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Abstract

Local charged defects in periodic systems are usually investigated by adopting the

supercell charge compensated (CC) model, that consists of two main ingredients: i) the

periodic supercell, hopefully large enough to reduce to negligible values the interaction

among defects belonging to different cells; ii) a background of uniform compensating

charge that restores the neutrality of the supercell and then avoids the “Coulomb catas-

trophe”. Here an alternative approach is proposed and compared to CC, the double
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defect (DD) model, in which another point defect is introduced in the supercell, that

provides (or accept) the electron to be transferred (subtracted) to the defect of interest.

The DD model requires obviously a (much) larger supercell than CC, and the effect of

the relative position of the two defects must be explored. A third possible option, the

cluster approach, is not discussed here.

The two models have been compared with reference to the VN− defect; for DD, the

positive compensating charge is provided by a P atom. Three cubic supercells of in-

creasing size (containing 216, 512 and 1000 atoms) and up to eight relative VN− -

P+ defect-defect positions have been considered. The comparison extends to the equi-

librium geometry around the defect, band structure, charge and spin distribution, IR

and Raman vibrational spectra and EPR constants. It turns out that the CC and DD

models provide very similar results for all these properties, in particular when the P+

compensating defect is not too close to VN−.

Introduction

Defects in solids play a fundamental role, as many of the properties of the pristine material

can be altered by defects. Hence the need of eliminating defects, or, alternatively, of intro-

ducing in a controlled way specific defects. A large fraction of the local defects are classified

as charged. In the literature, these defects are indicated as An+ or Bm−, with m and n

integers. This means that within a sphere of arbitrary but limited radius R (say 2-5 Å?) the

sum of positive and negative charges is not equal to zero. The definition of the radius R, and

the partition of the charge in the two regions, inside and outside the sphere, can obviously

be matter of discussion.

The most common model adopted for describing local charged defects in periodic systems

consists in two main ingredients: i) the supercell scheme (a multiple of the primitive cell of

the perfect host system, large enough to reduce hopefully to negligible values the interaction
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of defects belonging to different cells); ii) a background of uniform compensating charge that

restores the neutrality of the supercell and then avoids the “Coulomb catastrophe”.1–4

This model, to be indicated here as CC (charge compensated) is somehow innatural, as on

the basis of simple electrostatic considerations, any (say) positively charged A+ defect, must

be compensated by a negatively charged B− defect at a relatively short distance. Then the

CC model implies that i) the background charge is not altering the properties of A+, and ii)

that in most of the cases the B− defect, although close to A+, is not such to alter significantly

its properties.

An alternative scheme consists in introducing a second defect, of opposite charge, so that

the supercell turns out to be neutral. One of the differences between the two models is

that in the former (CC), a single spatial configuration exists (the compensating charge is

not centered at a given point of the cell, being uniform), whereas in the latter the relative

position of the two defects bearing the positive and negative charge must be explored. So

in the DD case a space with many more variables than in CC must be considered. The DD

model also requires larger supercells, because the B− defect must be sufficieltly far from the

A+ defect and from all its images in neighboring cells. It is evident, however, that the DD

approach is in principle more realistic than CC, and can be used to answer to the following

question: how the properties that are attributed to defect A+ depend on the distance from

(and orientation with respect to) a second defect B−, and on the electronic structure of B−?

In the present paper we compare the CC and DD models with reference to various properties

(geometry, charge and spin distribution, EPR constants, vibrational frequencies) of the so

called VN− defect in diamond (a vacancy with a nitrogen atom as first nearest neighbor and

a negative charge floating around).

Despite the simplicity of the pristine lattice and the strength of the C-C bond, both natural

and synthetic diamond contain, and are characterised by, a wide variety of point defects.5–11

The investigation of the latter, both native and radiation-induced, has attracted strong ex-

perimental and theoretical interest. In particular the VN− defect has been largely studied
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for its peculiar properties suitable for technological applications (qbit).12–14

In the present study the atom that provides the compensating charge is (substitutional) P,

that loses one electron that migrates then to the VN defect generating VN−.

The structure of the paper is as follows: in the next section the models and the method are

discussed. The results obtained with the CC and DD schemes are then presented. Some

conclusions on the results obtained with the two models are finally drawn.

