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ON NYSTRÖM AND PRODUCT INTEGRATION METHODS

FOR FREDHOLM INTEGRAL EQUATIONS

PETER JUNGHANNS, GIUSEPPE MASTROIANNI AND INCORONATA NOTARANGELO

Abstract. The aim of this paper is to combine classical ideas for the theo-

retical investigation of the Nyström method for second kind Fredholm integral
equations with recent results on polynomial approximation in weighted spaces

of continuous functions on bounded and unbounded intervals, where also zeros

of polynomials w.r.t. exponential weights are used.

1. Introduction

There exists a huge literature on numerical methods for Fredholm
integral equations of second kind,

(1.1) f(x)−
∫
I

K(x, y)f(y) dy = g(x) , x ∈ I ,

where I is a bounded or unbounded interval. A very famous method
is the Nyström method which is based on an appropriate quadrature
rule applied to the integral and on considering (1.1) in the space of
(bounded) continuous functions on I . Such quadrature rules can be
of different type. In the present paper we will focus on Gaussian rules
and product integration rules based on zeros of orthogonal polynomials.
The aim of this paper is to combine classical ideas for the theoretical
investigation of the Nyström method, in particular the results of Sloan
[35, 34], with recent results on polynomial approximation in weighted
spaces of continuous functions on bounded and unbounded intervals,
where also zeros of polynomials w.r.t. exponential weights come into
the play (cf. [13, 29]). Note that the Nyström method, in general, is
based on the application of a quadrature rule to the integral part of
the operator. Here we focus on quadrature rules of interpolatory type,
which are constructed with the help of zeros of orthogonal polynomials,
i.e., which are of Gaussian type. Of course, there exists a lot of other
possibilities. As an example, let us only mention the paper [12], where
quasi-Monte Carlo rules are applied to the case of kernel functions of
the form K(x, y) = h(x− y) .

Considering weighted spaces of continuous functions is motivated by
the fact, that in many practical examples for the unknown function
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it is known that it has some kind of singularities at the endpoints of
the integration interval. Moreover, the kernel function of the integral
operator can have endpoint singularities in both variables. For recent
attempts to combine the idea of the Nyström method with weighted
polynomial approximation, we refer the reader to [11, 21, 25].

The present paper is organized as follows. In Section 2 we present
the notion of collectively compact and strongly convergent operator se-
quences and the classical result on the application of this concept for
proving stability and convergence of approximation methods for opera-
tor equations. After formulating the results of Sloan from the 80’s on
the application of quadrature methods to Fredholm integral equations
of the second kind, we show how these results can be generalized by us-
ing weighted spaces of continuous functions, where we prefer a unified
approach for both bounded and unbounded integration intervals (see
Definition 4 and Lemma 5). In Section 3 we prove a general convergence
result for the classical Nyström method (see Corollary 9), where “clas-
sical” means that usual quadrature rules are used for the discretization
of the integral operator, not product integration rules. In Subsections
3.1 and 3.2, this result is applied to the interval (−1, 1) involving Ja-
cobi weights and to the half line (0,∞) involving exponential weights,
respectively. Finally, Section 4 contains the most important results
of the paper and is devoted to the application of product integration
rules in the Nyström method, where again the Jacobi weight case and
the exponential weight case are considered separately. In particular, in
both cases we show how one can use the respective L log+ L function
classes, in order to weaken the conditions on the kernel function of the
integral operator (see Propositions 19 and 22).

2. Basic facts

In the sequel, by c we will denote real positive constants, which can
assume different values at different places, and by c 6= c(a, b, . . .) we will
explain, that c does not depend on a, b, . . . If α and β are positive real
numbers depending on certain parameters a, b, . . . , then by α ∼a,b,... β
is meant that there is a positive constant c 6= c(a, b, . . .) such that
c−1α ≤ β ≤ cα .

