,
(Nj(x,&)) = (&) as || — oo. To get these last equivalences, it is sufficient to prove the
existence of a constant k € (0, 1) such that |Y;(x, &) —x| < k(x)and |[Nj(x, &) — &| < k(&).
Indeed, the following implication holds:

(3.15)  |b| <Ka), ke (0,1), a,be R* — (1 — k)a) < (@ +b) < (1 + k)a).

Formula (3.14) gives precisely the desired estimates, with k = 1/3, owing to (3.12).
Theorem 3.6 then ensures that the multi-product is well-defined. We show that (Y,N) €
C*(IR®") in the subsequent Theorem 3.8.

Proof of Theorem 3.6. We divide the proof into two steps. In step one we suppose
the existence of a solution (Y, N) of (3.10) and prove that such solution satisfies
(3.13) and that (3.14) holds. In step two we show, by a fixed point argument, the
existence and uniqueness of the solution (Y, N).

Step 1. If (Y,N) is a solution of (3.10), then by (3.10) and (2.2) we get, for any
(x,&) e R¥,

lyi| < Trlx + Z1)
M| < Trs1 (€ + T
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fork =1,..., M. Now, using the inequality
(3.16) Z+yy <&+ |yl Vx,yeR"
and definition (3.9), we get, fork =1,...,M and any (x,&) € R?",

j=1

M
el < T (0 + 1271)) < (<X> +] ij>,
(3.17)

j=1

M
el < Tha (€€) + |THY) < T (<5> +) |le)/
so that

M M M M
Dl < D <<x> +), kal> =M (<x> + ] ka|> ,
k=1

(318) k]\:/[l k=1 k=1

DAl <D T <<5> +) |77k|> = TM+1 <<5> +] |le|> -
k=1 k=1 k=1 k=1

The two inequalities here above are of the form a < 7({x) + a) with7 < 79 < 1/4
by assumption (3.1), so they give

T

) < 300,

a <
S 1-1

and, coming back to (3.18), we have, for any (x, &) € R*",
£ 1 A 1
< Dlyl< 5@, 1< Yl < 50,
j=1 j=k
that is (3.14). Substituting in (3.17) we obtain

W< n(+30) = 35, Il < (©+ 30 = Freanco,

that is (3.14).

Step 2. Since we have shown that every solution (Y, N) of (3.10) satisfies (3.14) for
any (x, &) € R?", to show existence and uniqueness of a solution to (3.10) in R*"" it
is sufficient to show existence and uniqueness of (Y, N) in the space

M M
. 1 1
L= L= {(yl,...,yM,m,...,nM) eRM': ) |yl < 30 Dl < 5<c§>},
k=1 k=1

(x,&) € R*", which is a metric space with norm

M

1y omlls = (07wl + <€)7l ) -

k=1
We define the map
T=Ty::Z—L

by T(y1,....,ym M, .-, M) = (w1,..., WM, @1,...,wm), Where, for k = 1,..., M,
(x,&) e R¥,

{wk = Jix+ 2+ T

wp = Jpq (X + 258+ T,
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The map T is well defined. Indeed, by (2.2), (3.16) and (3.14) we have, for any
(x,&) e R™,

(3.19) { [

|k

<l + 271 < (o + §<x>) HI%EY
< 1€ + ) < 11 ((6) + 3(E)) = 31e41¢E),

so that
M 4 M 1 M 4 M 1
Dl < 20 Y <20, and Y Jarl < &) Y T < ().
k=1 3 k=1 3 k=1 3 k=1 3

By (3.10), to show existence and uniqueness of (Y,N) = (Y,N)(x, &) is equivalent
to show existence and uniqueness of a fixed point (Y, N) of the map T. We show
here below that, under assumption (3.1), T is a contraction on X, so it admits a
unique fixed point (Y, N).

Let us consider two arbitrary points

(‘YIN) = (yl/"'lyMlnl/"'/T]M)/ (?/ﬁ) = (gl/"‘/ngﬁll"'/ﬁM) e Z,
and let
T(Y,N) = (wl,...,wM,wl,...,a)M), T(?,N) = (ZTJl,...,aJM,&l,...,GM).

Forevery fixedk =1,...,M, (x,&) € R%", we have

Wy — wy = ],g((x+zk*1,g + ) =T+ 28+ O
e f Jenbx+270 4+ 0EF T =271, £+ ()6

f Jleelx+ 21,8 + T+ 0T — T))do
and from (2.2) we get
1
| — we| < T <|zk—1 — 2 T = e+ zk—1>L<g +F+ 0 - Ck)>1d6> .

By inequality (3.15) with b = zF and k = 1/3 we get 3(x) < (x+2zF) < 3(x); the same
inequality with b = C¥ + 0(T* — C¥) and k = 1/3 gives 2¢&) < (& + F +0(T — ")) <
$(&); substituting these inequalities into the estimate of @y — wy| we come to

1
@ — wi| < T (INI‘ P [ ) L<5>_1d9>

M
<, (15— vl + I = 266607
j=1
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Similarly:

| — wi| < 2~ 2 J T+ 2+ 0(EF -2, &+ o

Ck+1|

_[ Jiiipex+258+ T+ (T — FH))do
ot o)

M
< T O (177 — Y1200 7E) + [ier — o) -

j=1
Thus

Mz

ITOON) = T(Y, W)l = 3 (o @ — ] + (&) — ol

k=1

<)) ( Z (<x> "7 - vil +2<5>_1|’7f—’7f|)
k=1

=

+Ths1 ) (l% yil2¢e) ™t + |7 — 171'|<5>_1))
a

M M
< Y max{ri )3 Y] (17 -yl + 17 - 0l
k=1 j=1

<31|(,N) = (Y, N)z.

This shows that the map T is Lipschitz continuous, with Lispchitz constant 37y < 1.
It follows that T is a strict contraction on X, which then admits a unique fixed point
(Y,N) € %, for any (x,&) € R*". Such fixed point obviously gives the unique
solution of (3.10). The proof is complete. ]

Theorem 3.8. The unique solution (Y,N) = (Y,N)(x, &) of (3.10) is of class C*(IR*").
Proof. For (Y,N) € R?M" and (x, &) € R?*", we define the function
F(Y,N;x,&) == (F1,...,Fm)(Y,N;x, &),

with values in R*M, where forallk = 1,..., M,
FUUN;2,8) = (g Tl 270,64 O, = Lo o+ 25,4 0.

We apply the implicit function Theorem to the function F, which is clearly of class
C* with respect to all variables, being [, a C* function for all k = 1,..., M. For
every fixed (x, &) we have that

F((Y/N)(x/ é);xl é) = Or
since (Y, N) is the solution of (3.10). Moreover, we are going to prove here below
that

(3.20) det (%((Y,N)(x, &);x, 5)) £0

This means that the implicitly defined function (Y, N)(x, &) has the same regularity
as F, so it is of class C*(R*"). To complete the proof, it remains only to show that
(3.20) holds true.