Computational Details

Method

All calculations have been performed by employing the ab initio Crystal code,15,16 the

B3LYP “hybrid” functional17,18 and a split valence 6-21G basis set19 for the carbon and

nitrogen atoms, except for values of 0.23 (C) and 0.30 (N) Bohr−2 for the exponents of the

outermost sp orbitals. This scheme is already well tested in previous works about diamond

structures involving vacancy defects and nitrogen substitutions.20–24 For the P atom a large

core pseudopotential has been adopted so that only the five valence electrons are explicitly

considered.25 The truncation criteria of the Coulomb and exchange infinite lattice series

are controlled by five thresholds, Ti, which have been set to 8 (T1-T4) and 16 (T5). The

convergence threshold on energy for the self-consistent-field (SCF) procedure has been set to

10−8 Ha for structural optimizations, and to 10−10 Ha for frequency calculations. The DFT

exchange-correlation contribution and its gradient are evaluated by numerical integration

over the unit cell volume. The generation of the integration grid is based on an atomic

partition method, originally proposed by Becke,26 in which the radial and angular points

are obtained from Gauss-Legendre quadrature and Lebedev two-dimensional distributions

respectively. In this study a pruned grid with 75 radial and 974 angular points has been

used.

4



Vibrational spectra

Harmonic phonon frequencies, ωp, at the Γ point (i.e. at the center of the first Brillouin

zone in reciprocal space) are obtained from the diagonalization of the mass-weighted Hessian

matrix of the second energy derivatives with respect to atomic displacements u:27–31

W Γ
a,i,b,j =

H0
a,i,b,j√
MaMb

with H0
a,i,b,j =

(
∂2E

∂u0a,i∂u
0
b,j

)
, (1)

where atoms a and b (with atomic masses Ma and Mb) in the reference cell, 0, are displaced

by ua,i and ub,j with respect to the equilibrium geometry along the i-th and j-th Cartesian

directions, respectively. Once the Hessian matrix, H0
a,i,b,j, has been calculated, frequency

shifts due to isotopic substitutions can be evaluated readily, at no computational cost, by

changing masses in the above equation.

Energy first derivatives with respect to the atomic positions, va,i = ∂E
/
∂u0a,i, are calculated

analytically for all coordinates, whereas second derivatives at ~u = ~0 are calculated numeri-

cally using a single displacement along each coordinate (the central point and a point to the

right of the equilibrium position):

[
∂va,i
∂u0b,j

]
≈
va,i(0, . . . , u

0
b,j, . . . )

u0b,j
(2)

Previous calculations27,32 have shown that in bulk systems the influence of u is very small

(less than 1 cm−1) when hydrogen atoms are not present.

Electron Paramagnetic Resonance

The coupling between the spin of the unpaired electron(s) (S) and the system of the nuclear

spins (I) is described through the spin Hamiltonian:

H =
∑
n

S · An · In (3)
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where In and An refer to the nuclear spin and hyperfine coupling tensor related to the nth

nucleus, at site Rn. An can be written in the form,

An = An
iso · I + Bn (4)

where I is a 3×3 identity matrix, or

An
ij = An

isoδij +Bn
ij (5)

where An
iso is the isotropic contribution to An, often referred to as the Fermi contact term,

and Bn the anisotropic dipole-dipole interaction of the electron and nuclear spins. The Fermi

contact term for an unpaired electron

An
iso =

8π

3
geµegnµN |ψ(Rn)|2 (6)

relates to the direct interaction of nuclear and electron spins, and is only non-zero for states

with finite electron spin density, |ψ(Rn)|2, at nuclear sites Rn, namely those with unpaired

electrons in s-subshells. ge, µe, gn and µN are the free-electron g-factor, Bohr magneton,

gyromagnetic ratio of In and the nuclear magneton respectively.

The elements of the traceless tensor Bn at nucleus Rn are defined by:

Bn
ij = geµegnµN

∫
drn|ψ(rn)|2

(3rnirnj − |rn|2δij
|rn|5

)
(7)

where rn is the distance to Rn. Bn is usually written in terms of its three (principal axes)

eigenvalues, Bn
1 , Bn

2 , Bn
3 and is a measure of the unpaired electron populations of valence p

and d orbitals centered on the magnetic nucleus, and of all orbitals centered on neighboring

atoms. Clearly An
iso =

An
1 +An

2 +An
3

3
, since Bn is traceless, and, for a nuclear site with axial

symmetry, we have An
iso =

An
‖+2An

⊥
3

and Bn
‖ + 2Bn

⊥=0.
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Models

The long-established supercell approach is used to simulate different defect concentrations.