We say, that a sequence (Kn) ∞n=1 of linear operators Kn : X −→ X in
the Banach space X is collectively compact, if the set {Knf : f ∈ X, ‖f‖ ≤ 1, n ∈ N}
is relatively compact in X , i.e., the closure of this set is compact.
The concept of collectively compact sets of operators goes back to
Anselone and Palmer [1, 4, 2, 5, 6].
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For the following proposition, see, for example, [3], or Sections 10.3
and 10.4 in [15], [16], or [17], or Section 4.1.in [7].

Proposition 1. Let X be a Banach space and K : X −→ X , Kn :
X −→ X , n ∈ N be given linear operators with lim

n→∞
‖Knf −Kf‖ = 0

for all f ∈ X (i.e., the operators Kn converge strongly to K in X). For
g ∈ X , consider the operator equations

(2.1) (I − K)f = g

where I is the identity operator in X , and

(2.2) (I − Kn)fn = g .

If the sequence (Kn) ∞n=1 is collectively compact and if dim ker(I −K) =
0 , then, for all sufficiently large n equation (2.2) has a unique solution
f ∗n ∈ X , where

(2.3) ‖f ∗n − f ∗‖ ≤ c ‖Knf ∗ −Kf ∗‖ , c 6= c(n, g, f ∗) ,

and f ∗ ∈ X is the unique solution of (2.1).

Let us consider the situation that X is equal to the space of con-
tinuous functions C(I) , where I = (I, d) is one of the compact metric
spaces I = [−1, 1] , I = [0,∞] , or I = [−∞,∞] , the distance func-
tion of which can be given, for example, by d(x, y) = |a(x) − a(y)| or

d(x, y) =
|a(x)− a(y)|

1 + |a(x)− a(y)|
with a(x) = arctan(x) . As usual, the norm

in C(I) is defined by ‖f‖∞ := max {|f(x)| : x ∈ I} . As operators K
and Kn we take
(2.4)

(Kf)(x) =

∫
I

K(x, y)f(y) dy as well as (Knf)(x) =
kn∑
k=1

Λnk(x)f(xnk) ,

where the Λnk’s are certain quadrature weights and we assume xnk ∈ I
(k = 1, . . . , kn) , xn1 < xn2 < . . . < xnkn , as well as

(K1)

∫
I

|K(x, y)| dy <∞ , i.e., K(x, .) ∈ L1(I) for all x ∈ I ,

(K2) lim
x→x0

‖K(x, .)−K(x0, .)‖L1(I) = lim
x→x0

∫
I

|K(x, y)−K(x0, y)| dy =

0 for all x0 ∈ I ,

(K3) lim
n→∞

kn∑
k=1

Λnk(x)f(xnk) =

∫
I

K(x, y)f(y) dy for all x ∈ I and all

f ∈ C(I) ,
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(K4) lim
x→x0

sup

{
kn∑
k=1

|Λnk(x)− Λnk(x0)| : n ∈ N

}
= 0 for all x0 ∈ I .

Note that conditions (K1) and (K2) are necessary and sufficient for
the operator K : C(I) −→ C(I) being a compact one, which is a
consequence of the Arzela-Ascoli Theorem characterizing the relatively
compact subsets of C(I) . Moreover, the following lemma ist true and
crucial for our further considerations (see [35, Section 2, Lemma] and
[34, Section 3, Theorem 1]).

Lemma 2. Suppose that conditions (K1) and (K2) are fulfilled. The
operators Kn : C(I) −→ C(I) , n ∈ N , defined in (2.4), form a collec-
tively compact sequence, which converges strongly to K , if and only if
(K3) and (K4) are satisfied.

