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COQUASI-BIALGEBRAS WITH PREANTIPODE AND RIGID
MONOIDAL CATEGORIES

PAOLO SARACCO

Abstract. By a theorem of Majid, every monoidal category with a neutral
quasi-monoidal functor to finitely generated and projective k-modules gives
rise to a coquasi-bialgebra. We prove that if the category is also rigid, then the
associated coquasi-bialgebra admits a preantipode, providing in this way an
analogue for coquasi-bialgebras of Ulbrich’s reconstruction theorem for Hopf
algebras. When k is field, this allows us to characterize coquasi-Hopf algebras
as well in terms of rigidity of finite-dimensional corepresentations.

Introduction

A well-known result in the theory of Hopf algebras states that one can reconstruct,
in a suitable way, a Hopf algebra from its category of finite-dimensional corepresen-
tations. In details, if C is a k-linear, abelian, rigid symmetric monoidal category
which is essentially small, and if ω : C →Mf is a k-linear, exact, faithful, monoidal
functor, then there exists a commutative Hopf algebra H, unique up to isomorphism,
such that ω factorizes through an equivalence of categories ωH : C →MH

f followed
by the forgetful functor; in fact H represents the functor

R→ Aut⊗(ω⊗R)
which associates any commutative k-algebra R with the group of monoidal natural
automorphisms of ω⊗R : C → ModR sending X to ω(X)⊗R, see [R], [DM] and
[JS]. In particular, if C is already the category of finite-dimensional right comodules
over a commutative Hopf algebra A, then one can show that A ∼= H as Hopf algebras.
In [U], Ulbrich showed that even in case the symmetry condition is dropped, it is
still possible to construct an associated Hopf algebra H.

In [M2], Majid extended this result to coquasi-bialgebras (or dual quasi-bialgebras),
proving that if C is an essentially small monoidal category endowed with a functor
ω : C → Mf that respects the tensor product in a suitable way (but that is not
necessarily monoidal), then there is a coquasi-bialgebra H such that ω factorizes
through a monoidal functor ωH : C → HMf followed by the forgetful functor.

In [AP1], Ardizzoni and Pavarin introduced preantipodes to characterize those
coquasi-bialgebras over a field for which a (suitable) structure theorem for coquasi-
Hopf bicomodules holds and in [Sc4, Theorem 2.6] Schauenburg proved (in a
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2 PAOLO SARACCO

non-constructive way) that preantipodes characterize also those coquasi-bialgebras
whose category of finite-dimensional comodules is rigid.

Inspired by these results, we are going to show in Section 2 that if C is an
essentially small right rigid monoidal category together with a quasi-monoidal
functor ω : C →Mf to the category of finitely generated and projective k-modules,
then there exists a preantipode for the coendomorphism coquasi-bialgebra H of ω
(Proposition 2.13). In particular, this will allow us to reconstruct a coquasi-bialgebra
with preantipode from its category of finite-dimensional left comodules, in the spirit
of the classical Tannaka-Krein duality. Our approach presents three remarkable
advantages. First of all, nowhere we will assume to have an isomorphism between
the “underlying” k-module ω(X?) of a dual object and the dual k-module ω(X)∗
of the “underlying” object (as it is done for example in [M1, §9.4.1] or [H, §3]).
In fact, we will see that natural isomorphisms ω(X?) ∼= ω(X)∗ are in bijection
with coquasi-Hopf algebra structures on H. Secondly, we will develop our main
construction working over a generic commutative ring k instead of over a field.
Thirdly, we will not only show that a preantipode exists, but we will show how to
construct it explicitly.

Then, we will apply this result to recover uniqueness of preantipodes and the
fact that coquasi-bialgebra morphisms automatically preserves them, from their
categorical counterparts. We will also recover the characterization of coquasi-
bialgebras with preantipode as those coquasi-bialgebras whose category of finite-
dimensional corepresentations is rigid and that of coquasi-Hopf algebras as those for
which in addition ω(−?) and ω(−)∗ are isomorphic (Theorem 2.21). In conclusion,
we will see in §3 how we can endow the finite dual coalgebra of a quasi-bialgebra
with preantipode with a structure of coquasi-bialgebra with preantipode.

1. Coquasi-bialgebras and preantipodes

We extend here the notion of preantipode as it has been introduced in [AP1]
to the case of coquasi-bialgebras over a commutative ring. We prove that when it
exists, it has to be unique and that coquasi-bialgebra morphisms have to preserve it
under the additional assumption that the coquasi-bialgebras are k-flat.

1.1. Monoidal categories and coquasi-bialgebras. A monoidal category is a
category C endowed with a functor ⊗ : C × C → C, called the tensor product, with a
distinguished object I, called the unit, and with three natural isomorphisms

a : ⊗ (⊗× IdC)→ ⊗ (IdC ×⊗) (associativity constraint)

l : ⊗ (I× IdC)→ IdC, r : ⊗ (IdC × I)→ IdC (left and right unit constraints)

that satisfy the Pentagon and the Triangle Axioms, that is, for all X,Y, Z,W in C

(X ⊗ aY,Z,W ) ◦ aX,Y⊗Z,W ◦ (aX,Y,Z ⊗W ) = aX,Y,Z⊗W ◦ aX⊗Y,Z,W ,
(X ⊗ lY ) ◦ aX,I,Y = rX ⊗ Y.

A quasi-monoidal functor between (C,⊗, I, a, l, r) and (C′,⊗′, I′, a′, l′, r′) is a functor
ω : C → C′ together with an isomorphism ϕ0 : I′ →ω (I) and a natural isomorphism
ϕ = (ϕX,Y : ω (X)⊗′ω (Y )→ω (X ⊗ Y ))

X,Y ∈C in C′. Omitting the composition
symbols, a quasi-monoidal functor ω is said to be neutral if

(1) ω (lX)ϕI,X (ϕ0 ⊗′ω(X)) = l′ω(X), ω (rX)ϕX,I (ω(X)⊗′ ϕ0) = r′ω(X)
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for all X in C. Furthermore, ω is said to be monoidal(1) if

(2) ω(aX,Y,Z)ϕX⊗Y,Z(ϕX,Y ⊗′ω(Z)) = ϕX,Y⊗Z(ω(X)⊗′ ϕY,Z)a′ω(X),ω(Y ),ω(Z)

for all X,Y, Z in C. It is said to be strict if ϕ0 and ϕ are the identities.
The notions of (co)algebra and (co)module over a (co)algebra can be introduced

in the general setting of monoidal categories (see e.g. [AM, §1.2], where (co)algebras
are called (co)monoids). Given an algebra A in C, one can define the categories
AC, CA and ACA of left, right and two-sided modules over A, respectively. Similarly,
given a coalgebra C in C, one can define the categories of C-comodules CC, CC , CCC .

Henceforth and unless stated otherwise, we will fix a base commutative ring k and
we will assume to work in the monoidal category M of k-modules: all (co)algebras
will be k-(co)algebras, the unadorned tensor product ⊗ will denote the tensor
product over k and Hom(V,W ) will be the set of k-linear morphisms from V to W .
We will often omit the composition symbols between maps as we did above. In order
to deal with comultiplications and coactions, we will use the following variation of
Sweedler’s Sigma Notation (cf. [Sw, §1.2])

∆(x) :=
∑

x1 ⊗ x2, ρrV (v) :=
∑

v0 ⊗ v1, ρlW (w) :=
∑

w−1 ⊗ w0

for every coalgebra C, right C-comodule V , left C-comodule W and for all x ∈ C,
v ∈ V and w ∈W . Recall that
• if W is a left C-comodule finitely generated and projective over k, then its

linear dual W ∗ := Hom(W, k) is naturally a right C-comodule with
∑
f0 ⊗ f1

uniquely determined by
∑
f0(w)f1 =

∑
w−1f (w0) for all w ∈W ;

• if A is an algebra, then Hom(C,A) is an algebra with composition law defined by
(f ∗ g)(x) =

∑
f(x1)g(x2) for all f, g ∈ Hom(C,A) and x ∈ C (the convolution

product) and if M is an A-bimodule then we may as well consider (f ∗φ∗g)(x) =∑
f(x1) · φ(x2) · g(x3) for all f, g ∈ Hom(C,A), φ ∈ Hom(C,M) and x ∈ C.

The following result is formally dual to [ABM, Theorem 1] and has already been
mentioned in [Sc2, §2.3]. Since the proof is quite long, technical and not of particular
interest, it is omitted.

Proposition 1.1. For a coalgebra (C,∆, ε) there is a bijective correspondence
between
• monoidal structures on CM such that the underlying functor U : CM→M is

quasi-monoidal;
• sets of morphisms {m,u, ω, l, r} such that ω : C ⊗C ⊗C → k, l, r : C → k are

convolution invertible linear maps, m : C ⊗ C → C, u : k → C are coalgebra
morphisms and

ω (C ⊗ C ⊗m) ∗ ω (m⊗ C ⊗ C) = (ε⊗ ω) ∗ ω (C ⊗m⊗ C) ∗ (ω ⊗ ε) ,(3)
ω (C ⊗ u⊗ C) = r−1 ⊗ l, m (u⊗ C) ∗ l = l ∗ C, m (C ⊗ u) ∗ r = r ∗ C,(4)

m (C ⊗m) ∗ ω = ω ∗m (m⊗ C) .

