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LAGRANGE INTERPOLATION AT POLLACZEK–LAGUERRE ZEROS ON THE

REAL SEMIAXIS

G. MASTROIANNI AND I. NOTARANGELO

Abstract. In order to approximate functions defined on the real semiaxis, which can grow exponentially

both at 0 and at +∞, we introduce a suitable Lagrange operator based on the zeros of orthogo-

nal polynomials with respect to the weight w(x) = xγe−x
−α−xβ . We prove that this interpolation

process has Lebesgue constant with order logm in weighted uniform metric and converges with the or-
der of the best approximation in a large subset of weighted Lp−spaces, 1 < p <∞, with proper assumptions.

Keywords: Lagrange interpolation, weighted polynomial approximation, orthogonal polynomials,
Pollaczek–Laguerre exponential weights, real semiaxis.

AMS subject classification: 41A05, 41A10.

1. Introduction

The polynomial approximation of functions defined on the real semiaxis, which can grow
exponentially both at 0 and at +∞, has received attention in the literature only recently
(see [3, 7, 8, 9, 10, 11, 12]). In these papers, with the contribution of further authors, we

have introduced a weight of the form w(x) = xγe−x
−α−xβ , with x > 0, α > 0, β > 1 and

γ ≥ 0, and developed the related theory of polynomial approximation in proper function
spaces. The properties of the orthonormal system {pm(w)}m∈N have been studied in [9] also
from the computational point of view. To this aim the results proved by Levin and Lubinsky
in their book [4] are crucial.

In the present paper, using the zeros of pm(w), we introduce a new interpolation process,
which will be denoted by L∗m+2(w), in order to approximate the above mentioned class of
functions. As main results, we are going to prove that, under suitable necessary and sufficient
conditions, this interpolation process has Lebesgue constant with order logm in weighted
uniform metric (cfr. [13]) and behaves like the best approximation in a wide subspace of
weighted Lp−spaces, 1 < p <∞.

2. Preliminary results

In the sequel c, C will stand for positive constants which can assume different values in
each formula. We shall write C 6= C(a, b, . . .) when C is independent of a, b, . . ., and, on the
other hand, we will write Ca or C(a) when C depends on a. Furthermore A ∼ B will mean
that if A and B are positive quantities depending on some parameters, then there exists a
positive constant C independent of these parameters such that (A/B)±1 ≤ C. Finally, we
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2 G. MASTROIANNI AND I. NOTARANGELO

will denote by Pm the set of all algebraic polynomials of degree at most m. As usual N, Z,
R, will stand for the sets of all natural, integer, real numbers, while Z+ and R+ denote the
sets of positive integers and positive real numbers, respectively.

For the sake of completeness and for the reader’s convenience, we recall some basic facts,
recently proved in [8].

2.1. Classes of functions. Letting

(2.1) u(x) = xδ
√
σ(x) , σ(x) = e−x

−α−xβ

with α > 0, β > 1, δ ≥ 0, x > 0, we introduce the following spaces of functions.
If 1 ≤ p <∞ we will write f ∈ Lpu if and only if

‖f‖Lpu := ‖fu‖p =

(∫ +∞

0

|fu|p (x) dx

)1/p

<∞ .

For p =∞, by a slight abuse of notation, we set

L∞u = Cu =

{
f ∈ C0(R+) : lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
and

‖f‖L∞u := ‖fu‖∞ = sup
x∈(0,+∞)

|f(x)u(x)| ,

where C0(R+) is the collection of all continuous functions on (0,+∞).
For smoother functions we introduce the Sobolev-type spaces

W p
r (u) =

{
f ∈ Lpu : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕru‖p <∞

}
,

with

‖f‖W p
r (u) = ‖fu‖p + ‖f (r)ϕru‖p ,

where 1 ≤ p ≤ ∞, 1 ≤ r ∈ Z+, ϕ(x) :=
√
x and AC(0,+∞) denotes the set of all absolutely

continuous functions on (0,+∞).
To characterize further subspaces of Lpu, we introduce the following moduli of smoothness.

Let us consider the intervals

Ih(c) =
[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

with α and β in (2.1), h > 0 sufficiently small, and c > 1 an arbitrary but fixed constant.
For any f ∈ Lpu, 1 ≤ p ≤ ∞, r ≥ 1 and t > 0 sufficiently small (say t < t0), we set

Ωr
ϕ(f, t)u,p = sup

0<h≤t

∥∥∆r
hϕ (f)u

∥∥
Lp(Ih(c))

,

where

∆r
hϕf(x) =

r∑
i=0

(−1)i
(
r

i

)
f (x+ (r − i)hϕ(x)) , ϕ(x) =

√
x .
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Moreover, we introduce the following K-functional

K(f, tr)u,p = inf
g∈W p

r (u)

{
‖(f − g)u‖p + tr‖g(r)ϕru‖p

}
and its main part

K̃(f, tr)u,p = sup
0<h≤t

inf
g∈W p

r (u)

{
‖(f − g)u‖Lp(Ih(c)) + hr‖g(r)ϕru‖Lp(Ih(c))

}
.

