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Abstract

We study the problem of broadcasting a common, possibly large, content into a wireless mesh network
consisting of N end-users and of one or multiple access points that act as gateways to Internet. Each
end-user is characterized by a maximum possible reception rate that depends on the distance and on the
interface used to communicate with the associated access point. The end-user satisfaction is proportional
to the actual rate received. The overall end-user satisfaction is the sum of the satisfaction of each end-user.
Our goal is to maximize the overall end-user satisfaction under the constraint that the access points can
retransmit at different rates the same common content at most K times.

We show that the problem can be solved by serving the end-users according to a suitable K segmentation,
which is a K partition of the end-users that preserves a specific end-user order. When the access points and
the end-users have a unique interface, the optimal segmentation can be found in O(N(K + logN)) time by
exploiting the convex Monge property of the satisfaction function. When both access points and end-users
are equipped with multiple interfaces, the problem becomes computationally intractable, even for a single
access point. Polynomial time algorithms are then devised for optimally solving some meaningful particular
cases.

Keywords: Broadcast, Single-hop, Multi-Rate, Multi-Interface, Monge property, Dynamic Programming,
NP-Completeness

1. Introduction

Wireless mesh networks (WMNs) have received much attention in recent years for implementing
large-scale wireless networks in suburban and urban community because of their low-deploying and low-
management cost, especially when built from commodity wireless cards and operating over unregulated
spectrum [6, 7]. In such networks, some of the nodes serve as gateways for other nodes to access the Internet.
Such nodes play both roles of a host and a router, and are typically stationary and not power-constrained.
The remaining nodes, called end-users, are connected via wireless link to a single gateway. Packets are usu-
ally forwarded in a multi-hop fashion to and from the gateway nodes [6], while in a single-hop fashion from
the gateway to the end-users. Previous works showed that employing multiple non-overlapping channels to
serve the end-users is an effective approach to improve the network throughput and capacity [16].
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Figure 1: A large-scale urban community-based wireless mesh network.

In this work, we consider WMNs with fixed gateways, the Access Points (APs), which form a tree for
communication purposes. Each AP provides one-hop network connectivity to the end-user nodes within its
coverage areas, and we assume that each end-user is assigned to a single fixed AP. As an example, Figure 1
depicts a simplified view of an urban community-based wireless network, where there is a source (a provider
in the cloud) which distributes a content to all APs (the red rectangles on the rooftops), which in turn
forward the common content to the end-user nodes (the black dots). Each access point transmits into a disc
area (the shadow circle), while each end-user refers to a fixed single AP.

As in [6, 17, 20], we assume the multi-rate capability in the PHY layer, i.e., APs may communicate with
end-users at different data rates, depending on the interface, the distance, the radio signal quality, the set of
modulation and coding schemes available in the system. Nowadays, many prototypes of WMNs equip each
mesh node with multiple interfaces and/or radios and tune them to non-overlapping channels to augment
the quality of the transmission experienced by the end-users. Also, most commodity wireless cards for AP
perform adaptive modulation that changes the link transmission rate in response to the receiver distance.

Our goal in this paper is to leverage the multi-rate capability of the APs for increasing the overall end-
user satisfaction, which is measured by the sum of the rates received by the end-users. In earlier research on
mobile ad hoc networks, only control broadcasts were supported which disseminate short messages, like link
status or indices, for generating or repairing routing tables. Instead in this work, we plan to disseminate
a large common content (like a video) to all the end-users, which are often concentrate in small areas. We
call such an operation the data broadcast operation. We exploit the wireless broadcast advantage by using,
whenever possible, a single broadcast transmission to reach multiple end-user nodes. Note that, thanks to
multiple radios/interfaces, an AP can perform parallel transmissions, each towards multiple end-users.

According to the IEEE 802.11a/b/n amendments [5, 15], the access points have a fixed maximum trans-
mission power. If the same transmission power is used for all transmission rates, then, in general, the higher
is the transmission rate, the smaller is the transmission range (although, the rate-distance variation in real
life is somewhat irregular). Thus end-users closer to the access point can be reached with higher rate (see
Figure 2), and experience a smaller latency. For instance, when the access point transmits up to the maxi-
mum radius (i.e. 180 meters, in Figure 2), all the end-users receive at the minimum rate, expressed typically
in metric multiples of bits per second, (i.e. 6 Mbps), but if the AP transmits in the circle of minimum radius
(i.e., 42 meters), then the end-user rate significantly increases by a factor of 6. So in our problem the rate
received by a group of end-users served in a single transmission depends on the radius of the transmission
that covers all such end-users. Specifically, for each transmission, the access point serves simultaneously all
the end-users in the group at an actual rate identical to the minimum rate among all the maximum possible
rates for the end-users of that group. From now on, we call the rate received by each end-user the end-user
satisfaction.

Therefore, fixed the maximum number K of transmissions that the APs may perform to serve all the
end-users, we aim to assign the end-users to the transmissions so as the overall end-user satisfaction is
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Figure 2: The disc model for access points having decreasing transmission rates for increasing transmission ranges.

maximized. In practice, the overall satisfaction can represent, for example, the profit of a provider that sells
a premium data broadcast service charged on a rate basis to the end-users.

We first study the problem of maximizing the overall satisfaction assuming that there is a single interface
and that the mesh consists of (i) a single access point or (ii) many access points. In both cases, there
is a predefined maximum number K of transmissions reserved for the broadcast operation that must be
performed by the access points.

