
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Constraining Deep Representations with a Noise Module for Fair Classification

Publisher:

Published version:

DOI:10.1145/3341105.3374090

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ASSOC COMPUTING MACHINERY

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1732724 since 2020-03-04T15:17:19Z



Constraining Deep Representations with a Noise Module for
Fair Classification

Mattia Cerrato
mattia.cerrato@unito.it

Università di Torino, Computer
Science Department

Torino, Italy

Roberto Esposito
roberto.esposito@unito.it

Università di Torino, Computer
Science Department

Torino, Italy

Laura Li Puma
laura.lipuma@intesasanpaolo.com
Intesa Sanpaolo Innovation Center

Torino, Italy

ABSTRACT
The recent surge in interest for Deep Learning (motivated by its
exceptional performances on longstanding problems) made Neural
Networks a very appealing tool for many actors in our society. One
issue in this shift of interest is that Neural Networks are very opaque
objects and it is often hard to make sense of their predictions.
In this context, research efforts have focused on building fair repre-
sentations of data which display little to no correlation with regard
to a sensitive attribute s. In this paper we build onto a domain adap-
tation neural model by augmenting it with a “noise conditioning”
mechanism which we show is instrumental in obtaining fair (i.e.
non-correlated with s) representations. We provide experiments on
standard datasets showing the effectiveness of the noise conditioning
mechanism in helping the networks to ignore the sensible attribute.

ACM Reference Format:
Mattia Cerrato, Roberto Esposito, and Laura Li Puma. 2020. Constraining
Deep Representations with a Noise Module for Fair Classification. In The
35th ACM/SIGAPP Symposium on Applied Computing (SAC’20), March
30-April 3, 2020, Brno, Czech Republic. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3341105.3374090

1 INTRODUCTION
Artificial intelligence in general, and machine learning in particular,
is becoming a pervasive technology adopted by large corporations
as well as by small businesses [7]. This growing interest in these
technologies is raising increasing concerns about their fairness, mo-
tivated by the fact that they could possibly be leveraged to perpetrate
and justify discriminating behavior.

In this context deep learning techniques appear to be at odds
with the aforementioned trend. Deep learning models have shown
impressive results on many pattern matching and machine perception
problems [4] and, as a result, businesses and institutions have shown
a growing interest in employing neural networks to further automate
and innovate their decision-making process; however, a longstanding
problem with deep neural architectures is their opacity and sheer
number of trainable parameters.

One possible way to cope with this issue, in absence of full
explainability, is to ensure fairness in the model. Defining a clas-
sifier’s fairness in a precise, formal way has received considerable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374090

attention[5, 8–10]. In this work we leverage neural networks to learn
a non-linear mapping from the original data space into a feature
space in which information about the sensitive features s is absent.
We argue that such a representation is inherently fair.

Instead of explicitly optimizing for a given discrimination mea-
sure as in [9], we follow Xie et al. [8] and employ two sub-networks
Y and S which are optimized to predict the target and sensitive
variables respectively (see Figure 1). Parameters of the model are
optimized so that the sensitive attribute is predicted badly, while still
allowing for accurate predictions of the target variable.

2 MOTIVATION
Building fair representations through neural networks has been re-
cently proposed in [2, 5]. In these works the neural network is fed
with some input data and is trained to learn a representation that dis-
cards all information regarding some attribute. Our model is based
on Ganin et al.’s work [1, 2] and tries to achieve decorrelated repre-
sentations via a loss function: L = Ly − λLs built as the combination
of a term Ly that penalizes errors over the target variable y, and a
negative term Ls that penalizes accuracy over s, Ganin et al. apply
their Domain Adversarial training framework to various domain
adaptation datasets, showing state of the art performance.

In domain adaptation, learning algorithms are evaluated on their
ability to learn features that adapt to other similar, related datasets;
on the other hand, state of the art fair classification models pro-
duce representations which have little to no correlation w.r.t. the
sensitive attribute s. Therefore, we argue that simply employing
domain adaptation algorithms to the fair classification context may
not result in optimal performances w.r.t. the fairness of the obtained
representations. Our experiments in Section 4 indeed show that the
standard Domain Adversarial learning algorithm does not guarantee
the removal of all information about the sensitive attribute. In the
following section we introduce our noise conditioning module which
is instrumental in obtaining truly fair representations.

3 PROPOSED MODEL
Let us consider a dataset D = {(xi , si ,yi ), i ∈ {1 . . .N }}, where xi ∈
Rn are vectors describing non sensitive attributes of our problem;
si ∈ R

m’s are vectors describing sensitive attributes, and yi are the
target values.