Then we define the complete rth modulus of smoothness by

ωrϕ(f, t)u,p = Ωr
ϕ(f, t)u,p + inf

q∈Pr−1

‖(f − q)u‖
Lp(0,t

1/(α+ 1
2)]

+ inf
q∈Pr−1

‖(f − q)u‖
Lp[c t

−1/(β− 1
2),+∞)

with c > 1 a fixed constant. We emphasize that the behaviour of ωrϕ(f, t)u,p is independent
of the constant c. Moreover, this modulus of smoothness is equivalent to the K-functional.
To be more precise (see [8, pp. 171–172, Lemmas 2.3 and 2.4])

ωrϕ(f, t)u,p ∼ K(f, tr)u,p

and

Ωr
ϕ(f, t)u,p ∼ K̃(f, tr)u,p ,

where the constants in “∼” are independent of f and t, in both cases.
By means of the main part of the modulus of smoothness, for 1 ≤ p ≤ ∞, we can define

the Zygmund-type spaces

Zp
s (u) =

{
f ∈ Lpu : sup

t>0

Ωr
ϕ(f, t)u,p

ts
<∞, r > s

}
,

s ∈ R+, with the norm

‖f‖Zps (u) = ‖f‖Lpu + sup
t>0

Ωr
ϕ(f, t)u,p

ts
.

In the sequel, we will use the notation Ωϕ(f, t)u,p = Ω1
ϕ(f, t)u,p. We remark that, in the

definition of Zp
s (u), the main part of the rth modulus of smoothness Ωr

ϕ(f, t)u,p can be
replaced by the complete modulus ωrϕ(f, t)u,p (see [8, p. 171]).

2.2. Best weighted approximation. Let us denote by

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p

the error of best polynomial approximation of a function f ∈ Lpu, 1 ≤ p ≤ ∞.
Then, for any f ∈ Lpu, 1 ≤ p ≤ ∞, the following Jackson, Stechkin and weak Jackson

inequalities hold (see [8, p. 173, Theorems 3.2, 3.3 and 3.4])

Em(f)u,p ≤ C ωrϕ
(
f,

√
am
m

)
u,p

,
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ωrϕ

(
f,

√
am
m

)
u,p

≤ C
(√

am
m

)r m∑
i=0

(
i
√
ai

)r
Ei(f)u,p

i

and, assuming Ωr
ϕ(f, t)u,p t

−1 ∈ L1[0, 1],

(2.2) Em(f)u,p ≤ C
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t
dt ,

where m > r ≥ 1, am = am(u) ∼ m1/β is the Mhaskar–Rahmanov–Saff number related to u
and C is independent of m and f .

In particular, for any f ∈ W p
r (u), 1 ≤ p ≤ +∞, we obtain

(2.3) Em (f)u,p ≤ C
(√

am
m

)r ∥∥f (r)ϕru
∥∥
p
, C 6= C(m, f) .

Whereas, for any f ∈ Zp
s (u), 1 ≤ p ≤ +∞, we get

Em (f)u,p ≤ C
(√

am
m

)s
sup
t>0

Ωr
ϕ(f, t)u,p

ts
, r > s , C 6= C(m, f) .

2.3. The interpolation process. Let us now consider the weight

w(x) = xγσ(x) = xγe−x
−α−xβ ,

with α > 0, β > 1, γ ≥ 0 and x ∈ (0,+∞), and denote by {pm(w)}m∈N the sequence of
orthonormal polynomials with positive leading coefficients.

The zeros of pm(w) lie in the MRS interval associated with
√
w (see [4, p. 361] and [11,

p. 38, Proposition 2.3], taking into account that w belongs to the Levin–Lubinsky class
F(C2+)), namely

εm < x1 < x2 < · · · < xm < am ,

with m sufficiently large and

(2.4) ετ = ετ (
√
w) ∼

(√
aτ
τ

) 1
α+1/2

and aτ = aτ (
√
w) ∼ τ 1/β , τ > 0 .

Since ετ (
√
w) ∼ ετ (u) and aτ (

√
w) ∼ aτ (u), where the constants in “∼” depend only on γ

and δ, in the sequel with a slight abuse of notation we will simply write ετ and aτ for both
weights.

Then, setting x0 = εm and xm+1 = am, for any function f ∈ C0(R+), we denote by
Lm+2(w, f) the Lagrange polynomial, interpolating the function f at the points xk, k =
0, 1, . . . ,m+ 1, namely

Lm+2(w, f) =
m+1∑
k=0

`k(x)f(xk) ,

where

`k(x) =
v(x)pm(w, x)

v(xk)p′m(w, xk)(x− xk)
, 1 ≤ k ≤ m,
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v(x) = (x− εm)(am − x),

`0(x) =
am − x
am − εm

pm(w, x)

pm(w, εm)
,

and

`m+1(x) =
x− εm
am − εm

pm(w, x)

pm(w, am)
.

Let us now fix θ ∈ (0, 1). With that we introduce a new interpolation process L∗m+2(w),
defined as

L∗m+2(w, f, x) =
∑

εθm≤xk≤aθm

`k(x)f(xk) .

So, the operator L∗m+2(w) has the advantage of requiring a smaller number of evaluations
of the function. To ensure that this definition is not an unmotivated (though fortunate)
“truncation”, we need some further observation. To this aim we recall the following inequal-
ities (see [4, p. 97] and [12, 11], taking into account that u belongs to the Levin–Lubinsky
class F(C2+)). For any Pm ∈ Pm and s > 1, with u given by (2.1) and 1 ≤ p ≤ ∞, we have

(2.5) ‖Pm u‖p ≤ C ‖Pm u‖Lp[εm,am]

and

(2.6) ‖Pm u‖Lp(R+\[εsm,asm]) ≤ Ce
−cmν ‖Pm u‖p ,

where C and c are independent of m and Pm and

ν =

(
1− 1

2β

)
2α

2α + 1
∈ (0, 1) ,

and εm, am are the Mhaskar–Rahmanov–Saff numbers related to u.
For any fixed θ ∈ (0, 1) and for every f ∈ Lpu, 1 ≤ p ≤ ∞, we get, by using (2.6) and

denoting by PM , M =
⌊(

θ
θ+1

)
m
⌋
, the polynomial of best approximation of f in Lpu,

‖fu‖Lp(R+\[εθm,aθm]) ≤ ‖(f − PM)u‖p + ‖PMu‖Lp(R+\[εθm,aθm])

≤ EM(f)u,p + Ce−cMν ‖PM u‖p
≤ EM(f)u,p + 2Ce−cMν ‖f u‖p .