If there is a single access point, our problem reduces to find a partition of the end-users into K groups,
each served by one transmission on a different non-overlapping channel. Precisely, each end-user j has an
associated maximum possible receiving rate bj , depending on the distance of the end-user j from AP. If
a group Ai of end-users is reached by means of the same transmission, all the end-users of Ai are served
with the same rate that corresponds to the maximum possible rate of the furthest end-user in Ai, i.e.,
minj∈Ai

{bj}. Thus, the overall satisfaction to be maximized is
∑K
i=1 |Ai|minj∈Ai

{bj}.
If there are L access points, one has to decide how many transmissions out of K have to be assigned

to each access point in such a way that all the end-users are served and the overall end-user satisfaction is
maximized. More formally, let p1, p2, . . . , pL be the access points and A1, A2, . . . , AL the sets of end-users
in their transmission ranges. Denoted by Ahi the end-users served by the i-th transmission of the access

point ph, the overall satisfaction to be maximized is
∑L
h=1

∑kh
i=1 |Ahi |minj∈Ah

i
{bj}, where the number kh of

transmissions assigned to ph must be at least 1 and
∑L
h=1 kh = K.

Then, we study the satisfaction problem extended to the multi-interface scenario. In fact, in real settings,
the heterogeneous devices at the end-user hands are featured by several different interfaces, like WiFi, 4G,
Bluetooth, etc. Hence, each end-user can receive at different rates, depending on the activated interface. In
such a scenario, the access point can take advantage of the different interfaces to provide a better service
for the end-users.

Multi-interface networks have been extensively studied in the last years, but using a different flavor
with respect to the present paper. In fact, previous works considered which interfaces to activate to set
up the network topology based on cost criteria [2, 8, 12, 14, 13]. However, little work has been done
about broadcasting in a disc model where access points and end-users are equipped with multi-interfaces.
Indeed, a related model has been used only in the local rate maximization problem, one of the four stages
of the distributed and localized heuristics presented in [18, 19] for computing distributed 2-hop trees for
broadcasting in multi-radio multi-rate multi-channel wireless mesh networks.

In our work, each end-user is associated with a subset of K possible interfaces, and with a maximum
possible rate for each interface. Specifically, each end-user j holding interface i is associated with a value bi,j
representing the maximum possible rate at which end-user j can receive transmissions from the access point
when served by interface i. Without loss of generality, one can assume that each end-user is equipped with all
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the K interfaces because we set bi,j = 0 to indicate that end-user j cannot receive transmissions via interface
i. The access point can transmit concurrently over all possible interfaces, but each end-user can receive only
by means of one interface at a time. The disc model described above still holds when a transmission is
performed on a specific interface. The goal is then to decide which end-users are served by a given interface
in order to maximize the satisfaction over all the end-users. We show that the problem is computationally
intractable (i.e. NP-hard). Although the problem is NP-hard, polynomial time algorithms are devised for
optimally solving some special cases. In particular, a reduction to a variant of a Resource Constrained
Shortest Path (RCSP) problem holds when sorting the end-users by decreasing rate with respect to any
interface always gives the same end-user order. Although RCSP is also NP-hard in general, this variant is
polynomially time solvable when the number of used interfaces is polylogarithmic in the number of nodes.

The rest of this paper is structured as follows. We formally introduce two variants of the problem
of maximizing the overall end-user satisfaction of data broadcast in wireless mesh networks, called the
Overall Satisfaction of K-Transmissions Multi-Rate Data Broadcast (K-MRB) and Overall Satisfaction of
K-Transmissions Multi-Rate Multi-Interface Single Access Point Data Broadcast (K-MRIB) problems. The
former problem is defined in Section 2, where polynomial time algorithms are proposed to optimally solve
it. The latter problem is formulated in Section 3, where it is shown that it is computationally intractable
in general, while polynomial time algorithms are proposed for meaningful special cases. Finally, conclusions
are drawn in Section 4.

2. Overall Satisfaction of K-Transmissions Multi-Rate Data Broadcast in Mesh Networks

Let G = (V,E) be a mesh network, that is a connected graph, whose node set V = P ∪ U , where P is
the set of access points and U is the set of end-users, and whose edge set E ⊆ (P × P ) ∪ (P ×U) such that
for each end-user u ∈ U there is a single access point p ∈ P with (p, u) ∈ E. Let |P | = L and |U | = N .
Each end-user u ∈ U is characterized by a real number bu which indicates the maximum possible rate that
can be used to communicate towards u. Let T = (V,E′) be a rooted spanning tree of G. Note that in T ,
for each node v ∈ V there is a single p ∈ P such that (p, v) ∈ E′. A transmission of an access point p
simultaneously serves a subset Ai of end-users which are children of p in T . Such a transmission is assumed
to transfer data from p to Ai at a rate equal to minj∈Ai

{bj}. Given a number K of transmissions allowed
for reaching all the end-users in U , the Overall Satisfaction of K-Maximum Bandwidth Broadcast in Mesh
Networks (K-MRB for short) can be formally stated as follows.

K-MRB: Overall Satisfaction of K-Transmissions Multi-Rate Data Broadcast in
Mesh Networks

Input : A spanning tree T = (V,E′) rooted at node r of a mesh network G = (V,E), a rate function
b : U → R+

0 , and an integer L ≤ K ≤ N .
Solution: A partition A1, A2, . . ., AK of U such that for every two end-users x, y ∈ Ai there exists an

access point p such that (p, x), (p, y) ∈ E′.
Goal : Maximize

∑K
i=1 |Ai|minj∈Ai

{bj}.

In words, we aim to maximize the overall satisfaction using at most K transmissions. This implies to decide
how many transmissions are performed by each access point and how the end-users associated to the access
point are then partitioned among the assigned transmissions. Of course, it must hold K ≥ L because
otherwise the end-users associated with the access points that have no transmissions will not receive the
content. Indeed, by definition, each access point has at least one associated end-user.