A coquasi-bialgebra (or dual quasi-bialgebra) is a coassociative and counital
coalgebra (H,∆, ε) endowed with a multiplication m : H⊗H → H, a unit u : k→ H
and three linear maps ω : H ⊗H ⊗H → k, l, r : H → k such that the conditions

(1)In [AM, Definition 3.5], these are called strong monoidal functors.
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of Proposition 1.1 are satisfied. We set 1H := u (1k) and we refer to ω as the
reassociator of the coquasi-bialgebra. A morphism of coquasi-bialgebras

f : (H,m, u,∆, ε, ω, l, r)→ (H ′,m′, u′,∆′, ε′, ω′, l′, r′)
is a coalgebra homomorphism f : (H,∆, ε)→ (H ′,∆′, ε′) such that
m′ (f ⊗ f) = f m, f u = u′, ω′ (f ⊗ f ⊗ f) = ω, l′f = l, r′f = r.

In particular, the category HM of left comodules over a coquasi-bialgebra H comes
endowed with a monoidal structure such that the underlying functor U : HM →
M is a strict quasi-monoidal functor. Explicitly, given two left H-comodules V
and W , their tensor product V ⊗W is an H-comodule via the diagonal coaction
ρV⊗W (v ⊗ w) =

∑
v−1w−1 ⊗ v0 ⊗w0. The unit is k, regarded as a left H-comodule

via the trivial coaction ρk (k) = 1H ⊗ k. The constraints are given by

aU,V,W (u⊗ v ⊗ w) :=
∑

ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ v0 ⊗ w0,

lV (1k ⊗ v) =
∑

l(v−1)v0 rV (v ⊗ 1k) =
∑

r(v−1)v0

for every U, V,W ∈ HM and all u ∈ U, v ∈ V,w ∈W . Moreover, every morphism of
coquasi-bialgebras f : H → H ′ induces a strict monoidal functor fM : HM→ H′M,
which is given by the assignments

fM (X, ρX : X → H ⊗X) = (X, (f ⊗X) ρX) , fM (γ : X → Y ) = γ.

Remark 1.2 (Compare with [D]). Let H be a coquasi-bialgebra and consider a
convolution invertible element F : H ⊗H → k. Define

ωF := (ε⊗ F ) ∗ F (H ⊗m) ∗ ω ∗ F−1 (m⊗H) ∗ (F−1 ⊗ ε)
mF := F ∗m ∗ F−1, lF := F (u⊗H) ∗ l, rF := F (H ⊗ u) ∗ r.

Then HF := (H,∆, ε,mF , u, ωF , lF , rF ) is still a coquasi-bialgebra and we say that
it has be obtained from H by twisting via the element F . Notice that, since the
coalgebra structure has not been touched, HM = HF M. What is changing is the
monoidal structure on HM. In fact, it can be checked that a coquasi-bialgebra H ′
has been obtained from another coquasi-bialgebra H by twisting via an element
F (i.e. H ′ ∼= HF as coquasi-bialgebras) if and only if there exists a monoidal
equivalence G : HM → H′M (i.e. a monoidal functor which is also an equivalence
of categories) such that U ′ ◦ G = U , where U ,U ′ are the obvious forgetful functors.
In particular, there is a bijective correspondence between convolution invertible
elements F ∈ (H ⊗H)∗ and monoidally isomorphic monoidal structures on HM.

If H ′ has been obtained from a coquasi-bialgebra H by twisting via an element F ,
then we say that H ′ is (twist) equivalent to H. The interested reader may verify that
being (twist) equivalent for coquasi-bialgebras is an equivalence relation: (i) every
coquasi-bialgebra is equivalent to itself via F = ε ⊗ ε; (ii) if g : HF → H ′ is an
isomorphism of coquasi-bialgebras and F ′ := F−1(g−1 ⊗ g−1), then g−1 : H ′F ′ → H
is an isomorphism of coquasi-bialgebras; (iii) if g : HF → H ′ and g′ : H ′F ′ → H ′′ are
isomorphisms of coquasi-bialgebras and F ′′ := F ′(g ⊗ g) ∗ F , then g′g : HF ′′ → H ′′

is an isomorphism of coquasi-bialgebras. In particular, a coquasi-bialgebra H is
equivalent to HF for every convolution invertible element F ∈ (H ⊗H)∗.

Now, notice that m(1H ⊗ 1H) = l(1H)1H l−1(1H) = 1H and hence, by resorting
to (3), ω(1H ⊗ 1H ⊗ 1H)3 = ω(1H ⊗ 1H ⊗ 1H)2. Since ω is convolution invertible,
ω(1H ⊗ 1H ⊗ 1H) is invertible in k and so we conclude that ω(1H ⊗ 1H ⊗ 1H) = 1k.



COQUASI-BIALGEBRAS WITH PREANTIPODE AND RIGID MONOIDAL CATEGORIES 5

As a consequence, from (4) we deduce that r−1(1H)l(1H) = 1k and therefore
p := r(1H) = l(1H) is a well-defined invertible element in k. If we consider
F := pr−1 ⊗ l−1, this is a convolution invertible element such that lF = ε = rF .
Thus, any coquasi-bialgebra is (twist) equivalent to one in which l = ε = r.

In light of Remark 1.2, we will focus only on the latter case and from now on all
coquasi-bialgebras will satisfy

(4′) ω (C ⊗ u⊗ C) = ε⊗ ε, m (u⊗ C) = C = m (C ⊗ u)

instead of relations (4). Moreover, all quasi-monoidal functors will be neutral and
hence we will omit to specify it.

Dually to coquasi-bialgebras we have quasi-bialgebras, that is to say, ordinary
algebras A with a counital comultiplication which is coassociative up to conjugation
by a suitable invertible element Φ ∈ A⊗A⊗A.

1.2. Preantipodes for coquasi-bialgebras. The following definition traces word
by word [AP1, Definition 3.6].

Definition 1.3. A preantipode for a coquasi-bialgebra H is a k-linear endomorphism
S : H → H such that, for all h ∈ H,∑

S(h1)1h2 ⊗ S(h1)2 = 1H ⊗ S(h),∑
S(h2)1 ⊗ h1S(h2)2 = S(h)⊗ 1H ,∑
ω(h1 ⊗ S(h2)⊗ h3) = ε(h).(5)

Remark 1.4. Let H be a coquasi-bialgebra with a preantipode S. Then∑
h1S(h2) = εS(h)1H =

∑
S(h1)h2

for all h ∈ H. In particular, if ω = ε⊗ ε⊗ ε (i.e. if H is an ordinary bialgebra) then
εS(h) = ε (h) and S is an ordinary antipode.

A coquasi-bialgebra H turns out to be an algebra in the monoidal category
HMH [Sc4, §2]. Thus we may consider the so-called category of right coquasi-Hopf
H-bicomodules HMH

H := (HMH)
H

.
Assume that H is flat over k. Then the functor F : HM → HMH

H given by
F (V ) := V ⊗H admits a right adjoint G : HMH

H → HM, G (M) := M coH , where
M coH := {m ∈M | m0⊗m1 = m⊗1H} is the space of right H-coinvariant elements
in M . The counit ε : FG → id and the unit η : id → GF of the adjunction are
given respectively by εM(x⊗ h) := xh and ηN (n) := n⊗ 1H for every M ∈ HMH

H ,
N ∈ HM and for all m ∈ M , n ∈ N , h ∈ H (we refer to [AP1] for details). Then
one can mimic step by step the proof of [AP1, Theorem 3.9] to prove the following.

Theorem 1.5. Under the standing assumption that H is k-flat, the adjunction
(F,G) is an equivalence of categories if and only if H admits a preantipode.

We might have given now a direct proof of the fact that coquasi-bialgebra
morphisms preserve preantipodes, but we opted for a less direct approach relying
on the subsequent proposition suggested by Alessandro Ardizzoni. The effort is
the same and we think that the general result in Proposition 1.6 deserves to be
highlighted, as it may find applications in other contexts.
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Proposition 1.6. Let (C,∆C , εC) be a coalgebra and let (H,∆H , εH ,m, u, ω, S) be
a k-flat coquasi-bialgebra with preantipode S. Assume that g, h : C → H are k-linear
maps such that g is a coalgebra morphism and g and h satisfy:∑

h(z2)1 ⊗ g(z1)h(z2)2 = h(z)⊗ 1H ,(6) ∑
h(z1)1g(z2)⊗ h(z1)2 = 1H ⊗ h(z),(7) ∑
ω(g(z1)⊗ h(z2)⊗ g(z3)) = ε(z),(8)

for all z ∈ C. Then h = Sg.