Remark 3. For example, in case I = [0,∞] , conditions (K1) - (K4)
can be written equivalently as (cf. [34, (3.1)-(3.3)])

(K1’) K(x, .) ∈ L1(0,∞) ∀x ∈ [0,∞) ,
(K2’) lim

x→x0
‖K(x, .)−K(x0, .)‖L1(0,∞) = 0 ∀x0 ∈ [0,∞) ,

(K3’) lim
x→∞

sup

{∫ ∞
0

|K(x′, y)−K(x, y)| dy : x′ > x

}
= 0 ,

(K4’) lim
n→∞

kn∑
k=1

Λnk(x)f(xnk) =

∫ ∞
0

K(x, y)f(y) dy ∀x ∈ [0,∞) and

∀ f ∈ C[0,∞] ,

(K5’) lim
x→x0

sup

{
kn∑
k=1

|Λnk(x)− Λnk(x0)| : n ∈ N

}
= 0 for all x0 ∈

[0,∞) ,

(K6’) lim
x→∞

sup
x′>x

sup

{
kn∑
k=1

|Λnk(x)− Λnk(x0)| : n ∈ N

}
= 0 .

Now, we assume that the kernel function K(x, y) and the quadrature
weights Λnk(x) in (2.4) are represented in the form
(2.5)
K(x, y) = H(x, y)S(x, y) and Λnk(x) = λFnk(H(x, .))S(x, xnk) ,

respectively, and consider the conditions (H1) – (H3) below. For this,
we need the following notions.

Definition 4. Let I0 = (−1, 1) , I0 = (0,∞) , or I0 = (−∞,∞) ,
and let v be a positive weight function on I0 , where v : I −→ [0,∞)
is assumed to be continuous and having the property that p(x)v(x) is

continuous in I for all polynomials p(x) . By C̃v = C̃v(I0) we denote the
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Banach space of all functions f : I0 −→ C , for which vf : I0 −→ C can
be extended to a continuous function on the whole interval I , where the

norm on C̃v is given by ‖g‖C̃v = ‖g‖v,∞ := max {|v(x)g(x)| : x ∈ I} .
Moreover, let Cv ⊂ C̃v be the closure (w.r.t. the C̃v-norm) of the set
P of all algebraic polynomials.

Now, we formulate the above mentioned conditions.

(H1) The λFnk’s, k = 1, . . . , kn , n ∈ N , are linear and bounded func-
tionals on a Banach space X0 continuously imbedded in L1

v−1(I) ,
where Lv−1(I) = {f : v−1f ∈ L1} with ‖f‖L1

v−1
= ‖v−1f‖1 :=

‖v−1f‖L1 .
(H2) For all x ∈ I , H(x, .) ∈ X0 and S(x, .) ∈ Cv , and for all x0 ∈ I ,

lim
x→x0

‖H(x, .)−H(x0, .)‖X0
= 0 .

(H3) It holds lim
n→∞

kn∑
k=1

λFnk(f) g(xnk) =

∫
I

f(y)g(y) dy for all f ∈ X0

and all g ∈ Cv(I0) .

In case of v(x) ≡ 1 and I = [−1, 1] , the following lemma is proved in
[35, Section 3, Theorem 2].

Lemma 5. Assume that K(x, y) and Λnk(x) in (2.4) are of the form
(2.5), where the conditions (H1) – (H3) are fulfilled and where S(x, y)v(y)
is continuous on I2 . Then, conditions (K1) – (K4) are satisfied.

Proof. Condition (K1) follows from∫
I

|K(x, y)| dy ≤ ‖H(x, .)‖L1
v−1
‖S(x, .)‖v,∞ ≤ c ‖H(x, .)‖X0

‖S(x, .)‖v,∞

and condition (H2). Moreover,

‖K(x, .)−K(x0, .)‖L1

≤ ‖H(x, .)−H(x0, .)‖L1
v−1
‖S(x, .)v‖∞ + ‖H(x0, .)‖L1

v−1
‖S(x, .)v − S(x0, .)v‖∞

≤ ‖H(x, .)−H(x0, .)‖X0
‖S(x, .)v‖∞ + ‖H(x0, .)‖X0

‖S(x, .)v − S(x0, .)v‖∞ −→ 0

if x → x0 ∈ [−1, 1] because of (H2) and the (uniform) continuity of
S(x, y)v(y) on I2 . Hence, (K2) is also satisfied. Using (2.5), (H2), and
(H3), we get, for f ∈ C(I) ,

kn∑
k=1

Λnk(x)f(xnk) =
kn∑
k=1

λFnk(H(x, .))S(x, xnk)f(xnk) −→
∫
I

H(x, y)S(x, y)f(y) dy ,
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since together with S(x, .) ∈ Cv also S(x, .)f belongs to Cv . This
shows the validity of (K3). It remains to consider (K4). For this,
define Gn : X0 −→ C∗v , f 7→ Gnf with

(Gnf)(g) =
kn∑
k=1

λFnk(f)g(xnk) for all g ∈ Cv .

