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FOURIER INTEGRAL OPERATORS ALGEBRA AND
FUNDAMENTAL SOLUTIONS TO HYPERBOLIC SYSTEMS
WITH POLYNOMIALLY BOUNDED COEFFICIENTS ON Rn

ALESSIA ASCANELLI AND SANDRO CORIASCO

Abstract. We study the composition of an arbitrary number of Fourier integral
operators Aj, j “ 1, . . . ,M, M • 2, defined through symbols belonging to the so-
called SG classes. We give conditions ensuring that the composition A1 ˝ ¨ ¨ ¨ ˝ AM
of such operators still belongs to the same class. Through this, we are then able
to show well-posedness in weighted Sobolev spaces for first order hyperbolic sys-
tems of partial di↵erential equations in SG classes, by constructing the associated
fundamental solutions. These results expand the existing theory for the study of
the properties “at infinity” of the solutions to hyperbolic Cauchy problems on Rn

with polynomially bounded coe�cients.
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1. Introduction

We deal with a class of Fourier integral operators globally defined onRn, namely,
the SG Fourier integral operators (SG FIOs, for short, in the sequel), that is, the
class of FIOs defined through symbols belonging to the so-called SG classes.

The class Sm,µpR2nq of SG symbols of order pm, µq P R2 is given by all the
functions apx, ⇠q P C8pRn ˆ Rnq with the property that, for any multi-indices
↵, � P Zn

`, there exist constants C↵� ° 0 such that the conditions

(1.1) |D↵
⇠D�

xapx, ⇠q| § C↵�xxym´|�|x⇠yµ´|↵|, px, ⇠q P Rn ˆRn,

hold. Here xxy “ p1 ` |x|2q1{2 when x P Rn, and Z` is the set of non-negative
integers. These classes, together with corresponding classes of pseudo-di↵erential
operators OppSm,µq, were first introduced in the ’70s by H.O. Cordes [10] and
C. Parenti [27], see also R. Melrose [26]. They form a graded algebra with respect
to composition, i.e.,

OppSm1,µ1 q ˝ OppSm2,µ2 q Ñ OppSm1`m2,µ1`µ2 q,
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whose residual elements are operators with symbols in

S´8,´8pR2nq “
£

pm,µqPR2

Sm,µpR2nq “ SpR2nq,

that is, those having kernel in SpR2nq, continuously mapping S1pRnq to SpRnq.
Operators in OppSm,µq are continuous on SpRnq, and extend uniquely to con-

tinuous operators on S1pRnq and from Hs,�pRnq to Hs´m,�´µpRnq, where Hr,%pRnq,
r, % P R, denotes the weighted Sobolev (or Sobolev-Kato) space

Hr,%pRnq “ tu P S1pRnq : }u}r,% “ }x.yrxDy%u}L2 † 8u.
An operator A “ Oppaq, is called elliptic (or Sm,µ-elliptic) if a P Sm,µpR2nq and

there exists R • 0 such that

Cxxymx⇠yµ § |apx, ⇠q|, |x| ` |⇠| • R,

for some constant C ° 0. An elliptic SG operator A P OppSm,µq admits a parametrix
P P OppS´m,´µq such that

PA “ I ` K1, AP “ I ` K2,

for suitable K1,K2 P OppS´8,´8pR2nqq, where I denotes the identity operator. In
such a case, A turns out to be a Fredholm operator on the scale of functional spaces
Hr,%pRnq, r, % P R.

In 1987, E. Schrohe [29] introduced a class of non-compact manifolds, the so-
called SG manifolds, on which a version of SG calculus can be defined. Such
manifolds admit a finite atlas, whose changes of coordinates behave like symbols
of order p0, 1q (see [29] for details and additional technical hypotheses). A relevant
example of SG manifolds are the manifolds with cylindrical ends, where also the
concept of classical SG operator makes sense, see, e. g. [7, 15, 20, 23, 25, 26]. With
pu denoting the Fourier transform of u P SpRnq, given by

(1.2) pup⇠q “
ª

e´ix¨⇠upxq dx,

for any a P Sm,µpR2nq, ' P P – the set of SG phase functions, see Section 2 below –,
the SG FIOs are defined, for u P SpRnq, as

u fiÑ pOp'paquqpxq “ p2⇡q´n
ª

ei'px,⇠qapx, ⇠qpup⇠q d⇠,(1.3)

and

u fiÑ pOp˚
'paquqpxq “ p2⇡q´n

"

eipx¨⇠´'py,⇠qqapy, ⇠qupyq dyd⇠.(1.4)

Here the operators Op'paq and Op˚
'paq are sometimes called SG FIOs of type I and

type II, respectively, with symbol a and SG phase function '. Note that a type II
operator satisfies Op˚

'paq “ Op'paq˚, that is, it is the formal L2-adjoint of the type
I operator Op'paq.

The analysis of SG FIOs started in [11], where composition results with the
corresponding classes of pseudodi↵erential operators, and of SG FIOs of type I
and type II with regular phase functions, have been proved, as well as the basic
continuity properties inSpRnq andS1pRnq of operators in the class. A version of the
Asada-Fujiwara L2pRnq-continuity theorem was also proved there, for operators
Op'paq with symbol a P S0,0pR2nq and regular SG phase function ' P Pr, see
Definition 2.4. Applications to SG hyperbolic Cauchy problems were initially
given in [12, 17].

Many authors have, since then, expanded the SG FIOs theory in various direc-
tions. To mention a few, see, e.g., G.D. Andrews [1], M. Ruzhansky, M. Sugimoto
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[28], E. Cordero, F. Nicola, L Rodino [9], and the recent works by S. Coriasco and
M. Ruzhansky [18], S. Coriasco and R. Schulz [19, 20]. Concerning applications
to SG hyperbolic problems and propagation of singularities, see, e.g., A. Ascanelli
and M. Cappiello [2, 3, 4], M. Cappiello [8], S. Coriasco, K. Johansson, J, Toft [13],
S. Coriasco, L. Maniccia [14]. Concerning applications to anisotropic evolution
equations of Schrödinger type see, e.g., A. Ascanelli, M. Cappiello [5].

Here our aim is to expand the results in [11, 12], through the study of the
composition of M • 2 SG FIOs Aj :“ Op' j

pajq with regular SG phase functions
' j P Prp⌧ jq – see Definition 2.4 below – and symbols aj P Smj,µ j pR2nq, j “ 1, . . . ,M.
To our best knowledge, the composition of SG FIOs with di↵erent phase functions
of the type that we consider in this paper has not been studied by other authors.

First, we shall prove, under suitable assumptions, the existence of a SG phase
function � P Prp⌧q, called the multi-product of the SG phase functions '1, . . . ,'M,
and of a symbol a P Sm,µpR2nq, with m :“ m1 ` ¨ ¨ ¨ ` mM, µ :“ µ1 ` ¨ ¨ ¨ ` µM, such
that

(1.5) A “ Op�paq :“ A1 ˝ ¨ ¨ ¨ ˝ AM,

see Theorem 4.3 below for the precise statement.
Subsequently, we apply such result to study a class of hyperbolic Cauchy pro-

blems. We focus on first order systems of partial di↵erential equations of hyperbolic
type with pt, xq´depending coe�cients in SG classes. By means of Theorem 4.3, we
construct the fundamental solution tEpt, squ0§s§t§T to the system. The existence of
the fundamental solution provides, via Duhamel’s formula, existence and unique-
ness of the solution to the system, for any given Cauchy data in the weighted
Sobolev spaces Hr,%pRnq. A remarkable feature, typical for these classes of hyper-
bolic problems, is the well-posedness with loss/gain of decay at infinity, observed for
the first time in [2], see also Section 5 below. We need these results in the study of
certain stochastic equations, which will be treated in the forthcoming paper [6].

This paper is organized as follows. Section 2 is devoted to fixing notation and
recalling some basic definitions and known results on SG symbols and Fourier
integral operators, which will be used throughout the paper. In Section 3 we
perform the first step of the proof of our main result, Theorem 4.3, defining and
studying the multi-product of M • 2 regular SG phase functions. In Section 4 we
prove Theorem 4.3, showing the existence, under suitable hypotheses, of � P Pr
and a P Sm,µ such that (1.5) holds. Finally, in Section 5 we obtain the fundamental
solution to SG hyperbolic first order systems.

Acknowledgements

The authors were supported by the INdAM-GNAMPA grant “Equazioni Di↵eren-
ziali a Derivate Parziali di Evoluzione e Stocastiche” (Coordinator: S. Coriasco,
Dep. of Mathematics “G. Peano”, University of Turin).

2. SG symbols and Fourier integral operators

In this section we fix some notation and recall some of the results proved in [11],
which will be used below. SG pseudodi↵erential operators apx,Dq “ Oppaq can be
introduced by means of the usual left-quantization

pOppaquqpxq “ p2⇡q´n
ª

eix¨⇠apx, ⇠qpup⇠qd⇠, u P SpRnq,

with pu the Fourier transform of u defined in (1.2), starting from symbols apx, ⇠q P
C8pRn ˆRnq satisfying (1.1). Symbols of this type belong to the class denoted by
Sm,µpR2nq, and the corresponding operators constitute the class OppSm,µpR2nqq. In
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the sequel we will often simply write Sm,µ, fixing the dimension of the base space
to n. For m, µ P R, l P Z`, a P Sm,µ, the quantities

~a~m,µ
l “ max

|↵`�|§l
sup

x,⇠PRn
xxy´m`|↵|x⇠y´µ`|�||B↵x B�⇠apx, ⇠q|

are a family of seminorms, defining the Fréchet topology of Sm,µ. The continuity
properties of the elements of OppSm,µq on the scale of spaces Hr,⇢, m, µ, r,⇢ P R,
is expressed more precisely in the next Theorem 2.1 (see [10] and the references
quoted therein for the result on more general classes of SG type symbols).

Theorem 2.1. Let a P Sm,µpRnq, m, µ P R. Then, for any r,⇢ P R, Oppaq P
LpHr,⇢pRnq,Hr´m,⇢´µpRnqq, and there exist a constant C ° 0 and an integer `, depending
only on n,m, µ, r,⇢, such that

(2.1) }Oppaq}LpHr,⇢pRnq,Hr´m,⇢´µpRnqq § C~a~m,µ
` .

We now introduce the class of SG phase functions. Here and in what follows,
A — B means that A . B and B . A, where A . B means that A § c ¨B, for a suitable
constant c ° 0.

Definition 2.2 (SG phase function). A real valued function ' P C8pR2nq belongs to
the class P of SG phase functions if it satisfies the following conditions:

(1) ' P S1,1pR2nq;
(2) x'1

xpx, ⇠qy — x⇠y as |px, ⇠q| Ñ 8;
(3) x'1

⇠px, ⇠qy — xxy as |px, ⇠q| Ñ 8.

Functions of class P are those used in the construction of the SG FIOs calculus.
The SG FIOs of type I and type II, Op'paq and Op˚

'pbq, are defined as in (1.3)
and (1.4), respectively, with ' P P and a, b P Sm,µ. The next Theorem 2.3 about
composition between SG pseudodi↵erential operators and SG FIOs was originally
proved in [11], see also [13, 16, 22].

Theorem 2.3. Let ' P P and assume p P St,⌧pR2nq, a, b P Sm,µpR2nq. Then,

Opppq ˝ Op'paq “ Op'pc1 ` r1q “ Op'pc1q mod OppS´8,´8pR2dqq,

Opppq ˝ Op˚
'pbq “ Op˚

'pc2 ` r2q “ Op˚
'pc2q mod OppS´8,´8pR2dqq,

Op'paq ˝ Opppq “ Op'pc3 ` r3q “ Op'pc3q mod OppS´8,´8pR2dqq,

Op˚
'pbq ˝ Opppq “ Op˚

'pc4 ` r4q “ Op˚
'pc4q mod OppS´8,´8pR2dqq,

for some cj P Sm`t,µ`⌧pR2nq, rj P S´8,´8pR2dq, j “ 1, . . . , 4.

To obtain the composition of SG FIOs of type I and type II, some more hypotheses
are needed, leading to the definition of the classesPr andPrp⌧q of regular SG phase
functions.

Definition 2.4 (Regular SG phase function). Let ⌧ P r0, 1q and r ° 0. A function
' P P belongs to the class Prp⌧q if it satisfies the following conditions:

(1) | detp'2
x⇠qpx, ⇠q| • r, @px, ⇠q;

(2) the function Jpx, ⇠q :“ 'px, ⇠q ´ x ¨ ⇠ is such that

sup
x,⇠PRn

|↵`�|§2

|D↵
⇠D�

x Jpx, ⇠q|
xxy1´|�|x⇠y1´|↵| § ⌧.(2.2)

If only condition (1) holds, we write ' P Pr.
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Remark 2.5. Notice that condition (2.2) means that Jpx, ⇠q{⌧ is bounded with constant
1 in S1,1. Notice also that condition (1) in Definition 2.4 is authomatically fulfilled when
condition (2) holds true for a su�ciently small ⌧ P r0, 1q.

For ` PN, we also introduce the seminorms

}J}2,` :“
ÿ

2§|↵`�|§2``
sup

px,⇠qPR2n

|D↵
⇠D�

x Jpx, ⇠q|
xxy1´|�|x⇠y1´|↵| ,

and

}J}` :“ sup
x,⇠PRn

|↵`�|§1

|D↵
⇠D�

x Jpx, ⇠q|
xxy1´|�|x⇠y1´|↵| ` }J}2,`.

We notice that ' P Prp⌧q means that (1) of Definition 2.4 and }J}0 § ⌧ hold, and
then we define the following subclass of the class of regular SG phase functions:

Definition 2.6. Let ⌧ P r0, 1q, r ° 0, ` • 0. A function ' belongs to the class Prp⌧, `q if
' P Prp⌧q and }J}` § ⌧ for the corresponding J.

Theorem 2.7 below shows that the composition of SG FIOs of type I and type II
with the same regular SG phase functions is a SG pseudodi↵erential operator, see
[11] for a detailed proof.

Theorem 2.7. Let ' P Pr and assume a P Sm,µpR2nq, b P St,⌧pR2nq. Then,

Op'paq ˝ Op˚
'pbq “ Oppc5 ` r5q “ Oppc5q mod OppS´8,´8q,

Op˚
'pbq ˝ Op'paq “ Oppc6 ` r6q “ Oppc6q mod OppS´8,´8q,

for some cj P Sm`t,µ`⌧pR2nq, rj P S´8,´8pR2dq, j “ 5, 6.

Furthermore, asymptotic formulae can be given for cj, j “ 1, . . . , 6, in terms of ',
p, a and b, see [11]. A generalization of Theorems 2.3 and 2.7 to operators defined
by means of broader, generalized SG classes was proved in [13, 22], together with
similar asymptotic expansions, studied by means of the criteria obtained in [21].

Remark 2.8. In particular, in Section 5 we will make use of the following (first order)
expansion of the symbol of c1, coming from [11]:

c1px, ⇠q “ ppx,'1
xpx, ⇠qqapx, ⇠q ` spx, ⇠q, s P Sm`t´1,µ`⌧´1pR2nq.