Now, for a sufficiently large M (say M > M0), 2Ce−cMν
< 1 and we get, using

‖fu‖p ≤ ‖fu‖Lp[εθm,aθm] + ‖fu‖Lp(R+\[εθm,aθm]) ,

the estimate
‖fu‖p ≤ C

[
‖fu‖Lp[εθm,aθm] + EM(f)u,p

]
for all sufficiently large M = b θm

θ+1
c and with C = Cθ 6= C(m, f). Hence the dominant part of

‖fu‖p is the norm of a finite section of f , namely χθf , where χθ is the characteristic function
of [εθm, aθm]. For this reason we apply the operator Lm+2(w) to this finite section.

Now, by definition, it follows that

L∗m+2(w, f, xk) = f(xk) , xk ∈ [εθm, aθm] ,
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and

L∗m+2(w, f, xk) = 0 , xk /∈ [εθm, aθm] .

So, L∗m+2(w) does not preserve all polynomials of degree at most m + 1. Nevertheless,
if we denote by P∗m+1 the set of the polynomials of degree at most m + 1 vanishing at
xk /∈ [εθm, aθm], i.e.,

P∗m+1 = {Q ∈ Pm+1 : Q(xk) = 0 , xk /∈ [εθm, aθm] , 0 ≤ k ≤ m+ 1}

then L∗m+2(w, f) ∈ P∗m+1 and, for any Q ∈ P∗m+1, L∗m+2(w,Q) = Q. Finally, if we denote by

E∗m+1(f)u,p = inf
Q∈P∗m+1

‖(f −Q)u‖p

the error of best weighted approximation by polynomials of P∗m+1, we can show that (see [9,
p. 1664, Lemma 4.1] or [5, 6] for different weight functions)

(2.7) E∗m+1(f)u,p ≤ C
[
EM(f)u,p + e−cm

ν‖fu‖p
]

with 1 ≤ p ≤ ∞, M = b θm
θ+1
c, ν =

(
1− 1

2β

)
2α

2α+1
, C and c independent of m and f . So,⋃

mP∗m+1 is dense in Lpu, 1 ≤ p ≤ ∞.

3. Main results

Let us now state some convergence results for the operator L∗m+2(w). To this aim we recall

that w(x) = xγσ(x) is the weight of the orthonormal system {pm(w)}m and u(x) = xδ
√
σ(x)

is the weight of the previously introduced function classes.

Theorem 3.1. For any f ∈ Cu we have

(3.1) ‖L∗m+2 (w, f)u‖∞ ≤ C(logm)‖fu‖∞
and

(3.2) ‖
[
f − L∗m+2 (w, f)

]
u‖∞ ≤ C

[
(logm)EM(f)u,∞ + e−cm

ν‖fu‖∞
]

with M = b θm
θ+1
c, ν =

(
1− 1

2β

)
2α

2α+1
, C and c independent of m and f , if and only if

(3.3) − 3

4
≤ δ − γ

2
≤ 1

4
.

Before stating an analogous theorem in Lpu−norm, we recall that (see [7, p. 160 Corollary

3.3]) if f ∈ Lpu, 1 ≤ p < ∞, and Ωϕ(f,t)u,p
t1+1/p ∈ L1[0, 1], then f is continuous on (0,+∞). So,

L∗m+2 (w, f) is well defined for this kind of functions.

Lemma 3.2. Let 1 < p <∞ and f ∈ Lpu satisfies∫ 1

0

Ωϕ(f, t)u,p
t1+1/p

dt <∞ .
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Then we have

(3.4) ‖L∗m+2 (w, f)u‖p ≤ Cθ

( ∑
εθm≤xk≤aθm

∆xk|fu|p(xk)

)1/p

with Cθ independent of m and f , if and only if

(3.5) − 3

4
− 1

p
< δ − γ

2
<

1

4
− 1

p
.

We remark that the constant Cθ in (3.4) depends on the parameter θ. To be more precise

Cθ = O
(

1

θ(1− θ)

)
,

hence the “truncation” does play a crucial role in this case and Lemma 3.2 does not hold if
we replace L∗m+2(w, x) by Lm+2(w, x).

Remark 3.3. We observe that, as a consequence of Lemma 3.2 and Remark 4.2, for any
Q ∈ P∗m+1, with 1 ≤ p <∞ and 0 < θ < 1, if conditions (3.5) hold, then we obtain

‖Qu‖p ∼

( ∑
εθm≤xk≤aθm

∆xk |Q(xk)u(xk)|p
)1/p

where the constants in “∼” are independent of m and Q.
We note that this Marcinkiewicz-type equivalence is true only for polynomials of the sub-

space P∗m+1 and not for ordinary polynomials of Pm+1.

Theorem 3.4. Let 1 < p <∞. Under the assumptions of Lemma 3.2, if (3.5) holds, we get

(3.6) ‖L∗m+2 (w, f)u‖p ≤ Cθ

[
‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωϕ(f, t)u,p
t1+1/p

dt

]
and

(3.7) ‖
[
f − L∗m+2 (w, f)

]
u‖p ≤ C

[(√
am
m

)1/p ∫ √
am
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
+ e−cm

ν‖fu‖p

]
with ν =

(
1− 1

2β

)
2α

2α+1
, C and c independent of m and f .