Proof. As in [AP1, §3.5], consider the coquasi-Hopf bicomodule H⊗̂H := H ⊗H
with explicit structures given by

ρr (x⊗ y) =
∑

x1 ⊗ y1 ⊗ x2y2, ρl (x⊗ y) =
∑

y1 ⊗ x⊗ y2,

(x⊗ y)h =
∑

x1 ⊗ y1h1ω (x2 ⊗ y2 ⊗ h2) ,

for all x, y, h ∈ H. Consider also the distinguished component ε̂ :
(
H⊗̂H

)coH ⊗
H → H⊗̂H of the counit of the adjunction (F,G), which is given explicitly by
ε̂ (x⊗ y ⊗ h) =

∑
x1 ⊗ y1h1ω (x2 ⊗ y2 ⊗ h2). Since H admits a preantipode, it is

invertible with inverse ε̂−1 (x⊗ y) =
∑

((x1 ⊗ S (x2))⊗ x3) y for all x, y, h ∈ H.
Finally, consider the assignment β : C → H ⊗H ⊗H given by

β(z) =
∑

g(z1)⊗ h(z2)⊗ g(z3)

for all z ∈ C. Observe that

ρr
(∑

g(z1)⊗ h(z2)
)

=
∑

g(z1)1 ⊗ h(z2)1 ⊗ g(z1)2h(z2)2

(∗)=
∑

g(z1)⊗ h(z3)1 ⊗ g(z2)h(z3)2
(6)=
∑

g(z1)⊗ h(z2)⊗ 1H ,

where in (∗) we used the hypothesis that g is comultiplicative, whence
∑
g(z1)⊗

h(z2) ∈
(
H⊗̂H

)coH for all z ∈ C. Therefore for all z ∈ C we can compute

ε̂β (z) = ε̂
(∑

g(z1)⊗ h(z2)⊗ g(z3)
)

=
∑

g(z1)1 ⊗ h(z2)1g(z3)1ω (g(z1)2 ⊗ h(z2)2 ⊗ g(z3)2)

=
∑

g(z1)⊗ h(z3)1g(z4)ω (g(z2)⊗ h(z3)2 ⊗ g(z5))
(7)=
∑

g(z1)⊗ 1Hω (g(z2)⊗ h(z3)⊗ g(z4)) (8)= g(z)⊗ 1H
so that
β (z) = ε̂−1 (g(z)⊗ 1H) =

∑
g(z)1⊗S (g(z)2)⊗g(z)3 =

∑
g(z1)⊗S (g(z2))⊗g(z3)

and, by applying ε⊗H ⊗ ε to both sides,

h(z) =
∑

ε (g(z1))h(z2)ε (g(z3)) = (ε⊗H ⊗ ε)
(∑

g(z1)⊗ h(z2)⊗ g(z3)
)

= (ε⊗H ⊗ ε) (β (z)) = (ε⊗H ⊗ ε)
(∑

g(z1)⊗ S (g(z2))⊗ g(z3)
)

= S(g(z)).�

Proposition 1.7. If (H,SH), (L, SL) are k-flat coquasi-bialgebras with preantipode
and f : H → L is a morphism of coquasi-bialgebras, then fSH = SLf . In particular,
the preantipode for a k-flat coquasi-bialgebra H is unique.
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Proof. Since f is a morphism of coquasi-bialgebras, it is in particular a coalgebra
morphism and fSH = h satisfies (6), (7) and (8) of Proposition 1.6, whence
fSH = SLf . Now, assume that S and T are two preantipodes for H. The first
claim applied to the case (H,S), (H,T ) and f = IdH entails that S = T . �

Remark 1.8. Notice that the functor (−)coH : HMH
H → HM needs not to be

well-defined if the functor H ⊗− does not preserve, at least, coreflexive equalizers
(i.e. equalizers of parallel arrows admitting a common retraction).

2. Coquasi-bialgebras with preantipode and rigid monoidal categories

It is well-known that every rigid monoidal category together with a monoidal
functor to the category of finitely generated and projective k-modules gives rise to
a Hopf algebra. Via a variant of the same Tannaka-Krĕın reconstruction process, it
has been shown by Majid in [M2] that every monoidal category C together with a
quasi-monoidal functor ω : C →Mf gives rise to a coquasi-bialgebra H instead. A
very natural question then is what happens if the category C is also rigid.

Our aim in this section is to show how this rigidity is related with the existence
of a preantipode on H. We will do this without any additional assumption on C. In
particular, we will implicitly allow ω(X?) and ω(X)∗ to be non-isomorphic objects,
as it happens for example in [Sc1, Example 4.5.1].

Remark 2.1. The following observation about a previous version of the present
paper has been brought to our attention and deserves to be highlighted. Assume
that k is a field and consider a category C together with a functor ω : C →Mf . Let
C be the reconstructed coalgebra and denote by ωC : C → CMf the induced functor.
Then every finite-dimensional C-comodule can be recovered from comodules of the
form ωC(X) by taking finite direct sums, kernels and cokernels (see [Sc3, Corollary
2.2.9]). Since in an abelian monoidal category with exact tensor product (e.g. the
category of comodules over a k-coquasi-bialgebra), the family of rigid objects is
closed under finite biproducts, kernels and cokernels, if C is rigid then CMf has to
be rigid as well and hence C admits a preantipode in light of [Sc4, Theorem 2.6].

This purely categorical argument shows that, at least when k is a field, the
validity of our reconstruction theorem should not be surprising. However, the main
focus in the present paper is not only on proving the existence of a preantipode
for the reconstructed coquasi-bialgebra (even when k is just a commutative ring),
but also to provide an explicit construction of it (thing that, up to our knowledge,
cannot be obtained from the foregoing approach).

2.1. The classical reconstruction. The results in this subsection are well-known.
Nevertheless, we retrieve the main steps of the classical reconstruction process for
the sake of the unaccustomed reader. We refer to [M2] and [Sc3] for further details.

Let (C,�, I, a, l, r) be an essentially small monoidal category equipped with a
quasi-monoidal functor ω : C →Mf from C into the category of finitely generated
and projective k-modules. This means that in M we have a family of isomorphisms
ϕX,Y : ω (X) ⊗ω (Y ) → ω (X � Y ), which is natural in both components, and
an isomorphism ϕ0 : k→ω (I) compatible with the left and right unit constraints
as in (1). For every k-module V and every n ≥ 1, denote by ωn : Cn → Mf the
functor mapping every n-uple of objects (X1, . . . , Xn) in Cn to the tensor product
ω (X1) ⊗ · · · ⊗ω (Xn) in M and by Nat (ωn, V ⊗ωn) the set of natural trans-
formations between ωn and the functor V ⊗ωn : Cn →M, sending (X1, . . . , Xn)



8 PAOLO SARACCO

to V ⊗ωn(X1, . . . , Xn). It turns out the functor Nat (ωn,−⊗ωn) : M → Set is
represented by the n-fold tensor product H⊗nω of a suitable coquasi-bialgebra Hω

via a natural isomorphism

(9) ϑn : Hom (H⊗nω ,−) ∼= Nat (ωn,−⊗ωn) .

For all X1, . . . , Xn in C, V in M and f ∈ Hom (H⊗nω , V ), this is given explicitly by

ϑnV (f)X1,...,Xn
= (f ⊗ωn (X1, . . . , Xn)) τn (δX1 ⊗ · · · ⊗ δXn)

where δ := ϑH (idH) : ω → H ⊗ω, τn := τωn−1(X1,...,Xn−1),H ◦ · · · ◦ τω(X1),H and
τV,W : V ⊗W →W ⊗V denotes the natural transformation acting as τV,W (v⊗w) =
w ⊗ v for every pair of objects V,W in M. Since ω is fixed, we may write H
instead of Hω and we refer to it as the coendomorphism coquasi-bialgebra of ω. As
a k-module, it is defined to be the coend(2) of the functor ω ⊗ω∗ from C × Cop

to M. The comultiplication ∆ and the counit ε are the unique linear maps such
that ϑH⊗H (∆) = (H ⊗ δ) δ and ϑk (ε) = idω. The multiplication m : H ⊗H → H
is uniquely given by the relation (H ⊗ ϕX,Y )ϑ2

H (m)
X,Y

= δX�Y ϕX,Y while the
reassociator ω ∈ (H ⊗H ⊗H)∗ satisfies

(10) ϕX�Y,Z (ϕX,Y ⊗ω (Z))ϑ3
k (ω)

X,Y,Z
= ω

(
a−1
X,Y,Z

)
ϕX,Y�Z (ω (X)⊗ ϕY,Z)

for all X,Y, Z in C. The unit is the unique morphism u : k→ H such that

(11) (H ⊗ ϕ0) (u⊗ k) = δIϕ0.

Observe that every ω(X) is an H-comodule via ρω(X) = δX and that ϑ2
H(m)X,Y =

ρω(X)⊗ω(Y ) and u⊗ k = ρk are exactly the coactions that makes of HM a monoidal
category. Summing up, we have the following central result.

Theorem 2.2 ([M2, Theorem 2.2]). Let (C,�, I, a, l, r) be an essentially small
monoidal category and let (ω, ϕ, ϕ0) ω : C → Mf , be a quasi-monoidal functor.
Then there is a coquasi-bialgebra H, unique up to isomorphism, universal with the
property that ω factorizes as a monoidal functor ωH : C → HM followed by the
forgetful functor. Universal means that if H ′ is another such coquasi-bialgebra
then there is a unique map of coquasi-bialgebras ε : H → H ′ inducing a functor
εM : HM→ H′M such that εMωH = ωH′ : C → H′M.