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 13

Let us compute the entries of the 2M x 2M matrix % (Y,N;x,&). For every fixed
k=1,...,M, (x,&) € R*", we have

Jole+ 26409, —J1 (et 258+ T9) 1< < k-1
F;(/yj(Y,N;x,é): E T (X K &+ Ck+1)), j=
(0, 0), k+1<j<M,
and
(0, 0), 1<j<k-1
Fly (Y N;x, £)=1 E Jlelx+2 e+, 1), j=k
Jlecx+20 8409, =], (x+ 258+ ck+1)),k +1<j<M,

SO we can write

OF I-Hiu(,N;x,&) —Hin(Y,N;x,¢)
ey (N €) = ( —Hy(Y,N;x,£) I—sz(Y,N;xlé)>

where I stands for the identity M x M matrix, and

0 0 - 0 Jlo o T

4 o .0 0 ]zsé ]255
Hl,l = 24x . . ’ H1,2 = . ..
(:) 0 0. ]//‘

]Mt,Y ]ng M,EE
2 x 0o - 0 0 Jowe - ]2x£
s Jame 0 0 0 0

Hy, = : o . , Hop =

e .. ]ng
]M+1xx ]MJrlxx 0

Let us estimate the matrix norm of each one of the H;;:

M M M
HHH(Y,N;X,C_(,)H = max E |(h11)1']'| < max E T < E Tj
j=1,..M* =1..M . = ‘
i=1 t:]+1 j=1

M
(N3, )] = max, 3yl < max, Z rxt 2 e+ O

M
|Hn (Y, N;x, &) = jinlf.),(M; |(r1)ij| < max IZ]T1+1<x +2)7HE+ T

.....

M j—1 M
[Haz(Y,N;x, &) = max Z |(h22)ij] < max 271‘4-1 < ZTJ'
=1 M ~1,..M & a

With the choice (Y,N) = (Y,N)(x, &) these estimates become, via formula (3.12)
and Remark 3.7,

M M
[Hu (Y, N)(x, &, 8) < Dotj, [Hi((VN)(x, &);x, &) < 26 E 7' D,
j=1 i=1

M M
[Har (V) (v, ;%) < 20740 Y0, [Ha((V,N)(x,x,8)] < Y1,
i=1 j=1
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Now, since det(I — Hy1) = 1, being Hy; triangular with null diagonal, we have
oF _
det———((Y,N ;
ety (TN €%,
caa( L H (7, M) (5, £5%,8)  —~(&60 Hial(

) Y,N)(x, &); ,a)
—GHE T Ha (Y, N)(x, &%, &) 1= H((Y,N)(x, &); %, &)
- - Hui (Y, N)(x, &);x, &) (&) Hin (Y, N)(x, &); %, &)
‘det(’ (<x><5> Vo (Y, N)(x,&);%,8)  Ha((Y,N)(x,&); %, ) )>
— det(I — A(x, &),

with
|A(x, &) = max{|Hu (Y, N)(x, &);x,&)| + [<xX&) Ha (Y, N)(x, £); x, &),
[Haa (Y, N)(x, £); %, )| + <))~ Hia (Y, N) (x, £); %, &)1}
M
§3ZT]‘ <379 < Z,
j=1

and applying Proposition 3.9 below, cfr. [24], we get det(I — A(x,&)) = 472M > (.
That is, (3.20) holds true, and the proof is complete. O

Proposition 3.9 (Proposition 5.3, page 336 in [24]). Let A = (aij)1<ij<c be a real
matrix and suppose that there exists a constant cy € [0, 1) such that

JA] 1= max, Z gl <
Then,
(1—co)f <det(I—A) < (1+c).

The following theorem gives crucial estimates of the unique C* solution (Y, N)
of (3.5).

Theorem 3.10. Under the assumptions (3.1) and (2.2), the unique C* solution (Y, N)(x, &)
of (3.5) satisfies:

(3.21) 10238 (Y) — Y1) (x, )] < capri(&) Myt IAl,

(322) 0 (N} = Nj1) (2, €)] < captinn &'y,

foralla,peZ’, j=1,...,M, x,& € R", with constants c, p not depending on j and M.
Moreover,

(3.23) {(Y; = Yj_1)(x, &)/} =1 is bounded in S,
(324) {(N] — Nj+1)(x, cf)/’(]'+1}j>1 is bounded in Sl’o.

Proof. Estimates (3.21), (3.22) in the case @ = = 0 have already been proved, see
(3.13) and (3.11). To prove the same estimates for |@ + | > 1, it is sufficient, by
(3.13), (3.11) and (3.2), to show that the solution (Y, N)(x, &) of (3.10) is such that

(3.25) 108y (x, &) < caplllkllajarp—1€E) 1M G1IIA,
(3.26) 102 30mi(x, &) < Capllirllajarp—1¢E)" )y H,

forla+B =1, k=1,...,M, x,& € R". Estimates (3.25), (3.26) are going to be
proved by inductionon N = |a + f].
Step N = 1. Weneed to check (3.25), (3.26) for the first order derivatives. Let us start
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with the derivatives with respect to x. By definition (3.10) of yi, v, k = 1,..., M,
x,& € R", we have

(3:27) Vi = Ty (2700 EYA+ @) + T (250 4+ T
Mo = T 25 TN () 4+ Ty 4 25+ T

By (2.2), setting h(x, &) = (x)&)™!, we obtain
Wl + 1 I < 7 {1+ D@+ €+ 2+ ST
 tesn e {42 T+ T JE) + I

from (3.14) we have 2(x) < (x + 2"1) < 3(x) and 3(&) < (& + TF) < (&), so we
come to

1Yol + 1 Il < T {14 1G5+ 20 - (€
+ Terr {24+ 20 ()l + 1 IS

M M
< T {1 SN N EVIEDY ||T]}/<,x|}
k=1 k=1
M M
+ Trg1 {2 +2 3 Iyl +h- ) |T]I/<,x|} ,

k=1 k=1

where we have used also definition (3.9). Summing for k = 1,..., M, we get, for
any x, & € R",

M M M
> (Hykx\ I+h- Hﬂka) {1 + O W 421 ) Iﬂfc,x}
k=1 k=1 k=1
M M
+ Tps1 {2 +2 ) Iyl + 1), ”T]Ilc,x‘}

k=1 k=1
M
<3ty {1 + 27 (Iyp + - ||n;,x|)} .

k=1

This last inequality immediately gives

M 3TM 1 3’[0
3.28 cl ) < — <
(3:28) 2 (Il + el < T30 < T,

with 1 -3ty > 1—3/4 = 1/4 > 0, so that the amount (3.28) is finite (bounded by
3). Coming back to (3.27) and substituting there the estimate here above we get

[Vl < Wkl20 {1 + 1D 42k ”’71:,3(”}

M
< 2[Jkll20 {1 + ) (Ilyi,xll +h- InL,XII)}

k=1
3T0

<2 1 = 7
o (1+ 725 ) = coallao
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that is (3.25) with & = 0 and |B| = 1. With similar computations we obtain

172 (e ) < [iallzo (¢ 4+ 2571+ DA+ [l + 1)) (v )
e lzo (2 171+ 1E)) + IEED) (x,€)
2020 [ (1+H( el + 11T ()

)1 (
sl [ <1 ; 2 (e |nkx|)>]

< 200 & Tk 20 (1 T ETO )

3’1’0
= CoalJks1]20(x) &), x,&eR”,

<
<

and also

1ee (e ) < Coolllkl2oxX &7 I e, &) < Cuollferr|20, % &R

The step N = 1 is complete.