We remark that, under the assumption (3.5), if f fulfills only Ωϕ(f,t)u,p
t1+1/p ∈ L1[0, 1], then

‖
[
f − L∗m+2 (w, f)

]
u‖p = o

((√
am
m

)1/p
)
,

while if f ∈ W p
r (u) then

‖
[
f − L∗m+2 (w, f)

]
u‖p ≤ C

(√
am
m

)r
‖f‖W p

r (u)
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and, by (2.3) this order of convergence is the same of the best weighted polynomial approx-
imation.

Now it is easy to prove that the operator L∗m+2(w) is uniformly bounded in Sobolev-type
spaces. Here we prove a more general theorem. To this aim we denote by Dp(u), 1 < p <∞,
the following wide class of functions

(3.8) Dp(u) =
{
f ∈ Lpu : Ωϕ(f, t)u,p t

−1−1/p ∈ L1[0, 1]
}
,

with the norm

‖f‖Dp(u) = ‖fu‖p +

∫ 1

0

Ωϕ(f, t)u,p
t1+1/p

dt .

We observe that the Besov-type space Dp(u) contains the continuous functions, the functions
of Zp

s (u), s > 1/p, and those belonging to W p
r (u), r ≥ 1.

Theorem 3.5. For any f ∈ Dp(u), 1 < p <∞, if

−3

4
− 1

p
< δ − γ

2
<

1

4
− 1

p

then

sup
m

∥∥L∗m+2 (w, f)
∥∥
Dp(u)

≤ Cθ ‖f‖Dp(u)

with Cθ = C(θ) 6= C(f).

Therefore the polynomial L∗m+2 (w, f) behaves essentially as the best approximation in the
space Dp(u).

4. Proofs

First of all we recall the following inequalities (see [4, pp. 1–34, 325 and 360] and also [11,

pp.39–40]). With w(x) = xγe−x
−α−xβ and v(x) = (am − x)(x− εm), we have

(4.1) |pm (w, x)|
√
w(x)

√
|v(x)| ≤ C ∀x ∈ (0,+∞) ,

(4.2)
1

|p′m (w, xk)|
√
w(xk)

∼ ∆xk
4
√
v(xk)

(4.3) ∆xk ∼
amxk

m
√
v(xk)

, k = 1, 2, . . .m ,

and

(4.4) ∆xk ∼
√
am
m

√
xk , xk ∈ [εθm, aθm] ,

where C and the constants in “∼” are independent of m and k.
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Proof Theorem 3.1: (3.3)⇒ (3.1) and (3.2). By (2.5) we have∥∥L∗m+2 (w, f)u
∥∥
∞ ≤ C

∥∥L∗m+2 (w, f)u
∥∥
L∞(Im)

,

where Im = [εm+1, am+1] Hence, for x ∈ Im, xd a zero closest to x, xk ∈ [εθm, aθm] and
k 6= d, d± 1, using (4.1) and (4.2), we get

|`k(x)| u(x)

u(xk)
=

∣∣∣∣ v(x)pm(w, x)u(x)

v(xk)p′m(w, xk)(x− xk)u(xk)

∣∣∣∣
≤ C

(
x

xk

)δ−γ/2(
v(x)

v(xk)

)3/4
∆xk
|x− xk|

.

Now, by (2.4), taking into account that xk ∈ [εθm, aθm], we have

v(x)

v(xk)
≤ Cθ

x

xk
,

whence

|`k(x)| u(x)

u(xk)
≤ Cθ

(
x

xk

)δ−γ/2+3/4
∆xk
|x− xk|

, k 6= d, d± 1 .

Since [4, p. 361]

|`k(x)| u(x)

u(xk)
∼ 1 , k = d, d± 1 ,

it follows that∥∥L∗m+2 (w, f)u
∥∥
∞ ≤

≤ Cθ‖fu‖L∞[εθm,aθm] max
x∈Im

1 +
∑

εθm ≤ xk ≤ aθm
k 6= d, d± 1

(
x

xk

)δ−γ/2+3/4
∆xk
|x− xk|

 .

By hypothesis 0 ≤ δ− γ/2 + 3/4 ≤ 1 and so the sum at the right-hand side is dominated by
C logm. In fact, for x ∈ (εθm, aθm), this sum is dominated by

C

{∫ xd−1

εθm

+

∫ aθm

xd+1

}(x
t

)δ−γ/2+3/4 dt

|x− t|
= I1 + I2

For the term I2, since x < t, we have

I2 ≤ C
∫ aθm

xd+1

dt

t− x
∼ logm.
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While, for the term I1, setting y = x
t

and λ = −δ+ γ/2− 3/4, by (3.3) we have −1 ≤ λ ≤ 0
and then

I1 ≤
∫ 1−∆xd

x

0

y−δ+γ/2−3/4

1− y
dy

≤
∫ 1−∆xd

x

0

yλ(1− y−λ)
1− y

dy +

∫ 1−∆xd
x

0

dy

1− y

≤
∫ 1−∆xd

x

0

yλ(1− y)−λ−1 dy +

∫ 1−∆xd
x

0

dy

1− y
≤ C + C logm,

which completes the proof, since the other cases are simpler. In the sequel we are going to
show that inequality (3.1) implies the assumptions (3.3).