Indeed, Gnf ∈ C∗v , since |(Gnf)(g)| ≤
kn∑
k=1

|λFnk(f)|
v(xnk)

‖g‖v,∞ . Moreover,

it is easily seen that

‖Gnf‖C∗v =
kn∑
k=1

|λFnk(f)|
v(xnk)

.

If we fix f ∈ X0 , then sup {|(Gnf)(g)| : n ∈ N} < ∞ for every g ∈
Cv , due to (H3). Consequently, in virtue of the principle of uniform
boundedness,

(2.6) sup
{
‖Gnf‖C∗v : n ∈ N

}
<∞ for every f ∈ X0 .

Taking into account λFnk ∈ X∗0 and

(2.7) ‖Gnf‖C∗v =
kn∑
k=1

|λFnk(f)|
v(xnk)

≤
kn∑
k=1

∥∥λFnk∥∥X∗0
v(xnk)

‖f‖X0 ,

we see that Gn belongs to L(X0,C
∗
v) . Again by the principle of uniform

boundedness and by (2.6), we obtain c0 := sup
{
‖Gn‖X0→C∗v

: n ∈ N
}
<

∞ . This implies, together with (2.7),

kn∑
k=1

|λFnk(f)|
v(xnk)

≤ c0‖f‖X0 ∀ f ∈ X0 .
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Hence,

kn∑
k=1

∣∣Λnk(x)− Λnk(x0)
∣∣

=
kn∑
k=1

∣∣∣ [λFnk(H(x, .))− λFnk(H(x0, .))
]
S(x, xnk)

+ λFnk(H(x0, .)) [S(x, xnk)− S(x0, xnk)]
∣∣∣

≤
kn∑
k=1

∣∣λFnk(H(x, .)−H(x0, .))
∣∣

v(xnk)
‖S(x, .)v‖∞

+
kn∑
k=1

∣∣λFnk(H(x0, .))
∣∣

v(xnk)
‖S(x, .)v − S(x0, .)v‖∞

≤ c0

[
‖H(x, .)−H(x0, .)‖X0

‖S(x, .)v‖∞ + ‖H(x0, .)‖X0
‖S(x, .)v − S(x0, v)‖∞

]
,

and (K4) follows by (H2) and the continuity of S(x, y)v(y) on I2 . �

3. The classical Nyström method

Let u be a positive weight function and w , w1 be weight functions on
I0 , where u : I −→ [0,∞) is assumed to be continuous. For example,
all these three weight functions can be Jacobi weights (see Section 3.1)
or weights of exponential type (see Section 3.2). Consider a Fredholm
integral equation of the second kind

(3.1) f̃(x)−
∫
I

K̃(x, y)w(y)f̃(y) dy = g̃(x) , x ∈ I0 ,

where g̃ ∈ C̃u and K̃ : I2 −→ C are given functions and f̃ ∈ C̃u is
looked for. Using a set of nodes xnk ∈ I0 satisfying

(3.2) xn1 < xn2 < . . . < xn,kn

and a quadrature rule

(3.3)

∫
I

f̃(x)w(x) dx ∼
kn∑
k=1

λnkf̃(xnk) ,

we look for an approximate solution f̃n(x) for equation (3.1) by solving

(3.4) f̃n(x)−
kn∑
k=1

λnkK̃(x, xnk)f̃n(xnk) = g̃(x) .
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If we define f(x) := u(x)f̃(x) , g(x) := u(x)g̃(x) ,

(3.5) K(x, y) =
u(x)K̃(x, y)w(y)

u(y)
,

and

(3.6) Λnk(x) =
λnku(x)K̃(x, xnk)

u(xnk)
=: λnkK1(x, xnk) ,

then (3.1) considered in C̃u(I0) together with (3.4) is equivalent to (2.1)
considered in C(I) together with (2.2), where K and Kn are given by
(2.4).

