
27 September 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Recommending tasks in online judges

Publisher:

Published version:

DOI:10.1007/978-3-030-23990-9_16

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer Nature

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1730146 since 2020-02-23T22:15:36Z

Recommending Tasks in Online Judges

Giorgio AudritoA,C , Tania Di MascioB , Paolo FantozziD, Luigi LauraC,D,
Gemma MartiniC , Umberto NanniD, and Marco TemperiniD

A University of Torino, B University of L’Aquila, C Italian Association for
Informatics and Automatic Calculus (AICA), D Sapienza University of Rome

Italy

Abstract. Online Judges are e-learning tools used to improve the pro-
gramming skills, tipically for programming contests such as International
Olympiads in Informatics and ACM International Collegiate Program-
ming Contest.
In this context, due to the nowadays broad list of programming tasks
available in Online Judges, it is crucial to help the learner by recom-
mending a challenging but not unsolvable task. So far, in the literature,
few authors focused on Recommender Systems (RSs) for Online Judges;
in this paper we discuss some peculiarities of this problem, that prevent
the use of standard RSs, and address a first building brick: the assessment
of (relative) tasks hardness.
We also present the results of a preliminary experimental evaluation of
our approach, that proved to be effective against the available dataset,
consisting in all the submissions made in the Italian National Online
Judge, used to train students for the Italian Olympiads in Informatics.

Keywords: recommender systems, programming contests, e-learning

1 Introduction

In recent years we have witnessed the diffusion of Programming Contests (PCs),
i.e. competitions in which participants are faced a set of tasks that require writing
computer programs. The importance and the effectiveness of PCs in the process
of learning computer programming and, more generally, computer science has
been broadly emphasized [4, 3, 5, 8, 12, 15].

Training for PCs relies heavily on Online Judges (OJs), also called Program-
ming Online Judges, that are web based e-learning tools where a learner can
submit solutions to a programming task. The learner chooses a task and reads
its statement; then, online or offline, he writes a solution that is submitted to the
OJ, that verifies the correctness, usually by testing it against a certain number
of test cases, and the efficiency, by checking that the running time and/or the
memory usage is under some limit.

However, as observed in [17], the large number of tasks available to users is
a typical example of information overloading scenario: an unexperienced user
has to choose from thousands programming tasks, many of which are probably
too difficult for him. Just to provide some examples, University of Valladolid

2 Audrito, Di Mascio, Fantozzi, Laura, Martini, Nanni, and Temperini

Fig. 1. The list of available problems in the Peking University OJ.

Online Judge has more than 200k users and 2k tasks, whilst SPOJ accounts
approximately 600k users and 6k (public) tasks. In Figure 1 is shown the typical
interface with the list of tasks in an OJ platform, whilst in Figure 2 is shown an
example of a programming task.

With such numbers, a Recommender System (RS) for the users is definitely
needed, to help them finding the next task. Traditional RS approaches can be
very broadly divided into two categories: Content Based ones, in which the rec-
ommendations derive from features of the items to be suggested, and Collabora-
tive Filtering approaches, in which the suggestion is based on the items chosen
by users similar to the current one.

There are, however, some peculiarities of Online Judges that prevent the use
of a general Recommender System:

– the user slowly improves his abilities, one task after the other, so the general
concept of user preferences does not apply: recommending a movie or a book
differs significantly from recommending a task; a user will probably still like
a movie after one year, whilst he might find a task too easy after the same
amount of time.

– Users with similar skills, i.e. users to whom we might want to suggest the
same set of tasks, might behave very differently in OJs, thus preventing us
from considering them similar. For example, one might solve all the tasks
involving a given skill, while the other might just solve one task, related to
that skill, and then move on to tasks involving different skills.

Note that the above issues are typical of RSs in e-learning tools, thus suc-
cessful approaches in this field might be extended to more general cases of TEL
systems.

In this paper we propose an algorithmic approach to a building block of a
task recommender system: given a list of tasks solved by the users, we want to

Recommending Tasks in Online Judges 3

OOO III ((()))
;;; +++ +++ SSS

OIS2019 – Round 3 �����

Online, December 19th, 2018 paths • EN

Railway Schedule (paths)

Figure 1: The Pordenone railway network.