Now, let us prove the error estimate (3.2). Since L∗m+2 (w) preserves the polynomials of
P∗m+1, using (3.1) and (2.7), we have

‖
[
f − L∗m+2 (w, f)

]
u‖∞ ≤ Cθ (logm)E∗m+1(f)u,∞

≤ Cθ
[
(logm)EM(f)u,∞ + e−cm

ν‖fu‖∞
]

�

The following proposition will be useful in order to prove Theorem 3.4.

Proposition 4.1. Let 1 ≤ p < ∞, η ≥ 0 and 0 < θ < θ̄ < 1. Then, for any polynomial
Plm ∈ Plm, with l a fixed integer, we have∑

εθm≤xk≤aθm

∆xk |xηkPlm(xk)|p ≤ C
∫ aθ̄m

εθ̄m

|xηPlm(x)|p dx ,

where xk are the zeros of pm(w) and C is independent of m and Plm.

Proof. From inequality

(b− a) |f(a)|p ≤ 2p
[∫ b

a

|f(x)|p dx+ (b− a)p
∫ b

a

|f ′(x)|p dx

]
,

setting a = xk, b = xk+1 and f = Plm, we deduce

∆xk |Plm(xk)|p ≤ 2p
[∫ xk+1

xk

|Plm(x)|p dx+ (∆xk)
p

∫ xk+1

xk

|P ′lm(x)|p dx

]
.

Using (4.4) and xk ∼ x for x ∈ [xk, xk+1], we get

∆xk |xηkPlm(xk)|p ≤

≤ C
[∫ xk+1

xk

|xηPlm(x)|p dx+

(√
am
m

)p ∫ xk+1

xk

∣∣xηP ′lm(x)
√
x
∣∣p dx

]
.
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and ∑
εθm≤xk≤aθm

∆xk |xηkPlm(xk)|p ≤

≤ C
[∫ aθm

εθm

|xηPlm(x)|p dx+

(√
am
m

)p ∫ aθm

εθm

∣∣xηP ′lm(x)
√
x
∣∣p dx

]
.

For the second integral at the right-hand side, taking into account that√
x

x− εθ̄m

√
am

aθ̄m − x
≤ Cθ̄

for

εm < εθ̄m < εθm ≤ x ≤ aθm < aθ̄m < am ,

we obtain (√
am
m

)p ∫ aθm

εθm

∣∣xηP ′lm(x)
√
x
∣∣p dx

=

(√
am
m

)p ∫ aθm

εθm

∣∣∣∣∣xηP ′lm(x)
√
x
√

(x− εθ̄m)(aθ̄m − x)√
(x− εθ̄m)(aθ̄m − x)

∣∣∣∣∣
p

dx

≤ C
mp

∫ aθ̄m

εθ̄m

∣∣∣xηP ′lm(x)
√

(x− εθ̄m)(aθ̄m − x)
∣∣∣p dx

≤ C
∫ aθ̄m

εθ̄m

|xηPlm(x)|p dx ,

having used the Bernstein inequality related to the interval [εθ̄m, aθ̄m] in weighted Lp−norm.
The proposition easily follows. �

Remark 4.2. We note that, proceeding as in the proof of Proposition 4.1 and taking into
account that u(x) ∼ u(xk) for x ∈ [xk, xk+1] (see [8, p. 170, Proposition 2.1]), for any
Plm ∈ Plm, with l a fixed integer, with 1 ≤ p <∞ and 0 < θ < θ̄ < 1, we obtain∑

εθm≤xk≤aθm

∆xk |Plm(xk)u(xk)|p ≤ C
∫ aθ̄m

εθ̄m

|Plm(x)u(x)|p dx ,

where xk are the zeros of pm(w) and C is independent of m and Plm.

Proposition 4.3. Let 1 ≤ p < ∞, a > 0 fixed and g ∈ Lp. Then, for tm(x) =

pm(w, x)
√
w(x)

√
|(am − x)(x− εm)|, the inequality∫ a

0

|g(x)tm(x)|p dx ≥ C
∫ a

0

|g(x)|p dx

holds with C 6= C(m, pm(w)).
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Proof. Letting xk be the zeros of pm(w), we set

Jm = ∪xk≤a
(
xk −

µ

8
∆xk, xk +

µ

8
∆xk

)
,

with µ > 0 small. Taking into account (4.2) and (4.3), since∣∣∣∣ pm(w, x)

p′m(w, xd)(x− xd)

∣∣∣∣ ∼ 1 ,

where xd is a zero closest to x ∈ (εm, am), we have

(4.5) |tm(x)| =
∣∣∣∣pm(w, x)

√
w(x)

√
|(am − x)(x− εm)|

∣∣∣∣ ∼ |x− xd±1|
∆xd±1

and then

|tm(x)| ≥ Cµ , x ∈ [0, a] \ Jm .
So we get ∫ a

0

|g(x)t(x)|p dx ≥ Cµ
∫

[0,a]\Jm
|g(x)|p dx

= Cµ
∫ a

0

|g(x)|p dx− Cµ
∫
Jm

|g(x)|p dx .