Step N ~ N + 1. Let us now suppose that (3.25), (3.26) hold for 1 < |a + | <

N > 1,x,& € R", and prove the same estimates for |a + | = N + 1. If we subst1tute
(3.2) into (3.25), (3.26) we immediately get

(3.29) |6§6§yk(x, & < c;,ﬁ<5>*‘“|<x>l_|ﬁ|,
(3.30) 0, &)| < ¢ g(E) 1y,

for 1 < |@a+p| < Nand k = 1,...,M. These estimates are going to be used to
bound the derivatives o of with [ + B = N of the functions y; ., v, ., M ., 1} (L-e.

the derivatives 656? with |@ + | = N + 1 of the functions y, k). Let us start by
computing, from (3.27), the derivative

(331) oty = A0t [T+ 2704 0 (14 @)
+ a}ljaa []kgg( _1/‘- + Ck) ’ (Ck)fc] :

To obtain an estimate of (3.31), we use Faa di Bruno formula, write the derivatives
of z and C* as derivatives with respect to y; and 7 by (3.9), and finally we apply
(3.29), (3.30), obtaining

208 (Tl +271(5,8), 8 + C(x,0)) )|
< ) D Corapllilager(& 9™

Pr+-Apr=p M+ tag=a
Bi#0 a;#0

) <5>(1*|a1|)+~-'+(1*|aq|)<x>(1—|51\)+~~+(1—|ﬁr\)

< Capllilajarp (&) )~ 1F

and

0808 (Jeole+#75,8), £ + T ) | < Caplilasasar®) ™G
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Thus, coming back to (3.31), substituting these last two estimates and using (3.9)
we come to
M

09, (6, O < o Y, (10802 (x, €)1 + 20X 1okt (x, ) )

j=1
- c;ﬁnfkuz gl (€710 €l ()T ot Py )
<IJlo Z (10fsy e, )1 + 2006 1okt o (x,€)1)
j=1
(332) + CaplTelz,a+p <€))7,

Working similarly on the terms b on
get the corresponding estimate:

Enkx coming from the derivatives in (3.27), we

ko5 (6, O < ITeal2o™ 1<<s>2(\aﬁaay]xxs>|+z<x><a> oo (x,€)])

(3.33) + Chgllisn Hz,\a+,8|<5>l Gy =11,
Now summing up for k = 1,..., M inequalities (3.32) and (3.33) we have

M
> (10kayy (6, 8)| + 2Gexy ™ ot (x, )] ) <

k=1

M M
< (Z elo +2 ), ||Ik+1|2,0> 2, (10029, €)1 + 200 ot (x,€)])
k=1 k=1

M M
+Ca (Z Uil jass +2 ) ||Jk+1|2,a+ﬁ> &y~ xy 1Pl

k=1 k=1
< 3coTo Z ( oy, (x, &) + 2<x><5>71\&f&gnirx(x,éﬂ) + 3605 ToCarp(E) 1G5,

where ¢y, ¢|,4p| are the constants defined in (3.2). In particular, notice that, by (2.2),
we have ¢y = 1. From this, we finally obtain

M
> (18h8yi. o )] + 26X ke (0, £)]) < Clpgg-(© 0™
k=1
(3.34) < C;,ﬁ<5>_|“|<x>"ﬁ‘
by the choice of 7 in (3.1). Substituting (3.34) in (3.32) and (3.33) we get
(3.35) 105084, (%, E)] < Capllklzjasp (&) )P
(3.36) 102080, (%, E)] < CapllTist o asp (611G 1.

All the computations from (3.31) to (3.36) on the functions y,’( and nl’( can be
repeated on the functions y, , and 77, , with minor changes. In this way we finally
obtain the estimates corresponding to (3.35) and (3.36), namely

(3.37) 0002y, (%, &) < CapllTilaasp ey~ 11y 1Al

(338) 105050, (6, )| < CapllTirt | jaspi(E) a1,

The proof is complete, since (3.35)-(3.38) are the desired estimates (3.25) and (3.26)
for all the derivatives of order N + 1 of the functions yx and 7. ]
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We conclude with a Theorem that summarizes what we have proved throughout
the present section, and gives the main properties of the multi-products of regular
SG phase functions.

Theorem 3.11. Under assumptions (3.1) and (2.2), the multi-product ¢(x, &) of Definition
3.2 is well defined for every M > 1 and has the following properties.

(1) Thereexistsk = 1suchthat ¢(x, &) = (P18 -+ £ om+1)(x, &) € Pr(kTarsr) and,
setting

Jvi(x, &) = (p1 8 - Fomy1)(x, &) —x-&,
the sequence {Ja14+1/Tm+1}m>1 is bounded in SV (IR*").
2) The following relations hold:
Pr(x, &) = @y (%, Ni(x, &)
O3, €) = Phyr e (Yu(x,),8),
where (Y, N) is the critical point (3.5).
(3) The associative law holds: o1 4 (P28 - §@mt+1) = (18 -+ §om) § Prsa-

(4) Forany € > 0 there exist 0 < v < 1/4 and c* > 1 such that, if p; € Pr(1,{)
forall jand 19 < ©*, then ¢ € Pr(c*Tar41, L).

Proof. By theorems 3.6 and 3.8 we know that, for any M > 1, ¢ is a well-defined
smooth function on R**. We start by showing (1). We write, with Yy(x, &) =

YM+1(xl 5) =X, NMJrl(xl é) = 5/

Jms(x, &) = Z Yio1(x, &), Nj(x, &) — Yj(x, &) - Nj(x, &)

+omi1(Ym(x, &),8) —x- &
M+1
= > (@i(Yj-1,Nj) = Yj - Nj) (%, &)
i=1

M+1
Z Yi1,Nj) = (Y = Yj1) - Nj) (%, ).

This gives that

M+1
M+1 Tj Ji(Yj- ) Yi—Yj . .
{ RN — ! (] i ! ! - Nj is bounded in S'!
TM+1 s TM+1 Tj Tj

since {Jj/7;}j>1 is bounded in S'!, (3.23) holds, and (Nj(x,&)) = (&). Now, the
boundedness proved here above implies the existence of a positive constant k such
that

(3.39) [Jm+1l2 < kTms < k1o,

and taking 7o small enough, so that k1o < 1, we obtain that ¢ € P,(kTpr41).
Statement (1) is proved. Statement (4) immediately follows. Indeed, if ¢; €
Pr(1),€), then we have |Jy41]e < (k4 1)Tary1, with k commg from (3.39), and we
obtain ||[Jp+1e < c*Tary1 and ¢ € Pr(c* Ty, €) if we choose ¢* such that c*7p < 1.
Let us now come to (2), which is quite simple. Indeed, from (3.2) and (3.5), we
have

M
= 2 (1Yo (5, ), Nj(%,) = Yi(x,) - Nj(x, ) + paasa (Y, €), €).

.
—_
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A derivation of the expression above with respect to x and the use of (3.5) give

M

$(5,8) = D) (¢ (V1a (0 &), Nj(5,8)) - Yy (x,)

j=1
+¢e (Yjma(x, &), Nj(x, &) - Ni(x, &)
Y, (35, 6) - Nj(x,£) = Yj(x,€) - Njy (3,€))
+ P (Y3, £), €)Yy, (3,€)
= PhalNi(r: €)= Y1, ) M)

+Z( i—1x N —Y;,X'Nj)+Nm-Y}4,x)(x,5)

= (Pl,x(x' Ny (x/ 5))/

which is exactly the first equality in (2). The second equality can be obtained
similarly, by derivation with respect to & of ¢(x, &).
Finally, we deal with (3). We want to show that
(3.40) (@@t Eom) E QM = Q18- EPmia.
To this aim, let us denote
Pi=@rt -t oM,
and compute by (3.3), with M = 1, the product

(341) (¢ 2 msn) (v,€) = (. N(x,€)) = Y(x,€) - N(x, &) + puas1 (Y(x,8), €),
where (17, N) = (17, N)(x, &) is the 2n—dimensional critical point given by
Y = ¢.(x,N),
{N:éﬂmﬁé»
Notice that ng # @m+1 is well-defined by (1) (eventually, with a smaller 79). Now,

we compute the value of ¢(x, N(x,&)) = (@1 4 -+ # oum)(x,N(x, &)) in (3.41), using
(3.3) with M — 1 in place of M and N in place of &, obtaining