The railway network in the Pordenone county consists
of N train stations connected by N − 1 tracks (Xi, Yi)
so that from every station is possible to reach any other
station: in other words, the tracks form a tree.

This choice makes the transportation system extremely
inefficient: trains going in opposite directions cannot
cross each other on a single track, so they need to per-
form lengthy and complex manoeuvres to pass each
other. The new administration founded its campaign
trail on changing this situation once and for all... and
now it’s time to keep promises!

Edoardo, the local leading expert in logistics, already has a mind-blowing idea for fixing the situation:
making each track one-way, so that no crossings will ever occur! Of course, the tricky part is choosing the
orientations so that the service remains acceptable for the majority of the population. After inspecting
the traffic patterns, Edoardo discovered that most people travel between one of M pairs (Ai, Bi) of
stations. Thus, an orientation of the tracks will be considered acceptable by the population only if for
each such pair, either a path from Ai to Bi or a path from Bi to Ai should exist.

However, many acceptable orientations exist and Edoardo cannot choose among them, otherwise his
system would be deemed as unfair: the only solution is to use all of them in a periodic schedule of daily
track orientations. Help Edoardo design such a schedule by counting how many acceptable orientations
exist! Since this number may be large, report it modulo 1 000 000 007.

- The modulo operation (a mod m) can be written in C/C++ as (a % m) and in Pascal as
(a mod m). To avoid the integer overflow error, remember to reduce all partial results through
the modulus, and not just the final result!

+ Among the attachments of this task you may find a template file paths.* with a sample
incomplete implementation.

Input
The first line contains the only integer N . The following N − 1 lines contain integers Xi, Yi. The next
line contains the only integer M . The last M lines contain integers Ai, Bi.

Output
You need to write a single line with an integer: the number of different acceptable orientations.

Constraints
• 1 ≤ N, M ≤ 300 000.
• 1 ≤ Xi, Yi, Ai, Bi ≤ N for each i = 0 . . . N − 1.
• Xi 6= Yi and Ai 6= Bi for each i = 0 . . . N − 1.

paths Page 1 of 3

The railway network in the Pordenone county consists of N train stations connected
by N − 1 tracks (Xi, Yi) so that from every station is possible to reach any other
station: in other words, the tracks form a tree.
This choice makes the transportation system extremely inefficient: trains going in op-
posite directions cannot cross each other on a single track, so they need to perform
lengthy and complex manoeuvres to pass each other. The new administration founded
its campaign trail on changing this situation once and for all... and now it’s time to
keep promises!
Edoardo, the local leading expert in logistics, already has a mind-blowing idea for
fixing the situation: making each track one-way, so that no crossings will ever occur!
Of course, the tricky part is choosing the orientations so that the service remains
acceptable for the majority of the population. After inspecting the traffic patterns,
Edoardo discovered that most people travel between one of M pairs (Ai, Bi) of stations.
Thus, an orientation of the tracks will be considered acceptable by the population only
if for each such pair, either a path from Ai to Bi or a path from Bi to Ai should exist.
However, many acceptable orientations exist and Edoardo cannot choose among them,
otherwise his system would be deemed as unfair: the only solution is to use all of them
in a periodic schedule of daily track orientations. Help Edoardo design such a schedule
by counting how many acceptable orientations exist! Since this number may be large,
report it modulo 1 000 000 007.

Fig. 2. An example of a problem from a programming contest; this task is taken from
the final contest of the 2019 edition of the Italian Team Olympiads in Informatics
(OIS) [2].

estimate relative hardness of the tasks, i.e. finding a ranking of the tasks from
the easiest to the hardest.

Notice that the number of users who solved a given task, which could be seen
as a proxy for the hardness of the task, is not a good indicator: popular hard
tasks might have more users that solved them compared to easy, unpopular,
tasks.