Finally, when a P Sm,µ is elliptic and ' P Pr, the corresponding SG FIOs admit a
parametrix, that is, there exist b1, b2 P S´m,´µ such that

Op'paq ˝ Op˚
'pb1q “ Op˚

'pb1q ˝ Op'paq “ I mod OppS´8,´8q,(2.3)

Op˚
'paq ˝ Op'pb2q “ Op'pb2q ˝ Op˚

'paq “ I mod OppS´8,´8q,(2.4)

where I is the identity operator, see again [11, 13, 22].
In this paper we extend the existing theory of SG FIOs, dealing with the com-

position of SG FIOs of type I with di↵erent phase functions. We then apply it to
compute the fundamental solution to SG hyperbolic systems with coe�cients of
polynomial growth.

The following result is going to be used in Sections 3 and 5. Given a symbol
a P Cpr0,Ts; S✏,1q with ✏ P r0, 1s, let us consider the eikonal equation

#
Bt'pt, s, x, ⇠q “ apt, x,'1

xpt, s, x, ⇠qq, t P r0,T0s
'ps, s, x, ⇠q “ x ¨ ⇠, s P r0,T0s,(2.5)

with 0 † T0 § T. By an extension of the theory developed in [12], it is possible to
prove that the following Proposition 2.9 holds true.
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Proposition 2.9. For any small enough T0 P r0,Ts, equation (2.5) admits a unique
solution ' P C1pr0,T0s2

t,s,S
1,1pRn

x,⇠qq, satisfying J P C1pr0,T0s2
t,s,S

✏,1pRn
x,⇠qq and

Bs'pt, s, x, ⇠q “ ´aps,'1
⇠pt, s, x, ⇠q, ⇠q,(2.6)

for any t, s P r0,T0s. Moreover, for every h • 0 there exist ch • 1 and Th P r0,T0s such
that 'pt, s, x, ⇠q P Prpch|t ´ s|q, with }J}2,h § ch|t ´ s| for all 0 § s § t § Th.

In the sequel we will sometimes write 'tspx, ⇠q :“ 'pt, s, x, ⇠q, for a solution ' of
(2.5).

3. Multiproducts of SG phase functions

The first step in our construction is to define the multi-product of regular SG
phase functions and to analyze its properties, which we perform in the present
section, following mainly [24].

Let us consider a sequence t' ju j•1 of regular SG phase functions' jpx, ⇠q P Prp⌧ jq
with

8ÿ

j“1

⌧ j “: ⌧0 † 1{4.(3.1)

By Definition 2.4 and assumption (3.1) we have that the sequence tJkpx, ⇠q{⌧kuk•1
is bounded in S1,1 and for every ` PN that there exists a constant c` ° 0 such that

}Jk}2,` § c`⌧k and
8ÿ

k“1

}Jk}2,` § c`⌧0.(3.2)

Notice that from (2.2) we have c0 “ 1. This will be useful in the proof of Theorem
3.10 at the end of the present section.

Example 3.1. A simple realization of a sequence t' ju j•1 satisfying (3.1) and (2.2) can be
obtained using the phase function 'pt, s, x, ⇠q solving the eikonal equation (2.5). Indeed, it
is su�cient to take a partition

s “ t``1 § t` § ¨ ¨ ¨ § t1 § t0 “ t,

of the interval rs, ts and define

' jpx, ⇠q “
#
'ptj´1, tj, x, ⇠q 1 § j § ` ` 1
x ¨ ⇠ j • ` ` 2.

In fact, from Proposition 2.9 we know that ' j P Prp⌧ jq with ⌧ j “ c0ptj´1 ´ tjq for
1 § j § ` ` 1 and with ⌧ j “ 0 for j • ` ` 2. Condition (3.1) is fulfilled if we choose T0
small enough, since

8ÿ

j“1

⌧ j “
``1ÿ

j“1

c0ptj´1 ´ tjq “ c0pt ´ sq § c0T0 † 1
4

if T0 † p4c0q´1. Moreover, again from Proposition 2.9, we know that }Jj}2,0 § c0|tj ´
tj´1| “ ⌧ j for all 1 § j § `` 1 and Jj “ 0 for j • `` 2, so each one of the Jj satisfies (2.2).

With a fixed integer M • 1, we denote

pX,⌅q “ px0, x1, . . . , xM, ⇠1, . . . , ⇠M, ⇠M`1q :“ px,T,⇥, ⇠q,
pT,⇥q “ px1, . . . , xM, ⇠1, . . . , ⇠Mq,

and define the function of 2pM ` 1qn real variables

 pX,⌅q :“
Mÿ

j“1

`
' jpxj´1, ⇠ jq ´ xj ¨ ⇠ j

˘
` 'M`1pxM, ⇠M`1q.(3.3)
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For every fixed px, ⇠q P R2n, the critical points pY,Nq “ pY,Nqpx, ⇠q of the function
of 2Mn variables r pT,⇥q “  px,T,⇥, ⇠q are the solutions to the system

#
 1
⇠ j

pX,⌅q “ '1
j,⇠pxj´1, ⇠ jq ´ xj “ 0 j “ 1, . . . ,M,

 1
xj

pX,⌅q “ '1
j`1,xpxj, ⇠ j`1q ´ ⇠ j “ 0 j “ 1, . . . ,M,

in the unknowns pT,⇥q. That is pY,Nq “ pY1, . . . ,YM,N1, . . . ,NMqpx, ⇠q satisfies, if
M “ 1,

#
Y1 “ '1

1,⇠px,N1q
N1 “ '1

2,xpY1, ⇠q,(3.4)

or, if M • 2,
$
’’’’&

’’’’%

Y1 “ '1
1,⇠px,N1q

Yj “ '1
j,⇠pYj´1,Njq, j “ 2, . . . ,M

Nj “ '1
j`1,xpYj,Nj`1q, j “ 1, . . . ,M ´ 1

NM “ '1
M`1,xpYM, ⇠q.

(3.5)

In the sequel we will only refer to the system (3.5), tacitly meaning (3.4) when
M “ 1. Definition 3.2 below of the multi product of SG phase functions is analogous
to the one given in [24] for (local) symbols of Hörmander type.

Definition 3.2 (Multi-product of SG phase functions). If, for every fixed px, ⇠q P R2n,
the system (3.5) admits a unique solution pY,Nq “ pY,Nqpx, ⇠q, we define

�px, ⇠q “ p'1 7 ¨ ¨ ¨ 7 'M`1qpx, ⇠q :“  px,Ypx, ⇠q,Npx, ⇠q, ⇠q.(3.6)

The function � is called multi-product of the SG phase functions '1, . . . ,'M`1.

Example 3.3. The simplest case of a well-defined multi-product of SG phase functions is
given by the sharp product ' 7 '0, where ' P Pr and '0px, ⇠q “ x ¨ ⇠. Indeed, the critical
points pY,Nq of the function

r px1, ⇠1q “  px, x1, ⇠1, ⇠q “ 'px, ⇠1q ´ x1 ¨ ⇠1 ` x1 ¨ ⇠
are given by pY,Nqpx, ⇠q “ p'1

⇠px, ⇠q, ⇠q. The multi-product ' 7 '0 is so defined by

�px, ⇠q “  px,'1
⇠px, ⇠q, ⇠, ⇠q “ 'px, ⇠q ´ '1

⇠px, ⇠qp⇠´ ⇠q “ 'px, ⇠q.
Similarly, the multi-product '0 7 ' is well defined. Indeed, the function

r px1, ⇠1q “  px, x1, ⇠1, ⇠q “ x ¨ ⇠1 ´ x1 ¨ ⇠1 ` 'px1, ⇠q
has critical points pY,Nqpx, ⇠q “ px,'1

xpx, ⇠qq, and
�px, ⇠q “  px, x,'1

xpx, ⇠q, ⇠q “ px ´ xq ¨ '1
xpx, ⇠q ` 'px, ⇠q “ 'px, ⇠q.

Notice that we have proved here above that for every ' P Pr the identity
' 7 '0 “ '0 7 ' “ '

holds true. That is, the multi-product of SG phase functions defined in (3.6) admits the
trivial phase function '0px, ⇠q “ x ¨ ⇠ as identity element.

Example 3.4. A situation where (3.6) is well defined, which is interesting for applications,
see Section 5, is given by the multi-product of solutions to the eikonal equation (2.5) on
di↵erent, neighboring time intervals. Indeed, the critical points pY,Nqpx, ⇠q of the function

r tsrpx1, ⇠1q :“  tsrpx, x1, ⇠1, ⇠q “ 'pt, s, x, ⇠1q ´ x1 ¨ ⇠1 ` 'ps, r, x1, ⇠q
are given by

#
 1

rst,x1
px, x1, ⇠1, ⇠q “ ´⇠1 ` '1

xps, r, x1, ⇠q “ 0
 1

rst,⇠1
px, x1, ⇠1, ⇠q “ '1

⇠pt, s, x, ⇠1q ´ x1 “ 0.
(3.7)



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 8

The Jacobian matrix with respect to px1, ⇠1q of the system (3.7) is

Jpt, s, r, x, x1, ⇠1, ⇠q “
ˆ
'2

xxps, r, x1, ⇠q ´I
´I '2

⇠⇠pt, s, x, ⇠1q
˙
,

where I is the pn ˆ nq-dimensional unit matrix. By (2.5), det Jpt, r, r, x, x1, ⇠1, ⇠q “ 1.
Thus, taking a small interval r0,T0s such that det Jpt, s, r, x, x1, ⇠1, ⇠q ° 0 for all r, s, t
such that 0 § r § s § t § T0 and all pX,⌅q P R4n, by the implicit function theorem
it follows that the system (3.7) admits a unique solution pY,Nqtsr “ pYtsr,Ntsrqpx, ⇠q “
pYpt, s, r, x, ⇠q,Npt, s, r, x, ⇠qq. The multi-product

�tsrpx, ⇠q “ �pt, s, r, x, ⇠q “ p'ts 7 'srqpx, ⇠q “  tsrpx,Ytsrpx, ⇠q,Ntsrpx, ⇠q, ⇠q
“ 'pt, s, x,Ntsrpx, ⇠qq ´ Ytsrpx, ⇠q ¨ Ntsrpx, ⇠q ` 'ps, r,Ytsrpx, ⇠q, ⇠q

is then well defined. Moreover, it is quite simple to show, in view of to Proposition 2.9, that
the multi-product 'ts 7 'sr satisfies the associative law

'ts 7 'sr “ 'tr, 0 § r § s § t § T0.(3.8)

Indeed, �pt, s, r, x, ⇠q does not depend on s:
d
ds

r�pt, s, r, x, ⇠qs“pBs'qpt, s, x,Ntsrpx, ⇠qq`'1
⇠pt, s, x,Ntsrpx, ⇠qq¨pBsNqpt, s, r, x, ⇠q

´ pBsYqpt, s, r, x, ⇠q ¨ Npt, s, r, x, ⇠q ´ Ypt, s, r, x, ⇠q ¨ pBsNqpt, s, r, x, ⇠q
` pBt'qps, r,Ytsrpx, ⇠q, ⇠q ` '1

xps, r,Ytsrpx, ⇠q, ⇠q ¨ pBsYqpt, s, r, x, ⇠q “ 0,

since, by (2.5), (2.6) and the definition (3.7) of the critical point pY,Nqtsr, we have

'1
xps, r,Ytsrpx, ⇠q, ⇠q “ Npt, s, r, x, ⇠q,

'1
⇠pt, s, x,Ntsrpx, ⇠qq “ Ypt, s, r, x, ⇠q,

pBt'qps, r,Ytsrpx, ⇠q, ⇠q “ aps,Ytsrpx, ⇠q,'1
xps, r,Ytsrpx, ⇠q, ⇠qq

“ aps,Ytsrpx, ⇠q,Ntsrpx, ⇠qq,
pBs'qpt, s, x,Ntsrpx, ⇠qq “ ´aps,'1

⇠pt, s, x,Ntsrpx, ⇠qq,Ntsrpx, ⇠qq
“ ´aps,Ytsrpx, ⇠q,Ntsrpx, xiqq.

This gives, with '0px, ⇠q “ x ¨ ⇠,

p'ts 7 'srqpx, ⇠q “ �pt, s, r, x, ⇠q “ �pt, r, r, x, ⇠q “ p'tr 7 'rrqpx, ⇠q “ p'tr 7 '0qpx, ⇠q
“ 'trpx, ⇠q,

by Example 3.3, as claimed.

Now we want to show that under assumption (3.1) the multi-product �px, ⇠q of
Definition 3.2 is well defined onR2n, and it is a regular SG phase function itself. To
this aim, we switch from the system (3.5) in the unknown pY,Nq to the equivalent
system (3.10) in the unknown pȲ, N̄q “ py1, . . . , yM, ⌘1, . . . , ⌘Mq P R2Mn as follows.
Define

$
’’’&

’’’%

z0 :“ 0
zj :“ ∞ j

k“1 yk , j “ 1, . . . ,M
⇣ j :“ ∞M

k“ j ⌘k , j “ 1, . . . ,M
⇣M`1 :“ 0,

(3.9)

and then consider the system
#

yk “ J1
k,⇠px ` zk´1, ⇠` ⇣kq, k “ 1, . . . ,M

⌘k “ J1
k`1,xpx ` zk, ⇠` ⇣ j`1q, k “ 1, . . . ,M.

(3.10)

We have that:
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Lemma 3.5. For every fixed px, ⇠q P R2n, pY,Nqpx, ⇠q is a solution of (3.5) if and only if
pȲ, N̄qpx, ⇠q “ py1, . . . , yM, ⌘1, . . . , ⌘mqpx, ⇠q, defined by

$
’’’&

’’’%

y1 “ Y1 ´ x
yj “ Yj ´ Yj´1 j “ 2, . . . ,M
⌘ j “ Nj ´ Nj`1 j “ 1, . . . ,M ´ 1
⌘M “ NM ´ ⇠,

(3.11)

is a solution of (3.10).

Proof. Substituting (3.11) in (3.9), we immediately get the relation
#

Yj “ x ` zj

Nj “ ⇠` ⇣ j.
(3.12)

By this, it follows that pY,Nq is a solution of (3.5) if and only if
#

x ` zj “ '1
j,⇠px ` zj´1, ⇠` ⇣ jq j “ 1, . . . ,M

⇠` ⇣ j “ '1
j`1,xpx ` zj, ⇠` ⇣ j`1q j “ 1, . . . ,M;

by substituting ' jpx, ⇠q “ Jjpx, ⇠q ` x ¨ ⇠ we obtain
#

zj ´ zj´1 “ J1
j,⇠px ` zj´1, ⇠` ⇣ jq j “ 1, . . . ,M

⇣ j ´ ⇣ j`1 “ J1
j`1,xpx ` zj, ⇠` ⇣ j`1q j “ 1, . . . ,M,

which is exactly (3.10), in view of (3.9). ⇤

We are then reduced to prove the following Theorem 3.6.