In [M2] there’s no explicit reference to the unitality of the multiplication or of
the reassociator. Nevertheless, it can be checked that the above constructed maps
satisfy all the conditions defining a coquasi-bialgebra.

Remark 2.3. Assume that k is a field, C is already the category BMf of finite-
dimensional comodules over a coquasi-bialgebra B and ω is already the forgetful
functor U : BMf →Mf . Then B itself is a representing object for Nat (U ,−⊗ U)
(cf. e.g. [Sc3, Lemma 2.2.1]). In this case, the (co)multiplication, the (co)unit and
the reassociator of B already satisfy the defining relations for ∆, ε, m, u and ω
stated in §2.1, whence they are the unique coquasi-bialgebra structure maps induced
on the k-vector space B by the isomorphisms (9) in view of Theorem 2.2.

(2)see e.g. [ML, §IX.6] for details about the coend construction
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2.2. The rigid case. We recall briefly some facts about rigid objects in a monoidal
category.
Definition 2.4. A right dual object X? of X in C is a triple (X?, evX , dbX) in which
X? is an object in C and evX : X �X? → I and dbX : I→ X? �X are morphisms
in C, called evaluation and dual basis respectively, that satisfy

(evX �X) a−1
X,X?,X (X � dbX) = idX ,(12)

(X? � evX) aX?,X,X? (dbX �X?) = idX? .(13)
An object which admits a right dual object is said to be right rigid (or dualizable).
If every object in C is right rigid, then we say that C is right rigid.

We will often refer to right dual objects simply as right duals or just duals.
Remark 2.5. Once chosen a right dual object X? for every object X in a right rigid
monoidal category C, we have that the assignment (−)? : Cop → C defines a functor
and ev : (−)� (−)? → I and db : I→ (−)?� (−) define dinatural transformations(3),
i.e., for every X,Y and f : X → Y in C we have (f? � Y ) dbY = (X? � f) dbX and
evX (X � f?) = evY (f � Y ?).

From now on, let us assume that C is right rigid. If we have a different choice
(−)∨ : Cop → C of right dual objects, then we write ev(?) and db(?) to mean the
evaluation and dual basis maps associated with the dual (−)? and ev(∨) and db(∨)

to mean those associated with (−)∨. We know (see e.g. [M1, §9.3]) that for every
X in C, its right dual is unique up to isomorphism whenever it exists, i.e. we have
an isomorphism κX : X? → X∨ in C given by the composition

(14) κX := rX∨
(
X∨ � ev(?)

X

)
aX∨,X,X?

(
db(∨)

X �X
?
)
l−1
X? .

Lemma 2.6. The isomorphism κX : X? → X∨ is natural in X and the dinatural
transformations ev(?), db(?), ev(∨) and db(∨) satisfy
(15) (κ� id) db(?) = db(∨) and ev(∨) (id� κ) = ev(?).
Notation 2.7. In what follows we will retrieve some computations in terms of
braided diagrams in the category of k-modules. To this aim, let us agree on the
following notation

∆ =
H��

H H

, ε =
Hr , u = r

H

, m =
H H
	

H

, τV ,W =
V W

W V

, δX =
X

��

H X

.

We will also omit to write the functor ω in braided diagrams.
Henceforth and unless stated otherwise, we assume also that a choice (−)? of

dual objects has been performed. Let us consider the following maps
(16) evω(X) := ϕ−1

0 ω (evX)ϕX,X? and dbω(X) := ϕ−1
X?,Xω (dbX)ϕ0,

which we will represent simply as evω(X) = X X?
	and dbω(X) =
��

X? X
.

These do not endow ω (X?) with a structure of right dual object of ω (X) in
the category M because the functor ω : C →M does not satisfy the associativity

(3)More precisely, these should be referred to as wedges, since they are dinatural transformations
to a constant functor. However, we avoided this in order to spare the proliferation of terminology.
For the definition of dinatural transformations and wedges we refer to [ML, §9.4].
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condition (2). Nevertheless, we have the following result, whose proof follows easily
from the definitions and the dinaturality of ev and db.

Lemma 2.8. The assignments evω(X) and dbω(X) defined in (16) give rise to
dinatural transformations evω(−) : ω⊗ω? → k and dbω(−) : k→ω? ⊗ω.

Remark 2.9. Recall that if (F , φ, φ0) : (C,�, I)→ (D,~, J) is a monoidal functor
between monoidal categories and if X in C has a right dual (X?, evX , dbX), then
F (X) is right rigid with dual object F (X?) and structure maps

evF(X) = φ−1
0 F (evX) φX,X? and dbF(X) = φ−1

X?,X F (dbX) φ0

(cf. e.g. [St, page 86]). Therefore, even if ω (X?) is not a right dual of ω (X) in
M, (ω (X?) , δX?) is a right dual of (ω (X) , δX) in HM because ωH : C → HM is
monoidal. Evaluation and coevaluation maps are the same given in (16) and they
are morphisms of comodules. In particular,

X � �
�� �� ��

ω 
	
X

=
X

X

,

X?� �
�� �� ��

ω−1 
	
X?

=
X?

X?

,(17)

� �
�� ��


	
H X? X

=
r ��

H X? X
,

X X?

�� ��


	
	
H

=
X X?r 
	

H

,(18)

where (17) encodes relations (12) and (13).

2.3. The natural transformation ∇. Consider the distinguished natural trans-
formation ∇ω : Nat(ω,−⊗ω)→ Nat(ω,−⊗ω) given by

(19) ∇ω
V (ξ)X = (V ⊗ evω(X) ⊗ω(X)) τω(X),V ξX? (ω(X)⊗ dbω(X))

for all V in M, ξ ∈ Nat(ω, V ⊗ω) and X in C (when it would be clear from the
context where to apply a morphism, we will omit to tensor by the identity maps).
Graphically,

(20) ∇ω
V (ξ)X =

X ��
ξX?


	
V X

.

Proposition 2.10. Let C and D be essentially small right rigid monoidal categories.
Let (V, ψ, ψ0), V : D →Mf , be a quasi-monoidal functor and let (G, ζ, ζ0), G : C →
D, be a monoidal one. For all V ∈M and ξ ∈ Nat(V, V ⊗ V) we have

(21) ∇VV (ξ)G = ∇VGV (ξG).
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Proof. Assume that we are given a choice of right duals (−)? in C and (−)∨ in D.
Since G is monoidal we have a natural isomorphism κX : G(X?) → G(X)∨ as in
(14). Note that the composition VG is still a quasi-monoidal functor with structure
isomorphisms φ = (Vζ) ◦ ψ(G × G) and φ0 = V(ζ0)ψ0. We will need the following
relations, which descend from (15),
(22) (Vκ⊗ VG) ◦ db(VG) = (dbV)G and ev(VG) = (evV)G ◦ (VG ⊗ Vκ) .
That is, for every object X in C we have
(V (κX)⊗ VG(X)) dbVG(X) = dbV(G(X)), evVG(X) = evV(G(X)) (VG(X)⊗ V (κX)) .

As a consequence, for every ξ ∈ Nat(V, V ⊗ V) we can compute directly

∇VV (ξ)G(X)
(19)= (V ⊗ evV(G(X)) ⊗ VG (X)) τVG(X),V ξG(X)∨ (VG (X)⊗ dbV(G(X)))

(22)= (V ⊗ evV(G(X)) ⊗ VG (X)) τVG(X),V ξG(X)∨ V (κX) (VG (X)⊗ dbVG(X))
(∗)= (V ⊗ evV(G(X)) ⊗ VG (X)) τVG(X),V V (κX) ξG(X?) (VG (X)⊗ dbVG(X))
(22)= (V ⊗ evVG(X) ⊗ VG (X)) τVG(X),V ξG(X?) (VG (X)⊗ dbVG(X))

(19)= ∇VGV (ξG)
X

where in (∗) we used the naturality of ξ. �

Corollary 2.11. Let C be an essentially small right rigid monoidal category and
let ω : C →Mf be a quasi-monoidal functor. The natural transformation ∇ω does
not depend on the choice of the dual objects.

Proof. It is enough to take D = C and G = IdC in the proof of Proposition 2.10. �

Remark 2.12. Mimicking [Sc3] we may consider a category C whose objects are
pairs (C,U) where C is an essentially small right rigid monoidal category and
U : C → Mf is a quasi-monoidal functor. Morphisms in C between two objects
(C,U) and (D,V) are given by monoidal functors G : C → D such that VG = U as
quasi-monoidal functors. It follows from Proposition 2.10 that the transformation
∇∼ introduced in the foregoing is a natural transformation between the functor
Nat(∼,− ⊗ ∼) : C→ Funct(M,Set) sending (C,U) to Nat(U ,−⊗ U) and itself.

2.4. Rigidity and the preantipode. By Yoneda Lemma and the fact that H
represents the functor Nat(ω,−⊗ω), there exists a unique natural transformation
in Nat(ω, H ⊗ω) which corresponds to ∇ω and it is ∇ω

H (δ). Its component at X is
(23) ∇ω

H (δ)X = (H ⊗ evω(X) ⊗ω(X)) τω(X),H δX? (ω(X)⊗ dbω(X)).
Moreover, there exists a unique linear endomorphism S of H such that

(24) ϑH(S)X =

X

��hS
H X

=

X ��
��


	
H X

= ∇ω
H (δ)X .