For instance, Figure 3 depicts a mesh network composed of 4 access points (rectangles) and 9 end-users
(black dots), along with a rooted spanning tree (continuous edges) and an end-user partition into K = 5
groups (transmissions). It is worth noting that, although different spanning trees might influence the number
of hops (and hence the time) to exchange the common content among the access points, they do not influence
the overall rate of the end-users. Indeed, by assumption, each end-user is connected to exactly one access
point and each access point covers at least one end-user, and hence the received end-user rate is independent
on the particular spanning tree.
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Figure 3: A partition into K = 5 groups of the end-users in a mesh network. The access point root is associated with 2
transmissions, while the other access points are associated with a single transmission.

In what follows, we first focus our attention to the subcase of a single access point, where L = 1 and
T = G, namely both are star networks. The general case of arbitrary mesh networks will be considered
later.

2.1. Star Networks

The problem on a star (i.e., on a single access point) becomes that of partitioning the children of the
unique access point r (i.e. the root of the star) into K suitable subsets. For the ease of notation, let N = |U |
be the number of end-users, which coincides with the number of children of r in the input star. Let Ai be
the group of end-users served with transmission i of access point r. The satisfaction of each end-user of
group Ai is equal to mini = minj∈Ai

{bj}.

Lemma 1. Let U = {1, 2, . . . , N} be the set of end-users indexed in such a way that bi ≥ bj whenever
i < j. Then, there exists an optimal solution for the K-MRB problem which partitions U into K groups
A1, . . . , AK , where each group is made of consecutive end-users.

Proof. Consider an optimal solution σ whose groups are not made of consecutive nodes. Order the partition
A1, . . . , AK of σ in such a way that mini ≥ minj , for 1 ≤ i ≤ j ≤ K. Clearly, minK = min1≤j≤N{bj} = bN ,
i.e. N ∈ AK . Let At be the group not made of consecutive end-users having the largest index t. Let ` and
p be, respectively, the smallest end-user which is missing in the group At and the smallest end-user in At
out of order. Note that the end-user with rate mint cannot be out of order, or equivalently it has index
N −

∑K
j=t+1 |Aj |, because At+1, . . . , AK consist of consecutive end-users and min1 ≥ · · · ≥ minK . Thus, the

missing end-user has index ` ≤ N−
∑K
j=t+1 |Aj |−1. Clearly bp ≥ b` ≥ bN−∑K

j=t+1 |Aj | = mint. Denoted with

At` the group to which ` belongs in σ, and recalling that ` is the smallest end-user out of order, mint` = b`
holds. Now, exchange end-user ` with end-user p. The new solution σ′ achieves a transmission rate larger
than or equal to that of σ because the minimum rate in group At remains the same, while mint` cannot
decrease. Repeating the above process until no end-user out of order can be found, we build an optimal
solution whose groups are made of consecutive end-users.

Hereafter, thus, it is assumed that all the end-users in U are sorted by non-increasing maximum possible
rate and the optimal solutions will be sought within the class of segmentations, that is, the partitions that
preserve the rate order, e.g. b1 ≥ b2 . . . ≥ bN .

Based on that, the satisfaction of group {i+ 1, . . . , j} is w(i, j) = (j− i)bj and the K-MRB problem can
be solved via the following recurrence for 1 ≤ k ≤ K, k ≤ n ≤ N :

opt(k, n) =

{
w(0, n) if k = 1

max
k−1≤`≤n−1

{opt(k − 1, `) + w(`, n)} if k ≥ 2
(1)
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where opt(k, n) denotes the overall satisfaction of the optimal solution OPT (k, n) for the k-MRB problem
applied to the end-users 1, . . . n. Moreover, F [k, n] of OPT (k, n) is the index of the last item that belongs
to group Gk−1 of OPT (k, n), is:

F [k, n] = arg max
k−1≤`≤n−1

{opt(k − 1, `) + w(`, n)} (2)

Note that, in case of multiple indices that lead to the same opt(k, n) value, F [k, n] is set to the minimum
index. Clearly, the overall satisfaction of the K-MRB problem applied to N end-users can be found in
opt(K,N) and the solution OPT (K,N) can be built backwards from the index F [K,N ] in O(N2K) time.

In the rest of this section we exploit some properties of the satisfaction function w that allow to implement
the Recurrence 1 in O(NK) time.

A 2× 2 matrix

[
a b
c d

]
is convex Monge 2 if a+ d ≥ b+ c. An m× n matrix A is Monge if every 2× 2

submatrix is Monge. That is, for all 1 ≤ i < m and 1 ≤ j < n,

A[i, j] +A[i+ 1, j + 1] ≥ A[i+ 1, j] +A[i, j + 1].

A 2× 2 matrix is monotone if the maximum of the upper row is not to the right of the maximum of the

lower row. More formally,

[
a b
c d

]
is monotone if b > a implies that d > c and b = a implies that d ≥ c. An

m× n matrix A is totally monotone if every 2× 2 submatrix of A is monotone.
One can prove (see [1, 4, 3]) that every Monge matrix is totally monotone.
Recalling that the end-users are indexed by non-increasing maximum possible rates, it holds:

Lemma 2. The (upper triangular) matrix W with W [i, j] = (j − i)bj for 0 ≤ i < j ≤ N , which stores for
each possible consecutive single-group its satisfaction, is a Monge matrix. Namely, for 0 ≤ ` < n < N :

w(`, n) + w(`+ 1, n+ 1) ≥ w(`, n+ 1) + w(`+ 1, n).

If we fill the lower triangular matrix W with −∞ values, the matrix W is totally monotone.