Our approach is based on the construction of a graph, where the nodes are
the tasks and the (weighted) directed edges represent the number of users that
solved one task before the other. We tested the effectiveness of our approach
on the data from the OJ used by the secondary school students training for
the Italian Olympiads in Informatics (Olimpiadi Italiane di Informatica - OII)
[10], and the preliminary experimental results confirm the effectiveness of our
approach.

This paper is organized as follows: the next section provides the necessary
background related to programming contests, online judges, and recommender

4 Audrito, Di Mascio, Fantozzi, Laura, Martini, Nanni, and Temperini

systems, whilst our approach is detailed in Section 3. In Section 4 we describe
our experimental findings and concluding remarks are addressed in Section 5.

2 Background

In this section we provide the reader the necessary background concerning pro-
gramming contests, online judges, and recommender systems.

2.1 Programming Contests

A programming contest is a competition in which contestants are faced with a
set of programming tasks, also called problems, to be solved in a limited amount
of time and/or with a limited amount of memory usage.

A single task can be broken into different subtasks of increasing complexity:
basic techniques might be enough to solve, within the given time and/or space
limits, some of the subtasks whilst the most difficult ones might require very
specific algorithmic techniques and data structures.

We mention some popular programming contests:

– The International Olympiads in Informatics (IOI), that are an annual pro-
gramming competition for secondary school students patronized by UN-
ESCO. http://www.ioinformatics.org/

– The ACM International Collegiate Programming Contest (ICPC) is a mul-
titier, team-based, programming competition operating under the auspices
of ACM. https://icpc.baylor.edu/

– The very recent International Olympiads in Informatics in Team (IOIT), that
started in 2017, that are a team competition, like ACM ICPC, differently
from IOI (individual competition). Currently there are only four nations
involved: Italy, Romania, Russia, and Sweden. https://ioi.team/

– Google Code Jam, that is based on multiple online rounds that concludes in
the World Finals. https://code.google.com/codejam/.

– Facebook Hacker Cup, that is an annual worldwide programming competition
where hackers compete against each other for fame, fortune, glory and a shot
at the coveted Hacker Cup. https://www.facebook.com/hackercup/

2.2 Online Judges

The Online Judges are, usually, web based platforms that provide a large num-
ber of programming tasks to be solved. There are several popular OJ platform,
we cite the already mentioned University of Valladolid Online Judge https://

uva.onlinejudge.org, Sphere Online Judge (SPOJ) https://www.spoj.com/,
CodeChef https://www.codechef.com/, and Peking University Online Judge http:
//poj.org.

In the literature, the first reference to Online Judge dates to the paper of
Kurnia, Lim, and Cheang [13]. A brief survey on OJs can be found in [17],
whilst more extended surveys on tools and techniques for automatic evaluation
of solutions submitted to OJs can be found in [1, 6].

Recommending Tasks in Online Judges 5

2.3 Recommender Systems in OJs

As already observed in the introduction, despite the large amount of literature
devoted to RS, the peculiarities of recommendation in OJs, where the relation
user-item is way more complex than the typical RS cases, prevent from using
standard techniques and forces the development of ad-hoc methods.

However, so far few research focused in the recommendation of tasks in OJs:
in [14] the authors use the traditional collaborative filtering method with a new
similarity measure adapted to the case, whilst in [17] is presented an approach
based on fuzzy logic, refining a previous approach [16]. In [7], Caro and Jimenez
tackled the problem by considering user-based and similarity-based approaches.
An alternative approach is detailed in [11], where is defined a framework that
can allow recommendations and that can foster motivation in students by means
of a lightweight, badge-based, gamified approach.

Our approach differs from the ones cited above because we aim at solving a
subproblem: can we derive the ranking of the tasks, ordered by their hardness?

3 Ranking Tasks in Online Judges

In this section we details our approach. Our goal is to provide a rank of the
tasks, based only on the submissions made by the users. Thus, our input data
contain all the submissions to an OJ platform. Our approach is based on the
following assumptions:

– a task is solved by a user if and only if he has obtained the maximum possible
score on it

– having two tasks t1 and t2 where t1 is harder than t2, then each user, most
of the times, will solve them in order of ascending difficulty (so first t2 and
the t1)

– it is possible to estimate the difficulty of a task, just using the users’ sub-
missions, without any knowledge about the users

The submissions are sorted by user and timestamp, to have the ordered
sequence of the tasks for each user. Since we assume that each user solves the
tasks in ascending order of difficulty, then we can consider this sequence as
monotonically increasing in terms of difficulty.