(3.42)

¢(x,N(x,8)) =
M-—1

(343) = X (9T 06N &), Nj(x, N, €))) - Vi, N(x, ) - Ny, N, €)))
j=1

+ om(Yu-1(x, N(x, €)),N(x, &),

with the 2(M — 1)n—dimensional critical point (Y, N) given by

0 X

f:(p;',g(Yj—erj) j=1...,.M-1
Nj =}, (Y Njp) j=1,...,M-1
Ny =N,

1 =<

(3.44)

obtained from (3.5), with M — 1 in place of M and Nin place of &. Moreover, we
have from (3.42) and (2), with M — 1 in place of M, that

Y(x,&) = ¢4, N(x, &) = (p1 £ - # ou)e(x, N(x, £))

(3.45)
= @ (Yma(x, N(x, ), N(x, £)).
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Summing up, from (3.45), the second equation in (3.42), and (3.44), we have that
(Y, ,Yp_1,Y,Ny,- - ,Ny_1,N) solves system (3.5), and thus it is the 2Mn—di-
mensional critical point needed to define the multi-product @1 § - - - § @sm41, which
turns out to be given, in view of (3.3), by

(pr - fomsr)(x, &) =
M-1
= 3 (110N, ), Ny N, €)) = Y6, N(x, £)) - Nyl Nix, ©))

j=1

+ (Yo (6, N(x, €), N(x, £) = Y(x, &) - N(x, &) + pusa (Y(x, £), &).
We observe that this last expression coincides with (3.41) after substituting (3.43)
in it. This gives that o1 § -+ § orm4+1 = ¢ § Pm+1, that is (3.40). Similarly, we can

prove the corresponding law @1 £ (g2 8-+ $ @m41) = @1 8-+ § a1, completing
the proof of (3). |

4. ComprosITION OF SG FOURIER INTEGRAL OPERATORS

We can now prove our main theorem on compositions of regular SG FIOs. We
start with an invertibility result for I, = Op,(1) and I§ = Op;(l) when ¢ is a
regular phase function. Theorem 4.1 below gives more precise versions of (2.3),
(2.4), with a slight additional restriction on ¢, for FIOs with constant, nonvanishing
symbol.

Theorem 4.1. Assume that ¢ € P,(t) with 0 < © <  sufficiently small. Then, there
exists g € SO0 (R*") such that

(4.1) I, 0 Opg(q) = Opg(q) o lp =1,
(4.2) I} o Op,(g) = Op,(q) o I} = L

Moreover, if the family of SG phase functions {@s(x, &)} is such that the family {Js(x, &)} =
{ps(x, &) — x - &} is bounded in S, then the corresponding family {qs} is also bounded in
SO0,

Proof. For u € S(R") we have, by definition of type I and type II SG FIOs,

(4.3) ((Ip o I )u)(x) = (2m) ™" f f e 0EE =P W) 3y (y) dydé.
The map

1
Bry: £ Bny(E) = E(x,y,£) = j QL+ Hy — x), &) dt

is globally invertible on IR". In fact, its Jacobian is given by the matrix

j(p (x +ty —x), é)dt—lﬁ—f}” (x +Hy —x), &) dt

which has nonvanishing determinant, in view of the hypothesis ¢ € P;(7),0 < 7 <
%. Moreover, condition (2) in Definition 2.2 implies that & is coercive, and these
two properties give its global invertibility on IR?, see [11, Theorems 11 and 12] and
the references quoted therein. Finally, E, , is also a SG diffeomorphism with 0-order
parameter-dependence, that is both Z(x, y, &) and 2~ (x, y, n) belong to S*%1 (IR3"), the
space of SG amplitudes of order (0,0,1), see [10, 11], and satisfy (E(x, y,&)) = (&),
(E7Y(x,y,1)) = {n), uniformly with respect to x,y € R". In (4.3) we can then
change variable, setting

n=Exydei=8"(ymn),
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and obtain
(T o I5)u)(x) = u(x) + (27) " f f S ay (x, y, myu(y) dydn = (I + Ao)ut)(x),

with
ao(x,y,1) = det(I + J7e(x, v, &) Hecz-1 iy — 1-

By the results on composition of SG functionsin [11,22], we find thatag € S%*0(IR*),
the space of SG-amplitudes of order (0,0,0). Since the seminorms of 4y can be
controlled by means of the parameter 7, and the map associating a9 with the symbol
a € S99 such that Ay = Op(a) is continuous, the same holds for the seminorms of
a. By general arguments, see [10, 24, 30, 31], it turns out that (I + Op(a))_1 exists
in Op(S°?). Then, setting Q% = I o (I + Op(a))~!, using Theorem 2.3 we find
Q= Op:;(q) for some g € $°? and I,, o Op:;(q) = I, which is the first part of (4.1).
The remaining statements follow by arguments analogous to those used in the
proof of [24, Theorem 6.1]. O

The next Theorem 4.2 is one of our main results.

Theorem 4.2. Let ¢; € Pr(1j), j = 1,2, be such that 0 < 71 + 72 < T < %for some
sufficiently small T > 0. Then, there exists p € S*0(R*") such that

(4.4) Iy, oIy, = Opy, 40, (P),

4.5) 15, oI5, = Opg 4o, (P)-

Moreover, if the families of SG phase functions {@js(x, &)}, j = 1,2, are such that the

families {Js(x, &)} = {@js(x, &) —x-E} are bounded in S, j = 1,2, then the corresponding
family {ps(x, &)} is also bounded in S°°.

We will achieve the proof of Theorem 4.2 through various intermediate results,
adapting the analogous scheme in [24]. Before getting to that, let us first state and
prove our main Theorem 4.3, which is obtained as a consequence of Theorems 4.1
and 4.2.

Theorem4.3. Letp; € P(1;),j=1,2,...,M,M > 2, besuchthat t1+- - -+7y < T < i
for some sufficiently small T > 0, and set

Dy(x, &) =x-&,
D1 = ¢,
CDj = (plﬁu'ﬁ(p]‘, j: 2,...,M
Opj = itipjat---tom, j=1,... M—1,
Dym = Pum,
Dymt1(x, &) =x- &
Assume also a; € S"i#i (R*), and set Aj = Op(m (aj), j=1,...,M. Then, the following
holds true.
(1) Given qj,qum,j € S®°(R*"), j = 1,..., M, such that
Opg, () o lo; = 1, I3, ©Opq,, (amj) =1,
set QF = Opyg, (), Quj = OPq,, (qm), and
R]' = Iq;/._1 o A]- o Q;“, RM,]' = QM,]' o Aj o I:Ikn

M,j+17 J

=1,...,.M.

Then, Rj, Ry,j € Op(S™°(R*)), j =1,...,M, and
(4.6) A=Ajo---0Ay=Ryo0---oRpolg, :I:;M] oRpp1 0+ 0 Ry
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(2) There exists a € S™#(R*"), m = my + -+ + My, 4 = p1 + - + pm such that,
setting ¢ = @1t - - - fom,
A =A1 O~c~OAM = Op(f)(a)

(3) Foranyle Z. thereexistl' € Z, C; > 0 such that
4.7) llall}™ < Ci 1_[ llajll .