Since the measure of Jm fulfills |Jm| ≤ aµ
4

, using the absolute continuity of the integral, for
any fixed g we can choose µ such that the second integral at the right-hand side is a half of
the first one and the proof is complete. �

In order to prove Lemma 3.2, we recall some properties of the Hilbert transformH extended
to an interval (a, b), defined by

H(f, y) =

∫ b

a

f(x)

x− y
dx , y ∈ (a, b) ,

where the integral is understood in the Cauchy principal value sense. The commutation
formula ∫ b

a

H(f)g = −
∫ b

a

H(g)f

holds for any f ∈ Lp and g ∈ Lq, 1 < p < ∞, 1/p + 1/q = 1. We recall that, for any
measurable function f such that fv ∈ Lp, 1 < p <∞, the inequality

‖H (f) v‖p ≤ C‖fv‖p , C 6= C(f) ,

holds if and only (see [2]) the weight v belongs to the Ap class, 1 < p <∞, i.e.,(
1

|I|

∫
I

vp(x) dx

)1/p(
1

|I|

∫
I

v−q(x) dx

)1/q

≤ C I ⊂ (a, b) ,

where |I| denotes the measure of I and 1
p

+ 1
q

= 1.
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Proof of Lemma 3.2. By (2.5) we have∥∥L∗m+2 (w, f)u
∥∥
p
≤ C

∥∥L∗m+2 (w, f)u
∥∥
Lp(Im)

= C sup
‖g‖Lq(Im)=1

∫
Im

L∗m+2 (w, f, x)u(x)g(x) dx

=: C sup
‖g‖Lq(Im)=1

A(g)

where Im := [εm+1, am+1] and q = p/(p − 1). By using (4.2) and since v(xk) ≥ Cθamxk for
xk ∈ [εθm, aθm], we obtain

A(g) ≤ Cθ
a

3/4
m

∑
εθm≤xk≤aθm

∆xk|fu|(xk)
x
δ−γ/2+3/4
k

∣∣∣∣∫
Im

v(x)pm(w, x)u(x)g(x)

x− xk
dx

∣∣∣∣
≤ Cθ

a
3/4
m

∑
εθm≤xk≤aθm

∆xk|fu|(xk)
x
δ−γ/2+3/4
k

|Π(xk)| ,

with

Π(y) =

∫
Im

v(x)pm(w, x)Q(x)− v(y)pm(w, y)Q(y)

x− y
u(x)g(x)

Q(x)
dx

= H(vpm(w)ug, y)− v(y)pm(w, y)Q(y)H
(
ug

Q
, y

)
where Q > 0 is a polynomial of degree lm that will be chosen in the sequel and H is the
Hilbert transform related to the interval Im. Then, using the Hölder inequality, we get

A(g) ≤ Cθ
a

3/4
m

( ∑
εθm≤xk≤aθm

∆xk|fu|p(xk)

) 1
p
( ∑
εθm≤xk≤aθm

∆xk

∣∣∣xγ/2−δ−3/4
k Π(xk)

∣∣∣q) 1
q

.

By Proposition 4.1, the second sum at the right-hand side is dominated by

C
(∫

Im

∣∣yγ/2−δ−3/4Π(y)
∣∣q dy

)1/q

≤ C

[(∫
Im

∣∣yγ/2−δ−3/4H(vpm(w)ug, y)
∣∣q dy

)1/q

+

(∫
Im

∣∣∣∣yγ/2−δ−3/4v(y)pm(w, y)Q(y)H
(
ug

Q
, y

)∣∣∣∣q dy

)1/q
]

=: I1 + I2 .

Now, by (4.1), we have

|v(y)pm(w, y)u(y)| ≤ Cyδ−γ/2(am − y)3/4(y − εm)3/4

≤ Cyδ−γ/2+3/4a3/4
m .
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By virtue of (3.5), yγ/2−δ−3/4 is an Aq weight on Im and we can use the boundedness of the
Hilbert transform, obtaining

I1 ≤ C
(∫

Im

∣∣yγ/2−δ−3/4v(y)pm(w, y)u(y)g(y)
∣∣q dy

)1/q

≤ Ca3/4
m ‖g‖Lq(Im) = Ca3/4

m .

In order to estimate I2 we can choose Q such that Q ∼ u in Im (see [12, p. 809, Lemma
3.1]) and, by (4.1), we get ∣∣yγ/2−δ−3/4v(y)pm(w, y)Q(y)

∣∣ ≤ Ca3/4
m ,

whence, using the boundedness of the Hilbert transform H : Lq(Im)→ Lq(Im), we deduce

I2 ≤ Ca3/4
m

∥∥∥∥H(ugQ
)∥∥∥∥

Lq(Im)

≤ Ca3/4
m ‖g‖Lq(Im) = Ca3/4

m .

Collecting the previous inequalities we obtain

∥∥L∗m+2 (w, f)u
∥∥
p
≤ Cθ

( ∑
εθm≤xk≤aθm

∆xk|fu|p(xk)

)1/p

.

Now, let us prove that inequality (3.4) implies conditions (3.5). To this aim, letting m
fixed and sufficiently large, we consider a piecewise linear function F0 such that

F0(x) = 0 x /∈ [2, 3]

and

F0(xk) = sgn(p′m(w, xk)) xk ∈ [2, 3] ,

joining two consecutive points with a segment. Since F0 is continuous on (0,+∞), we can
write ∥∥L∗m+2 (w,F0)u

∥∥
Lp[εθm,1]

<
∥∥L∗m+2 (w,F0)u

∥∥
p
≤ C

( ∑
2≤xk≤3

∆xk|F0u|p(xk)

)1/p

and, using (4.2) and v(x)
v(xk)

≥ Cθ xxk for x > εθm and xk ≥ 2, we get∣∣L∗m+2 (w,F0, x)u(x)
∣∣ ≥ C ∣∣pm(w, x)v1/4(x)u(x)x3/4

∣∣ ∑
2≤xk≤3

∆xk x
−δ+γ/2−3/4
k u(xk)

and ∥∥L∗m+2 (w,F0)u
∥∥
Lp[εθm,1]