Theorem 3.6. Under the assumption (3.1), for every fixed px, ⇠q P R2n there exists a
unique solution pȲ, N̄qpx, ⇠q of (3.10). Moreover, the solution pȲ, N̄q satisfies

|yk| § 4
3
⌧kxxy, |⌘k| § 4

3
⌧k`1x⇠y, k “ 1, . . . ,M,(3.13)

and the functions zj and ⇣ j in (3.9) satisfy

|zj| § 1
3

xxy, |⇣ j| § 1
3

x⇠y, j “ 1, . . . ,M.(3.14)

Remark 3.7. We aim at obtaining a solution pY,Nq such that � “  p.,Y,N, .q P Prp⌧q.
By Definition 3.2, recalling that  a smooth function, it is enough to show that pY,Nq
is of class C8pR2nq, that Yj P S1,0, Nj P S0,1, and that xYjpx, ⇠qy — xxy as |x| Ñ 8,
xNjpx, ⇠qy — x⇠y as |⇠| Ñ 8. To get these last equivalences, it is su�cient to prove the
existence of a constant k P p0, 1q such that |Yjpx, ⇠q´x| § kxxy and |Njpx, ⇠q´⇠| § kx⇠y.
Indeed, the following implication holds:
(3.15) |b| § kxay, k P p0, 1q, a, b P Rn ùñ p1 ´ kqxay § xa ` by § p1 ` kqxay.
Formula (3.14) gives precisely the desired estimates, with k “ 1{3, owing to (3.12).
Theorem 3.6 then ensures that the multi-product is well-defined. We show that pY,Nq P
C8pR2nq in the subsequent Theorem 3.8.

Proof of Theorem 3.6. We divide the proof into two steps. In step one we suppose
the existence of a solution pȲ, N̄q of (3.10) and prove that such solution satisfies
(3.13) and that (3.14) holds. In step two we show, by a fixed point argument, the
existence and uniqueness of the solution pȲ, N̄q.
Step 1. If pȲ, N̄q is a solution of (3.10), then by (3.10) and (2.2) we get, for any
px, ⇠q P R2n, #

|yk| § ⌧kxx ` zk´1y
|⌘k| § ⌧k`1x⇠` ⇣k`1y
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for k “ 1, . . . ,M. Now, using the inequality

(3.16) xx ` yy § xxy ` |y| @x, y P Rn

and definition (3.9), we get, for k “ 1, . . . ,M and any px, ⇠q P R2n,
$
’’’’’’&

’’’’’’%

|yk| § ⌧k
`
xxy ` |zk´1|

˘
§ ⌧k

¨

˝xxy `
Mÿ

j“1

|yj|

˛

‚,

|⌘k| § ⌧k`1
`
x⇠y ` |⇣k`1|

˘
§ ⌧k`1

¨

˝x⇠y `
Mÿ

j“1

|⌘ j|

˛

‚,

(3.17)

so that
$
’’’’&

’’’’%

Mÿ

k“1

|yk| §
Mÿ

k“1

⌧k

˜

xxy `
Mÿ

k“1

|yk|
¸

“: ⌧̄M

˜

xxy `
Mÿ

k“1

|yk|
¸

,

Mÿ

k“1

|⌘k| §
Mÿ

k“1

⌧k`1

˜

x⇠y `
Mÿ

k“1

|⌘k|
¸

“: ⌧̄M`1

˜

x⇠y `
Mÿ

k“1

|⌘k|
¸

.

(3.18)

The two inequalities here above are of the form ↵ § ⌧pxxy ` ↵q with ⌧ † ⌧0 † 1{4
by assumption (3.1), so they give

↵ § ⌧
1 ´ ⌧

xxy † 1
3

xxy,

and, coming back to (3.18), we have, for any px, ⇠q P R2n,

|zk| §
kÿ

j“1

|yj| † 1
3

xxy, |⇣k| §
Mÿ

j“k

|⌘ j| † 1
3

x⇠y,

that is (3.14). Substituting in (3.17) we obtain

|yk| § ⌧k

ˆ
xxy ` 1

3
xxy

˙
“ 4

3
⌧kxxy, |⌘k| § ⌧k`1

ˆ
x⇠y ` 1

3
x⇠y

˙
“ 4

3
⌧k`1x⇠y,

that is (3.14).
Step 2. Since we have shown that every solution pȲ, N̄q of (3.10) satisfies (3.14) for
any px, ⇠q P R2n, to show existence and uniqueness of a solution to (3.10) inR2Mn it
is su�cient to show existence and uniqueness of pȲ, N̄q in the space

⌃ “ ⌃x,⇠ :“
#

py1, . . . , yM, ⌘1, . . . , ⌘Mq P R2Mn :
Mÿ

k“1

|yk| § 1
3

xxy,
Mÿ

k“1

|⌘k| § 1
3

x⇠y
+

,

px, ⇠q P R2n, which is a metric space with norm

}py1, . . . , yM, ⌘1, . . . , ⌘Mq}⌃ :“
Mÿ

k“1

´
xxy´1|yk| ` x⇠y´1|⌘k|

¯
.

We define the map
T “ Tx,⇠ : ⌃ ›Ñ ⌃

by Tpy1, . . . , yM, ⌘1, . . . , ⌘Mq :“ pw1, . . . ,wM,!1, . . . ,!Mq, where, for k “ 1, . . . ,M,
px, ⇠q P R2n, #

wk “ J1
k,⇠px ` zk´1, ⇠` ⇣kq

!k “ J1
k`1,xpx ` zk, ⇠` ⇣k`1q.
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The map T is well defined. Indeed, by (2.2), (3.16) and (3.14) we have, for any
px, ⇠q P R2n,

#
|wk| § ⌧kxx ` zk´1y § ⌧kpxxy ` 1

3 xxyq “ 4
3⌧kxxy

|!k| § ⌧k`1x⇠` ⇣k`1y § ⌧k`1px⇠y ` 1
3 x⇠yq “ 4

3⌧k`1x⇠y,(3.19)

so that

Mÿ

k“1

|wk| § 4
3

xxy ¨
Mÿ

k“1

⌧k † 1
3

xxy, and
Mÿ

k“1

|!k| § 4
3

x⇠y ¨
Mÿ

k“1

⌧k`1 † 1
3

x⇠y.

By (3.10), to show existence and uniqueness of pȲ, N̄q “ pȲ, N̄qpx, ⇠q is equivalent
to show existence and uniqueness of a fixed point pȲ, N̄q of the map T. We show
here below that, under assumption (3.1), T is a contraction on ⌃, so it admits a
unique fixed point pȲ, N̄q.

Let us consider two arbitrary points

pY,Nq “ py1, . . . , yM, ⌘1, . . . , ⌘Mq, prY, rNq “ pry1, . . . , ryM, r⌘1, . . . , r⌘Mq P ⌃,

and let

TpY,Nq “ pw1, . . . ,wM,!1, . . . ,!Mq, TprY, rNq “ p rw1, . . . , rwM, r!1, . . . , r!Mq.

For every fixed k “ 1, . . . ,M, px, ⇠q P R2n, we have

rwk ´ wk “ J1
k,⇠px ` rzk´1, ⇠` r⇣kq ´ J1

k,⇠px ` zk´1, ⇠` ⇣kq

“ przk´1 ´ zk´1q
ª 1

0
J2
k,⇠xpx ` zk´1 ` ✓przk´1 ´ zk´1q, ⇠` ⇣kqd✓

` pr⇣k ´ ⇣kq
ª 1

0
J2
k,⇠⇠px ` zk´1, ⇠` ⇣k ` ✓pr⇣k ´ ⇣kqqd✓

and from (2.2) we get

| rwk ´ wk| § ⌧k

˜

|rzk´1 ´ zk´1| ` |r⇣k ´ ⇣k|xx ` zk´1y
ª 1

0
x⇠` ⇣k ` ✓pr⇣k ´ ⇣kqy´1d✓

¸

.

By inequality (3.15) with b “ zk and k “ 1{3 we get 2
3 xxy § xx`zky § 4

3 xxy; the same
inequality with b “ ⇣k `✓pr⇣k ´ ⇣kq and k “ 1{3 gives 2

3 x⇠y § x⇠` ⇣k `✓pr⇣k ´ ⇣kqy §
4
3 x⇠y; substituting these inequalities into the estimate of | rwk ´ wk| we come to

| rwk ´ wk| § ⌧k

˜

|rzk´1 ´ zk´1| ` |r⇣k ´ ⇣k|2xxy
ª 1

0
x⇠y´1d✓

¸

§ ⌧k

Mÿ

j“1

´
|ryj ´ yj| ` |r⌘ j ´ ⌘ j|2xxyx⇠y´1

¯
.
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Similarly:

| r!k ´ !k| § |rzk ´ zk|
ˇ̌
ˇ̌
ˇ

ª 1

0
J2
k`1,xxpx ` zk ` ✓przk ´ zkq, ⇠` ⇣k`1qd✓

ˇ̌
ˇ̌
ˇ

` |r⇣k`1 ´ ⇣k`1|
ˇ̌
ˇ̌
ˇ

ª 1

0
J2
k`1,x,⇠px ` zk, ⇠` ⇣k`1 ` ✓pr⇣k`1 ´ ⇣k`1qqd✓

ˇ̌
ˇ̌
ˇ

§ ⌧k`1

´
|rzk ´ zk|2xxy´1x⇠y ` |r⇣k`1 ´ ⇣k`1|

¯

§ ⌧k`1

Mÿ

j“1

`
|ryj ´ yj|2xxy´1x⇠y ` |r⌘k`1 ´ ⌘k`1|

˘
.

Thus

}TpY,Nq ´ TprY, rNq}⌃ “
Mÿ

k“1

´
xxy´1| rwk ´ wk| ` x⇠y´1| r!k ´ !k|

¯

§
Mÿ

k“1

¨

˝⌧k

Mÿ

j“1

´
xxy´1|ryj ´ yj| ` 2x⇠y´1|r⌘ j ´ ⌘ j|

¯

`⌧k`1

Mÿ

j“1

´
|ryj ´ yj|2xxy´1 ` |r⌘ j ´ ⌘ j|x⇠y´1

¯
˛

‚

§
Mÿ

k“1

maxt⌧k, ⌧k`1u3
Mÿ

j“1

´
|ryj ´ yj|xxy´1 ` |r⌘ j ´ ⌘ j|x⇠y´1

¯

§ 3⌧0}pY,Nq ´ prY, rNq}⌃.
This shows that the map T is Lipschitz continuous, with Lispchitz constant 3⌧0 † 1.
It follows that T is a strict contraction on ⌃, which then admits a unique fixed point
pȲ, N̄q P ⌃, for any px, ⇠q P R2n. Such fixed point obviously gives the unique
solution of (3.10). The proof is complete. ⇤

Theorem 3.8. The unique solution pȲ, N̄q “ pȲ, N̄qpx, ⇠q of (3.10) is of class C8pR2nq.
Proof. For pY,Nq P R2Mn and px, ⇠q P R2n, we define the function

FpY,N; x, ⇠q :“ pF1, . . . ,FMqpY,N; x, ⇠q,
with values in R2M,where for all k “ 1, . . . ,M,

FkpY,N; x, ⇠q :“
´

yk ´ J1
k,⇠px ` zk´1, ⇠` ⇣kq, ⌘k ´ J1

k`1,xpx ` zk, ⇠` ⇣k`1q
¯
.

We apply the implicit function Theorem to the function F, which is clearly of class
C8 with respect to all variables, being Jk a C8 function for all k “ 1, . . . ,M. For
every fixed px, ⇠q we have that

FppȲ, N̄qpx, ⇠q; x, ⇠q “ 0,

since pȲ, N̄q is the solution of (3.10). Moreover, we are going to prove here below
that

det
ˆ BF

BpY,Nq ppȲ, N̄qpx, ⇠q; x, ⇠q
˙
, 0.(3.20)

This means that the implicitly defined function pȲ, N̄qpx, ⇠q has the same regularity
as F, so it is of class C8pR2nq. To complete the proof, it remains only to show that
(3.20) holds true.
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Let us compute the entries of the 2M ˆ 2M matrix BF
BpY,Nq pY,N; x, ⇠q. For every fixed

k “ 1, . . . ,M, px, ⇠q P R2n, we have

F1
k,yj

pY,N; x, ⇠q“

$
’’&

’’%

´
´J2

k,⇠xpx ` zk´1, ⇠` ⇣kq, ´J2
k`1,xxpx ` zk, ⇠` ⇣k`1q

¯
,1 § j § k ´ 1´

1, ´J2
k`1,xxpx ` zk, ⇠` ⇣k`1q

¯
, j “ k

p0, 0q, k ` 1 § j § M,

and

F1
k,⌘ j

pY,N; x, ⇠q“

$
’’&

’’%

p0, 0q, 1 § j § k ´ 1´
´J2

k,⇠⇠px ` zk´1, ⇠` ⇣kq, 1
¯
, j “ k´

´J2
k,⇠⇠px ` zk´1, ⇠` ⇣kq, ´J2

k`1,x⇠px ` zk, ⇠` ⇣k`1q
¯
, k ` 1 § j § M,

so we can write
BF

BpY,Nq pY,N; x, ⇠q “
ˆ

I ´ H11pY,N; x, ⇠q ´H12pY,N; x, ⇠q
´H21pY,N; x, ⇠q I ´ H22pY,N; x, ⇠q

˙
,

where I stands for the identity M ˆ M matrix, and

H1,1 “

¨

˚̊
˚̊
˝

0 0 ¨ ¨ ¨ 0

J2
2,⇠x 0

. . . 0

¨ ¨ ¨ ¨ ¨ ¨ . . .
...

J2
M,⇠x ¨ ¨ ¨ J2

M,⇠x 0

˛

‹‹‹‹‚
, H1,2 “

¨

˚̊
˚̋

J2
1,⇠⇠ ¨ ¨ ¨ ¨ ¨ ¨ J2

1,⇠⇠
0 J2

2,⇠⇠ ¨ ¨ ¨ J2
2,⇠⇠

...
. . .

. . .
...

0 ¨ ¨ ¨ 0 J2
M,⇠⇠

˛

‹‹‹‚

H2,1 “

¨

˚̊
˚̋

J2
2,xx 0 ¨ ¨ ¨ 0

J2
3,xx J2

3,xx ¨ ¨ ¨ 0
... ¨ ¨ ¨ . . .

...
J2
M`1,xx ¨ ¨ ¨ ¨ ¨ ¨ J2

M`1,xx

˛

‹‹‹‚, H2,2 “

¨

˚̊
˚̊
˝

0 J2
2,x⇠ ¨ ¨ ¨ J2

2,x⇠

0 0 ¨ ¨ ¨ ...
...

...
. . . J2

M,x⇠
0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹‹‹‹‚
.

Let us estimate the matrix norm of each one of the Hij:

}H11pY,N; x, ⇠q} “ max
j“1,...,M

Mÿ

i“1

|ph11qi j| § max
j“1,...,M

Mÿ

i“ j`1

⌧i §
Mÿ

j“1

⌧ j

}H12pY,N; x, ⇠q} “ max
j“1,...,M

Mÿ

i“1

|ph12qi j| § max
j“1,...,M

jÿ

i“1

⌧ixx ` zi´1yx⇠` ⇣iy´1

}H21pY,N; x, ⇠q} “ max
j“1,...,M

Mÿ

i“1

|ph21qi j| § max
j“1,...,M

Mÿ

i“ j
⌧i`1xx ` ziy´1x⇠` ⇣i`1y

}H22pY,N; x, ⇠q} “ max
j“1,...,M

Mÿ

i“1

|ph22qi j| § max
j“1,...,M

j´1ÿ

i“1

⌧i`1 §
Mÿ

j“1

⌧ j.