Proof. The existence of q;,qm,; € S, j = 1,...,M, with the desired properties
follows from Theorem 4.1. We also notice that, trivially, Ip, = I@M sy = 1, so that,
inserting either I = Qf olg, = -+ = Qyolp, orl = I ©Qum1 = I;I")MM °oQmm,
we indeed find
A10~~~OAM =I¢OOA10QTOI@1 OA20'~'OI(DMOAMOQ;<AOI®M
:Rlo---ORMOI(pM
I3, ©QmioAroly  oQmaoAzo---oly oQmmoAm o loy,,,
=TI

oy © Rmp 0+ -0 Ry,

as claimed. Now, we observe that, again in view of Theorem 4.1, there exists
pj € S° such that I, o Op;/(p]-) =1 j=1,...,M Setting P? = Op(”’;j(p]-), and
inserting it into the definition of R ir by Theorem 4.2 we then find, for j = 1,..., M,

Rj = (lo,_, o Iy;) o (P} 0 Aj) 0 QF = lo,_gp, © (P} 0 Aj) 0 QF = lo, o (P} 0 Aj) 0 Q7.
Theorem 2.7 implies that P;“ o Aj € Op(§™t), and Theorem 2.3 then implies that
(P;," 0Aj)o Q;.“ = Opc"f)j(dj), for some d; € S™#, j = 1,..., M. Another application
of Theorem 2.3 gives that

Ri=1Iop o Opq) (dj) e Op(s™iti),j=1,...,M,

so that the standard composition rules for SG pseudodifferential operators and
a further application of Theorem 2.3 imply, for ¢ = @1f---¢om and a suitable
ae S™H,

A=Ajo--0Ay =0p,(a),
asclaimed. Similar considerationshold for Ry j, j = 1, ..., M and the representation
formula

A OAM_I@loRM,lo"'ORM,M-

The estimate (4.7) follows from the composition results in [11], applied repeatedly
to (4.6), observing that the amplitudes of the resulting operators depend continu-
ously on those of the involved factors. The proof is complete. ]

To start proving Theorem 4.2, with two SG phase functions @1, ¢, as in the
corresponding hypotheses and u € S(IR"), let us write, as it is possible,

[(I(pl fff i(p1(x,E")—x"-& +pa(x',E (5) a&'dx'd&.

Now, with ¢ = @18¢,, set
(4-8) Qo(xr xlr 5// é) = @1 (xr é/) —x- é/ + (P2(x// é) - (P(xr 5)/

and consider, in the sense of oscillatory integrals,

49) p(x, &) = f f PO EE) gl gy
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Then, we can write
gy o Tpul(x) = [ €909 p(x,©) e a2, e SRV,

which gives the desired claim, if we show that (4.9) indeed defines a symbol
p € S°O(R*"). Let us now define the adapted cut-off functions which will be
needed for the proof of this fact.

Definition 4.4. We set
x(x,x, &, E) = xa(x,x') - xal&, E),
where, with a > 0 to be fixed later and w,w’ € R", we assume
Xo(w,w') = Y(a(w — w'){w) ™),

for a fixed cut-off function € C°(IR"). In particular, we also assume that, for all w € R",
0 < ¢(w) <1, suppy = B3(0), Y|, 0) =1, w ¢ B1(0) = 0 < P(w) < 1, where
2

B, (wy) is the closed ball in R" centered at wy with radius r > 0.
For the proof of the next lemma see, e.g., [11].

Lemma 4.5. i) For any multi-indices y1,y> € Z!,, the function x,(w,w") introduced in
Definition 4.4 satisfies, for all w,w’ € R",

(4.10) | “71+V2Xu(w, w')| < wy My,

it) For any multi-indices aiay, p1,p2 € 2!, the function x(x,x',&, &) introduced in
Definition 4.4 satisfies, for all x,x', &, &', the estimates

(4.11) |(9§,1+a26§,1+ﬁ2)((x, X, & 8 < <x>*\a1|<x/>*|az\<é>*\ﬁ1\<§/>7|;32\‘
Remark 4.6. In view of Definition 4.4,
1 - X(x/ x// 5// E) = 1 - Xﬂ(x/ xl) + Xa (x/ x/) - Xa (.x/ x/) : Xﬂ(é/ é,)
= 1 - Xu(x, x,) + Xﬂ(x/ xl) : (1 - Xﬂ(é/ él))/
which implies that on supp(1—x(x,x, &', &)) either |x —x'| > —<x> or|E-¢&| = —a<£>.

Now write p in (4.9) as p = po + po with

(4.12) po(x, &) = f f P EE) (e, & E) AE X,
(4.13) Poo(x,€) = f f e (1 — x(x,x, &, €)) .

We analyze separately pp and po..

Proposition 4.7. Under the hypotheses of Theorem 4.2, for po, defined in (4.13) we have
Po € STPTO(R™).

Proof. Define
Puo(x,X,E,E) =p1(x, &) —x' - &+ pa(¥, &) —x - &,
so we have from (4.8)

Po(x,x', &, &) = oo (x,x', &, &) +x- & — P(x, &)
and ;
Poc(x &) = e Tl (x,8),
where we have set J(x, &) = ¢(x, &) —x - £ and

(8) = ff ipo (62 &) (1 — x(x, %, &, &) AL dx.
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It is straightforward, since | € S'! for small 7 > 0, that it is enough to prove that
P € S™% ™% to achieve the desired result. Also, in view of the definition of ¢,

Ploxl,x,&,8) =& -+ (%, &),
Ol o0, 0, 8,8 =x =¥ +]1,(x,&),
Pl (8,8, =88+, (¥, 8),
Pl (0, X, E,8) =x' —x+ ], (', &)

Then, on supp(1 — x(x,x’, &', &)), for a known ¢ > 0 and a sufficiently small 7 > 0,
depending on @1, @2, and , there exist suitable k1, k; > 0, such that either

@ (0,8, x, E)| 2 [E =& —cr(&) = [E =& —et|e =& = (1 —eT)|€ — &
>k ((&) +<(&)) >0,
or
|¢QO,5,(x,é’,x’,E)| > x— x| —ctdx)y = |x — x| —ctlx — x| = (1 —c1)|x — X/|
> ko ((x) + (X)) >0
Let us set, for b > 2a > 0,
(4.14)

Proo(x, &) = f f el (EXE) (1 — x(x,x, &, &) - xp(x, x) BEdX,
(4.15)

Paoo (%, &) = f f 0 (N (1 — x(x, 2, 8, 8)) - (1= xu(x, X)) - (&, €N AE X,
(4.16)

P (X, &) = f f el P AE) (1 — x(x, &, E)) - (1 — xp(x, %) - (1 — xp(&, &) AE dx’,

so that
ﬁoo (xr é) = ﬁloo (x/ é) + ﬁZoo (x/ é) + 5300 ('xl é)
Then, the operator
Ty = —ilpl, (6, X, &, &) @l o (x,x,&,8) - Vo = V(x,x,&,&) - Vo

such that
o plP0 (XE X&) _ i (x,E X E)

is well defined on the support if the integrand of (4.14), and, respectively, the
operator

TC = *1|(P:)o,é/ (x/ xl/ 5// é) ‘ -2 (P/OO,E’ (x/ x// (Sl/ é) : Vé/ = C(xr xl/ 5,/ é) : VE'

such that
T Cekpoo(x,é’,x/,é) — piPoo (X8 X&)

is well defined on the support of the integrand of (4.15). Both Ty and T are well
defined on the support of the integrand of (4.16). Notice also that the coefficients
of Ty satisfy, on the support of the integrand of (4.14), estimates of the type

(4.17) 0325, V(x, ', &, 8)] 5 ) T1EN T (&) + (en) !