Proof. In fact, for 0 ≤ ` < n ≤ N ,

w(`, n) + w(`+ 1, n+ 1) ≥ w(`, n+ 1) + w(`+ 1, n)

or equivalently

(n− `)bn + (n− `)bn+1 ≥ (n+ 1− `)bn+1 + (n− `− 1)bn

it holds if

bn ≥ bn+1

Lemma 3. For any fixed k, with 1 ≤ k ≤ K, we prove that the matrix Sk that stores all the values scanned
by Recurrence 1 and that is defined as:

Sk`,n = opt(k − 1, `) + w(`, n), for 1 ≤ ` ≤ n ≤ N, (3)

is totally monotone.

2In this work, when we refer to the Monge property, we always mean the convex Monge property.
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Input: N end-users, with the associated maximum possible rates, and K transmissions;
Initialization: Let {1, 2, . . . , N} be the end-users sorted in non-increasing order according to their maximum possible rates;

for i from 1 to N do

for k from 1 to K do

if k = 1 then optk,i ← wk,i else optk,i ← −∞;
Loop: for k from 2 to K do

optk,k, . . . , optk,N ← SMAWK(Sk)
where Sk is defined by Eq. 3

Figure 4: The optimal K-MRB-single-access-point algorithm.

Proof. Adding the same value opt(k − 1, `) + opt(k − 1, `+ 1) to both sides of the Monge condition for the
single-group satisfaction matrix W, we obtain the Monge condition for matrix Sk:

opt(k − 1, `) + w(`, n)︸ ︷︷ ︸
Sk
`,n

+ opt(k − 1, `+ 1) + w(`+ 1, n+ 1)︸ ︷︷ ︸
Sk
`+1,n+1

≥ opt(k − 1, `) + w(`, n+ 1)︸ ︷︷ ︸
Sk
`,n+1

+ opt(k − 1, `+ 1) + w(`+ 1, n)︸ ︷︷ ︸
Sk
`+1,n

(4)

Thus, we can compute the maximum in all rows of Sk in O(N) time by applying an algorithm proposed
by Aggarwal et al. [1], nicknamed in literature SMAWK.

Hence, for any fixed value of k ≥ 2, to compute opt(k, n) according to Recurrence 1, it is sufficient to apply
the SMAWK algorithm to the n-th row of matrix Sk, that is to the row Sk(k, n),Sk(k + 1, n), . . . ,Sk(n, n).
The K-MRB algorithm for a single access point is given in Figure 4 and it yields:

Lemma 4. Fixed any k ≥ 2, the K-MRB-single-access-point algorithm computes the values opt(k, n) for
k ≤ n ≤ N in O(N) time by invoking the SMAWK algorithm.

Proof. To apply the SMAWK algorithm in O(N) time to the totally monotone matrix Sk it is required that
each entry Sk`,n can be computed in constant time. This is true because the values opt(k, n) for k−1 ≤ n ≤ N
are calculated after the values opt(k − 1, n) for k − 1 ≤ n ≤ N have been computed and because each entry
of the single-group satisfaction matrix W can be computed in constant time.

In conclusion:

Theorem 1. The K-MRB problem for a single access point can be solved in O(N(K + logN)) time by
applying K − 1 times the SMAWK algorithm [1] to the N end-users sorted by non-increasing rates. The
complexity of the K-MRB-single-access-point algorithm is optimal since it solves NK subproblems.

2.2. General Mesh Networks

When the WMN consists of L access points, with L > 1, and the end-users are distributed among them,
to solve the K-MRB problem one has to find the numbers of transmissions k1, k2, . . . , kL which maximize
the objective function

∑L
h=1

∑kh
i=1 |Ahi |minj∈Ah

i
{bj}, where p1, p2, . . . , pL are the access points and Ahi are

the end-users served by the i-th transmission of the access point ph.
To solve the K-MRB problem with multiple access points, we propose the K-MRB-Greedy algorithm

that starts assigning one transmission to each access point, namely it sets k1 = k2 = . . . = kL = 1, because
all the end-users must be served. Then, the algorithm works in K −L successive steps where, at each step,
it finds where to add one more transmission in order to obtain the maximum gain in the overall satisfaction.

To study how the overall satisfaction changes when the number of transmissions increases (see Lemma 6),
we first prove that the values opt[k, n], for 1 ≤ k ≤ K and 1 ≤ n ≤ N , form a totally monotone matrix.

Lemma 5. Matrix opt[k, n], for 1 ≤ k ≤ K and 1 ≤ n ≤ N , is a Monge matrix.
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Proof. Let k < k′ ≤ n′ < n. We need to prove that opt(k, n) + opt(k′, n′) ≥ opt(k, n′) + opt(k′, n), or
equivalently opt(k, n′)− opt(k′, n′) ≤ opt(k, n)− opt(k′, n).

By induction on k′− k, n′−n, it is sufficient to prove for k′ = k+ 1 and n′ = n+ 1. Let x = F [k, n+ 1],
y = F [k + 1, n] be the last end-user of groups Ak−1 and Ak of the optimal solutions OPT (k, n + 1) and
OPT (k + 1, n), respectively. We proceed by induction on k. Let us consider two cases.
Case 1. x = F [k, n+ 1] ≥ y = F [k + 1, n].

opt[k, n+ 1]− opt[k + 1, n+ 1] = opt(k − 1, x) + w(x, n+ 1)− opt(k + 1, n+ 1)

substituting the optimal solution opt(k + 1, n+ 1) with a feasible solution, one has:

≤ opt(k − 1, x) + w(x, n+ 1)− opt(k, x)− w(x, n+ 1)︸ ︷︷ ︸
−Sk+1

x,n+1

= opt(k − 1, x)− opt(k, x)

and by inductive hypothesis,

≤ opt(k − 1, y)− opt(k, y) = opt(k − 1, y) + w(y, n)︸ ︷︷ ︸
Sk
y,n

− opt(k, y)− w(y, n)︸ ︷︷ ︸
−opt(k+1,n)

≤ opt(k, n)− opt(k + 1, n).