Here cells containing 216, 512 and 1000 atoms have been considered, and indicated as S216

and S512 and S1000 in the following. Reciprocal space sampling is based on a regular Pack-

Monkhorst33 sub-lattice grid centered at the Γ point (i.e. at the center of the first Brillouin

zone), leading to 2 (S216 and S512) and 1 (S1000) sampling points along each of the reciprocal

lattice vectors, which correspond to 4 and 1 k-points in the irreducible part of the Brillouin

zone respectively, after point symmetry has been taken into account.

Many results are summarized in Figure 1, that consists of 4 panels, each labeled from A to

D. Panels A, B and C report the NV− defect in the conventional cell of diamond, the local

geometries, charge and spin distributions, and bond population of N, P and their neighbors,

respectively. In panel D a schematic section view of the three supercells here considered is

reported, where the position of the vacancy V (open square), of the nitrogen atom N (in

blue) and of various locations of the P atom (in black) are shown. The N-V distance is

1.71± 0.02 Å for the various P positions and cell sizes. In all cases the P atom is along the

diagonal of the cubic supercell (actually pseudocubic: the C3v symmetry of the high spin

solution, Sz=1, entails a possible deformation of the cubic cell, that however remains totally

negligible: the deviation of angles from 90◦ is as small as 0.2◦, and the difference between

the sides of the box is as small as 10−4 Å). The distances indicated on the figure are blue

(red) when the P atom is closer to (farther from) the N atom and they correspond to S512.

In S216, c and d are farther from the N atom (and then would be red); in S1000, d is closer

to and e, f, g, and h farther from the N atom. In the S216 and S1000 cases, distances deviate

from the ones shown in the figure by no more than 0.01 Å.
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Figure 1: The NV− point defect in the diamond conventional cell (A). Panels B) and C)
show the local environment of NV− and P+, respectively. Distances (in Å), Mulliken net
charges and spin momenta (in |e|, bold and italic respectively) and bond populations (|e|
and italic). Data refer to the NV− defect in its triplet (Sz=1) state in S216 within the CC
(charge compensated) scheme (B) and to the P neighborhood within the DD scheme (C).
(D) is a sketch of the various positions of phosphorus (solid black circle) along the [111]
direction in the supercell. The open square and the blue solid circle (bottom left) represent
the vacancy and the nitrogen atom, respectively. 216, 512 and 1000 indicate the supercells
used in this work; The small thin solid line squares outline the conventional cell of diamond.
See text for more details.
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Results

The compensating P+ defect in the DD scheme.

Before starting the analysis of the local structure around the compensating P+ ion, it is

important to point out that, since its role here is to simply provide an extra electron to the

lattice, in order to preserve the maximum number of point symmetry operators, it lies along

the [111] direction in all the cases here presented. This choice leads to have 3 of the 4 first

nearest neighbors of the P+ ion to be symmetry related, being the fourth along the C3 axis.

From now on, only one value for each of the two sets will be reported. Note however that,

in spite of the C3v symmetry, the PC4 tetrahedron is almost perfect, and the four charges

of the C atoms are extremely similar. In Table 1 the Mulliken charges of the P atom and

of its first and second neighbors as a function of the distance from the vacancy V and for

the S1000 supercell are shown. The P net charge is about +0.84|e| (qP column); the net

charge of each of its first neighbors is -0.17 |e|, to give a total of -0.68 |e|. The twelve second

nearest neighbors further screen the charge of the P atom, as the last and second to last

columns show. Overall the PC16 cluster (with a radius of 2.60 Å) is nearly neutral, with a

net charge varying from +0.005 to -0.021 |e| according to the V-P distance. In summary,

when sufficiently far away from the VN defect, the P+ defect is fully screened within a sphere

of radius equal to 2.6 Å, and provides one electron to the VN defect to give VN−.

The data for the S216 and S512 supercells, reported in Table S1 and Table S2 of the Supple-

mentary Material section, are very similar to the ones just discussed.

Charge and spin density and the equilibrium geometry of the VN−

defect.

We consider now the VN− defect, comparing the results of the CC scheme (last line in Table

2) with the ones of the DD scheme with different V-P distances.