With the choice pY,Nq “ pȲ, N̄qpx, ⇠q these estimates become, via formula (3.12)
and Remark 3.7,

}H11ppȲ, N̄qpx, ⇠q; x, ⇠q} §
Mÿ

j“1

⌧ j, }H12ppȲ, N̄qpx, ⇠q; x, ⇠q} § 2xxyx⇠y´1
Mÿ

i“1

⌧i,

}H21ppȲ, N̄qpx, ⇠q; x, ⇠q} § 2xxy´1x⇠y
Mÿ

i“1

⌧i, }H22ppȲ, N̄qpx, ⇠q; x, ⇠q} §
Mÿ

j“1

⌧ j.
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Now, since detpI ´ H11q “ 1, being H11 triangular with null diagonal, we have

det
BF

BpY,Nq ppȲ, N̄qpx, ⇠q; x, ⇠q

“ det
ˆ

I ´ H11ppȲ, N̄qpx, ⇠q; x, ⇠q ´x⇠yxxy´1H12ppȲ, N̄qpx, ⇠q; x, ⇠q
´xxyx⇠y´1H21ppȲ, N̄qpx, ⇠q; x, ⇠q I ´ H22ppȲ, N̄qpx, ⇠q; x, ⇠q

˙

“ det
ˆ

I ´
ˆ

H11ppȲ, N̄qpx, ⇠q; x, ⇠q x⇠yxxy´1H12ppȲ, N̄qpx, ⇠q; x, ⇠q
xxyx⇠y´1H21ppȲ, N̄qpx, ⇠q; x, ⇠q H22ppȲ, N̄qpx, ⇠q; x, ⇠q

˙˙

“ detpI ´ Apx, ⇠qq,
with

}Apx, ⇠q} “ maxt}H11ppȲ, N̄qpx, ⇠q; x, ⇠q} ` }xxyx⇠y´1H21ppȲ, N̄qpx, ⇠q; x, ⇠q},
}H22ppȲ, N̄qpx, ⇠q; x, ⇠q} ` }x⇠yxxy´1H12ppȲ, N̄qpx, ⇠q; x, ⇠q}u

§ 3
Mÿ

j“1

⌧ j § 3⌧0 † 3
4
,

and applying Proposition 3.9 below, cfr. [24], we get detpI ´ Apx, ⇠qq • 4´2M ° 0.
That is, (3.20) holds true, and the proof is complete. ⇤

Proposition 3.9 (Proposition 5.3, page 336 in [24]). Let A “ paijq1§i, j§` be a real
matrix and suppose that there exists a constant c0 P r0, 1q such that

}A} :“ max
j“1,...,`

ÿ̀

i“1

|aij| § c0.

Then,
p1 ´ c0q` § detpI ´ Aq § p1 ` c0q`.

The following theorem gives crucial estimates of the unique C8 solution pY,Nq
of (3.5).

Theorem 3.10. Under the assumptions (3.1) and (2.2), the unique C8 solution pY,Nqpx, ⇠q
of (3.5) satisfies:

|B↵⇠B�xpYj ´ Yj´1qpx, ⇠q| § c↵,�⌧ jx⇠y´|↵|xxy1´|�|,(3.21)

|B↵⇠B�xpNj ´ Nj`1qpx, ⇠q| § c↵,�⌧ j`1x⇠y1´|↵|xxy´|�|,(3.22)

for all ↵, � P Zn
`, j “ 1, . . . ,M, x, ⇠ P Rn, with constants c↵,� not depending on j and M.

Moreover,

tpYj ´ Yj´1qpx, ⇠q{⌧ ju j•1 is bounded in S0,1,(3.23)

tpNj ´ Nj`1qpx, ⇠q{⌧ j`1u j•1 is bounded in S1,0.(3.24)

Proof. Estimates (3.21), (3.22) in the case ↵ “ � “ 0 have already been proved, see
(3.13) and (3.11). To prove the same estimates for |↵ ` �| • 1, it is su�cient, by
(3.13), (3.11) and (3.2), to show that the solution pȲ, N̄qpx, ⇠q of (3.10) is such that

|B↵⇠B�x ykpx, ⇠q| § c↵,�}Jk}2,|↵`�|´1x⇠y´|↵|xxy1´|�|,(3.25)

|B↵⇠B�x⌘kpx, ⇠q| § c↵,�}Jk`1}2,|↵`�|´1x⇠y1´|↵|xxy´|�|,(3.26)

for |↵ ` �| • 1, k “ 1, . . . ,M, x, ⇠ P Rn. Estimates (3.25), (3.26) are going to be
proved by induction on N “ |↵` �|.
Step N “ 1. We need to check (3.25), (3.26) for the first order derivatives. Let us start
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with the derivatives with respect to x. By definition (3.10) of yk, ⌘k, k “ 1, . . . ,M,
x, ⇠ P Rn, we have

#
y1

k,x “ J2
k,⇠xp.` zk´1, ..` ⇣kqp1 ` pzk´1q1

xq ` J2
k,⇠⇠p.` zk´1, ..` ⇣kqp⇣kq1

x

⌘1
k,x “ J2

k`1,xxp.` zk, ..` ⇣k`1qp1 ` pzkq1
xq ` J2

k`1,x⇠p.` zk, ..` ⇣k`1qp⇣k`1q1
x.

(3.27)

By (2.2), setting hpx, ⇠q “ xxyx⇠y´1, we obtain

}y1
k,x} ` h ¨ }⌘1

k,x} § ⌧k

!
1 ` }pzk´1q1

x} ` x.` zk´1yx..` ⇣ky´1}p⇣kq1
x}

)

` ⌧k`1 ¨ h ¨
!

x.` zky´1x..` ⇣k`1yp1 ` }pzkq1
x}q ` }p⇣k`1q1

x}
)

;

from (3.14) we have 2
3 xxy § xx ` zk´1y § 4

3 xxy and 2
3 x⇠y § x⇠ ` ⇣ky § 4

3 x⇠y, so we
come to

}y1
k,x} ` h ¨ }⌘1

k,x} § ⌧k
 

1 ` }pzk´1q1
x} ` 2 ¨ h ¨ }p⇣kq1

x}
(

` ⌧k`1
 

2 ` 2}pzkq1
x} ` h ¨ }p⇣k`1q1

x}
(

§ ⌧k

#

1 `
Mÿ

k“1

}y1
k,x} ` 2 ¨ h ¨

Mÿ

k“1

}⌘1
k,x}

+

` ⌧k`1

#

2 ` 2
Mÿ

k“1

}y1
k,x} ` h ¨

Mÿ

k“1

}⌘1
k,x}

+

,

where we have used also definition (3.9). Summing for k “ 1, . . . ,M, we get, for
any x, ⇠ P Rn,

Mÿ

k“1

´
}y1

k,x} ` h ¨ }⌘1
k,x}

¯
§ ⌧̄M

#

1 `
Mÿ

k“1

}y1
k,x} ` 2 ¨ h ¨

Mÿ

k“1

}⌘1
k,x}

+

` ⌧̄M`1

#

2 ` 2
Mÿ

k“1

}y1
k,x} ` h ¨

Mÿ

k“1

}⌘1
k,x}

+

§ 3⌧̄M`1

#

1 `
Mÿ

k“1

´
}y1

k,x} ` h ¨ }⌘1
k,x}

¯+

.

This last inequality immediately gives

Mÿ

k“1

´
}y1

k,x} ` h ¨ }⌘1
k,x}

¯
§ 3⌧M`1

1 ´ 3⌧M`1
§ 3⌧0

1 ´ 3⌧0
(3.28)

with 1 ´ 3⌧0 ° 1 ´ 3{4 “ 1{4 ° 0, so that the amount (3.28) is finite (bounded by
3). Coming back to (3.27) and substituting there the estimate here above we get

}y1
k,x} § }Jk}2,0

!
1 ` }pzk´1q1

x} ` 2 ¨ h ¨ }⌘1
k,x}

)

§ 2}Jk}2,0

#

1 `
Mÿ

k“1

´
}y1

k,x} ` h ¨ }⌘1
k,x}

¯+

§ 2}Jk}2,0

ˆ
1 ` 3⌧0

1 ´ 3⌧0

˙
“: c0,1}Jk}2,0,
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that is (3.25) with ↵ “ 0 and |�| “ 1. With similar computations we obtain

}⌘1
k,xpx, ⇠q} § }Jk`1}2,0

`
x.` zky´1x.` ⇣k`1yp1 ` }pzkq1

x}q ` }p⇣k`1q1
x}

˘
px, ⇠q

§ }Jk`1}2,0
`
2 ¨ h´1p1 ` }pzkq1

x}q ` }p⇣k`1q1
x}

˘
px, ⇠q

§ 2}Jk`1}2,0
“
h´1 `

1 ` }pzkq1
x} ` h ¨ }p⇣k`1q1

x}
˘‰

px, ⇠q

§ 2}Jk`1}2,0

«

h´1

˜

1 `
Mÿ

k“1

´
}y1

k,x} ` h ¨ }⌘1
k,x}

¯¸�

px, ⇠q

§ 2xxy´1x⇠y}Jk`1}2,0

ˆ
1 ` 3⌧0

1 ´ 3⌧0

˙

“ C0,1}Jk`1}2,0xxy´1x⇠y, x, ⇠ P Rn,

and also

}y1
k,⇠px, ⇠q} § C1,0}Jk}2,0xxyx⇠y´1, }⌘1

k,⇠px, ⇠q} § C1,0}Jk`1}2,0, x, ⇠ P Rn.

The step N “ 1 is complete.
Step N { N ` 1. Let us now suppose that (3.25), (3.26) hold for 1 § |↵ ` �| § N,
N • 1, x, ⇠ P Rn, and prove the same estimates for |↵` �| “ N ` 1. If we substitute
(3.2) into (3.25), (3.26) we immediately get

|B↵⇠B�x ykpx, ⇠q| § c1
↵,�x⇠y´|↵|xxy1´|�|,(3.29)

|B↵⇠B�x⌘kpx, ⇠q| § c1
↵,�x⇠y1´|↵|xxy´|�|,(3.30)

for 1 § |↵ ` �| § N and k “ 1, . . . ,M. These estimates are going to be used to
bound the derivatives B�xB↵⇠ with |↵` �| “ N of the functions y1

k,x, y1
k,⇠, ⌘

1
k,x, ⌘

1
k,⇠ (i.e.

the derivatives B�xB↵⇠ with |↵ ` �| “ N ` 1 of the functions yk, ⌘k). Let us start by
computing, from (3.27), the derivative

B�xB↵⇠ y1
k,x “ B�xB↵⇠

”
J2
k,⇠xp.` zk´1, ..` ⇣kq ¨

`
1 ` pzk´1q1

x
˘ı

(3.31)

` B�xB↵⇠
”

J2
k,⇠⇠p.` zk´1, ..` ⇣kq ¨ p⇣kq1

x

ı
.

To obtain an estimate of (3.31), we use Faá di Bruno formula, write the derivatives
of zk and ⇣k as derivatives with respect to yk and ⌘k by (3.9), and finally we apply
(3.29), (3.30), obtaining

|B�xB↵⇠
´

J2
k,⇠xpx ` zk´1px, ⇠q, ⇠` ⇣kpx, ⇠qq

¯
|

§
ÿ

�1`¨¨¨`�r“�
�i,0

ÿ

↵1`¨¨¨`↵q“↵
↵i,0

Cq,r,↵,�}Jk}2,q`rx⇠y´qxxy´r ¨

¨ x⇠yp1´|↵1|q`¨¨¨`p1´|↵q|qxxyp1´|�1|q`¨¨¨`p1´|�r|q

§ C↵,�}Jk}2,|↵`�|x⇠y´|↵|xxy´|�|

and

|B�xB↵⇠
´

J2
k,⇠⇠px ` zk´1px, ⇠q, ⇠` ⇣kpx, ⇠qq

¯
| § C↵,�}Jk}2,|↵`�|x⇠y´1´|↵|xxy1´|�|.
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Thus, coming back to (3.31), substituting these last two estimates and using (3.9)
we come to

|B�xB↵⇠ y1
k,xpx, ⇠q| § }Jk}2,0

Mÿ

j“1

´
|B�xB↵⇠ y1

j,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
j,xpx, ⇠q|

¯

` C1
↵,�}Jk}2,|↵`�|

´
x⇠y´|↵|xxy´|�| ` C2

↵,�x⇠y´1´|↵|xxy1´|�|x⇠yxxy´1
¯

§ }Jk}2,0

Mÿ

j“1

´
|B�xB↵⇠ y1

j,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
j,xpx, ⇠q|

¯

` rC↵,�}Jk}2,|↵`�|x⇠y´|↵|xxy´|�|.(3.32)

Working similarly on the terms B�xB↵⇠⌘1
k,x coming from the derivatives in (3.27), we

get the corresponding estimate:

|B�xB↵⇠⌘1
k,xpx, ⇠q| § }Jk`1}2,0xxy´1x⇠y

Mÿ

j“1

´
|B�xB↵⇠ y1

j,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
j,xpx, ⇠q|

¯

` rC1
↵,�}Jk`1}2,|↵`�|x⇠y1´|↵|xxy´1´|�|.(3.33)

Now summing up for k “ 1, . . . ,M inequalities (3.32) and (3.33) we have
Mÿ

k“1

´
|B�xB↵⇠ y1

k,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
k,xpx, ⇠q|

¯
§

§
˜

Mÿ

k“1

}Jk}2,0 ` 2
Mÿ

k“1

}Jk`1}2,0

¸

¨
Mÿ

k“1

´
|B�xB↵⇠ y1

k,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
k,xpx, ⇠q|

¯

`C̄↵,�

˜
Mÿ

k“1

}Jk}2,|↵`�| ` 2
Mÿ

k“1

}Jk`1}2,|↵`�|

¸

x⇠y´|↵|xxy´|�|

§ 3c0⌧0

Mÿ

k“1

´
|B�xB↵⇠ y1

k,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
k,xpx, ⇠q|

¯
` 3c|↵`�|⌧0C̄↵,�x⇠y´|↵|xxy´|�|,

where c0, c|↵`�| are the constants defined in (3.2). In particular, notice that, by (2.2),
we have c0 “ 1. From this, we finally obtain

Mÿ

k“1

´
|B�xB↵⇠ y1

k,xpx, ⇠q| ` 2xxyx⇠y´1|B�xB↵⇠⌘1
k,xpx, ⇠q|

¯
§ C̄1

↵,�
⌧0

1 ´ 3⌧0
x⇠y´|↵|xxy´|�|

† C̄1
↵,�x⇠y´|↵|xxy´|�|(3.34)

by the choice of ⌧0 in (3.1). Substituting (3.34) in (3.32) and (3.33) we get

|B�xB↵⇠ y1
k,xpx, ⇠q| § C↵,�}Jk}2,|↵`�|x⇠y´|↵|xxy´|�|(3.35)

|B�xB↵⇠⌘1
k,xpx, ⇠q| § C↵,�}Jk`1}2,|↵`�|x⇠y1´|↵|xxy´1´|�|.(3.36)

All the computations from (3.31) to (3.36) on the functions y1
k,x and ⌘1

k,x can be
repeated on the functions y1

k,⇠ and ⌘1
k,⇠ with minor changes. In this way we finally

obtain the estimates corresponding to (3.35) and (3.36), namely

|B�xB↵⇠ y1
k,⇠px, ⇠q| § C↵,�}Jk}2,|↵`�|x⇠y´1´|↵|xxy1´|�|(3.37)

|B�xB↵⇠⌘1
k,⇠px, ⇠q| § C↵,�}Jk`1}2,|↵`�|x⇠y´|↵|xxy´|�|.(3.38)

The proof is complete, since (3.35)-(3.38) are the desired estimates (3.25) and (3.26)
for all the derivatives of order N ` 1 of the functions yk and ⌘k. ⇤
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We conclude with a Theorem that summarizes what we have proved throughout
the present section, and gives the main properties of the multi-products of regular
SG phase functions.