Since there (x) = {x), the same holds with x in place of x’. Similarly, the coefficients
of T¢ satisfy, on the support of the integrand of (4.15), estimates of the type

(4.18) 0%, Clx, ¥, &,6)| 5 ()TN + ) 7,

as well as the analogous ones with £ in place of &', since (&) = (&) there. Moreover,
both (4.17) and (4.18) hold on the support of the integrand in (4.16). The claim then



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 25

follows by repeated integration by parts, using Tc and/or Ty in the expressions of
P30, P2oo, and pio, and recalling Lemma 4.5. m]

Proposition 4.8. Under the hypotheses of Theorem 4.2, for po defined in (4.12) we have
po € SPO(R?™).

To prove Proposition 4.8, we will use the change of variables

=Y +y o)
(4.19) {5/ =N(x, &) + 1w &),

where w(x, &) = <x>7%<5>% e $722 and (Y,N) = (Y(x,&),N(x,&)) is the unique
solution of

{Y(x, &) = ¢ (x,N(x,8))
N(x, &) = @b (Y(x,£),8),

see (3.4) of Section 3 above. With x as in Definition 4.4, let

Py, mx, &) = x(x,Y(x,&) + y- w(x, &), N(x, &) + 1 w(x,&),E),
Py, m%,8) = @o(x, Y(x, &) + v w(x, &), N(x, &) + - w(x, &), &),

so that
po(x, &) = f f P p(y, m; x, &) dydn.
By construction, on supp p,
_ 2 2
Y(x,8) +y- 0l &) =3 < (), IN(E) + -, £) — & < 2,

which implies that, for a sufficiently large 2 > 0 and a suitable k € (0, 1), on supp p
we also have by (3.12) and (3.14)

Yl w(x, &)~ <kax) and |n|-w(x, &) <KE =yl Inl <k (xX&)?.

Furthermore, recalling that (¢} (x, &)) = (x) and (¢} (x, &)) = (&), we find that, on
supp p, forany 0 € [0, 1],

4200 Y(x&+0 -y e H=a), NExE+0 0 wi)) =),
The next Lemma 4.9 can be proved analysing the Taylor expansions of ¢(y, n; x, £).

Lemma 4.9. Let
Ai(nx, &) = w(x, &) Ll(l — 0)]1e(x,N(x,&) + 60 -1 w(x, &)) dO,
Ar(y;%, &) = w(x, &) E(l —0)]5, (Y(x,&) +0-y-w(x,&)7",€)do,
Bi(n;x, &) = w(x, &) Ll Jiee(,N(x, &) + 6 - w(x, &)) dO,

1
By(y;x, &) = w(x, E)*L JI (Y%, &)+ 0y wkx &), E)do.
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Then
p(y,mx,&) ==y -n+(@i(x,N(x,&) + 1 w(x, &) — @1(x,N(x, £)))
— @l(x,N(x,&)) - - w(x, &)
+ (@Y, &) +y - w(x, &)~ &) — pa(Y(x,£),€))
(4.21) — 05 (Y(%,8),8) -y w(x, &)
=—y-n+[Amxnl-n+ [A(yix, yl -y,

Pyymx, &) ==+ [P (Y(x, &) + v 0x, &)™, &) — o (Y(x,&), &) w(x, &)~
(4.22) =—1n+Ba(y;x,8)y,

Py(y,mx, &) = =y + [P (6, N(x, &) + - w(x, &) — @ (x, N(x, &))] - w(x, &)
(4.23) =—vy+Bi(m;x, En.

Proof. By the definition (4.8) of ¢ and of the multi-product of phase functions (3.3)
and (3.6), recalling (4.19), we can write

Po(x, 2, &, &) = p1(x, &) =2 - & + pa(¥, &)
— o1, N(x, &) + Y(x, &) - N(x, &) — p2(Y(x, &), &),

which implies
Po(xY(x,&) +y- 0(x &), N &) +1-w(x,&),&)

=p1(x, N(x, &) + - w(x, &) = (Y(x,&) +y-w(x &)™) - (N(x,&) + 1 w(x,8))

+P2(Y(x,&) + y - w(x, &) 71, &) — @1(x, N(x,8)) — p2(Y(x, &), &) + Y(x,€) - N(x, )

= -y 0+ (@i, Nx &) +n-wx &) —e1(x,N(x, &) = Y(x, &) - - w(x, &)

+(p2(Y(x, &) + - w(x,E) 7, &) = pa(Y(x,€),8)) =y - N(x, &) - w(x, &)
= @5, (

Then, recalling that Y(x, &) = ¢}, (x,N(x, &)) and N(x, &) = ¢, (Y(x, &), ), we get
Py, mx, &) ==y -n+ (i1l N(x, &) + - w(x, &) — ¢1(x,N(x, &)
—Y(x,&) 0 0 &) + (p2(Y(x, &) +y- w(x, &), &) — a(Y(%,£),£))

~y-N(x &) wx &)™
==y N+ (1 Nx &) +1-w(x &) — ¢1(x,N(x,€)))
— @1 (uN(x, &) -1 w(x, &)
+(@2(Y(x,8) +y-w(x, &)1, &) — pa(Y(x,8),€))
— 95 (Y(x,6),8) -y - w(x,&) 7!
=—y-n+[Amxnl -0+ [Axy;x )yl -y,
that is (4.21) and its subsequent expression in terms of Aj, A>. Then (4.22) and

(4.23) immediately follow taking derivatives with respect to y, 11 in (4.21), and then
looking at the definitions of By, B,. |

Lemma 4.10. For Ay, Az, B1, B, defined in Lemma 4.9 we have, for all x,y,&,n € R" in
supp p,

el gyl N
|6£0202 (Av, By)(m;x, &) < 1@y ™17 oy W=7 ¢y, It

NI AP | N
105020 (A, Ba) (y;x, &) | < w(&) ™11 7 (o) = ¢y, plat A,
where (y,ny = /1 + |yl + 1%, y,ne R"



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 27

Proof. The result follows from the Fad di Bruno formula for the derivatives of the
composed functions, the properties of X € S'?, N € S%! stated above, the fact that,
on supp p, (4.20) holds for any 0 € [0, 1], as well as

Y, &)+ 0y wx& eSS -(yn, Nx&+0-n-wkxé) eSS (yn,

recalling that the seminorms of J; and J, involving their derivatives up to order 2
are proportional to 7 € (0,1).

The proof works by induction on the order of the derivatives. Let us give an
idea of the step |a + f + a’| = 1. Let ¢; be the multi-index such that |e;| = 1, with
all the components equal to 0 but the j-th. Then, for instance, on supp p,

B x, &) = (07 w?) f Jiee(-..)dO + o f Jece (o) do
1
o omigg( )d0 - 0 (N(x, &) + 01 w(x, &)

eS0Ty, e STV Ly,

since w? € §~11 50]155 .)do e St1 So]f;% ..)do e §01 So T (- .)do e SV 2,

and N(x,&) + 60 -1 - w(x, &) € S%n|. Similarly,
0/Bi(1;x, &) = (o) w®) J Jiee(-..)do

+wJ]¥:E££ )do - (9( (x,&)+0-n w(xE))
SO —1 SO -1 <y, n> c SO,—l . <y, T]>,
/B1(77,x & =w J H/égg )do-(0-w(x,&)) e §—1/2-1/2.
The estimates for general multi-indices follow by induction. o

Lemma 4.11. On supp p,

oy (v, %, E)| + |y (v, 5%, ) = [yl + [l
Proof. From Lemmas 4.9 and 4.10, on supp p, for 7 € (0,1),

[Bi(m;x, &) s T = [Ba(m;x, E)n < T,
IB2(y;x, &) < T = |Ba(y;x, E)yl| < tlyl,

which imply
oy (%, O < Inl + iyl ey mx ) 2 Il = lyl,
lon (%, | <yl +Tinl, ey mx Sl 2yl = inl.
These give