Notice that, by naturality of ϑ and ∇ω, for all g : H → V in M we have
(25) ϑV (gS) = ∇ω

V ((g ⊗ω) δ).

Proposition 2.13. The morphism S is a preantipode for H.
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Proof. Since dbω(X) is H-colinear, it follows that

X

����hS��

	

H H X

(24)=

X ��
��


	
����

	

H H X

=

X � �
�� ��

��


	

	

H H X

=

X � �
�� ��


	
��


	
H H X

(18)=

X r ��
��


	
H H X

i.e. for every h ∈ H we have
∑
S (h1)1 h2⊗S (h1)2 = 1H ⊗S (h). Now, since evω(X)

is H-colinear as well, we have also

X

��� �hS��

	

H H X

(24)=

X

�� ��
��


	��

	

H H X

=

X ��
�� ��

��


	
	
H H X

=

X ��
��

�� ��


	
	
H H X

(18)=

X ��
��


	r
H H X

i.e. for every h ∈ H we have
∑
S (h2)1 ⊗ h1S (h2)2 = S (h)⊗ 1H . Finally

X

��� �
��hS
ω

X

=

X

��

��

��hS
ω

X

(24)=

X

�� � �
�� ��


	
ω

X

=

X � �
�� �� ��

ω 
	
X

(17)=

X

��r
X

so that
∑
ω (h1 ⊗ S (h2)⊗ h3) = ε(h) for all h ∈ H. �

Summing up, we can state our main theorem, connecting the rigidity of the category
C with the existence of a preantipode for the coendomorphism coquasi-bialgebra.

Theorem 2.14. Let C be an essentially small right rigid monoidal category together
with a neutral quasi-monoidal functor ω : C →Mf . Then there exists a preantipode
S for the coendomorphism coquasi-bialgebra H of (C,ω).

Corollary 2.15 ([U, page 255, Theorem]). If in addition ω : C →Mf is monoidal,
then the coendomorphism coquasi-bialgebra H is a Hopf algebra.
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Proof. Since ω = ε ⊗ ε ⊗ ε, H is a bialgebra and the preantipode provided by
Theorem 2.14 satisfies

εS (h) =
∑

ω (h1 ⊗ S (h2)⊗ h3) (5)= ε (h) ,

i.e. it is an ordinary antipode (see Remark 1.4). �

Remark 2.16. Between the distinguished natural transformations in Nat(ω,ω)
that one may consider, there is also (ω(X)⊗ dbω(X)) (evω(X) ⊗ω(X)). This ho-
wever does not endow H with a new structure. Instead, it can be checked that

(εS ⊗ω(X)) δX = (ω(X)⊗ dbω(X)) (evω(X) ⊗ω(X))
= ((ω−1(S ⊗H ⊗ S)(∆⊗H)∆)⊗ω(X)) δX

whence ω−1(S(h1)⊗ h2 ⊗ S(h3)) = εS(h) for all h ∈ H as in [AP2, Lemma 2.14].

We conclude this subsection by showing that Theorem 2.14 can be refined in order
to get a reconstruction theorem for coquasi-Hopf algebras as well (this result already
appeared in a sketched form in [M1, §9.4.1, page 476] and it can be considered
as a dual version of [H, Lemma 4] and [M1, §9.4.1, page 474]). Henceforth, with
ev(k)
V : V ⊗ V ∗ → k and db(k)

V : k→ V ∗ ⊗ V we will denote the ordinary evaluation
and dual basis maps of a finitely generated and projective k-module V . Graphically,

V V ∗ and
V ∗ V

respectively, for every V in Mf .
Recall that a coquasi-Hopf algebra is a coquasi-bialgebra H endowed with a

coquasi-antipode, that is to say, a triple (s, α, β) consisting of an anti-coalgebra
endomorphism s : H → H and two linear maps α, β ∈ H∗, such that, for all h ∈ H∑

h1β(h2)s(h3) = β(h)1H ,
∑

s(h1)α(h2)h3 = α(h)1H ,∑
ω(h1 ⊗ β(h2)s(h3)α(h4)⊗ h5) = ε(h),∑

ω−1(s(h1)⊗ α(h2)h3β(h4)⊗ s(h5)) = ε(h).

Remark 2.17. Let us point out two distinctive features of coquasi-Hopf algebras.
• Differently from preantipodes, coquasi-antipodes are not unique in general.

If χ ∈ H∗ is convolution invertible and if (s, α, β) is a coquasi-antipode for a
coquasi-bialgebraH, then (χ ∗ s ∗ χ−1, χ ∗ α, β ∗ χ−1) is still a coquasi-antipode
for H.

• If H is a coquasi-Hopf algebra with coquasi-antipode (s, α, β), then its category
of comodules that are finitely generated and projective over k is a rigid monoidal
category. In fact, a dual for an H-comodule (V, ρV ) in HMf is given by its
dual k-module V ∗ with comodule structure, evaluation and dual basis given
respectively by

(26) ρV ∗ :=

V ∗

��hs
H V ∗

, evV :=
V V ∗

��hβ and dbV := ��hα
V ∗ V

.
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Proposition 2.18 (Reconstruction theorem for coquasi-Hopf algebras). Let C be an
essentially small right rigid monoidal category together with a neutral quasi-monoidal
functor ω : C → Mf . Then there is a bijective correspondence between natural
isomorphisms d : ω (−?)→ω(−)∗ in Mf and coquasi-Hopf algebra structures on
the coendomorphism coquasi-bialgebra H. Explicitly, if d is a natural isomorphism
with inverse ∂, then s, α, β are the unique linear maps such that

(27)

X

��hα
X

=

X ��hd
X

,

X

��hβ
X

=

X

h∂
	
X

and

X

��hs
H X

=

X

h∂
��hd

H X

.

Conversely, if H is a coquasi-Hopf algebra, then the natural isomorphism d is given
by the canonical H-comodule isomorphism ω (X?) ∼= ω(X)∗ from (14).

Proof. If H is a coquasi-Hopf algebra then the existence of a natural isomorphism
d : ω(−?)→ω(−)∗ follows from the fact that both (ω(X)∗, ρω(X)∗) (Remark 2.17)
and (ω (X?) , δX?) (Remark 2.9) are dual objects of (ω(X), δX) in HMf .

Conversely, let (C,ω) be as in the statement and assume that we have a natural
isomorphism d : ω (−?)→ω(−)∗ in Mf . Consider the coendomorphism coquasi-
bialgebra H associated with (C,ω). We may endow ω(X)∗ with an H-comodule
structure given by dXδX?∂X . To simplify the exposition, we denote it by δX∗ , even
if this notation does not strictly make sense. With this coaction, ω(X)∗ becomes a
right dual of ω(X) in HMf with evaluation and dual basis maps given by

ev(∗)
ω(X) =

X X∗h∂
	 and db(∗)
ω(X) =

��hd
X∗ X

.

Then, there exist unique linear morphisms α, β ∈ H∗ and s : H → H such that (27)
are satisfied. The reader may check that (s, α, β) is a coquasi-antipode for H.

These two constructions can be showed to be inverses of each other. We verify
one composition explicitly and we leave the other one to the reader. Assume that
H admits a coquasi-antipode (s, α, β). As in the first part of the proof, we define

ev(∗)
ω(X) := ev(k)

ω(X) (β ⊗ω(X)⊗ω (X)∗) (δX ⊗ω(X)∗) ,

db(∗)
ω(X) := (ω(X)∗ ⊗ α⊗ω(X)) (ω(X)∗ ⊗ δX) db(k)

ω(X),

δX∗ := τω(X)∗,H

(
ω(X)∗ ⊗H ⊗ ev(k)

ω(X)

)
sδX

(
db(k)

ω(X) ⊗ω(X)∗
)
.

These make of ω(X)∗ a dual for ω(X) and so we have a canonical H-colinear
isomorphism dX : ω(X?)→ ω(X)∗ given as in (14). By Lemma 2.6, dX satisfies
(dX ⊗ω(X)) dbω(X) = db(∗)

ω(X) and ev(∗)
ω(X) (ω(X)⊗ dX) = evωX , so that

X ��hd
X

=

X

��hα
X

=

X

��hα
X
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and analogously (evω(X) ⊗ω(X)) ∂X
(
ω(X)⊗ db(k)

ω(X)

)
= (β ⊗ω(X)) δX . Moreo-

ver, since dX is H-colinear, it follows also that dXδX?∂X = δX∗ which implies

X

h∂
��hd

H X

=

X

��hs
H X

=

X

��hs
H X

Summing up, the unique morphisms α, β, s satisfying (27) are exactly the ones we
started with, proving that we have recovered the original coquasi-antipode. �

Remark 2.19. The lack of uniqueness we observed in Remark 2.17 can be clearly
perceived in the statement of Proposition 2.18: different choices of the natural
isomorphism d give rise to different coquasi-antipodes and conversely. For the sake
of clarity, let us assume that d̄ : ω(−?)→ω(−)∗ is another natural isomorphism
and let us see explicitly which relation connects the new coquasi-antipode (s̄, ᾱ, β̄)
with the one coming from d. The composition d̄d−1 gives a natural automorphism of
ω(−)∗ and there exists a unique natural automorphism ζ of ω such that ζ∗ = d̄d−1.
By the universal property of H, there exists a unique k-linear map χ : H → k such
that (χ⊗ω(X)) δX = ζX for all X ∈ C and since ζ is a natural isomorphism, χ has
to be convolution invertible. Moreover, after recalling that ev(k)

ω(X) is a dinatural
transformation we may compute

X

��h̄α
X

=

X ��h̄d
X

=

X ��hdhζ∗
X

=

X ��hζ hd
X

=

X ��
�� hdhχ

X

=

X

��hχ
��hα

X

,

that is to say, ᾱ = χ∗α. Similarly, one may check that β̄ = β∗χ−1 and s̄ = χ∗s∗χ−1,
as expected.