Recall, that the function (cf. (3.4))

f̃n(x) =
kn∑
k=1

λnkK̃(x, xnk)f̃n(xnk) + g̃(x)

is called Nyström interpolant at the nodes xnk . For its construction,

one needs the values ξnk = f̃n(xnk) , which can be computed by consid-
ering (3.4) for x = xnj , j = 1, . . . , kn and solving the system of linear
equations

ξnj −
kn∑
k=1

λnkK̃(xnj, xnk)ξnk = g̃(xnj) , j = 1, . . . , kn .

Note, that the convergence of the Nyström interpolant to the solution
of the original integral equation is the main feature of the Nyström
method. For that reason, the natural spaces, in which the Nyström
method together with the integral equation should be considered, are
spaces of continous functions. Moreover, the natural class of integral
equations, to which the Nyström method together with the concept of
collectively compact and strongly convergent operator sequences can be
applied, is the class of second kind Fredholm integral equations, since
collective compactness and strong convergence imply the compactness
of the limit operator.

Nevertheless, there were developed modifications of the Nyström
method applicable to integral equations with noncompact integral op-
erators (see, for example, [9, 10, 22]).

We formulate the conditions

(A) K0(x, y) := u(x)K̃(x, y)w1(y) is continuous on I2 ,
(B) (w1u)−1w ∈ L1(I) ,
(C) there exists a positive weight function u1 : I0 −→ [0,∞) contin-

uous on I , such that K1(x, .) = u(x)K̃(x, .)u−1(.) ∈ Cu1(I0) for
all x ∈ I ,
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(D) u−1
1 w ∈ L1(I) ,

(E) for the quadrature rule (3.3), we have

lim
n→∞

kn∑
k=1

λnkf(xnk) =

∫
I

f(x)w(x) dx

for all f ∈ Cu1(I0) ,
(F) the inequalities

(3.7)
kn∑
k=1

λnk
u(xnk)w1(xnk)

≤ c

hold true for all n ∈ N , where c 6= c(n) .

The following corollary is concerned with condition (E).

Corollary 6. Let (D) be satisfied. If the quadrature rule (3.3) is exact
for polynomials of degree less than κ(n) , where κ(n) tends to infinity
if n −→∞ , and if

(3.8)
kn∑
k=1

λnk
u1(xnk)

≤ c

for all n ∈ N , where c 6= c(n) , then

(a) lim
n→∞

kn∑
k=1

λnkf(xnk) =

∫
I

f(x)w(x) dx ∀ f ∈ Cu1(I0) ,

(b)

∣∣∣∣∣
∫
I

f(x)w(x) dx−
kn∑
k=1

λnkf(xnk)

∣∣∣∣∣ ≤ cEκ(n)−1(f)u1,∞ , c 6= c(n, f) ,

where Em(f)u1,∞ = inf {‖f − p‖u1,∞ : p ∈ Pm} is the best weighted uni-
form approximation of the function f by polynomials of degree less or
equal to m. Moreover, if (E) is satisfied then (3.8) and (b) hold.

Proof. Define the linear functionals Fn : Cu1(I0) −→ C by

Fnf =
kn∑
k=1

λnkf(xnk) .