We recall that the VN0 (neutral) system has three uncoupled electrons on three carbon

9



Table 1: Relevant data concerning the neighborhood of the P atom within the DD model, as
a function of the P position in the S1000 supercell (see Figure 1-D). R is the distance (in Å)
between the vacancy V and the P atom, q (in |e|) are Mulliken charges. In the last column,
the sum of the charges of the first and second neighbors of P are reported (it corresponds to
the sum of the values shown in the three previous columns). For cases 1-4, N is in between
V and P; in the other cases V is between N and P.

R (Å) qP qCP
qCP

(3)
∑12

1 qC2
P

∑C2
P

C1
P

a V-N. . . P 6.252 +.843 -.170 -.170 -.158 -.838
b V-N. . . P 7.818 +.841 -.168 -.170 -.192 -.870
c V-N. . . P 12.490 +.841 -.170 -.170 -.180 -.860
d V-N. . . P 14.050 +.841 -.170 -.170 -.183 -.863
e V. . . P 12.492 +.841 -.170 -.170 -.183 -.863
f V. . . P 10.931 +.841 -.170 -.170 -.180 -.860
g V. . . P 6.260 +.840 -.167 -.170 -.192 -.869
h V. . . P 4.693 +.843 -.169 -.173 -.156 -.844

Table 2: Mulliken charges q (in |e|) on atoms and distances R (in Å) between atoms or
vacancy and atoms in the neighborhood of the VN defect for the various P positions in the
S1000 supercell within the DD scheme. CN indicates the three carbon atoms first neighbors
of the nitrogen atom, CV the three carbon atoms around the vacancy. The data in the last
line refer to the charge compensated (CC) model.

qN RCN
qCN

(3) RCV
qCV

(3)
DD-a -.393 1.499 +.140 1.509-1.520 +.075
DD-b -.393 1.499 +.139 1.508-1.520 +.076
DD-c -.394 1.499 +.138 1.509-1.519 +.077
DD-d -.394 1.499 +.138 1.509-1.519 +.077
DD-e -.394 1.499 +.138 1.508-1.519 +.078
DD-f -.395 1.499 +.138 1.508-1.519 +.078
DD-g -.395 1.500 +.137 1.505-1.519 +.079
DD-h -.396 1.501 +.137 1.506-1.519 +.079
CC -.395 1.499 +.137 1.509-1.520 +.076
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atoms around the vacancy; the additional electron (coming from the P+ defect, or simply

added to the unit cell) would permit to generate a quintuplet (Sz=2, four electrons with α

spin), a triplet (Sz=1, three α and one β electron) and a singlet (Sz=0, two α and two β

electrons). The comparison between the CC or DD schemes refers to the triplet state. The

Mulliken charges of the four atoms around the vacancy (qCV
(3) and qN) and of the first

neighbors of the latter (qCN
(3)) are reported.

The table shows that in all the DD cases the net charges q and the equilibrium distances R

are very similar among them, also in the cases in which the V–P (6.25 Å) or the N–P (4.69

Å) distances are relatively short. More interestingly, the CC and DD equilibrium distances

and net charges essentially coincide, the largest difference being 0.003 |e|, and 0.003 Å.

We can then conclude that the CC model and the DD model in all its variants produce

essentially the same local geometry and charge distribution.

The magnetic momenta µ, as obtained with the CC and DD models, and with supercells

containing 216, 512 and 1000 atoms are shown in Table 3.

Table 3: Atomic magnetic momenta µ (|e|), evaluated according to a Mulliken partition of
the spin density, for the CC and DD models. The labels following DD are the ones defined
in Figure 1-D. Labels a, b, c, h of carbon atoms are defined in figure 1-A,B,C. Atom g, is a
first neighbor of atom b in these figures. Numbers in parentheses indicate the multiplicity
of the atoms. S stands for supercell.