≥ C
∥∥pm(w)v1/4ux3/4

∥∥
Lp[εθm,1]

∑
2≤xk≤3

∆xk x
−δ+γ/2−3/4
k u(xk) .
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Using Proposition 4.3 we obtain

sup
m

(∫ 1

εθm

x(δ−γ/2+3/4)p dx

)1/p ∑
2≤xk≤3

∆xk x
−δ+γ/2−3/4
k u(xk) ≤ C

( ∑
2≤xk≤3

∆xku
p(xk)

)1/p

Therefore (∫ 1

0

x(δ−γ/2+3/4)p dx

)1/p ∑
2≤xk≤3

∆xk x
−δ+γ/2−3/4
k u(xk)

≤ C

( ∑
2≤xk≤3

∆xku
p(xk)

)1/p

.(4.6)

Now, let A = {Ak}k∈N, where Ak = (∆xk)
1/p u(xk) and ‖A‖lp =

(∑
2≤xk≤3A

p
k

)1/p
, the last

inequality (4.6) can be rewritten as(∫ 1

0

x(δ−γ/2+3/4)p dx

)1/p

sup
A

∑
2≤xk≤3

Ak
‖A‖lp

(∆xk)
1/q x

−δ+γ/2−3/4
k ≤ C ,

with 1
p

+ 1
q

= 1, since

sup
A

∑
2≤xk≤3

Ak
‖A‖lp

(∆xk)
1/q x

−δ+γ/2−3/4
k =

∑
2≤xk≤3

∆xkx
(−δ+γ/2−3/4)q
k ∼ 1 .

It follows that (3.4) implies δ − γ/2 > −3/4− 1/p, 1 < p <∞.
Let us now show that (3.4) implies δ − γ/2 < 1/4 − 1/p. To this aim we consider a

piecewise linear function F1 such that

F1(x) = 0 x /∈ [εθm, 1]

and

F1(xk) = sgn(p′m(w, xk)) xk ∈ [εθm, 1] .

Hence we get

∥∥L∗m+2 (w,F1)u
∥∥
Lp[2,3]

<
∥∥L∗m+2 (w,F1)u

∥∥
p
≤ C

( ∑
εθm≤xk≤1

∆xk|F1u|p(xk)

)1/p

and, proceeding as before, inequality (4.6) is replaced by(∫ 3

2

x(δ−γ/2+3/4)p dx

)1/p ∑
εθm≤xk≤1

∆xkx
−δ+γ/2−3/4
k ≤ C

( ∑
εθm≤xk≤1

∆xku
p(xk)

)1/p

.
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Now, with B = {Bk}k∈N, Bk = (∆xk)
1/p u(xk) and ‖B‖lp =

(∑
0≤xk≤1B

p
k

)1/p
, the integral at

the left-hand side is bounded, while

sup
B

∑
0≤xk≤1

Bk

‖B‖lp
(∆xk)

1/q x
−δ+γ/2−3/4
k =

( ∑
0≤xk≤1

∆xkx
(−δ+γ/2−3/4)q
k

)1/q

∼
(∫ 1

0

x(−δ+γ/2−3/4)q dx

)1/q

.

From (∫ 1

0

x(−δ+γ/2−3/4)q dx

)1/q

≤ C

condition δ − γ/2 < 1/4− 1
p

follows. So the proof is complete. �

Proof that inequality (3.1) of Theorem 3.1 implies conditions (3.3). Let us first prove that
(3.1) implies δ − γ/2 − 3/4 ≥ 0. To this aim, using the same arguments of the previ-
ous proof (inequality (3.4) implies δ − γ/2 > −3/4 − 1/p), but replacing p with ∞ and q
with 1, we obtain

max
x∈[εθm,1]

∣∣pm(w, x)v1/4x3/4u(x)
∣∣ ∑

2≤xk≤3

∆xku(xk)x
−δ+γ/2−3/4
k

≤
∥∥L∗m+2 (w,F0)u

∥∥
L∞[εθm,1]

≤ C ‖F0u‖L∞[εθm,1] logm

≤ C logm,(4.7)

where F0 is the above defined function. The sum at the left hand side is bounded from below
and using (4.5), it follows that

max
x∈[εθm,1]

xδ−γ/2+3/4 ≤ C logm,

i.e. δ − γ/2 + 3/4 ≥ 0.
Let us now prove that (3.1) implies δ− γ/2− 3/4 ≤ 1. As before, we will use a procedure

similar to that of previous proof (inequality (3.4) implies δ− γ/2 < 1/4− 1/p), with p =∞
and q = 1 and F1 in place of F0. In this case (4.7) becomes

max
x∈[2,3]

∣∣pm(w, x)v1/4x3/4u(x)
∣∣ ∑
εθm≤xk≤1

∆xku(xk)x
−δ+γ/2−3/4
k

≤
∥∥L∗m+2 (w,F1)u

∥∥
L∞[2,3]

≤ C ‖F1u‖L∞[2,3] logm

≤ C ‖u‖L∞[2,3] logm.
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Since
∣∣pm(w, x)v1/4x3/4u(x)

∣∣ is bounded from below in [2, 3], we get

sup
u

∑
εθm≤xk≤1

∆xk
u(xk)

‖u‖L∞[2,3]

x
−δ+γ/2−3/4
k ≤ C logm

and ∑
εθm≤xk≤1

∆xkx
−δ+γ/2−3/4
k ≤ C logm,

whence ∫ 1

εθm

t−δ+γ/2−3/4 dt ≤ C logm,

i.e. δ − γ/2 + 3/4 ≤ 1. So, (3.1) implies conditions (3.3). �

Proof of Theorem 3.4. First of all, inequality (3.6) can be obtained proceeding like in [15,
pp. 232–234]), since

∥∥L∗m+2 (w, f)u
∥∥
p
≤ Cθ

( ∑
εθm≤xk≤aθm

∆xk|fu|p(xk)

)1/p

≤ Cθ

[
‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωϕ(f, t)u,p
t1+1/p

dt

]
(4.8)

Then, for any P ∈ P ∗m+1 of quasi best approximation, we can write

f − L∗m+2 (w, f) = (f − P )− L∗m+2 (w, f − P ) .