We aim at training a neural network model R so that the output
of R(x) can be used as a useful and fair representation for building
classifiers predicting y values. We say that a representation r is fair
iff s cannot be predicted using only r and we say that it is useful iff
y can be accurately predicted.

https://doi.org/10.1145/3341105.3374090
https://doi.org/10.1145/3341105.3374090


SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Mattia Cerrato, Roberto Esposito, and Laura Li Puma

To achieve this goal, as proposed in Ganin et al. [1, 2], we leverage
an auxiliary neural network Y to predict the y variable, and another
auxiliary network S to predict the s variable. In the following, θY ,
θS , and θR are the parameters for the Y , the S and the R models
respectively.

The network R is trained so to maximize the performances of
network Y while minimizing the performances of S . Each iteration
step optimizes S so to improve in predicting the sensitive variable,
optimizes Y so to improve the prediction of the target variable, and
optimizes R so to build the best possible representation for Y and the
worst possible for S .

The overall training objective can therefore be written as follows:

θ̂R , θ̂Y , θ̂S = arg min
θR ,θY

[
L(y,Y (R(x))) + λmax

θS
L(s, S(R(x)))

]
where λ is a “fairness importance” parameter employed to balance
the importance of decorrelating with respect to s against accurately
predicting y. As it should be apparent from the formulation, lower
λ values would make the system more tolerant of unfair behaviors
(setting it to 0 makes the system behave as a regular neural classifier
predicting y).

We note that the optimization problem is complicated by the inter-
action between the minimization over parameters θR with the inner
maximization which uses the R network based on those parameters.
As suggested in [1, 2], the back propagation algorithm can be easily
modified to cope with this objective by changing the sign of the
gradients on θS after updating the weights of network S (so that the
the network R is updated using the inverted gradient, thus worsening
the performance over S). Figure 1 gives a graphical representation
of the model.

Rx

Y

S

�rL(y, Y (R(x)))
<latexit sha1_base64="lHRSWLqSSK8Bn1vsHAMVKc3csiI=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARUtCSVEGXRTcuXFSxD2lDmUwn7dDJJMxMxBC78FfcuFDErb/hzr9x2mah1QMXDufcy733eBGjUtn2l5Gbm19YXMovF1ZW19Y3zM2thgxjgUkdhywULQ9JwigndUUVI61IEBR4jDS94fnYb94RIWnIb1QSETdAfU59ipHSUtfcOYQdjjyG4KWVHMBb69q6L5VKXbNol+0J4F/iZKQIMtS65menF+I4IFxhhqRsO3ak3BQJRTEjo0InliRCeIj6pK0pRwGRbjq5fwT3tdKDfih0cQUn6s+JFAVSJoGnOwOkBnLWG4v/ee1Y+aduSnkUK8LxdJEfM6hCOA4D9qggWLFEE4QF1bdCPEACYaUjK+gQnNmX/5JGpewclStXx8XqWRZHHuyCPWABB5yAKrgANVAHGDyAJ/ACXo1H49l4M96nrTkjm9kGv2B8fAPyl5N5</latexit>

�rL(s, S(R(x)))
<latexit sha1_base64="Ud+1WCbRAJpNLLfai1Vtpl2wbzg=">AAAB/3icbVDLSgNBEJyNrxhfq4IXL4NBSEDDbhT0GPTiwUN85AFJCL2TSTJkdnaZmRXDmoO/4sWDIl79DW/+jZNkDxotaCiquunu8kLOlHacLys1N7+wuJRezqysrq1v2JtbVRVEktAKCXgg6x4oypmgFc00p/VQUvA9Tmve4Hzs1+6oVCwQt3oY0pYPPcG6jIA2UtveOcRNAR4HfJlTB/gmd527z+fzbTvrFJwJ8F/iJiSLEpTb9mezE5DIp0ITDko1XCfUrRikZoTTUaYZKRoCGUCPNgwV4FPViif3j/C+UTq4G0hTQuOJ+nMiBl+poe+ZTh90X816Y/E/rxHp7mkrZiKMNBVkuqgbcawDPA4Dd5ikRPOhIUAkM7di0gcJRJvIMiYEd/blv6RaLLhHheLVcbZ0lsSRRrtoD+WQi05QCV2gMqoggh7QE3pBr9aj9Wy9We/T1pSVzGyjX7A+vgHgAZNt</latexit>