S N Ca (3) Cc(3), Cb(6) Cg(6) Ch(3) P
CC 216 -0.001 0.632 -0.048 -0.039 0.038 0.034 0.000
CC 512 -0.001 0.632 -0.048 -0.039 0.038 0.034 0.000
DD-b 216 -0.001 0.632 -0.048 -0.039 0.038 0.034 0.000
DD-c 512 -0.001 0.631 -0.048 -0.039 0.038 0.034 0.000
DD-d 512 -0.001 0.631 -0.049 -0.039 0.038 0.035 0.000
DD-c 1000 -0.001 0.631 -0.049 -0.039 0.038 0.035 0.000
DD-d 1000 -0.001 0.631 -0.049 -0.039 0.038 0.035 0.000
DD-e 1000 -0.001 0.632 -0.048 -0.039 0.038 0.035 0.000
DD-f 1000 -0.001 0.632 -0.048 -0.039 0.038 0.035 0.000

As usual, for the DD model various distances are possible between the vacancy V and

the P compensating cation. The spin momenta of the atoms labeled in Figure 1 are shown,
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with their multiplicity. We remind that also relatively small spin momenta can provide

visible contributions to the EPR spectrum. The table shows that the CC and DD results

are very similar whichever the supercell is, the largest difference being always as small as

0.001 |e|. The same comment applies to the difference between the various supercells, and

to the various positions of the P atom in the DD model. In summary, also such a delicate

quantity as the magnetic momenta obtained with the CC and DD models essentially coincide.

The EPR constants.

The atomic magnetic momentum µ is an integrated quantity, that might miss local specific

features of the spin density. We consider now the EPR parameters Aiso, the so called Fermi

contact, that is the spin density at the position of the nucleus, and the three eigenvalues of

the traceless symmetric hyperfine coupling tensor B (see equations 6 and 7). The comparison

of the results of the CC and DD results are shown in Table 4. The values obtained with the

CC and DD schemes are also for these properties very similar, and the difference is never

larger than 1%.

The band structure.

In Figure 2 the band structure produced by the two models, CC and DD, when the S216

(top) and S512 (bottom) supercells are used, is reported. The most interesting eigenvalues,

identified with numbers and open and full circles in Figure 2, are also reported in Table 5.

The figure shows that the CC and DD band structures are very similar, in particular in

the valence and gap region (the occupied P levels fall down deep inside the valence band).

This is not the case for the empty P+ levels, that appear slighly below the conduction band.

The perfect bulk gap is 5.80 eV. Here the difference between the valence and conduction

manifolds is 5.89 eV large in CC, and reduces to 5.81 in DD for the S216 supercell. It
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Figure 2: Band structure of the NV− defect in its triplet (Sz=1) state, computed with the
CC and DD models for the S216 and S512 supercells. The distance of the P+ cation from the
vacancy is 12.497 Å in S512, and corresponds to the c position. The distance in S216 is 7.815
Å corresponding to the b position (see figure 1-D). The red arrows represent the direct band
gap of the hosting defective level (donor band of the nitrogen center). The turquoise arrows
indicate the gap of the hosting diamond. Gaps are evaluated in Γ and reported in eV.
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Table 4: Hyperfine coupling constants (in MHz) of the NV− defect in its triplet fundamental
state as described by the CC (charge compensated) and DD (P+ compensated) models. All
calculations performed at the B3LYP/6-21G level. The labels of the two carbon atoms as in
Table 3. S stands for supercell.

site model S Aiso B1 B2 B3

14N CC 216 -2.14 -0.18 -0.18 0.35
DD 216 -2.14 -0.18 -0.18 0.35
CC 512 -2.15 -0.18 -0.18 0.36
DD 512 -2.20 -0.18 -0.18 0.36
DD 512 -2.10 -0.18 -0.18 0.36
DD-c 1000 -2.05 -0.18 -0.18 0.36
DD-d 1000 -2.11 -0.18 -0.18 0.36
DD-e 1000 -2.15 -0.18 -0.18 0.36
DD-f 1000 -2.16 -0.18 -0.18 0.36

13Ca CC 216 178.29 -22.32 -22.03 44.35
DD 216 178.06 -22.32 -22.03 44.35
CC 512 178.94 -22.31 -22.01 44.32
DD 512 179.13 -22.29 -22.00 44.29
DD 512 178.67 -22.29 -21.98 44.27
DD-c 1000 179.01 -22.32 -22.00 44.32
DD-d 1000 178.78 -22.29 -21.99 44.28
DD-e 1000 179.22 -22.32 -22.01 44.33
DD-f 1000 179.17 -22.31 -22.01 44.32