Case 2. x = F [k, n+ 1] < y = F [k + 1, n].

opt[k, n+ 1]− opt[k + 1, n+ 1] = opt(k − 1, x) + w(x, n+ 1)− opt(k + 1, n+ 1)

≤ opt(k − 1, x) + w(x, n+ 1)− opt(k, y)− w(y, n+ 1)︸ ︷︷ ︸
−Sk+1

y,n+1

by the Monge condition on the single-group satisfaction w,

≤ opt(k − 1, x) + w(x, n)− opt(k, y)− w(y, n) = opt(k − 1, x) + w(x, n)︸ ︷︷ ︸
Sk
x,n

− opt(k, y)− w(y, n)︸ ︷︷ ︸
−opt(k+1,n)

≤ opt(k, n)− opt(k + 1, n).

The next lemma proves that the overall satisfaction for each single access point increases as the number
of allowed transmissions increases, but the gain δ(k, n) = optk,n − optk−1,n does not increase when the
number of transmissions k increases.

Lemma 6. Let δ(k + 2, n) = optk+2,n − optk+1,n and δ(k + 1, n) = optk+1,n − optk,n. Then, δ(k + 2, n) ≤
δ(k + 1, n).

Proof. Let optn,k+2 = optn3,k+1 + (n − n3)bn and optn,k+1 = optn2, k + (n − n2)bn. By the optimality of
opt(k + n1, ), it holds optk+1,n ≥ optk,n3

+ (n− n3)bn. Then, δ(k + 2, n) = optk+2.n −optk+1,n = optk+1,n3

+(n− n3)bn −optk+1,n ≤ optk+1,n3
+(n− n3)bn −optk,n3

−(n− n3)bn = optk+1,n3
−optk,n3

= δ(k + 1, n3).
Since n3 ≤ n, by Lemma 5, δ(k+ 1, n3) = opt(k+ 1, n3)− opt(k, n3) < opt(k+ 1, n)− opt(k, n) = δ(k+ 1, n),
and hence

δ(k + 2, n) ≤ δ(k + 1, n3) ≤ δ(k + 1, n).
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Input: A mesh network with L access points and N =
∑L

h=1Nh end-users,
a spanning tree T for it, and K transmissions, with 2 ≤ L ≤ K ≤ N

Initialization: for h from 1 to L do

kh ← 1;
compute optNh,1 by means of the K-MRB-single-access-point algorithm;
compute optNh,2 by means of the SMAWK algorithm;
δ(Nh, 2)← optNh,2 − optNh,1;

K ← K − L;
Generic step: while K > 0 do

find j such that δ(Nj , kj + 1) = max1≤h≤L{δ(Nh, kh + 1)};
kj ← kj + 1;
K ← K − 1;
compute optNj ,kj+1 by means of the SMAWK algorithm;

δ(Nj , kj + 1)← optNj ,kj+1 − optNj ,kj
;

Figure 5: The K-MRB-Greedy algorithm for mesh networks.

Let ∆h = δ(2, Nh), δ(3, Nh), . . . , δ(KL, Nh) be the list of increments achievable increasing the number of
transmissions of the single access point ph to serve all its Nh end-users. By Lemma 6, the list ∆h is sorted
in non-increasing order. Then, to find the solution the K-MRB-Greedy algorithm has simply to select the
first K − L entries of the sorted list ∆ = ∪Lh=1∆h. Note that the K-MRB-Greedy algorithm does not need
to precompute the entire lists ∆h, 1 ≤ h ≤ L, but it is sufficient to compute one increment of only one list
at a time. Indeed, once an increment δ(kj + 1, Nj) is selected from list ∆j , the (kj + 1)-th transmission is
assigned to access point pj , and hence one only needs to compute the next increment δ(kj + 2, Nj). The
K-MRB-Greedy algorithm is given in Figure 5.

The next lemma proves that the K-MRB-Greedy algorithm finds the optimal solution for the K-MRB
problem on arbitrary graphs.

Lemma 7. The K-MRB-Greedy algorithm is optimal.

Proof. In order to prove the claim, first observe that if in an optimal solution kh transmissions are assigned
to an access point ph, then the partition of the Nh end-users for the single access point ph must be optimal.

Let S be an optimal solution for the general mesh network whose satisfaction
∑L
h=1 solNh,kh is given by

the sum of the satisfactions of L independent feasible solutions for star networks. By contradiction, assume
that there is an access point ps whose Ns end-users have been suboptimally partitioned, thus leading to a
satisfaction solNs,ks < optNs,ks , while solNh,kh = optNh,kh for h 6= s. Then, the overall satisfaction of S is:

L∑
h=1

solNh,kh =
∑

1≤h6=s≤L

optNh,kh + solNs,ks ≤
L∑
h=1

optNh,kh

thus contradicting the optimality of S.
Hence, an optimal solution for the all mesh network consists of local optimal solutions for each of its star

networks. Now it is shown that there is an optimal solution that follows the greedy choice, i.e., at each step
it adds one transmission to the access point that gives the maximum satisfaction increment. Let us prove
the existence of such a greedy solution by induction on the overall number of transmissions. The base of the
induction K = L is verified since the unique optimal solution has k1 = k2 = . . . = kL = 1. Assume that the
induction is true for a generic number of transmissions K − 1. Suppose there is an optimal solution which
adds the K-th transmission to access point pi, while the greedy choice would add such a transmission to
access point pj . Since the K-MRB-Greedy algorithm selects

δ(kj + 1, Nj) = max1≤h≤L{δ(kh + 1, Nh)} ≥ δ(ki + 1, Ni)

the greedy choice is better than or at least as good as the optimal one, thus proving the optimality of the
K-MRB-Greedy algorithm.
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Theorem 2. The K-MRB problem with multiple access points can be solved by the K-MRB-Greedy algorithm
in O(N(logN +K)) time.