So, considering di as the measure of the difficulty of ti, we assume that in
each sequence di ≤ dj ⇐⇒ i < j. Now we build a weighted directed graph with
tasks as nodes and where each edge in the graph (ti, tj , w) means that di < dj
in w different sequences.

Since that it is possible that if a task could be solved by some users just after
it has been uploaded on the platform, even if it is not harder than the last one
solved by the user, then we try to reduce the error induced by this, avoiding
counting the sequences where the timestamp of ti is prior than the uploading of
tj on the platform in the weight of the edge (ti, tj).

Since that a sequence of length n will create O(n2) edges, we expect to have
a much dense graph. Moreover, an old task (uploaded at the beginning of the

6 Audrito, Di Mascio, Fantozzi, Laura, Martini, Nanni, and Temperini

utilisation of the platform) will likely have more out edges than the newer tasks.
To decrease the bias given by the age of the tasks, we create N random walks
on the graph with random length, chosen in rlm and rlM .

Each random walk starts from a random node, and then, in each iteration
a random out edge ei of the node n is chosen such that the probability p of
choosing ei is equal to

p(ei) =
wi∑

j | ej∈out(n)

wj

At this point we have N sequences such that:

∀ ti, ti+1 ∈ S =⇒ (ti, ti+1) ∈ G

where S is the set of N random walks’ paths, G is the original graph built from
submissions. So we build a subgraph G′ = (V ′, E′) of G = (V,E) such that

∀(s, d, w′) ∈ E′ =⇒ (s, d, w) ∈ E, w′ = |{p | (ti, ti+1) ∈ p, p ∈ S, ti = s, ti+1 = d}|

The resulting graph should have the same order of magnitude for all the
edges. This means that the bias given by the age of the task is reduced drastically.
Then, the edges are once again filtered out leaving only one direction. In practice
we will maintain only the edge with the maximum weight between s −→ d and
d −→ s.

This final graph is used to define an order between nodes, using different
metrics. For example a score for a node n:

m(n) =

∑
i | ei∈in(n)

wi∑
j | ej∈out(n)

wj +
∑

i | ei∈in(n)

wi

4 Experimental Evaluation

In order to evaluate the effectiveness of our approach, we considered a dataset
with the data from the OJ used by the secondary school students training for
the Italian Olympiads in Informatics (Olimpiadi Italiane di Informatica - OII)
[10, 9].

In particular, this dataset had:

– 321430 submissions
– 366 tasks
– 3928 users

We considered only the submissions that solved the tasks, so we reduced to 68859
submissions, where the distributions of the users with respect to the tasks are
shown in Figure 3. We computed 100000 random walks, that is a 10-factor over
the number of edges of the starting graph. The resulting graph contains 366
nodes (i.e., one for each task in the OJ platform) and 121803 edges.

Recommending Tasks in Online Judges 7

Fig. 3. Distribution of number of solved tasks per users

Judging the hardness of a task is, by definition, a subjective problem. In order
to assess our results we only considered the top 25 tasks, and divided them into
five buckets of five tasks each. We asked some three experts (i.e. the tutors that
mantain the platform) to evaluate our results by sort the five buckets in the
order of the hardness of the tasks included. Two experts sorted the buckets in
the same order obtained by the algorithm, whilst the third one swapped the
third and fourth bucket. We plan to test our approach on data from other OJs,
but the validation of the results is a complex issue by itself.

5 Conclusions

In this paper we proposed a graph based approach to estimate the relative hard-
ness of tasks in OJs. This is a basic building block of a recommending system
to suggest the next task to be solved by a user.

We also performed an experimental evaluation of our approach against the
data from the OJ used by the secondary school students training for the Italian
Olympiads in Informatics (Olimpiadi Italiane di Informatica - OII) [10, 9].