13Cg CC 216 18.17 -1.56 -1.39 2.94
DD 216 18.31 -1.54 -1.37 2.91
CC 512 18.24 -1.59 -1.37 2.96
DD 512 18.21 -1.58 -1.37 2.95
DD 512 18.15 -1.59 -1.38 2.96
DD-c 1000 18.32 -1.59 -1.37 2.96
DD-d 1000 18.11 -1.60 -1.37 2.97
DD-e 1000 18.31 -1.59 -1.37 2.96
DD-f 1000 18.32 -1.59 -1.37 2.96
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Table 5: Electronic levels obtained with the CC and DD models and the S216 and S512

supercells. The numbers in the first column (where also the 1s α and β levels of nitrogen
are shown) refer to figure 2. In the second column the occupancy of the levels is indicated:
1 for occupied and 0 for virtual levels. δ is the energy difference between the CC and DD
values. The 3∗1 and 3∗2 lines report P levels, and do not appear then in the CC case. The
largest absolute δ value of each column is in bold. Energy in Ha.

S216 S512

OC. CC DD δ CC DD δ

α



1s(N) 1 -14.2080 -14.2060 -0.0020 -14.1990 -14.1930 -0.0060
1 1 -0.0426(2) -0.0399(2) -0.0027 -0.0349(2) -0.0333(2) -0.0016
2 1 -0.0129 -0.0098 -0.0031 -0.0073 -0.0022 -0.0051
3 1 0.0299(2) 0.0370(2) -0.0071 0.0375(2) 0.0428(2) -0.0053
3∗1 0 – 0.1635(2) – 0.1670(2)
3∗2 0 – 0.1644 – 0.1672
4 0 0.1738(2) 0.1735(2) 0.0003 0.1784(2) 0.1760(2) 0.0024

β



1s(N) 1 -14.2080 -14.2060 -0.0020 -14.1990 -14.1930 -0.0060
1 1 -0.0397 -0.0369 -0.0028 -0.0335 -0.0317 -0.0018
2 0 0.0228 0.0283 -0.0055 0.0311 0.0364 -0.0053
3 0 0.1393(2) 0.1463(2) -0.0070 0.1470(2) 0.1523(2) -0.0053
3∗1 0 – 0.1638(2) – 0.1670(2)
3∗2 0 – 0.1647 – 0.1672
4 0 0.1740(2) 0.1738(2) 0.0002 0.1785 0.1760(2) 0.0025

decreases to 5.80 eV for CC, and 5.69 eV for DD in the S512 cell. The CC - DD difference is

then 0.08 eV and 0.011 eV for the smaller and larger supercells, indicating (as the analysis of

the eigenvectors confirms) that in what we call the perfect diamond conduction band there

is still some P+ contribution.

We remind that the eigenvalues are defined with respect to a zero level that in the CRYSTAL

code is the mean value of the potential in the unit cell. In order to appreciate how this zero

reference changes from CC to DD, let us consider the 1s nitrogen eigenvalues shown in Table

5. The difference is as small as 2 mHa for the α electrons, and 6 mHa for the β.

This underlines that the different number of valence α and β electrons has some influence

also on the deep levels as nitrogen 1s. The difference between CC and DD remains constant

in going from S216 to S512. Both Figure 2 and Table 5 show that not only the order in energy

of the defect levels (both α and β and occupied and virtual) is the same, but also that the

numerical values are very similar with a maximum difference equal to -0.007 Ha (0.2 eV).

In summary, the two models produce quite similar band structures, if the levels of the other

(P+) defect are local, identified and then excluded from the comparison.
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The vibrational spectrum.

In this section we will compare i) the vibrational frequencies and ii) the IR and Raman

intensities produced by the CC and DD models; that is to say, we will compare the CC and

DD IR and Raman spectra.

In Figure 3 the IR spectra of the VN− defect obtained with the CC (top left) and DD (top

right) schemes are reported. The DD spectrum obviously contains contributions from the P+

defect, and then the comparison cannot be quantitative, but only qualitative. It is however

possible to somehow clean the DD spectrum from the P related modes. To this aim the

spectrum is also generated when the mass used for P in Equation 1 is four times (124 a.m.u:

bottom left) or ten times (310 a.m.u: bottom right) larger of the 100% abundant isotope 31P ,

and the dynamical matrix diagonalized again (this is obtained with the ISOTOPES option,

see comment after Equation 1 in the methodological section). The VN−P+ spectrum presents

a continuous band in the range 364-1332 cm−1 (S216), with a few dominant peaks. Some of

them are labeled in Figure 3 and in Table 6. The peaks of CC at wavenumbers higher than

600 cm−1 appear also in DD, and remain nearly unaltered when the P mass is four times

or ten times larger than the one of most abundant isotope, the maximum difference being 8

cm−1. There is also a peak at low wavenumbers (label 1 in Table 6) that appears both in

CC and DD 31P , and that remains nearly unaltered when the P mass is increased.