2.5. The field case. Under the additional assumption that k is a field, some
previous results can be refined and some further conclusions can be drawn. The key
point, as we already mentioned in Remark 2.3, is that the reconstruction process
applied to CMf for C a coalgebra over a field gives back the starting coalgebra.

Remark 2.20. Assume that B is a coquasi-bialgebra with a preantipode SB.
Denote by U : BMf → Mf the forgetful functor and by ρ ∈ Nat (U , B ⊗ U) the
natural coaction of the B-comodules in BMf . It can be checked that for V in BMf ,
a right dual of V is given by V ? = (V ∗ ⊗B)coB with coaction ρV ? (

∑
t
ft ⊗ bt) =∑

t
(bt)1 ⊗ (ft ⊗ (bt)2). Evaluation and dual basis maps are given by

evV

(
u⊗

∑
t

(ft ⊗ bt)
)

=
∑
t

ft(u)ε(bt), dbV (1k) =
dV∑
i=1

(
vi0 ⊗ SB(vi1)

)
⊗ vi,

for all
∑

t
ft ⊗ bt ∈ V ?, u ∈ V , where

∑dV

i=1 v
i ⊗ vi ∈ V ∗ ⊗ V is a dual basis for V as

a finite-dimensional vector space. In particular, BMf is right rigid.
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The following theorem characterizes coquasi-bialgebras with preantipode and
coquasi-Hopf algebras via rigidity of their categories of finite-dimensional comodules.
Only for this occasion, let us agree that a functor ω : C →Mf from a rigid monoidal
category C to finite-dimensional vector spaces preserves duals if there exists a natural
isomorphism d : ω(−?)→ω(−)∗ (as in Proposition 2.18). Moreover, let us denote
by C the category whose objects are k-linear abelian rigid monoidal categories C
together with a k-linear exact quasi-monoidal functor ω : C → Mf and whose
morphisms are monoidal functors G : C → C′ between them which are compatible
with the ω’s, that is to say, such that (ω′, ϕ′, ϕ′0) ◦ (G, ψ, ψ0) = (ω, ϕ, ϕ0).

Theorem 2.21. A coalgebra C is a coquasi-bialgebra with preantipode if and only
if CMf is a right rigid monoidal category in such a way that the forgetful functor
U : CMf → Mf is a quasi-monoidal functor. It is a coquasi-Hopf algebra if and
only if, in addition, U preserves duals in the above sense, if and only if for every
(N, ρN) ∈ CMf the vector space N∗ admits a left C-comodule structure and an
evaluation evN and a dual basis dbN maps which are left C-colinear. A posteriori,
the latter ones are going to be of the form (26).

Moreover, the assignments H 7→ (HMf ,U) and (C,ω) 7→ Hω provide an equiva-
lence of categories between the category of coquasi-bialgebras with preantipode and
coquasi-bialgebra morphisms on the one hand, and C on the other.

Proof. The first claim follows from Theorem 2.2, Theorem 2.14 and Remark 2.20.
The second one from Theorem 2.2, Remark 2.17 and Proposition 2.18. The last
assertion follows from [Sc3, §2.2] and the first claim of the statement. In fact, in
[Sc3, §2.2] it has been proven that the assignments C 7→ (CMf ,U) and (C,ω) 7→ Cω

provide an equivalence of categories between the category of coalgebras and coalgebra
morphisms on the one hand, and the category of k-linear abelian categories C together
with a k-linear exact faithful functor ω : C →Mf and functors G : C → C′ between
them such that ω′G = ω, on the other. The first claim entails that if we restrict
the foregoing equivalence to the subcategory of coquasi-bialgebras with preantipode,
then they correspond to k-linear abelian rigid monoidal categories C together with
a k-linear exact quasi-monoidal functor ω : C → Mf and Theorem 2.14 states
the converse. Moreover, if f : H → H ′ is a morphism of coquasi-bialgebras then
the induced functor fM : HMf → H′Mf is a strict monoidal functor such that
(U ′, Id, Id) ◦ (fM, Id, Id) = (U , Id, Id). Conversely, if (G, ψ, ψ0) : (C,ω)→ (C′,ω′) is
a monoidal functor such that (ω′, ϕ′, ϕ′0) ◦ (G, ψ, ψ0) = (ω, ϕ, ϕ0) then it induces
a unique morphism of coquasi-bialgebras g : Hω → Hω′ by the universal property
of Hω. The reason why faithfulness is no longer required explicitly is that a k-
linear exact functor between rigid monoidal categories is faithful in view of [DM,
Proposition 1.19, page 121]. �

Remark 2.22. The second paragraph in Theorem 2.21 tells us that we have a
bijective correspondence between coquasi-bialgebras with preantipode (up to iso-
morphism) and k-linear abelian rigid monoidal categories C together with a k-linear
exact quasi-monoidal functor ω : C → Mf (up to monoidal equivalence compa-
tible with the ω’s). In relation to Remark 1.2, let us point out that there is a
(more general) bijective correspondence between coquasi-bialgebras with preanti-
pode (up to twist equivalence) and k-linear abelian rigid monoidal categories C
together with a k-linear exact quasi-monoidal functor ω : C →Mf (up to monoidal
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equivalences G such that ω′G = ω). The difference here is that we are no lon-
ger requiring that (ω′, ϕ′, ϕ′0) ◦ (G, ψ, ψ0) = (ω, ϕ, ϕ0) as quasi-monoidal functors,
but only that ω′G = ω as functors. As a consequence, the natural isomorphism
ϕ−1 ◦ ψ : ω⊗ω→ ω⊗ω corresponds to a unique convolution invertible linear
map F : H⊗H → k and G to a unique coquasi-bialgebra isomorphism g : HF → H ′.

For the sake of completeness, assume that we have a monoidal equivalence
G : (C,ω) → (C′,ω′). By universal property of H := Hω, there is a unique
coalgebra isomorphism g : H → H ′ := Hω′ induced by G. We retrieve explicitly the
argument to show that g ◦mF = m′ ◦ (g ⊗ g) and we leave the other verifications to
the reader. For every X in C denote by δ′X : ω(X)→ H ′ ⊗ω(X) the (natural) H ′-
coaction on ω(X) = ω′ (G(X)). By definition, g is the unique coalgebra morphism
such that gMωH = ω′H

′
G, whence δ′X = (g ⊗ω(X))δX . By construction, the

multiplication m′ on H ′ is the unique map such that
(28) (m′ ⊗ω′(W )⊗ω′(Z)) τω′(W ),H′ (δ′W ⊗ δ′Z) =

(
H ′ ⊗ ψ−1

W,Z

)
δ′W⊗ZψW,Z

for all W,Z in C′. Therefore, by definition of m and F ,

X Y

�� ��

hg hg
	
H′ X Y

(28)=

X Y

ψ

ϕ−1

�� ��


	 ϕhg ψ−1

H′ X Y

=

X Y

�� ��

F �� ��


	
hg �� ��

F−1

H′ X Y

which implies that m′ ◦ (g ⊗ g) = g ◦mF .
Conversely, if there is a coquasi-bialgebra isomorphism g : HF → H ′ then this

induces a strict monoidal isomorphism (gM, Id, Id) : HF Mf → H′Mf , which in
turn gives, by composition, a monoidal isomorphism (gM, ψF , Id) : HMf → H′Mf

where ψFM,N
: M ⊗N → M ⊗N,m⊗ n 7→ F (m−1 ⊗ n−1)m0 ⊗ n0. Observe that

(U ′, Id, Id) ◦ (gM, ψF , Id) 6= (U , Id, Id) as quasi-monoidal functors, even if U ′ gM = U .
Corollary 2.23 ([AP1, Theorem 3.10]). Every coquasi-Hopf algebra H with coquasi-
antipode (s, α, β) admits a preantipode given by S := β ∗ s ∗ α.
Proof. By Theorem 2.21 there is a coquasi-bialgebra with preantipode structure on
H, where ω is the former one and S is uniquely given by

X

��hS
H X

(24)=

X ��
��


	
X X

(26)=

X

�� ��hs hα
��hβ

H X

=

X

��

��

��hβ hs hα
H X

Therefore, S = β ∗ s ∗ α. �
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Lemma 2.24. If a preantipode for a coquasi-bialgebra B exists, it is unique.

Proof. It can be checked directly that SB satisfies condition (24) and hence SB = S,
the unique linear endomorphism induced on B. �

Lemma 2.25. Let g : A→ B be a morphism between coquasi-bialgebras A and B
with preantipodes SA and SB respectively. Then g SA = SB g.