Theorem 3.11. Under assumptions (3.1) and (2.2), the multi-product�px, ⇠q of Definition
3.2 is well defined for every M • 1 and has the following properties.

(1) There exists k • 1 such that �px, ⇠q “ p'1 7 ¨ ¨ ¨ 7 'M`1qpx, ⇠q P Prpk⌧̄M`1q and,
setting

JM`1px, ⇠q :“ p'1 7 ¨ ¨ ¨ 7 'M`1qpx, ⇠q ´ x ¨ ⇠,
the sequence tJM`1{⌧̄M`1uM•1 is bounded in S1,1pR2nq.

(2) The following relations hold:
#
�1

xpx, ⇠q “ '1
1,xpx,N1px, ⇠qq

�1
⇠px, ⇠q “ '1

M`1,⇠pYMpx, ⇠q, ⇠q,
where pY,Nq is the critical point (3.5).

(3) The associative law holds: '1 7 p'2 7 ¨ ¨ ¨ 7 'M`1q “ p'1 7 ¨ ¨ ¨ 7 'Mq 7 'M`1.
(4) For any ` • 0 there exist 0 † ⌧˚ † 1{4 and c˚ • 1 such that, if ' j P Prp⌧ j, `q

for all j and ⌧0 § ⌧˚, then � P Prpc˚⌧̄M`1, `q.

Proof. By theorems 3.6 and 3.8 we know that, for any M • 1, � is a well-defined
smooth function on R2n. We start by showing (1). We write, with Y0px, ⇠q “
YM`1px, ⇠q :“ x, NM`1px, ⇠q :“ ⇠,

JM`1px, ⇠q “
Mÿ

j“1

`
' jpYj´1px, ⇠q,Njpx, ⇠qq ´ Yjpx, ⇠q ¨ Njpx, ⇠q

˘

`'M`1pYMpx, ⇠q, ⇠q ´ x ¨ ⇠

“
M`1ÿ

j“1

`
' jpYj´1,Njq ´ Yj ¨ Nj

˘
px, ⇠q

“
M`1ÿ

j“1

`
JjpYj´1,Njq ´ pYj ´ Yj´1q ¨ Nj

˘
px, ⇠q.

This gives that

JM`1

⌧̄M`1
“

M`1ÿ

j“1

⌧ j

⌧̄M`1

ˆ JjpYj´1,Njq
⌧ j

´
Yj ´ Yj´1

⌧ j
¨ Nj

˙
is bounded in S1,1

since tJj{⌧ ju j•1 is bounded in S1,1, (3.23) holds, and xNjpx, ⇠qy — x⇠y. Now, the
boundedness proved here above implies the existence of a positive constant k such
that

}JM`1}2 § k⌧̄M`1 † k⌧0,(3.39)

and taking ⌧0 small enough, so that k⌧0 † 1, we obtain that � P Prpk⌧̄M`1q.
Statement (1) is proved. Statement (4) immediately follows. Indeed, if ' j P
Prp⌧ j, `q, then we have }JM`1}` § pk ` 1q⌧̄M`1, with k coming from (3.39), and we
obtain }JM`1}` § c˚⌧̄M`1 and � P Prpc˚⌧̄M`1, `q if we choose c˚ such that c˚⌧0 † 1.
Let us now come to (2), which is quite simple. Indeed, from (3.2) and (3.5), we
have

�px, ⇠q :“
Mÿ

j“1

`
' jpYj´1px, ⇠q,Njpx, ⇠qq ´ Yjpx, ⇠q ¨ Njpx, ⇠q

˘
` 'M`1pYMpx, ⇠q, ⇠q.
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A derivation of the expression above with respect to x and the use of (3.5) give

�1
xpx, ⇠q “

Mÿ

j“1

´
'1

j,xpYj´1px, ⇠q,Njpx, ⇠qq ¨ Y1
j´1,xpx, ⇠q

`'1
j,⇠pYj´1px, ⇠q,Njpx, ⇠qq ¨ N1

j,xpx, ⇠q

´Y1
j,xpx, ⇠q ¨ Njpx, ⇠q ´ Yjpx, ⇠q ¨ N1

j,xpx, ⇠q
¯

` '1
M`1,xpYMpx, ⇠q, ⇠q¨Y1

M,xpx, ⇠q
“ '1

1,xpx,N1px, ⇠qq ´ Y1
1,xpx, ⇠q ¨ N1px, ⇠q

`
Mÿ

j“2

´
pY1

j´1,x ¨ Nj´1 ´ Y1
j,x ¨ Njq ` NM ¨ Y1

M,x

¯
px, ⇠q

“ '1
1,xpx,N1px, ⇠qq,

which is exactly the first equality in (2). The second equality can be obtained
similarly, by derivation with respect to ⇠ of �px, ⇠q.
Finally, we deal with (3). We want to show that

p'1 7'2 7 ¨ ¨ ¨ 7 'Mq 7 'M`1 “ '1 7 ¨ ¨ ¨ 7 'M`1.(3.40)

To this aim, let us denote
r� :“ '1 7 ¨ ¨ ¨ 7 'M,

and compute by (3.3), with M “ 1, the product

pr� 7 'M`1qpx, ⇠q “ r�px, rNpx, ⇠qq ´ rYpx, ⇠q ¨ rNpx, ⇠q ` 'M`1prYpx, ⇠q, ⇠q,(3.41)

where prY, rNq “ prY, rNqpx, ⇠q is the 2n´dimensional critical point given by
#

rY “ r�1
⇠px, rNq,

rN “ '1
M`1,xprY, ⇠q.(3.42)

Notice that r� 7 'M`1 is well-defined by (1) (eventually, with a smaller ⌧0). Now,
we compute the value of r�px, rNpx, ⇠qq “ p'1 7 ¨ ¨ ¨ 7 'Mqpx, rNpx, ⇠qq in (3.41), using
(3.3) with M ´ 1 in place of M and rN in place of ⇠, obtaining

r�px, rNpx, ⇠qq “

“
M´1ÿ

j“1

´
' jpȲj´1px, rNpx, ⇠qq, N̄jpx, rNpx, ⇠qqq ´ Ȳjpx, rNpx, ⇠qq ¨ N̄jpx, rNpx, ⇠qq

¯

` 'MpȲM´1px, rNpx, ⇠qq, rNpx, ⇠qq,

(3.43)

with the 2pM ´ 1qn´dimensional critical point pȲ, N̄q given by
$
’’’’&

’’’’%

Ȳ0 “ x
Ȳj “ '1

j,⇠pȲj´1, N̄jq j “ 1, . . . ,M ´ 1
N̄j “ '1

j`1,xpȲj, N̄j`1q j “ 1, . . . ,M ´ 1
N̄M “ N,

(3.44)

obtained from (3.5), with M ´ 1 in place of M and rN in place of ⇠. Moreover, we
have from (3.42) and (2), with M ´ 1 in place of M, that

rYpx, ⇠q “ r�1
⇠px, rNpx, ⇠qq “ p'1 7 ¨ ¨ ¨ 7 'Mq1

⇠px, rNpx, ⇠qq
“ '1

M,⇠pȲM´1px, rNpx, ⇠qq, rNpx, ⇠qq.
(3.45)
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Summing up, from (3.45), the second equation in (3.42), and (3.44), we have that
pȲ1, ¨ ¨ ¨ , ȲM´1, rY, N̄1, ¨ ¨ ¨ , N̄M´1, rNq solves system (3.5), and thus it is the 2Mn´di-
mensional critical point needed to define the multi-product '1 7 ¨ ¨ ¨ 7 'M`1, which
turns out to be given, in view of (3.3), by

p'1 7 ¨ ¨ ¨ 7 'M`1qpx, ⇠q “

“
M´1ÿ

j“1

´
' jpȲj´1px, rNpx, ⇠qq, N̄jpx, rNpx, ⇠qqq ´ Ȳjpx, rNpx, ⇠qq ¨ N̄jpx, rNpx, ⇠qq

¯

` 'MpȲM´1px, rNpx, ⇠qq, rNpx, ⇠qq ´ Ȳpx, ⇠q ¨ N̄px, ⇠q ` 'M`1prYpx, ⇠q, ⇠q.
We observe that this last expression coincides with (3.41) after substituting (3.43)
in it. This gives that '1 7 ¨ ¨ ¨ 7 'M`1 “ r� 7 'M`1, that is (3.40). Similarly, we can
prove the corresponding law '1 7 p'2 7 ¨ ¨ ¨ 7 'M`1q “ '1 7 ¨ ¨ ¨ 7 'M`1, completing
the proof of (3). ⇤

4. Composition of SG Fourier integral operators

We can now prove our main theorem on compositions of regular SG FIOs. We
start with an invertibility result for I' “ Op'p1q and I˚

' “ Op˚
'p1q when ' is a

regular phase function. Theorem 4.1 below gives more precise versions of (2.3),
(2.4), with a slight additional restriction on', for FIOs with constant, nonvanishing
symbol.

Theorem 4.1. Assume that ' P Prp⌧q with 0 † ⌧ † 1
4 su�ciently small. Then, there

exists q P S0,0pR2nq such that

I' ˝ Op˚
'pqq “ Op˚

'pqq ˝ I' “ I,(4.1)

I˚
' ˝ Op'pqq “ Op'pqq ˝ I˚

' “ I.(4.2)

Moreover, if the family of SG phase functions t'spx, ⇠qu is such that the family tJspx, ⇠qu “
t'spx, ⇠q ´ x ¨ ⇠u is bounded in S1,1, then the corresponding family tqsu is also bounded in
S0,0.

Proof. For u P SpRnq we have, by definition of type I and type II SG FIOs,

(4.3) ppI' ˝ I˚
'quqpxq “ p2⇡q´n

"

eip'px,⇠q´'py,⇠qq upyq dyd⇠.

The map

⌅x,y : ⇠ fiÑ ⌅x,yp⇠q “ ⌅px, y, ⇠q “
ª 1

0
'1

xpx ` tpy ´ xq, ⇠q dt

is globally invertible on Rn. In fact, its Jacobian is given by the matrix
ª 1

0
'2

x⇠px ` tpy ´ xq, ⇠q dt “ I `
ª 1

0
J2
x⇠px ` tpy ´ xq, ⇠q dt

which has nonvanishing determinant, in view of the hypothesis ' P Prp⌧q, 0 § ⌧ †
1
4 . Moreover, condition (2) in Definition 2.2 implies that ⌅ is coercive, and these
two properties give its global invertibility onRn, see [11, Theorems 11 and 12] and
the references quoted therein. Finally, ⌅x,y is also a SG di↵eomorphism with 0-order
parameter-dependence, that is both⌅px, y, ⇠q and⌅´1px, y, ⌘q belong to S0,0,1pR3nq, the
space of SG amplitudes of order p0, 0, 1q, see [10, 11], and satisfy x⌅px, y, ⇠qy — x⇠y,
x⌅´1px, y, ⌘qy — x⌘y, uniformly with respect to x, y P Rn. In (4.3) we can then
change variable, setting

⌘ “ ⌅px, y, ⇠q ô ⇠ “ ⌅´1px, y, ⌘q,
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and obtain

ppI' ˝ I˚
'quqpxq “ upxq ` p2⇡q´n

"

eipx´yq¨⌘a0px, y, ⌘qupyq dyd⌘ “ ppI ` A0quqpxq,

with
a0px, y, ⌘q “ detpI ` J2

x⇠px, y, ⇠qq´1|⇠“⌅´1px,y,⌘q ´ 1.

By the results on composition of SG functions in [11, 22], we find that a0 P S0,0,0pR3dq,
the space of SG-amplitudes of order p0, 0, 0q. Since the seminorms of a0 can be
controlled by means of the parameter ⌧, and the map associating a0 with the symbol
a P S0,0 such that A0 “ Oppaq is continuous, the same holds for the seminorms of
a. By general arguments, see [10, 24, 30, 31], it turns out that pI ` Oppaqq´1 exists
in OppS0,0q. Then, setting Q˚

' “ I˚
' ˝ pI ` Oppaqq´1, using Theorem 2.3 we find

Q˚
' “ Op˚

'pqq for some q P S0,0 and I' ˝ Op˚
'pqq “ I, which is the first part of (4.1).

The remaining statements follow by arguments analogous to those used in the
proof of [24, Theorem 6.1]. ⇤

The next Theorem 4.2 is one of our main results.

Theorem 4.2. Let ' j P Prp⌧ jq, j “ 1, 2, be such that 0 § ⌧1 ` ⌧2 § ⌧ § 1
4 for some

su�ciently small ⌧ ° 0. Then, there exists p P S0,0pR2nq such that

I'1 ˝ I'2 “ Op'17'2
ppq,(4.4)

I˚
'2

˝ I˚
'1

“ Op˚
'17'2

ppq.(4.5)

Moreover, if the families of SG phase functions t' jspx, ⇠qu, j “ 1, 2, are such that the
families tJjspx, ⇠qu “ t' jspx, ⇠q´x¨⇠u are bounded in S1,1, j “ 1, 2, then the corresponding
family tpspx, ⇠qu is also bounded in S0,0.

We will achieve the proof of Theorem 4.2 through various intermediate results,
adapting the analogous scheme in [24]. Before getting to that, let us first state and
prove our main Theorem 4.3, which is obtained as a consequence of Theorems 4.1
and 4.2.

Theorem 4.3. Let' j P Prp⌧ jq, j “ 1, 2, . . . ,M, M • 2, be such that⌧1`¨ ¨ ¨`⌧M § ⌧ § 1
4

for some su�ciently small ⌧ ° 0, and set

�0px, ⇠q “ x ¨ ⇠,
�1 “ '1,

� j “ '17 ¨ ¨ ¨ 7' j, j “ 2, . . . ,M
�M, j “ ' j7' j`17 ¨ ¨ ¨ 7'M, j “ 1, . . . ,M ´ 1,
�M,M “ 'M,

�M,M`1px, ⇠q “ x ¨ ⇠.
Assume also aj P Smj,µ j pR2nq, and set Aj “ Op' j

pajq, j “ 1, . . . ,M. Then, the following
holds true.