Proof. First of all, 2L problems for star networks have to be computed. For each access point ph, the above
problem is solved with 1 or 2 transmissions and Nh end-users. Thus the initialization costs O(N logN)
time. At each generic step, the algorithm chooses the maximum increment, which can be done in O(logL)
time provided that the increments are stored into a max-heap. Then, for any j, to compute δ(Nj , kj + 1),
it is sufficient to invoke the SMAWK algorithm on the selected star network rooted at pj . This takes
O(Nj) time. Since the generic step is repeated K − L times, overall the K-MRB-Greedy algorithm takes
O(N logN +K logL+ (K − L)N) time, which is O(N(logN +K)) since L ≤ K ≤ N .

3. Overall Satisfaction of K-Transmissions Multi-Rate Multi-Interface Data Broadcast

In this section, we extend the K-MRB problem to the case of multi-interface networks. Each end-user
is associated with a subset of K possible interfaces, each providing a different maximum possible rate. The
maximum possible rate reflects the distance of the end-user from the associated AP and the interface used
to communicate with the AP.

Let G be a mesh of N end-users and L access points, and I be a set of H interfaces. Each end-user j
holding interface i is associated with a value bi,j representing the maximum possible rate at which end-user j
can receive transmissions via interface i. Note that, we set bi,j = 0 if end-user j cannot receive transmissions
through interface i. In this way, we can assume that each end-user holds all the interfaces, and we set to
null the maximum possible rate of the missing interfaces. An access point can transmit over all possible
interfaces to its end-users, but each end-user can receive only from one interface. As before, a transmission
of an access point that simultaneously serves a subset Ai of end-users by means of interface i is assumed to
transfer data at a rate equal to minj∈Ai{bi,j}. Thus, minj∈Ai{bi,j} is the end-user satisfaction.

The goal is then to decide which end-users receive on a given interface in order to maximize the trans-
mission rate over all the mesh network. As we are going to show, this new problem is quite difficult to
solve even in the restricted case of star networks. Hence, we provide its formalization directly when there is
a single access point. The Overall Satisfaction of K-Maximum Bandwidth Broadcast with Multi-Interfaces
and Single Access Point (K-MRIB for short) can be stated as follows.

K-MRIB : Overall Satisfaction of K-Transmissions Multi-Rate Multi-Interface
Single Access Point Data Broadcast

Input : A set U of N end-users and a set I of H interfaces. A rate function b : U × I → R+
0 and an

integer 1 ≤ K ≤ min{H,N}.
Solution: A subset I ′ ⊆ I of |I ′| = K interfaces and a partition A1, A2, . . ., AK of U which associates

each subset of end-users to one different interface in I ′.
Goal : Maximize

∑
i∈I′ |Ai|minj∈Ai{bi,j}.

In words, we want to determine which subset of interfaces and, for each interface, which subset of end-users
are reached by the same transmission in order to maximize the overall satisfaction during the broadcast.

The K-MRIB problem can be also visualized by considering a matrix D with H rows, one for each
interface, and N columns, one for each end-user, where each entry D[i, j] = bi,j is the maximum possible
rate for end-user i via interface j. Then, the solution selects the subset I ′ of K rows, and for each selected
row i ∈ I ′, a selection of some columns Ai in such a way that each column is associated with one and only
one row.

In the multi-interface case, we introduce the generalized multi-interface segmentation in order to char-
acterize optimal solutions for the K-MRIB problem.

Let I ′ = {r1, r2, . . . , rK} be a subset of K rows and let Ar1 , . . . , ArK be a partition of the N columns of
D, where Ari denotes the subset of columns assigned to interface ri, with 1 ≤ i ≤ K. Moreover, let the K
rows r1, r2, . . ., rK be indexed according to the induced minimum values of the rates in the corresponding
Ari columns obtaining that r1min ≥ r2min ≥ . . . ≥ rKmin. In a multi-interface segmentation, the columns of
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group Ari of D served by interface ri form a consecutive subset of columns in row ri once the columns in
Ar1 , . . . , Ari−1 have been canceled from D and the remaining columns S − (Ar1 ∪Ar2 · · · ∪Ari−1) in ri have
been sorted in non-increasing rate order. In other words, in a multi-interface segmentation, if columns x and
y belong to the group of columns assigned to interface ri and D[ri, x] < D[ri, y], then all the columns z in
row ri not yet assigned to interfaces r1, . . . , ri−1 with rate D[ri, x] ≤ D[ri, z] ≤ D[ri, y] are also associated
to the same interface ri.

Lemma 8. The optimal solution for K-MRIB is a multi-interface segmentation.

Proof. Given an optimal solution using K interfaces, we can order the K out of H chosen rows r1, r2, . . .,
rK according to the induced minimum values of the rates in the corresponding columns, obtaining that
r1min ≥ r2min ≥ . . . ≥ rKmin. Sorted row r1 in non-increasing order and indexed the columns of D according
to such an order, let us assume by contradiction that Ar1 consists of several distinct consecutive intervals
of columns in D. All the intervals of columns not associated to r1 before the last interval that contains
D[r1, n1] = r1min can be assigned to r1 without affecting the solution because each column in such intervals
contributes to the optimal solution with a value no greater than r1min.