Proof. Since g is a coquasi-bialgebra morphism, it induces a strict monoidal functor
gM : AM→ BM, which in turn restricts to a strict monoidal functor G : AMf →
BMf such that VG = U , where U : AMf →Mf and V : BMf →Mf are the forgetful
functors. Observe that, in particular, this implies that (g ⊗ U(X)) ρAX = ρBG(X) for
every X in AMf . Let us denote by ϑ : Hom(A,−) → Nat (U ,−⊗ U) the natural
isomorphism such that ϑV (f) = (f ⊗ U) ρA for all V in M and f ∈ Hom(A, V ). We
want to show that ϑB(g SA) = ϑB(SB g). For all X in AMf we may compute

ϑB(gSA)X
(25)= ∇UB

(
(g ⊗ U) ρA

)
X

= ∇VGB
(
ρBG

)
X

(21)= ∇VB
(
ρB
)
G(X)

= (SB ⊗ VG(X)) ρBG(X) = (SB ⊗ U(X)) (g ⊗ U(X))ρAX = ϑB (SB g)X .

Hence g SA = SB g as claimed. �

Remark 2.26. Let B be a coquasi-bialgebra over a commutative ring k. The
natural coaction ρ ∈ Nat (U , B ⊗ U) coming from BMf induces, via the isomorphism
Hom(HU , B) ∼= Nat (U , B ⊗ U), a canonical morphism canB : HU → B. Then, all the
results in §2.5 still remain true if we assume to work with k-flat coquasi-bialgebras
B such that canB is an isomorphism (mimicking [EG, GV], these may be referred
to as Galois coalgebras).

3. The finite-dual of a quasi-bialgebra with preantipode

Assume that k is a field. As a final application of the theory we developed, let
us show that the finite dual coalgebra of a quasi-bialgebra with preantipode is a
coquasi-bialgebra with preantipode (for the definition of the finite dual coalgebra we
refer to [Sw, Chapter VI], for the definition of a preantipode for a quasi-bialgebra
and its properties we refer to [Sa] and Appendix A). The proof of this fact lies on
the following result, which can be deduced from [A, Chapter 3, §1.2].

Lemma 3.1. Let A be an algebra and A◦ be its finite dual coalgebra. We have
an isomorphism L : A◦Mf → fMA between the category of finite-dimensional left
A◦-comodules and that of finite-dimensional right A-modules that satisfies V L = U ,
where V : fMA →Mf and U : A◦Mf →Mf are the obvious forgetful functors.

For the sake of completeness, let us recall that L associates every left A◦-comodule
(N, ρN ) with the right A-module (N,µρN) where the action is given by µρN (n⊗ a) =∑

n−1(a)n0. Its inverse R : fMA → A◦Mf assigns to every finite-dimensional right
A-module (M,µM), the left A◦-comodule (M,ρµM) with coaction

(29) ρµM (m) =
dM∑
i=1

(
eiµm

)
⊗ ei

where µm(a) := µM (m⊗ a) for all a ∈ A and
∑dM

i=1 e
i⊗ ei ∈M∗⊗M is a dual basis

for M as a vector space. Notice that UR = V as well.



COQUASI-BIALGEBRAS WITH PREANTIPODE AND RIGID MONOIDAL CATEGORIES 19

Lemma 3.2. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode. The
category of finite-dimensional right A-modules fMA is a right rigid monoidal category
with quasi-monoidal forgetful functor V : fMA →Mf .
Proof. As it happens for coquasi-bialgebras, the axioms of a quasi-bialgebra ensures
that the category of right A-modules MA becomes a monoidal category with tensor
product the tensor product over k, unit object k itself, and associativity constraint

aM,N,P ((m⊗ n)⊗ p) = (m⊗ (n⊗ p)) · Φ−1

for all M , N , P in MA and m, n, p in M , N , P respectively. The unit constraints are
the same of M. In particular, the forgetful functor V : MA →M is a quasi-monoidal
functor and the same property holds for its restriction to finite-dimensional modules.
One may check directly that a dual object of an A-module M is given by

M? := A⊗M∗

A+ (A⊗M∗)
where A+ := ker (ε) and M∗ is the k-linear dual of M . The A-module structure on
M? is a⊗ f · x = ax⊗ f for all a, x ∈ A and f ∈ M∗. Evaluation and dual basis
maps are explicitly given by

evM
(
m⊗ a⊗ f

)
= f (m · S(a)) and dbM (1k) =

dM∑
i=1

1A ⊗ ei ⊗ ei

for all m ∈M , f ∈M∗ and a ∈ A and where
∑dM

i=1 e
i ⊗ ei is a dual basis of M as a

finite-dimensional vector space. �

Proposition 3.3. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode.
Let (A◦,∆◦, ε◦) be its finite dual coalgebra. Then A◦ can be endowed with a structure
of a coquasi-bialgebra with preantipode.
Proof. Denote by V : fMA →Mf and U : A◦Mf →Mf the forgetful functors. As a
consequence of Lemma 3.1, we have a chain of natural isomorphism

Nat (V,−⊗ V) ∼= Nat (U ,−⊗ U) ∼= Hom (A◦,−)
which allows us to consider A◦ itself as a representing object for Nat (V,−⊗ V).
If we consider then the category of finite-dimensional right A-modules fMA as a
right rigid monoidal category together with the quasi-monoidal forgetful functor
V : fMA →Mf , then A◦ can be endowed with a structure of a coquasi-bialgebra
with preantipode in view of Theorem 2.14. �

Remark 3.4. It is worthy to point out that the corestriction VA◦ : fMA → A◦Mf

of the functor VA◦ : fMA → A◦M provided by Theorem 2.14 coincides with the
functor R, which becomes this way a strict monoidal functor.
Remark 3.5. If we want to know explicitly the coquasi-bialgebra structure on A◦

we may proceed as follows. First of all observe that the quasi-monoidal structure on
V : fMA →Mf is the strict one: ϕM,N = idM⊗N and ϕ0 = idk. Secondly, for every
object M in fMA the natural transformation ρM : V(M)→ A◦ ⊗ V(M) is given by
the coaction (29). Let us denote by

∑dM

i=1 e
i
M ⊗ eMi ∈M∗ ⊗M a dual basis for M

as a vector space, for all M in fMA. If we denote by µM⊗N the A-action on the
tensor product, then

ρM⊗N (x) =
∑
i,j

((
eiM ⊗ e

j
N

)
µM⊗Nx

)
⊗
(
eMi ⊗ eNj

)
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for all x ∈M⊗N , where we considered M∗⊗N∗ injected in (M ⊗N)∗. Furthermore,
it is well-known from the associative case that the convolution product ∗ restricts to
a morphism ∗ : A◦ ⊗A◦ → A◦. It is also clear that ε ∈ A◦. To show that they are
the multiplication and the unit induced on A◦, denote by µM and µN the A-actions
on M and N respectively and compute for

∑t

i=1 mi ⊗ ni ∈M ⊗N

(A◦ ⊗ϕM,N)
(
ϑ2
A◦(∗)M,N

(
t∑
i=1

mi ⊗ ni

))
=
∑
i,h,k

(
(ehMµMmi

) ∗ (ekNµNni
)
)
⊗ (eMh ⊗ eNk ).

Since for every a ∈ A, f ∈M∗, g ∈ N∗ and x =
∑t

i=1 mi ⊗ ni ∈M ⊗N we have
t∑
i=1

((
f µMmi

)
∗
(
g µNni

))
(a) =

t∑
i=1

(
f µMmi

)
(a1)

(
g µNni

)
(a2) = (f ⊗ g)µM⊗Nx (a),

we conclude that (A◦ ⊗ ϕM,N)ϑ2
A◦(∗)M,N = ρM⊗N ϕM,N and by uniqueness of the

morphism A◦ ⊗ A◦ → A◦ satisfying this relation we have that the multiplication
induced on A◦ is exactly ∗. Moreover, if we compute

rA◦ (ρk (1k)) = rA◦ (ε⊗ 1k) = ε,

then we recover that the unit of the multiplication ∗ is ε, in view of (11) and the
fact that ϕ0 = idk. Consider also the assignment

ω : A◦ ⊗A◦ ⊗A◦ → k; ω (f ⊗ g ⊗ h) =
∑

f (Φ1) g (Φ2)h (Φ3) .

For every M , N , P in fMA and all m ∈M , n ∈ N , p ∈ P , it satisfies

ϕM⊗N,P

(
(ϕM,N ⊗ V(P ))

(
ϑ3
k (ω)M,N,P (m⊗ n⊗ p)

))
=
∑
i,j,k

ω
((
eiM µMm

)
⊗
(
ejN µ

N
n

)
⊗
(
ekP µ

P
p

))
eMi ⊗ eNj ⊗ ePk

=
∑

m · Φ1 ⊗ n · Φ2 ⊗ p · Φ3,

whence ϕM⊗N,P (ϕM,N ⊗V(P ))ϑ3
k(ω)M,N,P = V(a−1

M,N,P )ϕM,N⊗P (V(M)⊗ϕN,P ) and
so ω is in fact the induced reassociator. The antipode can be constructed explicitly
as well. Consider the transpose S∗ : A∗ → A∗. Let us show firstly that S∗ factors
through a linear map S◦ : A◦ → A◦; the proof relies on formula (36) from Appendix
A. Pick f ∈ A◦ and compute

S∗ (f) (ab) = f (S (ab)) (36)=
∑

f (S (ϕ1b)ϕ2S (ψ1ϕ3)ψ2S (aψ3))

=
∑

f1S (ϕ1b) f2 (ϕ2S (ψ1ϕ3)ψ2) f3S (aψ3)

=
(∑

(ψ3 ⇀ f3S)⊗ f2 (ϕ2S (ψ1ϕ3)ψ2) (f1S ↼ ϕ1)
)

(a⊗ b) .