�rL(y, Y (R(x)))
<latexit sha1_base64="lHRSWLqSSK8Bn1vsHAMVKc3csiI=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARUtCSVEGXRTcuXFSxD2lDmUwn7dDJJMxMxBC78FfcuFDErb/hzr9x2mah1QMXDufcy733eBGjUtn2l5Gbm19YXMovF1ZW19Y3zM2thgxjgUkdhywULQ9JwigndUUVI61IEBR4jDS94fnYb94RIWnIb1QSETdAfU59ipHSUtfcOYQdjjyG4KWVHMBb69q6L5VKXbNol+0J4F/iZKQIMtS65menF+I4IFxhhqRsO3ak3BQJRTEjo0InliRCeIj6pK0pRwGRbjq5fwT3tdKDfih0cQUn6s+JFAVSJoGnOwOkBnLWG4v/ee1Y+aduSnkUK8LxdJEfM6hCOA4D9qggWLFEE4QF1bdCPEACYaUjK+gQnNmX/5JGpewclStXx8XqWRZHHuyCPWABB5yAKrgANVAHGDyAJ/ACXo1H49l4M96nrTkjm9kGv2B8fAPyl5N5</latexit>

+rL(s, S(R(x)))
<latexit sha1_base64="b4Ao638zlxKvRUOF0/PFkfK3AY8=">AAAB/3icdVDLSgMxFM3UV62vUcGNm2ARWpQh01qmy6IbFy7qo7bQlpJJ0zY0kxmSjFhqF/6KGxeKuPU33Pk3pg9BRQ9cOJxzL/fe40ecKY3Qh5WYm19YXEoup1ZW19Y37M2taxXGktAKCXkoaz5WlDNBK5ppTmuRpDjwOa36/ZOxX72hUrFQXOlBRJsB7grWYQRrI7XsnQPYENjnGJ5l1CG8zFxkbrPZbMtOI6dQRJ7nQuSgfBEVcmPiegUPQddBE6TBDOWW/d5ohyQOqNCEY6XqLop0c4ilZoTTUaoRKxph0sddWjdU4ICq5nBy/wjuG6UNO6E0JTScqN8nhjhQahD4pjPAuqd+e2PxL68e606xOWQiijUVZLqoE3OoQzgOA7aZpETzgSGYSGZuhaSHJSbaRJYyIXx9Cv8n1znHzTu586N06XgWRxLsgj2QAS7wQAmcgjKoAALuwAN4As/WvfVovViv09aENZvZBj9gvX0CPKeTrQ==</latexit>

Figure 1: Fairness model. Adjacent to each component of the
network we report the gradients used to update the parameters
of the component. Note that the direction of ∇L(s, S(R(x))) is re-
versed when applied to R.

The model presented so far is equivalent to the one introduced by
Ganin et al. [1, 2]. However, as discussed in Section 2, decorrelation
with respect to the sensitive variable can prove to be very difficult
since it requires to combine many possibly meaningful features
to mask and dampen signals correlated with s. To overcome this
difficulty, we propose a new noise layer that simplifies the task of
decorrelating with respect to s.

⌘
<latexit sha1_base64="jpVdjwnRsHnjvYQzwTGHXHUPFLk=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120y7d3YTdiVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYiksuu63s7a+sbm1Xdop7+7tHxxWjo7bNkoM4y0Wych0A2q5FJq3UKDk3dhwqgLJO8HkLvc7T9xYEelHnMbcV3SkRSgYxVzqc6SDStWtuXOQVeIVpAoFmoPKV38YsURxjUxSa3ueG6OfUoOCST4r9xPLY8omdMR7GdVUceun81tn5DxThiSMTFYayVz9PZFSZe1UBVmnoji2y14u/uf1Egxv/FToOEGu2WJRmEiCEckfJ0NhOEM5zQhlRmS3EjamhjLM4ilnIXjLL6+Sdr3mXdbqD1fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5ijnxXl3Phata04xcwJ/4Hz+AAowjjw=</latexit>

a
(i)
k

<latexit sha1_base64="JrgA0VnO3RjEAUblHCd8fvQPjCQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsh7VqyabYNTbJLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8c3Mbz9RpVkk780kpr7AQ8lCRrCx0gN+TMvsfNof94slt+LOgVaJl5ESZGj0i1+9QUQSQaUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSiQXVfjo/eIrOrDJAYaRsSYPm6u+JFAutJyKwnQKbkV72ZuJ/Xjcx4ZWfMhknhkqyWBQmHJkIzb5HA6YoMXxiCSaK2VsRGWGFibEZFWwI3vLLq6RVrXi1SvXuolS/zuLIwwmcQhk8uIQ63EIDmkBAwDO8wpujnBfn3flYtOacbOYY/sD5/AFLgZAT</latexit>