9y (v, %, O+ oy (v, mx, E)| S (1 + )|yl + [nl),
oy (v, %, )| + 1@y (v, %, E) 1 2 (1= T)(|y| + [n]),

as claimed. O
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Lemma 4.12. On supp p, for any multi-indices o, , o', ', and all x,y, &, n,
(0 iflo’] > 2,
1 ifla’] =1,
PN 4] et
w0 PRI T il = 0,
la+B+p|>0;
181 >2,
1 ifIp =1,
1Bl gl ,
v T i1 =0,
la +a' + B| > 0.

|08e oo @l (v, mix, &) <

|0500 020 @iy, mix, &) <

Proof. The results follow from Lemma 4.10 and the estimates (4.20). O

Lemma 4.13. On supp p, for any multi-indices o, B, o', B/, and all x,y, &, 1,

I A I P 4] N o
(&) T oy T Gy L) > 0,
o |

BB A A . 'l gLl .
1020y 0205 (Y, %, E)] S 4 gy lal="5 (31— ¢y s 3IatBl g ) s,
w1 Gy P ifoa’ = =0;
w()y R Gy gy e g s
BB A A0’ 1 . o o
1020y 00y @y, mx, )| S 4 gy lal=15 (= IBI=15 0y py3+latBl g ) s g,
(&G Py e ifa’ = = 0.
Proof. The results follow from Lemma 4.10, observing that
Py, x, &) = de[ (A (%, E)n) - ] + dx[(A2(y; %, E)y) - v,
Pe(y,mx, &) = de[(Ar (2, E)n) - 1] + de[(Ax(y; x, E)y) - Y-

Lemma 4.14. For any multi-indices o, 8,0/, ', and all x, y, &, 1,

1
2

g el -
6263 258l p(y, mx, &) < (&7 F oy ==

Proof. Immediate, by the definition of p, the hypotheses on 1, the properties
Y(x,&) € SY0, N(x, &) € S%, and the estimates (4.20). O

Lemma 4.15. Let
T =T(y,0:x,&) =1+ g, (y, 1:%,E) P + oy (y, 1%, &)
Then, on supp p, for any multi-indices o, p, o', ', and all x,y, &, n,
o’ A A 1 ~lal /Bl ~2+[a+p]
208 0,0, (r R é) STy, m :

Proof. Immediate, by Lemmas 4.9, 4.10, 4.11, and 4.12. m]

|2

The next Lemma 4.16 is a straightforward consequence of Lemma 4.15 and the
definition of transpose operator.

Lemma 4.16. Let us define the operator
1 . .
M = (1 =iy (y,m:%, &) - Vy — iy (y, %, ) - Vi)

such that Me W8 = elo(ynxe) Thep,

‘M = Moy +M; -V, + M, - V,,
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where, on supp p, for any multi-indices o, B, &, p/, and all x, y, &, n,

0% ag 22} [(Mo, My, Ma) (y, 0;x, &)]|| £ (&)1 ¢y~ Pley, py = F1e+#1,

Proof of Proposition 4.8. Using the operator M defined in Lemma 4.16, we have, for
arbitrary ke Z,

polx, &) = f f EOU (M p) (y, 1:, €) dyin.

Notice that, from the analysis above, for any k € Z.,, any multi-indices «’, 8/, and

allx, y,é&,1,
1228 (M) (w13, €)| 5 oy Iy 1oy, ko1

Then, for any fixed a, f € Z", and arbitrary k € Z,, we find

o8 po(x, &) =

=5 X ()] [[ (eraeruno).epdcmtom ) dun,

a1t+ar=a ﬁl Jrﬁz =}S

Choosing k such that —k + 6|a + | < —(2n + 1), from the results in Lemmas 4.13,
4.14, and 4.16 above, we get

& pol )] < o) f Cyomy™ Y dydn < Gy,

as claimed. O

Remark 4.17. Let us notice that we have proved here above that the seminorms of py are
controlled by those of 1 and @y. This implies that, if |, and [, are bounded in S, so
is po in S0, The boundedness conditions of Theorem 4.2 are so fulfilled, and the proof of
Theorem 4.2 is complete.

5. FUNDAMENTAL SOLUTION TO HYPERBOLIC SYSTEMS IN SGG CLASSES

In the present section we apply the results of Sections 3 and 4 to construct
the fundamental solution E(f,s) to the Cauchy problem for a first order system
of partial differential equations of hyperbolic type, with coefficients in SG classes
and roots of (possibly) variable multiplicity. A standard argument, which we omit
here, gives then the solution, via E(f,s) and Duhamel’s formula, see Theorem 5.1
below. We follow the approach in [24, Section 10.7].

Let us consider the Cauchy problem

5.1) LW(t,x) =F(t,x) (tx)e(0,T] xR",
‘ W(0,x) = Wo(x) xeRR?,
where
(5.2) L(t,x,D;,Dy) = Dy + A(t,x,Dy) + R(t,x,Dy),

Ais an m x m diagonal operator matrix whose entries A;(t,x,D,), j=1,...,m, are
pseudo-differential operators with symbols A;(t, x, &) € C([0, T]; $%'), € € [0, 1], and
R is an m x m-operator matrix with elements in C([0,T],S¢~'?). The case € = 0
corresponds to symbols uniformly bounded in the space variable, while the case
€ = 1is the standard situation of SG symbols with equal order components.
Assume also that the system (5.2) is of hyperbolic type, that is, A;(t,x, &) € R,
j = 1,...,m. Notice that, differently from [12, 17], here we do not impose any
“separation condition at infinity” on the A;, j = 1,...,m. Indeed, the results
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presented below apply both to the constant as well as the variable multiplicities
cases.

For 0 < Ty < T, we define A, := {(£,5)] 0 < s < t < Tp}. The fundamental
solution of (5.1) is a family {E(¢,s)|(t,s) € Ar,} of SG FIOs, satisfying

{LE(t,s) =0 (4s)eArg,

(5.3) E(s,s) =1 se[0,To)

In this section we aim to show that, if Ty is small enough, it is possible to construct
the family {E(¢,s)} satisfying (5.3).
As a consequence of (5.3), it is quite easy to get the following;:

Theorem 5.1. Forevery F € C([0, T]; H"¢(R")) and G € H"?(R"), the solution W(t, x) of
the Cauchy problem (5.1) exists uniquely, it belongs to the class C([0, To], H'~€~1¢(R")),
and it is given by

W(t) = E(,0)G + if E(t,s)E(s)ds, te[0,Ts.
0

Remark 5.2. Theorem 5.1 gives well-posedness of the Cauchy problem (5.1) in S(R") and
S'(IR™); moreover it gives “well posedness with loss/gain of decay” (depending on the sign
of ) of (5.1) in weighted Sobolev spaces H"?(IR"). This phenomenon is quite common in
the theory of hyperbolic partial differential equations with SG type coefficients, see [2, 4, 5].
We remark that in the symmetric case € = 1 the Cauchy problem (5.1) turns out to be
well-posed also in H"¢(IR").