Since this implies that m∗ (S∗ (f)) ∈ A∗ ⊗A∗, in view of [Sw, Proposition 6.0.3] we
have that S∗ (f) ∈ A◦. Let us prove now that S◦ satisfies the relation ϑA◦(S◦) =
∇VA◦ (ρ). For all M in fMA and all m ∈M we need to show that

(30)
∑

S◦ (m−1)⊗m0 =
dM∑
i=1

(
1A ⊗ ei

)
0 (m)

(
1A ⊗ ei

)
−1 ⊗ ei.
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Since M? is finite-dimensional, we may fix a dual basis
∑dM?

j=1 γ
j ⊗ γj of M? as an

object in Mf and then, by (29), the right-hand member of (30) can be rewritten as
dM∑
i=1

dM?∑
j=1

γj(m)
(
γjµM

?

1A⊗ei

)
⊗ ei.

Let us focus on
∑dM?

j=1 γj(m)
(
γjµM

?

1A⊗ei

)
∈ A◦. For all a ∈ A,

dM?∑
j=1

γj(m)
(
γjµM

?

1A⊗ei

)
(a) =

dM?∑
j=1

γj(m)γj
(
a⊗ ei

)
= a⊗ ei(a) = ei(m · S(a))

and since ei(m · S(a)) = S◦ (ei µMm ) (a), we have
dM∑
i=1

dM?∑
j=1

γj(m)
(
γjµM

?

1A⊗ei

)
⊗ ei =

∑
i

S◦
(
ei µMm

)
⊗ ei.

We can conclude then that relation (30) is satisfied, as desired.

Remark 3.6. The fact that the finite dual coalgebra of a quasi-bialgebra is a
coquasi-bialgebra has already been shown in [AES, §5.2] with a different approach.

Appendix A. A relation for the preantipode of a quasi-bialgebra

Recall from [Sa] that a preantipode for a quasi-bialgebra (A,∆, ε,m, u,Φ) is a
k-linear map S : A→ A that satisfies∑

a1S(ba2) = ε(a)S(b) =
∑

S(a1b)a2,
∑

Φ1S(Φ2)Φ3 = 1,(31)

for all a, b ∈ A, where
∑

Φ1 ⊗ Φ2 ⊗ Φ3 = Φ. Let us introduce also the following
extended notation for the reassociator and its inverse:

Φ =
∑

Φ1 ⊗ Φ2 ⊗ Φ3 =
∑

Ψ1 ⊗Ψ2 ⊗Ψ3 = . . .

Φ−1 =
∑

ϕ1 ⊗ ϕ2 ⊗ ϕ3 =
∑

ψ1 ⊗ ψ2 ⊗ ψ3 = . . .

Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode and consider the A-
actions on End(A) = Hom(A,A) defined by (f ↼ a) (b) = f(ab) and (a ⇀ f) (b) =
f(ba) for all a, b ∈ A and for all f ∈ End(A). Define the elements

p :=
∑

ϕ1 ⊗ ϕ2 (ϕ3 ⇀ S) ∈ A⊗ End(A),(32)

q :=
∑

(S ↼ ϕ1)ϕ2 ⊗ ϕ3 ∈ End(A)⊗A,

where (x (y ⇀ f)) (a) = xf(ay) and ((f ↼ x) y) (a) = f(ax)y for all a, x, y ∈ A and
for all f ∈ End(A). Let us introduce the following notation for shortness:

p :=
∑

p1 ⊗ p2 and q :=
∑

q1 ⊗ q2.

Lemma A.1. In the foregoing notation we have that for every a ∈ A∑
p1 ⊗ p2(a) =

∑
ϕ1

1ψ
1 ⊗ ϕ1

2ψ
2Φ1S (aϕ2ψ3

1Φ2)ϕ3ψ3
2Φ3,∑

q1(a)⊗ q2 =
∑

Φ1ϕ1
1ψ

1S (Φ2ϕ1
2ψ

2a) Φ3ϕ2ψ3
1 ⊗ ϕ3ψ3

2 .
(33)

Moreover, the following relations hold for every a, b ∈ A∑
p1a⊗ p2(b) =

∑
a11p

1 ⊗ a12p
2(ba2),(34)



22 PAOLO SARACCO∑
q1(a)⊗ bq2 =

∑
q1(b1a)b21 ⊗ q2b22.(35)

Proof. The reassociator Φ satisfies the dual relation to (3), i.e.
(1A ⊗ Φ) · (A⊗∆⊗A) (Φ) · (Φ⊗ 1A) = (A⊗A⊗∆) (Φ) · (∆⊗A⊗A) (Φ) .

In particular, it satisfies∑
ϕ1

1ψ
1 ⊗ ϕ1

2ψ
2Φ1 ⊗ ϕ2ψ3

1Φ2 ⊗ ϕ3ψ3
2Φ3 =

∑
ϕ1ψ1 ⊗ ϕ2ψ2

1 ⊗ ϕ3ψ2
2 ⊗ ψ3.

Applying (A⊗m) (A⊗A⊗m) (A⊗A⊗ (S ↼ a)⊗A) to both sides we get∑
ϕ1

1ψ
1 ⊗ ϕ1

2ψ
2Φ1S (aϕ2ψ3

1Φ2)ϕ3ψ3
2Φ3

=
∑

ϕ1ψ1 ⊗ ϕ2ψ2
1S (aϕ3ψ2

2)ψ3 (31)=
∑

ϕ1 ⊗ ϕ2S (aϕ3) =
∑

p1 ⊗ p2(a),

which is the first identity in (33). The second one is proved analogously. Let us
check that (34) holds as well ((35) is proved similarly). We compute∑

p1a⊗ p2(b) (32)=
∑

ϕ1a⊗ ϕ2S(bϕ3) (31)=
∑

ϕ1a1 ⊗ ϕ2a21S(bϕ3a22)
(∗)=
∑

a11ϕ
1 ⊗ a12ϕ

2S(ba2ϕ
3) =

∑
a11p

1 ⊗ a12p
2(ba2),

where in (∗) we used the quasi-coassociativity Φ · (∆⊗A)∆ = (A⊗∆)∆ · Φ. �

Lemma A.2. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode and let
p, q be defined as above. For all a ∈ A we have that

S(a) =
∑

q1 (1A)S (p1aq2) p2 (1A) =
∑

S (ϕ1)ϕ2S (ψ1aϕ3)ψ2S (ψ3) .

Proof. Keeping in mind that Φ−1 is counital, i.e. that it satisfies
(ε⊗A⊗A) (Φ−1) = 1A⊗ 1A = (A⊗ ε⊗A) (Φ−1) = 1A⊗ 1A = (A⊗A⊗ ε) (Φ−1) ,
we may compute directly∑

S (ϕ1)ϕ2S (ψ1aϕ3)ψ2S (ψ3) =
∑

q1 (1A)S (p1aq2) p2 (1A)
(33)=
∑

Φ1ϕ1
1ψ

1S (Φ2ϕ1
2ψ

2) Φ3ϕ2ψ3
1S (γ1

1φ
1aϕ3ψ3

2) γ1
2φ

2Ψ1S (γ2φ3
1Ψ2) γ3φ3

2Ψ3

(31)=
∑

Φ1ϕ1
1S (Φ2ϕ1

2) Φ3ϕ2S (φ1aϕ3)φ2Ψ1S (φ3
1Ψ2)φ3

2Ψ3

(31)=
∑

Φ1S (Φ2) Φ3S (a) Ψ1S (Ψ2) Ψ3 = S(a). �

Proposition A.3. Let (A,m, u,∆, ε,Φ, S) be a quasi-bialgebra with preantipode.
For all a, b ∈ A we have

(36) S (ab) =
∑

S (ϕ1b)ϕ2S (ψ1ϕ3)ψ2S (aψ3) .

Proof. We know from Lemma A.2 that S(a) =
∑
q1 (1A)S (p1aq2) p2 (1A). Relation

(36) is proved directly by applying it to S (ab):

S (ab) =
∑

q1 (1A)S (p1abq2) p2 (1A) (34)=
∑

q1 (1A)S (a11p
1bq2) a12p

2(a2)
(31)=

∑
q1 (1A)S (p1bq2) p2(a) (35)=

∑
q1(b1)b21S (p1q2b22) p2(a)

(31)=
∑

q1(b)S (p1q2) p2(a) =
∑

S (ϕ1b)ϕ2S (ψ1ϕ3)ψ2S (aψ3) . �

Formula (36) can be viewed as an anti-multiplicativity of the preantipode.
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