a
(i)
k w1,k + ⌘kw2,k

<latexit sha1_base64="Y4l71koFXLypfcqaYcTZaIAp3cU=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAiVJSSVEGXRTcuK9gLtDFMppN2yGQSZiZKCdm78VXcuFDErS/gzrdx2mahrT8M/HznHM6c34sZlcqyvo3C0vLK6lpxvbSxubW9Y+7utWWUCExaOGKR6HpIEkY5aSmqGOnGgqDQY6TjBVeTeueeCEkjfqvGMXFCNOTUpxgpjVyzjO7SKj3K3AA+uKl9EmTwGPaJQjNQ18A1K1bNmgouGjs3FZCr6Zpf/UGEk5BwhRmSsmdbsXJSJBTFjGSlfiJJjHCAhqSnLUchkU46vSWDh5oMoB8J/biCU/p7IkWhlOPQ050hUiM5X5vA/2q9RPkXTkp5nCjC8WyRnzCoIjgJBg6oIFixsTYIC6r/CvEICYSVjq+kQ7DnT1407XrNPq3Vb84qjcs8jiI4AGVQBTY4Bw1wDZqgBTB4BM/gFbwZT8aL8W58zFoLRj6zD/7I+PwBiRqZdg==</latexit>

w
2,k

<latexit sha1_base64="/Nt7Hn4S6OJZXd+Ugofmfp4XSrE=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY9FLx4r2A9oQ9lsN+3SzSbsTpQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791iPXRsTqAccJ9yM6UCIUjKKVWk+9rHo+mvRKZbfizkCWiZeTMuSo90pf3X7M0ogrZJIa0/HcBP2MahRM8kmxmxqeUDaiA96xVNGIGz+bnTshp1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDaz4RKUuSKzReFqSQYk+nvpC80ZyjHllCmhb2VsCHVlKFNqGhD8BZfXibNasW7qFTvL8u1mzyOAhzDCZyBB1dQgzuoQwMYjOAZXuHNSZwX5935mLeuOPnMEfyB8/kDBC6PWw==</latexit>

w1,k
<latexit sha1_base64="4foxCL+MiAbdgR1iLd8yTmyVYYk=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY9FLx4r2A9oQ9lsN+3SzSbsTpQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791iPXRsTqAccJ9yM6UCIUjKKVWk+9zDsfTXqlsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/Nzp2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjtZ0IlKXLF5ovCVBKMyfR30heaM5RjSyjTwt5K2JBqytAmVLQheIsvL5NmteJdVKr3l+XaTR5HAY7hBM7AgyuowR3UoQEMRvAMr/DmJM6L8+58zFtXnHzmCP7A+fwBAqePWg==</latexit>

Figure 2: Component k of a noise module inserted after layer
i. The number of components k is equal to the number of neu-
rons in layer i. Each neuron’s activation, aik , is multiplied by
a weight w1,k which can be set to dampen or augment the fea-
ture’s value; the amount of noise which is added to the same
neuron’s activation is learned via a separate parameter w2,k .

Given a layer i with outputs (a(i)k )nk=1, a noise layer at level i + 1
computes the outputs a(i+1) as it follows:

a(i+1) = a(i) ⊙w1 + η ⊙w2

where ⊙ is the Hadamard product,w1 andw2 are vectors of learnable
weights, and η is a source of noise providing random vectors in Rn .
Figure 2 shows the neural module responsible for computing the
k-th component of the ai+1 output. This parametrization provides
the network with an efficient feature-wise mechanism for dampening
problematic features which are correlated with s without resorting
to searching for combinations with other attributes; at the same
time, the addition of an adjustable amount of additive noise can help
lowering the amount of mutual information between the learned
representations x̂ and the sensitive attribute s.

An issue with this approach is that a fundamental assumption of
the gradient descent algorithm is that the employed loss function
L is a function of the input data: this assumption is violated if one
samples from a distribution at each forward pass of the network, as
L would not be functional (univalent)1. We circumvent this problem
by only sampling once, at the start of the learning process; while
the obtained samples have no correlation with s and can then be
employed to partially mask the value of a feature, they are fixed and
therefore the functional property of the loss function still holds.

4 EXPERIMENTS
We evaluated our model by running experiments on “fair” clas-
sification datasets widely employed in the literature, namely the
Adult, German, Bank (from the UCI ML repository [6]) and COM-
PAS [3] datasets. An archive containing the results of all experi-
ments, as well as the software needed to replicate the experimenta-
tion (or to make new experiments) can be downloaded from https:
//github.com/ml-unito/fair-networks.