Our preliminary results seem promising, and we plan to carry on our in-
vestigations by testing it with different data; furthermore, as mentioned in the
previous section, the problem of the evaluation of the results is a complex task
by itself, and we plan to try alternative approaches also in this directions, includ-
ing a comparison with traditional recommendation methods (including random
orders).

References

1. K. M. Ala-Mutka. A survey of automated assessment approaches for programming
assignments. Computer science education, 15(2):83–102, 2005.

8 Audrito, Di Mascio, Fantozzi, Laura, Martini, Nanni, and Temperini

2. N. Amaroli, G. Audrito, and L. Laura. Fostering Informatics Education through
Teams Olympiad. Olympiads in Informatics, 12:133–146, 2018.

3. O. Astrachan. Non-competitive programming contest problems as the basis for
just-in-time teaching. In Frontiers in Education, 2004. FIE 2004. 34th Annual,
pages T3H/20–T3H/24 Vol. 1, Oct 2004.

4. G. Audrito, G. B. Demo, and E. Giovannetti. The role of contests in changing
informatics education: A local view. Olympiads in Informatics, 6, 2012.

5. M. Blumenstein, S. Green, S. Fogelman, A. Nguyen, and V. Muthukkumarasamy.
Performance analysis of game: a generic automated marking environment. Com-
puters and Education, 50:1203–1216, 2008.

6. J. Caiza and J. Del Alamo. Programming assignments automatic grading: Re-
view of tools and implementations. In INTED2013 Proceedings, 7th International
Technology, Education and Development Conference, pages 5691–5700. IATED,
4-5 March, 2013 2013.

7. M. Caro-Martinez and G. Jimenez-Diaz. Similar Users or Similar Items? Com-
paring Similarity-Based Approaches for Recommender Systems in Online Judges.
In D. W. Aha and J. Lieber, editors, Case-Based Reasoning Research and Devel-
opment, volume 10339, pages 92–107. Springer International Publishing, Cham,
2017.

8. V. Dagienė. Sustaining informatics education by contests. In International Confer-
ence on Informatics in Secondary Schools-Evolution and Perspectives, pages 1–12.
Springer, 2010.

9. W. Di Luigi, P. Fantozzi, L. Laura, G. Martini, E. Morassutto, D. Ostuni, G. Pic-
cardo, and L. Versari. Learning analytics in competitive programming training
systems. In 2018 22nd International Conference Information Visualisation (IV),
pages 321–325, July 2018.

10. W. Di Luigi, G. Farina, L. Laura, U. Nanni, M. Temperini, and L. Versari. oii-
web: an interactive online programming contest training system. Olympiads in
Informatics, 10:195–205, 2016.

11. T. Di Mascio, L. Laura, and M. Temperini. A framework for personalized competi-
tive programming training. In 2018 17th International Conference on Information
Technology Based Higher Education and Training (ITHET), pages 1–8, April 2018.

12. G. Garcia-Mateos and J. L. Fernandez-Aleman. Make learning fun with program-
ming contests. In Transactions on Edutainment II, pages 246–257. Springer, 2009.

13. A. Kurnia, A. Lim, and B. Cheang. Online judge. Computers & Education,
36(4):299–315, 2001.

14. R. Y. Toledo and Y. C. Mota. An e-learning collaborative filtering approach to
suggest problems to solve in programming online judges. Int. J. Distance Educ.
Technol., 12(2):51–65, Apr. 2014.

15. T. Wang, P. Su, X.and Ma, Y. Wang, and K. Wang. Ability-training-oriented auto-
mated assessment in introductory programming course. Computers and Education,
56:220–226, 20011.

16. R. Yera and L. Mart́ınez. A recommendation approach for programming on-
line judges supported by data preprocessing techniques. Applied Intelligence,
47(2):277–290, Sep 2017.

17. R. Yera Toledo, Y. Caballero Mota, and L. Mart́ınez. A Recommender System
for Programming Online Judges Using Fuzzy Information Modeling. Informatics,
5(2):17, 2018.