After filling all the first intervals on r1, we have Ar1 = [1..n1]. Then, we can consider row r2 excluding
the columns of D already assigned to r1. Sorted row r2 in non-increasing order and indexed the columns
S − Ar1 of D according to such an order, let us assume by contradiction that Ar2 consists of distinct
intervals of columns of D. As before, each column z not associated to r2 on the left of column n2 such
that D[r2, n2] = r2min can be moved in Ar2 without decreasing the satisfaction of the solution because they
contribute at most r2min to the optimal solution.

Repeating the same until the last row rK is considered or until all the N columns are assigned, we obtain
a multi-interface segmentation that provides at least the same rate of the original optimal solution. Hence
there is an optimal solution which is a multi-interface segmentation.

Although the optimal solutions of K-MRIB still satisfy a kind of segmentation, the major difficulty
consists in choosing the K rows along with their permutation that lead to the optimal solution. Thus,
introducing multi-interfaces makes the problem much harder.

3.1. Computational Intractability

In this section we study the complexity of K-MRIB and we prove that the problem is computationally
intractable.

Theorem 3. K-MRIB is NP-hard.

Proof. We prove that the underlying decisional problem, denoted by K-MRIBD, is in general NP -complete.
We need to add one bound B ∈ R+

0 such that the problem will be to ask whether there exists a partition of
U composed of K subsets which induces an overall satisfaction of at least B.

The problem is in NP . In fact, given a partition for an instance of K-MRIBD, checking whether it ensures
an overall satisfaction of at least B requires linear time in the size of the instance.

The proof then proceeds by means of a polynomial reduction from the well-known Exact Cover by 3-Sets
problem. Such a problem is known to be NP -complete [9] and it can be stated as follows:

X3C : Exact Cover by 3-Sets

Input : Set X with |X| = 3q and a collection C of 3-element subsets of X.
Question: Is there an exact set cover for X, i.e. a subset C ′ ⊆ C such that |C ′| = q and every element of

X belongs to exactly one member of C ′?

Given an instance of X3C , we build an instance of K-MRIBD in polynomial time as follows. Let K = q,
the set U be composed of N = |X| = 3q end-users, and |I| = H = |C|. Hence, we define two mappings. One
is between X and U , the other is between subsets C and interfaces I. For each subset c ∈ C, if an element
x corresponding to end-user j belongs to c, which corresponds to an interface i, then bi,j = 1, otherwise
bi,j = 0. It follows that each interface can be used to reach at most 3 end-users while it guarantees one unit
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of rate for each end-user. Finally, let B = 3q. We need to prove that there is a solution of X3C if and only
if there exists a solution of the corresponding instance of K-MRIBD.

(⇒): Let us suppose that X3C admits a solution. The covering must consist of q triples. From the
K-MRIBD perspective, the q triples correspond to K subsets A1, A2, . . ., AK chosen to transmit data
to the 3q end-users. Each subset corresponds to one different interface. By construction, for each j ∈ U
there is a unique subset Ai in the induced solution of K-MRIBD such that bi,j = 1, hence A1, A2, . . .,
AK represent a partition of U . Summing up over all the rates allowed by the corresponding interfaces, we
obtain:

∑K
i=1 |Ai|minj∈Ai

{bi,j} =
∑K
i=1 3 = 3K = 3q = B.

(⇐): Let us suppose that K-MRIBD admits a solution. By construction, each of the K chosen interfaces
can be used to transmit one unit of rate to at most 3 end-users. Since we have K = q and B = 3q, each
interface must necessarily be used to transmit one unit of rate to 3 end-users. Hence, the partition of U
provided by the assumed solution corresponds to a set of K triples in X3C that covers all the elements in
X, that is X3C admits a solution.

3.2. Polynomially solvable subcases

In this section, some special cases are considered where the K-MRIB problem can be efficiently solved.
The following theorem can be stated.

Theorem 4. If K ≤ 2, then K-MRIB is polynomially solvable.

Proof. If K = 1, it is easy to check which row of D admits the highest minimum among all the columns,
and this clearly determines the selection of the best row. Overall, O(NH) time is required.

If K = 2, we may consider every pair of rows. For each pair, let us sort all the columns according to
the non-increasing order of the first chosen row. Once chosen the right couple of rows and the right order
(either with respect to the first chosen row or to the second one), we only need to find the best index B1

that represents the last end-user of the first group among N possibilities since the solution is a partition
(see Lemma 8).

The overall complexity of the above described algorithm is O(NH(logN +H)). Indeed, one can choose
one of the H rows at a time, order the columns in O(N logN) time according to the just chosen row, consider
all the H − 1 pairs of rows consisting of the just chosen row and every other row, and find in O(N) time the
best index B1, for a total of O(H(N logN +NH)) time.

Consider now the particular case when there is a way of indexing the columns of D that simultaneously
sorts all the rows of D. In other words, arranged the columns of D in such a way that a given row is sorted
in non-increasing order, all the rows of D are also sorted in non-increasing order of their rates. When this
property holds we say that the instance respects a common order. From now on, let K-CMRIB denote the
K-MRIB problem when the common order holds. In K-CMRIB, we assume the columns of D indexed so
that all the rows are sorted. In practice, the K-CMRIB problem might arise when the rate achievable by
an end-user with any interface depends, in the same way, on the distance of the end-user from the access
point.