The choices for the network architectures follow the encoder
network sizes employed by Louizos et al. [5], which were motivated
by referring to the sizes of the datasets. Specifically, for the Adult
and Bank dataset the networks R, Y , and S are constituted by a single
hidden layer with 100 neurons. As for the German and COMPAS
datasets, R, Y and S have a single hidden layer with 60 neurons.

In order to pick the best λ value, we repeated the learning pro-
cess using few different values (namely we experimented with
λ ∈ {0, 0.5, 1, 2}) and picked the most promising one using a simple

1That is, L would not longer be a function, as it would associate different outputs to
the same input.

https://github.com/ml-unito/fair-networks
https://github.com/ml-unito/fair-networks


A Noise Module for Fair Classification SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

fairness/predictiveness tradeoff evaluation metric, evaluated on a
holdout set, that takes into account both the loss in predictivity and
the loss in fairness. Lastly, we used the representations to train four
general purpose classifiers on the obtained decorrelated representa-
tions X̂ : logistic regression, random forests, support vector machines
with Gaussian kernels, and decision trees. The resulting classifiers
have been used to predict both the s and y variables over an inde-
pendent test set. In the following we will focus on the results from
logistic regression and random forests since the other results provide
similar insights. We set the hyperparameters for the Fair Variational
Autoencoder following Louizos et al.’s choices [5].

We observe that our methodology leads to representations which
are both fair and discriminative on all datasets, as visible in Figures
3 through 6. In these figures, the solid line refers to the accuracy
achievable on the original representation for the data when predict-
ing y, while the dotted line indicates the random chance accuracy
for s. Thus, a classifier trained to predict s with a perfectly fair repre-
sentation would display performance which matches the dotted line,
while the performance of a classifier trained to predict y with a rep-
resentation which has not lost any of its discriminative information
would match the solid line.

On the Adult dataset (Figure 3), the fair representations have
achieved true invariance w.r.t. s, being close or slightly below the
random chance baseline. On the other hand, the standard adversarial
strategy is unable to account for all the correlations between the at-
tributes and the sensitive attribute. The Variational Fair Autoencoder
achieves representations with a similar level of fairness when com-
pared to our methodology, at the cost of reduced performance when
predicting y. Experiments on the COMPAS data provide similar
insights. The German dataset displays high levels of class imbalance
which lead to non-discriminative representations by all strategies we
tested; however, fairness was still preserved. As for the Bank dataset,
all of the methodologies employed are able to learn consistently fair
and discriminative representations.

Figure 3: Results on the Adult dataset. In this figure and all
the following ones, the solid line refers to the accuracy attained
on the original representation when predicting y, whereas the
dotted line represents the majority class rate for s. Under our
definition, a perfectly fair representation does not allow for per-
formances higher than the dotted line baseline when predicting
s.

5 CONCLUSIONS
In this work we have shown how to augment the Domain Adversarial
Learning algorithm by Ganin et al. [2] with a noise conditioning

Figure 4: Results on the COMPAS dataset

Figure 5: Results on the German dataset

Figure 6: Results on the Bank dataset

layer. Experimental results show that our contribution is instrumental
in achieving truly fair representations.

REFERENCES
[1] Ganin, Y., Lempitsky, V.: Unsupervised Domain Adaptation by Backpropagation.

In: Proceedings of the 32nd International Conference on Machine Learning (2015)
[2] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,

Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks.
The Journal of Machine Learning Research 17(1), 2096–2030 (2016)

[3] Julia Angwin, Jeff Larson, S.M., Kirchner, L.: Machine Bias (2016)
[4] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
[5] Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.S.: The Variational Fair

Autoencoder. CoRR abs/1511.00830 (2015)
[6] Newman, C.B.D., Merz, C.: UCI repository of machine learning databases (1998),

http://archive.ics.uci.edu/ml/index.php
[7] Nitin Mittal, David Kuder, S.H.: AI-fueled organizations: Reaching AI’s full

potential in the enterprise. Deloitte Insights (January 2019)
[8] Xie, Q., Dai, Z., Du, Y., Hovy, E., Neubig, G.: Controllable invariance through ad-

versarial feature learning. In: Advances in Neural Information Processing Systems
30, pp. 585–596 (2017)

[9] Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond
disparate treatment & disparate impact: Learning classification without disparate
mistreatment. In: Proceedings of the 26th International Conference on World Wide
Web (2017)

[10] Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: International Conference on Machine Learning. pp. 325–333 (2013)

http://archive.ics.uci.edu/ml/index.php

	Abstract
	1 Introduction
	2 Motivation
	3 Proposed Model
	4 Experiments
	5 Conclusions
	References