Other low wavenumber peaks, on the contrary, are quite sensitive to the P mass change;

progressively, they shift down below 400 cm−1. The IR intensities are only qualitatively

similar. The comparison is in part biased by the fact that the spectrum is nearly a continuum

of peaks (in the figures a Lorentzian convolution with a full width at half maximum, FWHM,

of 8 cm−1 has been applied for mimic the experimental peak profile; indeed this choice leads

to the merge in one broadened absorption band all the peaks that differ by a few cm−1). In

this situation the eigenvectors of contiguous eigenvalues are similar, and relatively important
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Figure 3: The IR spectrum of the VN− defective diamond. Top panels: the charge compen-
sated (CC) and P+ compensated (DD - 31P) results. Bottom panels: the DD scheme but
multiplying the mass of phosphorus by 4 (DD - 124P) and 10 (DD - 310P), in order to clean
the spectrum from peaks involving P, pushing them towards low wavenumbers. All spectra
refer to S216 supercell. P is in position b of Figure 1-D.
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mixing can be generated by small perturbations. In any case the Table confirms that these

peaks not only appear in the two cases, but have relatively similar intensities.

As regards the Raman spectrum, the comparison between the CC and DD methods is simpler

with respect to the IR one because the contributions of the normal modes involving mainly

the P atom are relatively less intense.
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Figure 4: The Raman spectrum of the VN− defective diamond using the S216 cell. Top
panels: charge compensated (CC, left) and double defect (DD - 31P, right) models. P is in
position b of Figure 1-D. Bottom panels: DD scheme but multiplying the mass of phosphorus
by 4 (DD - 124P) and 10 (DD - 310P), in order to clean the spectrum from peaks involving
P, pushing them towards low wavenumbers.

The CC spectrum has a dominant peak at 1308 cm−1, with a second peak at 610 cm−1.

To the left of the 1308 cm−1 peak there is a broad band, of low intensity, decreasing down to

zero through a few minor peaks. In the 31P spectrum the dominant peak is at 1314 cm−1,

with a shoulder at 1308 cm−1. This peak shifts to 1308 in the 124P and 310P spectra. In the

region of the CC 608 cm−1 peak, the 31P spectrum shows two peaks at 611 and 623 cm−1;

the former shifts to 602 cm−1 in 124P, with a decreased intensity. The latter remains at 623

cm−1. The 310P spectrum essentially coincides with the 124P one. The broad low intensity
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Table 6: Wavenumber (cm−1), symmetry and intensity (km mol−1) of seven intense peaks
obtained with the CC model. The same peak data obtained with the DD model when the
most abundant isotopic mass is used for phosphorus (DD-31P), or the latter multiplied by
four (DD-124P) and ten (DD-310P) are also shown.

CC DD -31P DD -124P DD -310P
N ν̃ I ν̃ I ν̃ I ν̃ I
1 439(E) 34 437(E) 18 438(E) 51 438(E) 49
2 608(E) 74 606(E) 61 605(E) 79 605(E) 80
3 696(E) 47 695(E) 21 693(E) 21 693(E) 21
4 871(E) 22 865(E) 28 865(E) 28 865(E) 28
5 1069(E) 145 1071(E) 278 1070(E) 202 1070(E) 197
6 1125(E) 38 1128(E) 27 1127(E) 31 1126(E) 28
7 1166(E) 27 1174(E) 37 1174(E) 37 1174(E) 37

band observed to the left of the 1308 cm−1 peak in CC, appear, with similar shape and

slightly higher intensity, also in the DD cases.

In summary, the CC and DD Raman spectra are extremely similar.

The effect of the V-P distance on the spectra.

Since in the DD model the results may be affected by the mutual interaction between VN−

and P+, in this section we explore the effect of the distance among the two defects, limiting

however the analysis to the IR and Raman spectra, that are expected to be the most sensitive

quantities. The mutual interaction increases as the size of the supercell decreases, so that

all the results presented hereafter refer to S216. Figure 5, left, compares the IR spectra of

the VN− P+ defect in S216 when P+ is occupying the four possible positions a, b, c, d along

the diagonal. The vertical lines guide the eye in following the shift of some of the peaks.