Then, in virtue of (3.8),

|Fnf | ≤
kn∑
k=1

λnk
u1(xnk)

‖f‖u1,∞ ≤ c‖f‖u1,∞ ∀ f ∈ Cu1 , c 6= c(n, f) .
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Hence, the linear functionals Fn : Cu1(I0) −→ C are uniformly bounded.
Moreover, due to our assumptions,

lim
n→∞

Fnf =

∫
I

f(x)w(x) dx ∀ f ∈ P ,

and the Banach-Steinhaus Theorem gives the assertion (a). For all
p ∈ Pκ(n)−1 , we get∣∣∣∣∣

∫
I

f(x)w(x) dx−
kn∑
k=1

λnkf(xnk)

∣∣∣∣∣
≤
∫
I

|f(x)− p(x)|w(x) dx+
kn∑
k=1

λnk |f(xnk)− p(xnk)|

≤

[∫
I

w(x) dx

u1(x)
+

kn∑
k=1

λnk
u1(xnk)

]
‖f − p‖u1,∞ .

It remains to take into account (D) and (3.8), and also (b) is proved.
Finally, we make the following observation. The norm of the func-

tionals Fn : Cu1(I0) −→ C is equal to
kn∑
k=1

λnk
u1(xnk)

. Hence, due to the

uniform boundedness principle, condition (3.8) is also necessary for
assertion (a) to be fulfilled. �

Proposition 7. If the conditions (A) – (F) are fulfilled, then the op-
erators Kn ∈ L(C(I)) , defined in (2.4) and (3.6), form a collectively
compact sequence of strongly convergent to K (cf. (2.4) and (3.5)) op-
erators in C(I) .

Proof. We check if conditions (K1) – (K4) are fulfilled. Condition (K1)
is a consequence of∫
I

|K(x, y)| dy (3.5)
=

∫
I

|K1(x, y)|w(y) dy
(C),(D)

≤ ‖K1(x, .)‖u1,∞
∥∥(u1)−1w

∥∥
L1(I)

.

Analogously, (K2) follows from∫
I

|K(x, y)−K(x0, y)| dy =

∫
I

|K0(x, y)−K0(x0, y)| w(y)

u(y)w1(y)
dy
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by applying the continuity of K0(x, y) and condition (B). In view of
(3.6), condition (C), and condition (E),

kn∑
k=1

Λnk(x)f(xnk) =
kn∑
k=1

λnkK1(x, xnk)f(xnk)

−→
∫
I

K1(x, y)f(y)w(y) dy =

∫
I

K(x, y)f(y) dy

if n −→ ∞ for all f ∈ C(I) and all x ∈ I , i.e., K(x, y) satisfies
also (K3). Finally, for every ε > 0 , there is a δ > 0 such that
|K0(x, y) −K0(x0, y)| < ε for all (x, y) ∈ Uδ(x0) × I , where Uδ(x0) =
{x ∈ I : d(x, x0) < δ} . Consequently, according to (3.7),

kn∑
k=1

|Λnk(x)− Λnk(x0)| =
kn∑
k=1

λnk|K1(x, xnk)−K1(x0, xnk)|

=
kn∑
k=1

λnk
u(xnk)w1(xnk)

|K0(x, xnk)−K0(x0, xnk)| < c ε

for all x ∈ Uδ(x0) , which shows the validity of (K4). The application
of Lemma 2 completes the proof. �

Remark 8. In case of u−1u1 = w1 , for the proof of Proposition 7, one
can also use Lemma 5. Indeed, if we set v = u1 and define H(x, y) =
w(y) , S(x, y) = K1(x, y) , X0 = span{w} with ‖.‖X0 = ‖.‖L1

v−1 (I) ,

λFnk(γw) = γλnk for γ ∈ C , then, we have X0 ⊂ L1
v−1(I) continuously

(see (D) which now coincides with (B)), K(x, y) = H(x, y)S(x, y) with
the continuous function S(x, y)v(y) (see (A)), and Λnk(x) = λFnk(w)S(x, xnk)
(cf. (3.6)). Moreover, for all f = γw ∈ X0 and all g ∈ Cv(I0) ,

lim
n→∞

kn∑
k=1

λFnk(f)g(xnk) = lim
n→∞

γ
kn∑
k=1

λnkg(xnk) =

∫
I

f(y)g(y) dy

in view of condition (E). Consequently, conditions (H1) – (H3) are
fulfilled and Lemma 5 can be applied.