(1) Given qj, qM, j P S0,0pR2nq, j “ 1, . . . ,M, such that

Op˚
� j

pqjq ˝ I� j “ I, I˚
�M, j

˝ Op�M, j
pqM, jq “ I,

set Q˚
j “ Op˚

� j
pqjq, QM, j “ Op�M, j

pqM, jq, and

Rj “ I� j´1 ˝ Aj ˝ Q˚
j , RM, j “ QM, j ˝ Aj ˝ I˚

�M, j`1
, j “ 1, . . . ,M.

Then, Rj,RM, j P OppS0,0pR2nqq, j “ 1, . . . ,M, and

(4.6) A “ A1 ˝ ¨ ¨ ¨ ˝ AM “ R1 ˝ ¨ ¨ ¨ ˝ RM ˝ I�M “ I˚
�M,1

˝ RM,1 ˝ ¨ ¨ ¨ ˝ RM,M.
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(2) There exists a P Sm,µpR2nq, m “ m1 ` ¨ ¨ ¨ ` mM, µ “ µ1 ` ¨ ¨ ¨ ` µM such that,
setting � “ '17 ¨ ¨ ¨ 7'M,

A “ A1 ˝ ¨ ¨ ¨ ˝ AM “ Op�paq.
(3) For any l P Z` there exist l1 P Z`, Cl ° 0 such that

(4.7) ~a~m,µ
l § Cl

Mπ

j“1

~aj~mj,µ j

l1 .

Proof. The existence of qj, qM, j P S0,0, j “ 1, . . . ,M, with the desired properties
follows from Theorem 4.1. We also notice that, trivially, I�0 “ I�M,M`1 “ I, so that,
inserting either I “ Q˚

1 ˝ I�1 “ ¨ ¨ ¨ “ Q˚
M ˝ I�M or I “ I˚

�M,1
˝QM,1 “ ¨ ¨ ¨ “ I˚

�M,M
˝QM,M,

we indeed find

A1 ˝ ¨ ¨ ¨ ˝ AM “ I�0 ˝ A1 ˝ Q˚
1 ˝ I�1 ˝ A2 ˝ ¨ ¨ ¨ ˝ I�M ˝ AM ˝ Q˚

M ˝ I�M

“ R1 ˝ ¨ ¨ ¨ ˝ RM ˝ I�M

“ I˚
�M,1

˝ QM,1 ˝ A1 ˝ I˚
�M,2

˝ QM,2 ˝ A2 ˝ ¨ ¨ ¨ ˝ I˚
�M,M

˝ QM,M ˝ AM ˝ I�M,M`1

“ I˚
�M,1

˝ RM,1 ˝ ¨ ¨ ¨ ˝ RM,M,

as claimed. Now, we observe that, again in view of Theorem 4.1, there exists
pj P S0,0 such that I' j ˝ Op˚

' j
ppjq “ I, j “ 1, . . . ,M. Setting P˚

j “ Op˚
' j

ppjq, and
inserting it into the definition of Rj, by Theorem 4.2 we then find, for j “ 1, . . . ,M,

Rj “ pI� j´1 ˝ I' j q ˝ pP˚
j ˝ Ajq ˝ Q˚

j “ I� j´17' j ˝ pP˚
j ˝ Ajq ˝ Q˚

j “ I� j ˝ pP˚
j ˝ Ajq ˝ Q˚

j .

Theorem 2.7 implies that P˚
j ˝ Aj P OppSmj,µ j q, and Theorem 2.3 then implies that

pP˚
j ˝ Ajq ˝ Q˚

j “ Op˚
� j

pdjq, for some dj P Smj,µ j , j “ 1, . . . ,M. Another application
of Theorem 2.3 gives that

Rj “ I� j ˝ Op˚
� j

pdjq P OppSmj,µ j q, j “ 1, . . . ,M,

so that the standard composition rules for SG pseudodi↵erential operators and
a further application of Theorem 2.3 imply, for � “ '17 ¨ ¨ ¨ 7'M and a suitable
a P Sm,µ,

A “ A1 ˝ ¨ ¨ ¨ ˝ AM “ Op�paq,
as claimed. Similar considerations hold for RM, j, j “ 1, . . . ,M and the representation
formula

A1 ˝ ¨ ¨ ¨ ˝ AM “ I˚
�M,1

˝ RM,1 ˝ ¨ ¨ ¨ ˝ RM,M.

The estimate (4.7) follows from the composition results in [11], applied repeatedly
to (4.6), observing that the amplitudes of the resulting operators depend continu-
ously on those of the involved factors. The proof is complete. ⇤

To start proving Theorem 4.2, with two SG phase functions '1,'2 as in the
corresponding hypotheses and u P SpRnq, let us write, as it is possible,

rpI'1 ˝ I'2 quspxq “
$

eip'1px,⇠1q´x1¨⇠1`'2px1,⇠qq pup⇠q d́⇠1dx1d́⇠.

Now, with � “ '17'2, set

'0px, x1, ⇠1, ⇠q “ '1px, ⇠1q ´ x1 ¨ ⇠1 ` '2px1, ⇠q ´ �px, ⇠q,(4.8)

and consider, in the sense of oscillatory integrals,

(4.9) ppx, ⇠q “
"

ei'0px,x1,⇠1,⇠q d́⇠1dx1.
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Then, we can write

rpI'1 ˝ I'2 quspxq “
ª

ei�px,⇠q ppx, ⇠q pup⇠q d́⇠, u P SpRnq,

which gives the desired claim, if we show that (4.9) indeed defines a symbol
p P S0,0pR2nq. Let us now define the adapted cut-o↵ functions which will be
needed for the proof of this fact.

Definition 4.4. We set
�px, x1, ⇠1, ⇠q “ �apx, x1q ¨ �ap⇠, ⇠1q,

where, with a ° 0 to be fixed later and w,w1 P Rn, we assume

�apw,w1q “  papw ´ w1qxwy´1q,
for a fixed cut-o↵ function  P C8

0 pRnq. In particular, we also assume that, for all w P Rn,
0 §  pwq § 1, supp “ B 2

3
p0q,  |B 1

2
p0q ” 1, w < B 1

2
p0q ñ 0 §  pwq † 1, where

Brpw0q is the closed ball in Rn centered at w0 with radius r ° 0.

For the proof of the next lemma see, e.g., [11].

Lemma 4.5. i) For any multi-indices �1,�2 P Zn
`, the function �apw,w1q introduced in

Definition 4.4 satisfies, for all w,w1 P Rn,

(4.10) |B�1`�2

w1 �apw,w1q| . xwy´|�1|xw1y´|�2|.

ii) For any multi-indices ↵1↵2, �1, �2 P Zn
`, the function �px, x1, ⇠1, ⇠q introduced in

Definition 4.4 satisfies, for all x, x1, ⇠, ⇠1, the estimates

(4.11) |B↵1`↵2
x1 B�1`�2

⇠1 �px, x1, ⇠1, ⇠q| . xxy´|↵1|xx1y´|↵2|x⇠y´|�1|x⇠1y´|�2|.

Remark 4.6. In view of Definition 4.4,
1 ´ �px, x1, ⇠1, ⇠q “ 1 ´ �apx, x1q ` �apx, x1q ´ �apx, x1q ¨ �ap⇠, ⇠1q

“ 1 ´ �apx, x1q ` �apx, x1q ¨ p1 ´ �ap⇠, ⇠1qq,

which implies that on suppp1´�px, x1, ⇠1, ⇠qq either |x´x1| • 1
2a

xxy or |⇠´⇠1| • 1
2a

x⇠y.

Now write p in (4.9) as p “ p0 ` p8 with

p0px, ⇠q “
"

ei'0px,x1,⇠1,⇠q �px, x1, ⇠1, ⇠q d́⇠1dx1,(4.12)

p8px, ⇠q “
"

ei'0px,x1,⇠1,⇠q p1 ´ �px, x1, ⇠1, ⇠qq d́⇠1dx1.(4.13)

We analyze separately p0 and p8.

Proposition 4.7. Under the hypotheses of Theorem 4.2, for p8 defined in (4.13) we have
p8 P S´8,´8pR2nq.

Proof. Define

'8px, x1, ⇠1, ⇠q “ '1px, ⇠1q ´ x1 ¨ ⇠1 ` '2px1, ⇠q ´ x ¨ ⇠,
so we have from (4.8)

'0px, x1, ⇠1, ⇠q “ '8px, x1, ⇠1, ⇠q ` x ¨ ⇠´ �px, ⇠q
and

p8px, ⇠q “ e´iJpx,⇠qp1
8px, ⇠q,

where we have set Jpx, ⇠q “ �px, ⇠q ´ x ¨ ⇠ and

rp8px, ⇠q “
"

ei'8px,x1,⇠1,⇠qp1 ´ �px, x1, ⇠1, ⇠qq d́⇠1dx1.



FIO ALGEBRA AND FUNDAMENTAL SOLUTION TO SG HYPERBOLIC SYSTEMS 24

It is straightforward, since J P S1,1 for small ⌧ ° 0, that it is enough to prove that
rp8 P S´8,´8 to achieve the desired result. Also, in view of the definition of '8,

'1
8,xpx, x1, ⇠1, ⇠q “ ⇠1 ´ ⇠` J1

1,xpx, ⇠1q,
'1

8,⇠1 px, x1, ⇠1, ⇠q “ x ´ x1 ` J1
1,⇠px, ⇠1q,

'1
8,x1 px, x1, ⇠1, ⇠q “ ⇠´ ⇠1 ` J1

2,xpx1, ⇠q,
'1

8,⇠px, x1, ⇠1, ⇠q “ x1 ´ x ` J1
2,⇠px1, ⇠q.

Then, on suppp1 ´ �px, x1, ⇠1, ⇠qq, for a known c ° 0 and a su�ciently small ⌧ ° 0,
depending on '1, '2, and �, there exist suitable k1, k2 ° 0, such that either

|'1
8,x1 px, ⇠1, x1, ⇠q| • |⇠´ ⇠1| ´ c⌧x⇠y • |⇠´ ⇠1| ´ c⌧|⇠´ ⇠1| “ p1 ´ c⌧q|⇠´ ⇠1|

• k1px⇠y ` x⇠1yq ° 0,

or

|'1
8,⇠1 px, ⇠1, x1, ⇠q| • |x ´ x1| ´ c⌧xxy • |x ´ x1| ´ c⌧|x ´ x1| “ p1 ´ c⌧q|x ´ x1|

• k2pxxy ` xx1yq ° 0.

Let us set, for b ° 2a ° 0,

rp18px, ⇠q “
"

ei'8px,⇠1,x1,⇠q p1 ´ �px, x1, ⇠1, ⇠qq ¨ �bpx, x1q d́⇠1dx1,

(4.14)

rp28px, ⇠q “
"

ei'8px,⇠1,x1,⇠q p1 ´ �px, x1, ⇠1, ⇠qq ¨ p1 ´ �bpx, x1qq ¨ �bp⇠, ⇠1q d́⇠1dx1,

(4.15)

rp38px, ⇠q “
"

ei'8px,⇠1,x1,⇠q p1 ´ �px, x1, ⇠1, ⇠qq ¨ p1 ´ �bpx, x1qq ¨ p1 ´ �bp⇠, ⇠1qq d́⇠1dx1,

(4.16)

so that
rp8px, ⇠q “ rp18px, ⇠q ` rp28px, ⇠q ` rp38px, ⇠q.

Then, the operator

TV “ ´i|'1
8,x1 px, x1, ⇠1, ⇠q|´2 '1

8,x1 px, x1, ⇠1, ⇠q ¨ rx1 “ Vpx, x1, ⇠1, ⇠q ¨ rx1

such that
TVei'8px,⇠1,x1,⇠q “ ei'8px,⇠1,x1,⇠q

is well defined on the support if the integrand of (4.14), and, respectively, the
operator

TC “ ´i|'1
8,⇠1 px, x1, ⇠1, ⇠q|´2 '1

8,⇠1 px, x1, ⇠1, ⇠q ¨ r⇠1 “ Cpx, x1, ⇠1, ⇠q ¨ r⇠1

such that
TCei'8px,⇠1,x1,⇠q “ ei'8px,⇠1,x1,⇠q

is well defined on the support of the integrand of (4.15). Both TV and TC are well
defined on the support of the integrand of (4.16). Notice also that the coe�cients
of TV satisfy, on the support of the integrand of (4.14), estimates of the type

(4.17) |B↵x1 B�⇠1 Vpx, x1, ⇠1, ⇠q| . xx1y´|↵|x⇠1y´|�|px⇠y ` x⇠1yq´1.

Since there xxy — xx1y, the same holds with x in place of x1. Similarly, the coe�cients
of TC satisfy, on the support of the integrand of (4.15), estimates of the type

(4.18) |B↵x1 B�⇠1 Cpx, x1, ⇠1, ⇠q| . xx1y´|↵|x⇠1y´|�|pxxy ` xx1yq´1,

as well as the analogous ones with ⇠ in place of ⇠1, since x⇠y — x⇠1y there. Moreover,
both (4.17) and (4.18) hold on the support of the integrand in (4.16). The claim then
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follows by repeated integration by parts, using TC and/or TV in the expressions of
p38, p28, and p18, and recalling Lemma 4.5. ⇤

Proposition 4.8. Under the hypotheses of Theorem 4.2, for p0 defined in (4.12) we have
p0 P S0,0pR2nq.

To prove Proposition 4.8, we will use the change of variables

(4.19)

#
x1 “ Ypx, ⇠q ` y ¨ !px, ⇠q´1

⇠1 “ Npx, ⇠q ` ⌘ ¨ !px, ⇠q,

where !px, ⇠q “ xxy´ 1
2 x⇠y 1

2 P S´ 1
2 ,

1
2 and pY,Nq “ pYpx, ⇠q,Npx, ⇠qq is the unique

solution of
#

Ypx, ⇠q “ '1
1⇠px,Npx, ⇠qq

Npx, ⇠q “ '1
2xpYpx, ⇠q, ⇠q,

see (3.4) of Section 3 above. With � as in Definition 4.4, let

⇢py, ⌘; x, ⇠q “ �px,Ypx, ⇠q ` y ¨ !px, ⇠q´1,Npx, ⇠q ` ⌘ ¨ !px, ⇠q, ⇠q,
'py, ⌘; x, ⇠q “ '0px,Ypx, ⇠q ` y ¨ !px, ⇠q´1,Npx, ⇠q ` ⌘ ¨ !px, ⇠q, ⇠q,

so that

p0px, ⇠q “
"

e'py,⌘;x,⇠q⇢py, ⌘; x, ⇠q dyd́⌘.

By construction, on supp⇢,

|Ypx, ⇠q ` y ¨ !px, ⇠q´1 ´ x| § 2
3a

xxy, |Npx, ⇠q ` ⌘ ¨ !px, ⇠q ´ ⇠| § 2
3a

x⇠y,

which implies that, for a su�ciently large a ° 0 and a suitable k̃ P p0, 1q, on supp⇢
we also have by (3.12) and (3.14)

|y| ¨ !px, ⇠q´1 § k̃xxy and |⌘| ¨ !px, ⇠q § k̃x⇠y ñ |y|, |⌘| § k̃ pxxyx⇠yq 1
2 .