By (2.7) and (2.2) we get

‖(f − P )u‖p ≤ C
[
EM(f)u,p + e−cm

ν‖fu‖p
]

≤ C

[(√
am
m

)1/p ∫ √
am
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt+ e−cm

ν‖fu‖p

]
and, using (4.8) and arguments similar to those in [14, Prop. 4.2, pp.280–281],

∥∥L∗m+2 (w, f − P )u
∥∥
p
≤ Cθ

[
‖(f − P )u‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωϕ(f − P, t)u,p
t1+1/p

]

≤ C

[
e−cm

ν‖fu‖p +

(√
am
m

)1/p ∫ √
am
m

0

Ωr
ϕ(f, t)u,p

t1+1/p
dt

]
we obtain (3.7).

�
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Proof of Theorem 3.5. Let us consider the space Dp(u), defined by (3.8). We have∥∥L∗m+2 (w, f)
∥∥
Dp(u)

≤ ‖f‖Dp(u) +
∥∥f − L∗m+2 (w, f)

∥∥
Dp(u)

and

∥∥f − L∗m+2 (w, f)
∥∥
Dp(u)

=
∥∥[f − L∗m+2 (w, f)

]
u
∥∥
p

+

∫ 1

0

Ωϕ

(
f − L∗m+2 (w, f) , t

)
u,p

t1+1/p
dt .

Let us estimate the second addend, decomposing it as

∫ 1

0

Ωϕ

(
f − L∗m+2 (w, f) , t

)
u,p

t1+1/p
dt =

{∫ √
am
m

0

+

∫ 1

√
am
m

}
Ωϕ

(
f − L∗m+2 (w, f) , t

)
u,p

t1+1/p
dt .

For the second integral we get

∫ 1

√
am
m

Ωϕ

(
f − L∗m+2 (w, f) , t

)
u,p

t1+1/p
dt ≤ C

(
m
√
am

)1/p ∥∥[f − L∗m+2 (w, f)
]
u
∥∥
p

≤ C
∫ √

am
m

0

Ωϕ (f, t)u,p
t1+1/p

dt+ Ce−cmν‖fu‖p .

In order to estimate the first integral we can write

f − L∗m+2 (w, f) = (f − P )− L∗m+2 (w, f − P ) + Lm+2 (w, (1− χθ)P )

where P ∈ PM , M = b θm
θ+1
c, is a polynomial of quasi best approximation for f , χθ is the

characteristic function of [εθm, aθm]. Since (using a procedure in [1, pp . 98–100], see also [8,
p. 174, Theorem 3.5])

√
am
m
‖P ′mϕu‖p ≤ C

∫ √
am
m

0

Ωϕ (f, t)u,p
t

dt

we obtain∫ √
am
m

0

Ωϕ (f − P, t)u,p
t1+1/p

dt ≤ C

[∫ √
am
m

0

Ωr
ϕ (f, t)u,p
t1+1/p

dt+

(√
am
m

)1− 1
p

‖P ′mϕu‖p

]

≤ C
∫ √

am
m

0

Ωϕ (f, t)u,p
t1+1/p

dt .
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Moreover, we have∫ √
am
m

0

Ωϕ

(
L∗m+2 (w, f − P ) , t

)
u,p

t1+1/p
dt ≤

(√
am
m

)1−1/p ∥∥∥[L∗m+2 (w, f − P )
]′
ϕu
∥∥∥
p

≤ C
(√

am
m

)−1/p ∥∥L∗m+2 (w, f − P )u
∥∥
p

≤ C
∫ √

am
m

0

Ωϕ (f, t)u,p
t1+1/p

dt1, .

In this last inequality we have used the estimate for
∥∥L∗m+2 (w, f − P )u

∥∥
p

given in Theorem

3.4.It follows that∫ √
am
m

0

Ωϕ

(
L∗m+2 (w, (1− χθ)P ) , t

)
u,p

t1+1/p
dt ≤ C

(√
am
m

)1−1/p ∥∥∥[L∗m+2 (w, (1− χθ)P )
]′
ϕu
∥∥∥
p

≤ C
(√

am
m

)−1/p ∥∥L∗m+2 (w, (1− χθ)P )u
∥∥
p
.

Since ∣∣L∗m+2 (w, (1− χθ)P, x)u(x)
∣∣ ≤ ‖Pu‖L∞(R+\[εθm,aθm])

∑
xk /∈[εθm,aθm])

|`k(x)|u(x)

u(xk)

where the sum is dominated by Cmτ , for some τ > 0, using (2.6) and the Nikolskii inequality
(see [12, p. 810, Theorem 3.4])

‖P u‖∞ ≤ C
(

m
√
εmam

) 1
p

‖P u‖p ,

we get ∫ √
am
m

0

Ωϕ

(
L∗m+2 (w, (1− χθ)P ) , t

)
u,p

t1+1/p
dt ≤ Ce−cmν‖fu‖p

which completes the proof. �
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