The distance of P from the center of the vacancy in the reference cell increases from 6.273

to 7.829 to 12.493 to 14.052 Å; the distance of P from N is 4.574 (a), 6.112 (b), 7.983 (c)

and 6.403 Å (d). Using the (b) case as a reference, Figure 5 shows that the largest shifts for

the various cases never exceeds 17 cm−1.

Some peaks seem to be much higher for some P distances than for others, as is the case

of the peak at 680 cm−1. The reason for this apparently important change is due to the fact
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Figure 5: The IR (left) and Raman (right) spectra of the VN− defect investigated with the
DD model when the phosphorus atom is in position a, b, c and d (see figure 1-D). The vertical
lines permit to appreciate the shift with respect to the b case.
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that many wavenumbers accumulate in the same small spectroscopic region in some cases

more than in others. Through the convolution process (8 cm−1 FWHM) they merge in a

single peak, thus turning out to have a much higher intensity than in the cases in which the

distance between the eigenvalues is slightly larger.

The Raman case (see Figure 5, right), with well separated peaks, permits an analysis that

avoids the superposition problems just mentioned. The maximum shift is as small as 3 cm−1

for the peak at 1314 cm−1, 2 cm−1 for the peak at 626 cm−1, and increases to 11 cm−1 for

the peak at 612 cm−1, that seems the most sensitive to the P+ position. These results, when

compared with the IR ones just commented, seem to indicate that:

a) the low wavenumber peaks are the most sensitive to the P+ position. However, the

interaction produces a shift that is relatively small (11 cm−1).

b) the medium shifts of the high wavenumber peaks in the IR spectrum seem to be due

more to the problem of the correct identification of the peaks in the various cases (many

peaks with the same symmetry do have very close wavenumbers) than to the real different

interaction of the two defects when the P+ position is changing.

It is clear that positions of the P+ defect other than along the cube diagonal, would have

permit to explore shorter distances between the defects, and lower symmetries. Both factors

are obviously expected to increase the relative perturbation between the two defects.

Conclusions

In this study two different models for the simulation of charged defects in infinite systems

(in the present case the VN− defect in diamond) have been compared. The first one (CC),

adopted systematically in the literature, consists in compensating with an uniform back-

ground of charge (positive in the present case) the extra charge, so as to obtain a neutral

unit cell, a necessary condition for avoiding the “Coulomb catastrophe”. This model is easily

implemented, but not very physically grounded, because, for electrostatic reasons, in real
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systems any negatively charged defect (say A) must have, at a relatively short distance, a

compensating positively charged defect (say B).

In the second model another defect, of opposite charge (double defect, DD), is inserted; in

this case the auxiliary defect is a P atom substituting a carbon. P transfers one electron

to VN to give P+ and VN−. Obviously the influence of the B defect on the properties that

usually are attributed to A depend on i) the extension of the perturbation generated by A,

ii) the extension of the perturbation generated by B, iii) the A-B distance, and iv) the kind

of property of interest. For a sufficiently large distance, the two defects can be considered

independent. Exploring supercells containing 216, 512 and 1000 atoms, and various positions

of the P+ defect along the diagonal of the cube, it has been shown that, already with the

smallest supercell:

a) the local geometry produced by CC and DD are extremely similar;

b) the same is true for the charge and spin distribution around the VN− group;

c) also when delicate quantities depending on fine effects related to the spin density are

compared, as the EPR constants, CC and DD perform in an extremely similar way;

d) the band structure are very similar, if the phosphorus energy levels are somehow excluded.

The valence ones fall down in the valence bands, and are not visible. On the contrary, three

P bands split from the diamond conduction bands by about 10mHa.

e) The P contribution appears, obviously, also in the vibrational spectrum (IR, in particular)

Attributing to P a very large mass, it is possible to eliminate P from the IR and Raman

spectra of DD, that appear then very close to the CC ones.

So, overall, and in spite of its unphysical nature, the CC model seems to perform as well

as the DD one, at least when the charge compensating defect is not too close to the defect

under investigation.

Some caution must be paid (see the subsection with title is delocalized defect charge physi-

cally meaningful? in Ref. 34), however, when LDA or GGA functionals are adopted in the

simulation, as is the case for the near totality of the investigations performed in the past,
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because in this case very often the local nature of the defect is lost and metallic solutions

can be obtained, with spurious very long range effects.
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