Furthermore, recalling that x'1
1⇠px, ⇠qy — xxy and x'1

2xpx, ⇠qy — x⇠y, we find that, on
supp⇢, for any ✓ P r0, 1s,

(4.20) xYpx, ⇠q ` ✓ ¨ y ¨ !px, ⇠q´1y — xxy, xNpx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠qy — x⇠y.

The next Lemma 4.9 can be proved analysing the Taylor expansions of 'py, ⌘; x, ⇠q.

Lemma 4.9. Let

A1p⌘; x, ⇠q “ !px, ⇠q2
ª 1

0
p1 ´ ✓qJ2

1⇠⇠px,Npx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠qq d✓,

A2py; x, ⇠q “ !px, ⇠q´2
ª 1

0
p1 ´ ✓qJ2

2xxpYpx, ⇠q ` ✓ ¨ y ¨ !px, ⇠q´1, ⇠q d✓,

B1p⌘; x, ⇠q “ !px, ⇠q2
ª 1

0
J2
1⇠⇠px,Npx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠qq d✓,

B2py; x, ⇠q “ !px, ⇠q´2
ª 1

0
J2
1xxpYpx, ⇠q ` ✓ ¨ y ¨ !px, ⇠q´1, ⇠q d✓.
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Then
'py, ⌘; x, ⇠q “ ´ y ¨ ⌘` p'1px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ '1px,Npx, ⇠qqq

´ '1
1⇠px,Npx, ⇠qq ¨ ⌘ ¨ !px, ⇠q

` p'2pYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '2pYpx, ⇠q, ⇠qq
´ '1

2xpYpx, ⇠q, ⇠qq ¨ y ¨ !px, ⇠q´1(4.21)
“ ´ y ¨ ⌘` rA1p⌘; x, ⇠q⌘s ¨ ⌘` rA2py; x, ⇠qys ¨ y,

'1
ypy, ⌘; x, ⇠q “ ´ ⌘` r'1

2xpYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '1
2xpYpx, ⇠q, ⇠qs ¨ !px, ⇠q´1

“ ´ ⌘` B2py; x, ⇠qy,(4.22)

'1
⌘py, ⌘; x, ⇠q “ ´ y ` r'1

1⇠px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ '1
1⇠px,Npx, ⇠qqs ¨ !px, ⇠q

“ ´ y ` B1p⌘; x, ⇠q⌘.(4.23)

Proof. By the definition (4.8) of'0 and of the multi-product of phase functions (3.3)
and (3.6), recalling (4.19), we can write

'0px, x1, ⇠1, ⇠q “ '1px, ⇠1q ´ x1 ¨ ⇠1 ` '2px1, ⇠q
´ '1px,Npx, ⇠qq ` Ypx, ⇠q ¨ Npx, ⇠q ´ '2pYpx, ⇠q, ⇠q,

which implies

'0px,Ypx, ⇠q ` y ¨ !px, ⇠q´1,Npx, ⇠q ` ⌘ ¨ !px, ⇠q, ⇠q
“'1px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ pYpx, ⇠q ` y ¨ !px, ⇠q´1q ¨ pNpx, ⇠q ` ⌘ ¨ !px, ⇠qq
`'2pYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '1px,Npx, ⇠qq ´ '2pYpx, ⇠q, ⇠q ` Ypx, ⇠q ¨ Npx, ⇠q
“ ´ y ¨ ⌘` p'1px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ '1px,Npx, ⇠qqq ´ Ypx, ⇠q ¨ ⌘ ¨ !px, ⇠q

` p'2pYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '2pYpx, ⇠q, ⇠qq ´ y ¨ Npx, ⇠q ¨ !px, ⇠q´1.

Then, recalling that Ypx, ⇠q “ '1
1⇠px,Npx, ⇠qq and Npx, ⇠q “ '1

2xpYpx, ⇠q, ⇠q, we get

'py, ⌘; x, ⇠q “ ´ y ¨ ⌘` p'1px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ '1px,Npx, ⇠qqq
´ Ypx, ⇠q ¨ ⌘ ¨ !px, ⇠q ` p'2pYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '2pYpx, ⇠q, ⇠qq
´ y ¨ Npx, ⇠q ¨ !px, ⇠q´1

“ ´ y ¨ ⌘` p'1px,Npx, ⇠q ` ⌘ ¨ !px, ⇠qq ´ '1px,Npx, ⇠qqq
´ '1

1⇠px,Npx, ⇠qq ¨ ⌘ ¨ !px, ⇠q
` p'2pYpx, ⇠q ` y ¨ !px, ⇠q´1, ⇠q ´ '2pYpx, ⇠q, ⇠qq
´ '1

2xpYpx, ⇠q, ⇠qq ¨ y ¨ !px, ⇠q´1

“ ´ y ¨ ⌘` rA1p⌘; x, ⇠q⌘s ¨ ⌘` rA2py; x, ⇠qys ¨ y,

that is (4.21) and its subsequent expression in terms of A1,A2. Then (4.22) and
(4.23) immediately follow taking derivatives with respect to y, ⌘ in (4.21), and then
looking at the definitions of B1, B2. ⇤

Lemma 4.10. For A1,A2,B1,B2 defined in Lemma 4.9 we have, for all x, y, ⇠, ⌘ P Rn in
supp⇢,

}B�xB↵⇠B↵1
⌘ pA1,B1qp⌘; x, ⇠q} . ⌧x⇠y´|↵|´ |↵1|

2 xxy´|�|´ |↵1|
2 xy, ⌘y|↵`�|,

}B�xB↵⇠B�1
y pA2,B2qpy; x, ⇠q} . ⌧x⇠y´|↵|´ |�1|

2 xxy´|�|´ |�1|
2 xy, ⌘y|↵`�|,

where xy, ⌘y :“
a

1 ` |y|2 ` |⌘|2, y, ⌘ P Rn.
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Proof. The result follows from the Faá di Bruno formula for the derivatives of the
composed functions, the properties of X P S1,0, N P S0,1 stated above, the fact that,
on supp⇢, (4.20) holds for any ✓ P r0, 1s, as well as

Ypx, ⇠q ` ✓ ¨ y ¨ !px, ⇠q´1 P S1,0 ¨ xy, ⌘y, Npx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠q P S0,1 ¨ xy, ⌘y,

recalling that the seminorms of J1 and J2 involving their derivatives up to order 2
are proportional to ⌧ P p0, 1q.

The proof works by induction on the order of the derivatives. Let us give an
idea of the step |↵ ` � ` ↵1| “ 1. Let ej be the multi-index such that |ej| “ 1, with
all the components equal to 0 but the j-th. Then, for instance, on supp⇢,

Bej
x B1p⌘; x, ⇠q “ pBej

x !
2q
ª 1

0
J2
1⇠⇠p. . . q d✓` !2

ª 1

0
J3
1x⇠⇠p. . . q d✓

` !2
ª 1

0
J3
1⇠⇠⇠p. . . q d✓ ¨ Bej

x pNpx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠qq

P S´1,0 ` S´1,0 ¨ xy, ⌘y Ä S´1,0 ¨ xy, ⌘y,

since!2 P S´1,1,
≥1

0 J2
1⇠⇠p. . . q d✓ P S1,´1,

≥1
0 J3

1x⇠⇠p. . . q d✓ P S0,´1,
≥1

0 J3
1⇠⇠⇠p. . . q d✓ P S1,´2,

and Npx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠q P S0,1|⌘|. Similarly,

Bej

⇠ B1p⌘; x, ⇠q “ pBej

⇠ !
2q
ª 1

0
J2
1⇠⇠p. . . q d✓

` !2
ª 1

0
J3
1⇠⇠⇠p. . . q d✓ ¨ Bej

⇠ pNpx, ⇠q ` ✓ ¨ ⌘ ¨ !px, ⇠qq

P S0,´1 ` S0,´1 ¨ xy, ⌘y Ä S0,´1 ¨ xy, ⌘y,

Bej
⌘ B1p⌘; x, ⇠q “ !2

ª 1

0
J3
1⇠⇠⇠p. . . q d✓ ¨ p✓ ¨ !px, ⇠qq P S´1{2,´1{2.

The estimates for general multi-indices follow by induction. ⇤

Lemma 4.11. On supp⇢,

|'1
ypy, ⌘; x, ⇠q| ` |'1

⌘py, ⌘; x, ⇠q| — |y| ` |⌘|.

Proof. From Lemmas 4.9 and 4.10, on supp⇢, for ⌧ P p0, 1q,

}B1p⌘; x, ⇠q} . ⌧ ñ }B1p⌘; x, ⇠q⌘} . ⌧|⌘|,
}B2py; x, ⇠q} . ⌧ ñ }B2py; x, ⇠qy} . ⌧|y|,

which imply

|'1
ypy, ⌘; x, ⇠q| . |⌘| ` ⌧|y|, |'1

ypy, ⌘; x, ⇠q| & |⌘| ´ ⌧|y|,
|'1
⌘py, ⌘; x, ⇠q| . |y| ` ⌧|⌘|, |'1

⌘py, ⌘; x, ⇠q| & |y| ´ ⌧|⌘|.

These give

|'1
ypy, ⌘; x, ⇠q| ` |'1

⌘py, ⌘; x, ⇠q| . p1 ` ⌧qp|y| ` |⌘|q,
|'1

ypy, ⌘; x, ⇠q| ` |'1
⌘py, ⌘; x, ⇠q| & p1 ´ ⌧qp|y| ` |⌘|q,

as claimed. ⇤
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Lemma 4.12. On supp⇢, for any multi-indices ↵, �,↵1, �1, and all x, y, ⇠, ⌘,

|B�xB�1
y B↵⇠B↵1

⌘ '
1
ypy, ⌘; x, ⇠q| .

$
’’’’&

’’’’%

0 if |↵1| • 2,
1 if |↵1| “ 1,

⌧xxy´|�|´ |�1|
2 x⇠y´|↵|´ |�1|

2 xy, ⌘y1`|↵`�| if |↵1| “ 0,
|↵` �` �1| ° 0;

|B�xB�1
y B↵⇠B↵1

⌘ '
1
⌘py, ⌘; x, ⇠q| .

$
’’’’&

’’’’%

0 if |�1| • 2,
1 if |�1| “ 1,

⌧xxy´|�|´ |↵1|
2 x⇠y´|↵|´ |↵1|

2 xy, ⌘y1`|↵`�| if |�1| “ 0,
|↵` ↵1 ` �| ° 0.

Proof. The results follow from Lemma 4.10 and the estimates (4.20). ⇤

Lemma 4.13. On supp⇢, for any multi-indices ↵, �,↵1, �1, and all x, y, ⇠, ⌘,

|B�xB�1
y B↵⇠B↵1

⌘ '
1
xpy, ⌘; x, ⇠q| .

$
’’&

’’%

⌧x⇠y´|↵|´ |�1|
2 xxy´1´|�|´ |�1|

2 xy, ⌘y3`|↵`�| if |�1| ° 0,

⌧x⇠y´|↵|´ |↵1|
2 xxy´1´|�|´ |↵1|

2 xy, ⌘y3`|↵`�| if |↵1| ° 0,
⌧x⇠y´|↵|xxy´1´|�|xy, ⌘y3`|↵`�| if ↵1 “ �1 “ 0;

|B�xB�1
y B↵⇠B↵1

⌘ '
1
⇠py, ⌘; x, ⇠q| .

$
’’&

’’%

⌧x⇠y´1´|↵|´ |�1|
2 xxy´|�|´ |�1|

2 xy, ⌘y3`|↵`�| if |�1| ° 0,

⌧x⇠y´1´|↵|´ |↵1|
2 xxy´|�|´ |↵1|

2 xy, ⌘y3`|↵`�| if |↵1| ° 0,
⌧x⇠y´1´|↵|xxy´|�|xy, ⌘y3`|↵`�| if ↵1 “ �1 “ 0.

Proof. The results follow from Lemma 4.10, observing that

'1
xpy, ⌘; x, ⇠q “ dxrpA1p⌘; x, ⇠q⌘q ¨ ⌘s ` dxrpA2py; x, ⇠qyq ¨ ys,

'1
⇠py, ⌘; x, ⇠q “ d⇠rpA1p⌘; x, ⇠q⌘q ¨ ⌘s ` d⇠rpA2py; x, ⇠qyq ¨ ys.

⇤

Lemma 4.14. For any multi-indices ↵, �,↵1, �1, and all x, y, ⇠, ⌘,

|B↵⇠B↵1
⌘ B�xB�1

y ⇢py, ⌘; x, ⇠q| . x⇠y´|↵|´ |↵1|
2 xxy´|�|´ |�1|

2 .

Proof. Immediate, by the definition of ⇢, the hypotheses on  , the properties
Ypx, ⇠q P S1,0, Npx, ⇠q P S0,1, and the estimates (4.20). ⇤

Lemma 4.15. Let

� “ �py, ⌘; x, ⇠q “ 1 ` |'1
ypy, ⌘; x, ⇠q|2 ` |'1

⌘py, ⌘; x, ⇠q|2.
Then, on supp⇢, for any multi-indices ↵, �,↵1, �1, and all x, y, ⇠, ⌘,

ˇ̌
ˇ̌B↵⇠B↵1

⌘ B�xB�1
y

ˆ
1

�py, ⌘; x, ⇠

˙ˇ̌
ˇ̌ . ⌧x⇠y´|↵|xxy´|�|xy, ⌘y´2`|↵`�|.

Proof. Immediate, by Lemmas 4.9, 4.10, 4.11, and 4.12. ⇤

The next Lemma 4.16 is a straightforward consequence of Lemma 4.15 and the
definition of transpose operator.

Lemma 4.16. Let us define the operator

M “ 1
�

p1 ´ i'1
ypy, ⌘; x, ⇠q ¨ ry ´ i'1

⌘py, ⌘; x, ⇠q ¨ r⌘q

such that Mei'py,⌘;x,⇠q “ ei'py,⌘;x,⇠q. Then,
tM “ M0 ` M1 ¨ ry ` M2 ¨ r⌘,
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where, on supp⇢, for any multi-indices ↵, �,↵1, �1, and all x, y, ⇠, ⌘,

}B↵⇠B↵1
⌘ B�xB�1

y rpM0,M1,M2qpy, ⌘; x, ⇠qs} . x⇠y´|↵|xxy´|�|xy, ⌘y´1`|↵`�|.

Proof of Proposition 4.8. Using the operator M defined in Lemma 4.16, we have, for
arbitrary k P Z`,

p0px, ⇠q “
"

ei'py,⌘;x,⇠qpptMqk⇢qpy, ⌘; x, ⇠q dyd́⌘.

Notice that, from the analysis above, for any k P Z`, any multi-indices ↵1, �1, and
all x, y, ⇠, ⌘,

|pB↵1
⇠ B�1

x pptMqk⇢qqpy, ⌘; x, ⇠q| . xxy´|�1|x⇠y´|↵1|xy, ⌘y´k`|↵1`�1|.

Then, for any fixed ↵, � P Zn
`, and arbitrary k P Z`, we find

B↵⇠B�xp0px, ⇠q “

“
ÿ

↵1`↵2“↵

ÿ

�1`�2“�

ˆ
↵
↵1

˙ˆ
�
�1

˙" ´
B↵1
⇠ B�1

x ei'py,⌘;x,⇠q
¯

¨pB↵2
⇠ B�2

x pptMqk⇢qpy, ⌘; x, ⇠qq dyd́⌘.