To begin, consider SG phase functions ¢; = @;(t,s,x,&), 1 < j < m, defined on
Ar, x R?", and define the operator matrix

Iy, (t,s) 0
I(p(t, S) = 7
0 Irpm(trs)

where I, := Opy,;(1), 1 < j < m. From Theorem 2.3 (see Remark 2.8) we see that

i (Esx.& a(pj
Dily, + Aj(t, x, DX)I%. = Jelq’/( /S/"@)E(t, s, x,&)dé

n Jeiq,j(t,s,x,é))\j(t, X, (p;.,x(t, s,x,&))dg
- f e by (85, x, £)AE,

where by i(t,s) € 70 < SO0, The first two integrals in the right-hand side of
the equation here above cancel if we choose ¢, j = 1,...,m, to be the solution
to the eikonal equation (2.5) associated with the symbola = A;, j = 1,...,m.
By Proposition 2.9, this is possible, provided that Ty is small enough. Writing
Boj := Opy,(bo,;), we define the family {Wi(t,s); (t,s) € Ar, } of SG FIOs by
Bo1(t,s,x, Dy) 0
Wi(t,s,x,Dy) = —i + R(t,x,Dyx) |1y(t,s,x,Dy),
0 BO,m(t/ 5, X, Dx)

and we denote by w1 (¢, s, x, &) the symbol of Wi (¢, s, x, £). Notice that
(5.4) L(t,x, Dy)I,(t,s,x,Dy) = iW1(t,s,x,Dy),
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that is, iW; is the residual of system (5.1) for I,. We define then by induction the
sequence of m x m-matrices of SG FIOs, denoted by {W,(¢,s); (t,5) € Ar, }ven, as

t
(55) WV+1(t/S/x/Dx) = f Wl(t/ 6/-XI/DJC)I/VV(Q/S/x/ Dx)del

and we denote by w,11(t,s, x, &) the symbol of W, 11(t,s, x, Dy). We are now going
to prove that the operator norms of W,, seen as operators from the Sobolev space
H" into H'~("=D(=1)¢ for any fixed (r, 0) € R? can be estimated from above by

Crpllt—sl"t _C'Ty
-1 ~ (w=-1)"

(56) [Wo (&, 8)]| ppane, -0y <

for all (t,s) € At, and v € N, where C,, is a constant which only depends on 7, g.
To deal with the operator norms in (5.6), we need to explicitly write the matrices
W,. An induction in (5.5) easily shows that

t 6 6,2
(5.7) W, (t,s) = f f ... Wi(t,01)...W1(6,_2,0,_1)d0,_1...d0O1.

The integrand is a product of v — 1 m x m-matrices of SG FIOs, therefore it is an
operator matrix whose entries consist of m"~? summands of compositions of v — 1
SG FIOs. Denoting by Q; o... 0 Q,_1 one of these compositions, where each of
the Q; is one of the m? entries of the m x m-matrix of SG FIOs W;, we have from
Example 3.3 and (2) of Theorem 4.3 that Q; o ... 0 Q,— is again a SG FIO with
,,,,, v_1 € S=DE=D0 < §00  Moreover, from (3) of Theorem 4.3, for all
€ € N there exists C; > 0 and ¢’ € N such that
11,01t 61, ..., 8,_1)[[| D0
< 2 llga(t, 00157 - g (Bua, O 1) 157,

where for j = 1,...,v — 1, q(t,s) denotes the symbol of the SG FIO Q;(t,s), (t,s) €
At,. Now we set

_ —-1,0
o= sup sup |[l;(t 950 <0,
j=1mv—1 (1,8)€l,

so that

11,1t 61, ..., B, ||| DD < cr-2571,

The continuity of the SG FIOs Qs 0...0Q,_1(t, 01, -+ ,0,_1) : H"? — H'~(n=D(e=1e
(see Theorem 2.1) and the previous inequality give that for every r, ¢ there exist
constants C,, > 0 (depending only on the indeces of the Sobolev space) and
{r, € Ny such that for all u € H"?

(58) HQl (t/ 61) ©...0 Qvfl(9v729v71)u”r—(n—l)(e—l),g

—1)(e=1),0
< Coalllqna(t, 01, O IS0,

< CV,QCZZC_’V% ] ,-

Therefore, in the operator matrix Wy (t, 61) ... W1(6,_2, 6,—1), the operator norm of
each entry can be bounded from above by m*'~2C,,C} *6"~!. Now by (5.7) and
o~
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(5.8) we deduce that

H Wv(t, 5) HL(HV:@,HV—(V—I><e—1>,y)

t 01 —2
< J f ... J HW1 (t, 61) ... W1(6V,2, 91/,1)HL(Hr,g,Hr—(V—1)(s—1),g)d9v,1 ...d6;

t 6 6,2
m'2C,,C, %" J J J d0,_1 ...do;

— i Y - e
m'=2C, Cy 25" Mt — st Cr ol — [

69 < (v—1)! T -1

for a new constant C, , depending only on 7, g, which yields the claim (5.6).
Now, using the estimate (5.6), we can show that the sequence of SG FIOs, defined
forall (¢,s) € Ar, and all N € N by

t N
(5.10) En(t,s) = I,(t,s) + f Z

is a well-defined SG FIO in L(H"?, H'~¢*1?) for every r, g, and converges,as N — o,
to the well-defined SG FIO, belonging to L(H"?, H'~¢*1¢), given by

(5.11) E(t,s) = I,(t,s J g

E(t,s) in (5.11) is the fundamental solution to the system (5.1) in the sense that
it satisfies (5.3). Indeed, at symbols level, with the notations Ex = Op,(en),
E = Opy(e)and Wyo---0Wy = Opy(0,-1), forevery I € N and |a + | < £, we have

|6‘*6ﬁeN(t s,x, &)

f Z 08w, (0,5,x,£)|dO

”Hﬁ”

< Z f f ov-r(t, 01, .., Byy) ||| DDy =D D-I8l gy ~lalgp, ;.. do
y=1"5 s

2oy 1(t,01,...,0,-1,%,8)|d0,_1 ...d01dO

v—2CV—2C—).v—1 |t _ S|v—1

1= — Y m {
< ()Rl gy lal Z T ,
v=1 :

SO
C’|t—s|)
lllen(t, )15 < Z

for a new constant C, > 0. Then, for N — oo we get
lle(t, 9)I[[77" < exp(Ci(t —s)) < o0.

Thus, the SG FIO (5.11) has a well-defined symbol. On the other hand, at operator’s
level, by definitions (5.10) and (5.2) we have

N N
(5.12) LEy = LIy —i ) Wy(t,s) + J LIs(t,0) > W,
v=1 v=1
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An induction shows that
N t N—
(5.13) DI Wi(t,s) = —i(LIy)(t,s) — f (LIs)(t, 0) Z
v=1 v=1

Indeed, for N = 2 we have by (5.4) and (5.5)

¢
Wi(t,s) + Wa(t,s) = —i(LIy)(t,s) — zf (LIy)(t, 0)W1(0,s)do;

S

the induction step N — N + 1 works as follows:

N
D1 Wi(ts) = Wisa(ts) + > Walts)
v=1

t t N—
—i f (LILy)(t, 0)Wn(0,5)d0 — i(LIy)(t,s) — i f (LIs)(t, 6) 2
s v=1

t N
—i(LIy)(t,s) — iJ (LIy)(t,0) > W, (0,5)d6.
s v=1
Substituting (5.13) into (5.12) we get

(LEN)(t,5) = J (L1y)(t, 0) Wi (6, 5)d6.

Now, for N — co, HWN(t,s)HL(HV,Q,HH(NA)(HM) — 0 because of (5.9); thus LEy —
LE = 0. Moreover, it is easy to verify that E(s,s) = I. So, (5.3) is fulfilled, and we
have constructed the fundamental solution to L. As it concerns the dependence
of the fundamental solution on the parameters (f,s), we finally notice that the SG
FIO-valued map (t,s) — E(t,s) belongs to C(Ar,), since E is obtained by continuous
operations of operators which are continuous in £, s, see (5.11).
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