Corollary 9. Assume (A) – (F). Consider the equations (3.1) and

(3.4) with g̃ ∈ C̃u(I0) . Assume further, that the homogeneous equation

(3.1) (i.e., g̃ ≡ 0) has in C̃u(I0) only the trivial solution. Then, for

all sufficiently large n , equation (3.4) possesses a unique solution f̃ ∗n ∈
C̃u(I0) converging to f̃ ∗ , where f̃ ∗ ∈ C̃u is the unique solution of (3.1).
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If the assumptions of Corollary 6 are satisfied, then

(3.9)
∥∥∥f̃ ∗ − f̃ ∗n∥∥∥

u,∞
≤ c sup

{
E2n−1

(
u(x)K̃(x, .)f̃ ∗

)
u1,∞

: x ∈ I
}
,

where c 6= c(n, g) . (Note that, due to condition (C), u(x)K̃(x, .)f̃ ∗ ∈
Cu1(I0) for all x ∈ I .)

Proof. In virtue of Proposition 7, we can apply Proposition 1 with
X = C(I) to the equations (2.1) and (2.2) with the above definitions
(3.5) and (3.6). Estimate (2.3) gives∥∥f̃ ∗n − f̃ ∗∥∥u,∞ = ‖f ∗n − f ∗‖∞ ≤ c ‖Knf ∗ −Kf ∗‖∞ ,

where f ∗ ∈ C(I) and f ∗n ∈ C(I) are the solutions of (2.1) and (2.2),
respectively, and where

‖Knf ∗ −Kf ∗‖∞

= sup

{∣∣∣∣∣
kn∑
k=1

Λnk(x)f ∗(xnk)−
∫
I

K(x, y)f ∗(y) dy

∣∣∣∣∣ : x ∈ I

}

= sup

{∣∣∣∣∣
kn∑
k=1

λnku(x)K̃(x, xnk)f̃
∗(xnk)−

∫
I

u(x)K̃(x, y)f̃ ∗(y)w(y) dy

∣∣∣∣∣ : x ∈ I

}
.

It remains to use u(x)K̃(x, .)f̃ ∗ ∈ Cu1(I0) (cf. (C)) and Corollary
6,(b). �

3.1. The case of Jacobi weights. Let us apply the above described
Nyström method in case of

(3.10) f̃(x)−
∫ 1

−1

K̃(x, y)vα,β(y)f̃(y) dy = g̃(x) , −1 < x < 1 ,

where g̃ ∈ C̃u = C̃u(−1, 1) and K̃ : (−1, 1)2 −→ C are given continu-
ous functions and where vα,β(x) = (1 − x)α(1 + x)β , α, β > −1 , and

u(x) = vγ,δ(x) , γ, δ ≥ 0 , are Jacobi weights, and C̃u = C̃vγ,δ . We set
u1(x) = vγ1,δ1(x) , w1(x) = vα1,β1(x) and assume that

(A1) K0 : [−1, 1]2 −→ C is continuous, whereK0(x, y) = vγ,δ(x)K̃(x, y)vα1,β1(y) ,

(B1)

∫ 1

−1

vα,β(x) dx

vγ,δ(x)vα1,β1(x)
<∞ , i.e., γ+α1 < α+1 and δ+β1 < β+1 ,

(C1) 0 ≤ γ1 , 0 ≤ δ1 , and γ + α1 < γ1 < α + 1 , δ + β1 < δ1 < β + 1 .

Setting w(x) := vα,β(x) , the conditions (A1) and (B1) are equivalent
to (A) and (B) in the present situation, respectively. Condition (C1)
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leads immediately to (C) and (D), since in case u(x) = vγ,δ(x) and

γ, δ ≥ 0 , the set Cu is equal to the set of all f ∈ C̃u satisfying

lim
x→1−0

u(x)f(x) = 0 if γ > 0 and lim
x→−1+0

u(x)f(x) = 0 if δ > 0 .