Choosing k such that ´k ` 6|↵` �| § ´p2n ` 1q, from the results in Lemmas 4.13,
4.14, and 4.16 above, we get

|B↵x B�⇠p0px, ⇠q| . xxy´|↵|x⇠y´|�|
"

xy, ⌘y´p2n`1q dyd⌘ . xxy´|↵|x⇠y´|�|,

as claimed. ⇤

Remark 4.17. Let us notice that we have proved here above that the seminorms of p0 are
controlled by those of '1 and '2. This implies that, if J1 and J2 are bounded in S1,1, so
is p0 in S0,0. The boundedness conditions of Theorem 4.2 are so fulfilled, and the proof of
Theorem 4.2 is complete.

5. Fundamental solution to hyperbolic systems in SG classes

In the present section we apply the results of Sections 3 and 4 to construct
the fundamental solution Ept, sq to the Cauchy problem for a first order system
of partial di↵erential equations of hyperbolic type, with coe�cients in SG classes
and roots of (possibly) variable multiplicity. A standard argument, which we omit
here, gives then the solution, via Ept, sq and Duhamel’s formula, see Theorem 5.1
below. We follow the approach in [24, Section 10.7].

Let us consider the Cauchy problem

(5.1)

#
LWpt, xq “ Fpt, xq pt, xq P p0,Ts ˆRn,
Wp0, xq “ W0pxq x P Rn,

where

(5.2) Lpt, x,Dt,Dxq “ Dt `⇤pt, x,Dxq ` Rpt, x,Dxq,
⇤ is an m ˆ m diagonal operator matrix whose entries � jpt, x,Dxq, j “ 1, . . . ,m, are
pseudo-di↵erential operators with symbols � jpt, x, ⇠q P Cpr0,Ts; S✏,1q, ✏ P r0, 1s, and
R is an m ˆ m-operator matrix with elements in Cpr0,Ts,S✏´1,0q. The case ✏ “ 0
corresponds to symbols uniformly bounded in the space variable, while the case
✏ “ 1 is the standard situation of SG symbols with equal order components.

Assume also that the system (5.2) is of hyperbolic type, that is, � jpt, x, ⇠q P R,
j “ 1, . . . ,m. Notice that, di↵erently from [12, 17], here we do not impose any
“separation condition at infinity” on the � j, j “ 1, . . . ,m. Indeed, the results
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presented below apply both to the constant as well as the variable multiplicities
cases.

For 0 † T0 § T, we define �T0 :“ tpt, sq| 0 § s § t § T0u. The fundamental
solution of (5.1) is a family tEpt, sq|pt, sq P �T0 u of SG FIOs, satisfying

(5.3)

#
LEpt, sq “ 0 pt, sq P �T0 ,
Eps, sq “ I s P r0,T0s.

In this section we aim to show that, if T0 is small enough, it is possible to construct
the family tEpt, squ satisfying (5.3).

As a consequence of (5.3), it is quite easy to get the following:

Theorem 5.1. For every F P Cpr0,Ts; Hr,%pRnqq and G P Hr,%pRnq, the solution Wpt, xq of
the Cauchy problem (5.1) exists uniquely, it belongs to the class Cpr0,T0s,Hr´p✏´1q,%pRnqq,
and it is given by

Wptq “ Ept, 0qG ` i
ª t

0
Ept, sqFpsqds, t P r0,T0s.

Remark 5.2. Theorem 5.1 gives well-posedness of the Cauchy problem (5.1) inSpRnq and
S1pRnq; moreover it gives ”well posedness with loss/gain of decay” (depending on the sign
of r) of (5.1) in weighted Sobolev spaces Hr,%pRnq. This phenomenon is quite common in
the theory of hyperbolic partial di↵erential equations with SG type coe�cients, see [2, 4, 5].
We remark that in the symmetric case ✏ “ 1 the Cauchy problem (5.1) turns out to be
well-posed also in Hr,%pRnq.

To begin, consider SG phase functions ' j “ ' jpt, s, x, ⇠q, 1 § j § m, defined on
�T0 ˆR2n, and define the operator matrix

I'pt, sq “

¨

˚̋
I'1 pt, sq 0

. . .
0 I'm pt, sq

˛

‹‚,

where I' j :“ Op' j p1q, 1 § j § m. From Theorem 2.3 (see Remark 2.8) we see that

DtI' j ` � jpt, x,DxqI' j “
ª

ei' jpt,s,x,⇠q B' j

Bt
pt, s, x, ⇠qd̄⇠

`
ª

ei' jpt,s,x,⇠q� jpt, x,'1
j,xpt, s, x, ⇠qqd̄⇠

`
ª

ei' jpt,s,x,⇠qb0, jpt, s, x, ⇠qd̄⇠,

where b0, jpt, sq P S✏´1,0 Ñ S0,0. The first two integrals in the right-hand side of
the equation here above cancel if we choose ' j, j “ 1, . . . ,m, to be the solution
to the eikonal equation (2.5) associated with the symbol a “ � j, j “ 1, . . . ,m.
By Proposition 2.9, this is possible, provided that T0 is small enough. Writing
B0, j :“ Op' j pb0, jq, we define the family tW1pt, sq; pt, sq P �T0 u of SG FIOs by

W1pt, s, x,Dxq :“ ´i

¨

˚̋

¨

˚̋
B0,1pt, s, x,Dxq 0

. . .
0 B0,mpt, s, x,Dxq

˛

‹‚` Rpt, x,Dxq

˛

‹‚I'pt, s, x,Dxq,

and we denote by w1pt, s, x, ⇠q the symbol of W1pt, s, x, ⇠q. Notice that

(5.4) Lpt, x,DxqI'pt, s, x,Dxq “ iW1pt, s, x,Dxq,
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that is, iW1 is the residual of system (5.1) for I'. We define then by induction the
sequence of m ˆ m-matrices of SG FIOs, denoted by tW⌫pt, sq; pt, sq P �T0 u⌫PN, as

(5.5) W⌫`1pt, s, x,Dxq “
ª t

s
W1pt,✓, x,DxqW⌫p✓, s, x,Dxqd✓,

and we denote by w⌫`1pt, s, x, ⇠q the symbol of W⌫`1pt, s, x,Dxq.We are now going
to prove that the operator norms of W⌫, seen as operators from the Sobolev space
Hr,% into Hr´p⌫´1qp✏´1q,% for any fixed pr, %q P R2 can be estimated from above by

(5.6) }W⌫pt, sq}LpHr,% ,Hr´p⌫´1qp✏´1q,%q §
C⌫´1

r,% |t ´ s|⌫´1

p⌫´ 1q!
§

C⌫´1
r,% T⌫´1

0

p⌫´ 1q!
,

for all pt, sq P �T0 and ⌫ PN, where Cr,% is a constant which only depends on r, %.
To deal with the operator norms in (5.6), we need to explicitly write the matrices

W⌫. An induction in (5.5) easily shows that

(5.7) W⌫pt, sq “
ª t

s

ª ✓1

s
. . .

ª ✓⌫´2

s
W1pt,✓1q . . .W1p✓⌫´2,✓⌫´1qd✓⌫´1 . . . d✓1.

The integrand is a product of ⌫ ´ 1 m ˆ m-matrices of SG FIOs, therefore it is an
operator matrix whose entries consist of m⌫´2 summands of compositions of ⌫´ 1
SG FIOs. Denoting by Q1 ˝ . . . ˝ Q⌫´1 one of these compositions, where each of
the Qj is one of the m2 entries of the m ˆ m-matrix of SG FIOs W1, we have from
Example 3.3 and (2) of Theorem 4.3 that Q1 ˝ . . . ˝ Q⌫´1 is again a SG FIO with
symbol q1,...,⌫´1 P Sp⌫´1qp✏´1q,0 Ñ S0,0. Moreover, from (3) of Theorem 4.3, for all
` PN there exists C` ° 0 and `1 PN0 such that

|||q1,...,⌫´1pt,✓1, . . . ,✓⌫´1q|||p⌫´1qp✏´1q,0
`

§ C⌫´2
` |||q1pt,✓1q|||✏´1,0

`1 . . . |||q⌫´1p✓⌫´2,✓⌫´1q|||✏´1,0
`1 ,

where for j “ 1, . . . , ⌫´ 1, qjpt, sq denotes the symbol of the SG FIO Qjpt, sq, pt, sq P
�T0 . Now we set

�̄ :“ sup
j“1,...,⌫´1

sup
pt,sqP�T0

|||qjpt, sq|||✏´1,0
`1 † 8,

so that

|||q1,...,⌫´1pt,✓1, . . . ,✓⌫´1q|||p⌫´1qp✏´1q,0
` § C⌫´2

` �̄⌫´1.

The continuity of the SG FIOs Q1˝. . .˝Q⌫´1pt,✓1, ¨ ¨ ¨ ,✓⌫´1q : Hr,% ›Ñ Hr´pn´1qp✏´1q,%

(see Theorem 2.1) and the previous inequality give that for every r, % there exist
constants Cr,% ° 0 (depending only on the indeces of the Sobolev space) and
`r,% PN0 such that for all u P Hr,%

}Q1pt,✓1q ˝ . . . ˝ Q⌫´1p✓⌫´2✓⌫´1qu}r´pn´1qp✏´1q,%(5.8)

§ Cr,%|||q1,...,⌫´1pt,✓1, . . . ,✓⌫´1q|||p⌫´1qp✏´1q,0
`r,%

}u}r,%

§ Cr,%C⌫´2
`r,%
�̄⌫´1}u}r,%.

Therefore, in the operator matrix W1pt,✓1q . . .W1p✓⌫´2,✓⌫´1q, the operator norm of
each entry can be bounded from above by m⌫´2Cr,%C⌫´2

`r,%
�̄⌫´1. Now by (5.7) and
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(5.8) we deduce that

}W⌫pt, sq}LpHr,% ,Hr´p⌫´1qp✏´1q,%q

§
ª t

s

ª ✓1

s
. . .

ª ✓⌫´2

s
}W1pt,✓1q . . .W1p✓⌫´2,✓⌫´1q}LpHr,% ,Hr´p⌫´1qp✏´1q,%qd✓⌫´1 . . . d✓1

§ m⌫´2Cr,%C⌫´2
`r,%
�̄⌫´1

ª t

s

ª ✓1

s
. . .

ª ✓⌫´2

s
d✓⌫´1 . . . d✓1

§
m⌫´2Cr,%C⌫´2

`r,%
�̄⌫´1|t ´ s|⌫´1

p⌫´ 1q!
“

C̃⌫´1
r,% |t ´ s|⌫´1

p⌫´ 1q!
(5.9)

for a new constant C̃r,% depending only on r, %, which yields the claim (5.6).
Now, using the estimate (5.6), we can show that the sequence of SG FIOs, defined

for all pt, sq P �T0 and all N PN by

(5.10) ENpt, sq “ I'pt, sq `
ª t

s
I'pt,✓q

Nÿ

⌫“1

W⌫p✓, sqd✓,

is a well-defined SG FIO inLpHr,%,Hr´✏`1,%q for every r, %, and converges, as N Ñ 8,
to the well-defined SG FIO, belonging to LpHr,%,Hr´✏`1,%q, given by

(5.11) Ept, sq “ I'pt, sq `
ª t

s
I'pt,✓q

8ÿ

⌫“1

W⌫p✓, sqd✓.

Ept, sq in (5.11) is the fundamental solution to the system (5.1) in the sense that
it satisfies (5.3). Indeed, at symbols level, with the notations EN “ Op'peNq,
E “ Op'peq and W1 ˝ ¨ ¨ ¨ ˝ W1 “ Op'p�⌫´1q, for every l PN and |↵`�| § `, we have

|B↵⇠B�xeNpt, s, x, ⇠q|

§
ª t

s

Nÿ

⌫“1

|B↵⇠B�xw⌫p✓, s, x, ⇠q|d✓

§
Nÿ

⌫“1

ª t

s

ª ✓

s

ª ✓1

s
. . .

ª ✓⌫´2

s

ˇ̌
B↵⇠B�x�⌫´1pt,✓1, . . . ,✓⌫´1, x, ⇠q

ˇ̌
d✓n´1 . . . d✓1d✓

§
Nÿ

⌫“1

ª t

s
. . .

ª ✓⌫´2

s
|||�⌫´1pt,✓1, . . . ,✓⌫´1q|||p⌫´1qp✏´1q,0

` xxyp⌫´1qp✏´1q´|�|x⇠y´|↵|d✓⌫´1 . . . d✓

§ xxy✏´1´|�|x⇠y´|↵|
Nÿ

⌫“1

m⌫´2C⌫´2
` �̄⌫´1|t ´ s|⌫´1

p⌫´ 1q!
,

so

|||eNpt, sq|||✏´1,0
` §

N´1ÿ

⌫“0

pC1
`|t ´ s|q⌫
⌫!

,

for a new constant C1
` ° 0. Then, for N Ñ 8 we get

|||ept, sq|||✏´1,0
` § exppC1

`pt ´ sqq † 8.
Thus, the SG FIO (5.11) has a well-defined symbol. On the other hand, at operator’s
level, by definitions (5.10) and (5.2) we have

LEN “ LI� ´ i
Nÿ

⌫“1

W⌫pt, sq `
ª t

s
LI�pt,✓q

Nÿ

⌫“1

W⌫p✓, sqd✓.(5.12)
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An induction shows that

(5.13)
Nÿ

⌫“1

W⌫pt, sq “ ´ipLI�qpt, sq ´ i
ª t

s
pLI�qpt,✓q

N´1ÿ

⌫“1

W⌫p✓, sqd✓.

Indeed, for N “ 2 we have by (5.4) and (5.5)

W1pt, sq ` W2pt, sq “ ´ipLI�qpt, sq ´ i
ª t

s
pLI�qpt,✓qW1p✓, sqd✓;

the induction step N fiÑ N ` 1 works as follows:
N`1ÿ

⌫“1

W⌫pt, sq “ WN`1pt, sq `
Nÿ

⌫“1

W⌫pt, sq

“ ´i
ª t

s
pLI�qpt,✓qWNp✓, sqd✓´ ipLI�qpt, sq ´ i

ª t

s
pLI�qpt,✓q

N´1ÿ

⌫“1

W⌫p✓, sqd✓

“ ´ipLI�qpt, sq ´ i
ª t

s
pLI�qpt,✓q

Nÿ

⌫“1

W⌫p✓, sqd✓.

Substituting (5.13) into (5.12) we get

pLENqpt, sq “
ª t

s
pLI�qpt,✓qWNp✓, sqd✓.

Now, for N Ñ 8, }WNpt, sq}LpHr,% ,Hr´pN´1qp✏´1q,%q Ñ 0 because of (5.9); thus LEN Ñ
LE “ 0. Moreover, it is easy to verify that Eps, sq “ I. So, (5.3) is fulfilled, and we
have constructed the fundamental solution to L. As it concerns the dependence
of the fundamental solution on the parameters pt, sq, we finally notice that the SG
FIO-valued map pt, sq fiÑ Ept, sq belongs to Cp�T0 q, since E is obtained by continuous
operations of operators which are continuous in t, s, see (5.11).
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