When the common order holds, a multi-interface segmentation becomes a partition A1, . . . , AK of the
columns of D where each group Ai belongs to a different row (i.e., it is assigned to a different interface)
and consists of consecutive columns. In such a case a multi-interface segmentation can be denoted by the
K-tuple

〈(B1; i1), (B2; i2), . . . , (BK−1; iK−1), (N ; iK)〉

where Bj is the index of the last column that belongs to group Aj assigned to interface ij .
To design an optimal enumeration algorithm for K-CMRIB, one should consider all the possible multi-

interface segmentations of the columns of matrix D and, for each subset of K rows, find the best solution
using at most such rows. An improved enumeration algorithm can be achieved exploiting a reduction to a
Resource Constrained Shortest Paths (briefly, RCSP) problem on directed multigraphs, which is defined as
follows [11].
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RCSP: Resource Constrained Shortest Paths

Input : A directed multigraph G = (V,E) with two special vertices s and t, an integer K (which is
the number of resources) and a (positive integer) resource availability vector (R1, R2, ..., RK).
Each edge e ∈ E has a positive weight w(e) and a (positive integer) resource request vector
(r1(e), r2(e), ..., rK(e)).

Solution: A feasible path p from s to t such that
∑
e∈p ri(e) ≤ Ri for 1 ≤ i ≤ K.

Goal : Minimize
∑
e∈p w(e) over all the feasible paths p.

To reduce K-CMRIB to RCSP when the set I consists of K interfaces, define a vertex i for column i
of D, with 1 ≤ i ≤ N , and add the vertex s = 0. Let vertex t be equal to N and the resource availability
vector be such that Ri = 1, for 1 ≤ i ≤ K. For every pair of vertices i, j such that 0 ≤ i < j ≤ N and every
1 ≤ k ≤ K add the edge e = (i, j) with w(e) = −(j− i)bj and resource request vector (r1(e), r2(e), ..., rK(e))
with all entries equal to zero except for rk = 1. Clearly, |V | = O(N) and |E| = O(KN2).

Note that RCSP requires positive edge weights, while the weights introduced in the reduction are negative
because the K-CMRIB problem is a maximization problem. However, since the so constructed multigraph
is acyclic, the RCSP problem is well defined and solvable even if the edge weights are negative.

A feasible shortest path from s to t represents an optimal solution for the K-CMRIB problem when
H = K. Note that if an optimum path p has

∑
e∈p ri(e) = 0 for some 1 ≤ i ≤ K, it means that in the

optimum solution interface i is not used.

Theorem 5. If all the H rows of matrix D respect a common non-increasing order, K-CMRIB can be
solved in polynomial time when

1. K = O(1), or

2. H −K = O(1) and K = O(logαN), where α = O(1).

Proof. A modified version of Dijkstra’s algorithm can be used to solve RCSP. Precisely, for each vertex v
one has to save into a priority queue not only the weight of the path to reach v from s but also the set of
resources used along such a path. Moreover, leaving vertex v, an edge can be used only if its resource has not
already been used in the path from s to v. Since each vertex v can be reached with at most O(2K) different
paths, the size of the priority queue can grow as much as O(2KN). Hence, the edges that have to be relaxed
during the entire algorithm are O(2KKN2). So, implementing the priority queue with a Fibonacci heap,
K-MRIB requires O(2KKN2 + 2KN log(2KN)) = O(2KKN2) time.

In the general case, when K-CMRIB has K ≤ H ≤ N , K-CMRIB can be solved applying RCSP(
H
K

)
times, once for each subset of K interfaces out of the H available interfaces, for an overall time of

O(
(
H
K

)
2KKN2). It is well known [10] that(

H

K

)
≈

{
HK

K! if K is a constant
HH−K

(H−K)! if H −K is a constant

In the former case, the time complexity O(
(
H
K

)
2KKN2) becomes O(HKN2), which is polynomial because

K = O(1) and H ≤ N . In the latter case, if K = O(logαN) then H = O(logαN) too since H − K is a

constant, and thus the complexity is O(HH−K2KKN2) = O((logN)
α(H−K+1)

Nα+2), which is polynomial
because α = O(1).

As a further particular case, consider the K-CMRIB problem where each interface can be reused in more
than one transmission. Precisely, we allow that two or more groups of the multi-interface segmentation can
be associated with the same row.

Generalizing the definitions given for the single interface case, given n ≤ N and k ≤ K, let OPTn,k
denote an optimal solution for grouping end-users 1, . . . , n into k groups and let optn,k be its corresponding
satisfaction. Let Ci,h;m be the satisfaction of assigning consecutive end-users i, . . . , h to one group using
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interface m, i.e. Ci,h;m = (h− i+ 1)bm,h. Hence, optn,1 = maxm∈{1,2,...,H} C1,n;m = nmaxm∈{1,2,...,H} bm,n
for every n. For 1 < k ≤ K, the following recurrence holds:

optn,k = max
`∈{1,2,...,n−1}m∈{1,2,...,H}

{opt`,k−1 + C`+1,n;m} (5)

By the recurrence in Equation 5, a dynamic programming algorithm can be readily derived to solve this
problem variant in O(N2HK) time.

4. Conclusion

We have dealt with the problem of broadcasting a common content into a wireless mesh network consisting
of access points that act as gateways to Internet and of N end-users. The goal is to maximize the overall
end-user satisfaction, that is defined as the sum of over all end-users of their satisfaction. The end-user
satisfaction is given by the rate it receives during the data broadcast operation.

We introduced the problems of maximizing the overall satisfaction when a single interface (K-MRB)
or multiple interfaces (K-MRIB) are available. The former problem, which performs the broadcast using
exactly K transmissions at different rates, can be optimally solved in O(N(K + logN)) time by exploiting
the Monge property of the satisfaction function. The latter problem, which performs the broadcast using
K transmissions, each with a different interface, is computationally intractable (i.e. NP-hard) even when
restricted to star networks, that is when there is a single access point in the wireless mesh network. However,
K-MRIB becomes polynomially solvable still for star networks in some further particular cases. Namely,
when K ≤ 2, or a common order in the rates holds and K is polylogarithmic in N , we provided polynomial
algorithms.

As future works, it would be of interest to device good heuristics for the K-MRIB problem extended to
multiple access points.
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