As quadrature rule (3.3) we take the Gaussian rule w.r.t. the Jacobi

weight w(x) = vα,β(x) , i.e., kn = n , the xnk = xα,βnk ’s are the zeros of
the nth (normalized) Jacobi polynomial pα,βn (x) w.r.t. w(x) = vα,β(x)

and the λnk = λα,βnk ’s are the respective Christoffel numbers. Then,
for Corollary 6 we have κ(n) = 2n − 1 . Moreover, condition (C1)
guarantees that (3.7) and (3.8) are also fulfilled, which is due to the
following lemma.

Lemma 10 ([33], Theorem 9.25). For vα,β(x) and vα1,β1(x) , assume
that α + α1 > −1 and β + β1 > −1 , and let j ∈ N be fixed. Then, for
each polynomial q(x) with deg q ≤ jn ,

n∑
k=1

λα,βnk

∣∣∣q(xα,βnk )
∣∣∣ vα1,β1

(
xα,βnk

)
≤ c

∫ 1

−1

|q(x)|vα,β(x)vα1,β1(x) dx ,

where c 6= c(n, q) .

Hence, all conditions (A) - (F) are in force and we can apply Corol-
lary 9 together with the estimate (b) of Corollary 6 to equation (3.10)
and the Nyström method

(3.11) f̃n(x)−
n∑
k=1

λα,βnk K̃(x, xα,βnk )f̃n(xα,βnk ) = g̃(x) , −1 < x < 1 ,

to get the following proposition.

Proposition 11. Assume that (A1), (B1), and (C1) are fulfilled and

that equation (3.10) has only the trivial solution in C̃vγ,δ in case of

g̃(x) ≡ 0 . Then, for g̃ ∈ C̃vγ,δ and all sufficiently large n , equation

(3.11) has a unique solution f̃ ∗n ∈ C̃vγ,δ and∥∥f̃ ∗−f̃ ∗n∥∥γ,δ,∞ ≤ c sup
{
E2n−1

(
vγ,δ(x)K̃(x, .)f̃ ∗

)
vγ1,δ1 ,∞ : −1 ≤ x ≤ 1

}
,

where f̃ ∗ ∈ C̃vγ,δ is the unique solution of (3.10) and c 6= c(n, g) .
(Again we note that the assumptions of the proposition guarantee that

vγ,δ(x)K̃(x, .)f̃ ∗ ∈ Cvγ1,δ1 for all x ∈ [−1, 1] ,(cf. Corollary 9)

For checking (3.7) and (3.8), we used Lemma 10. The following
Lemma will allow us to prove these assumptions also in other cases.
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Lemma 12. Let w : I0 −→ [0,∞) and v : I0 −→ [0,∞) be weight
functions and λnk > 0 , xnk ∈ I0 , k = 1, . . . , n , be given numbers
satisfying the conditions xn1 < xn2 < . . . < xnn and

(a) v−1w ∈ L1(I) ,
(b) λnk ∼n,k ∆xnkw(xnk) , k = 1, . . . , n , where ∆xnk = xnk − xn,k−1

and xn0 < xn1 is appropriately chosen,
(c) ∆xnk ∼n,k ∆xn,k−1 , k = 2, . . . , n ,
(d) for each closed subinterval [a, b] ⊂ I0 , v

−1w : [a, b] −→ R is
continuous and

(3.12) lim
n→∞

max {∆xnk : xnk ∈ [a, b]} = 0 ,

(e) there exists a subinterval [A,B] ⊂ I0 such that v−1w : {x ∈ I0 : x ≤ A} −→
R and v−1w : {x ∈ I0 : x ≥ B} −→ R are monotone.

Then, there is a constant c 6= c(n) such that

(3.13)
n∑
k=1

λnk
v(xnk)

≤ c

∫
I

w(x)

v(x)
dx .

Proof. By assumption (b) we have
n∑
k=1

λnk
v(xnk)

∼n
n∑
k=1

w(xnk)

v(xnk)
∆xnk .

Moreover,

lim
n→∞

sup

{∣∣∣∣w(x)

v(x)
− w(xnk)

v(xnk)

∣∣∣∣ : x ∈ [xn,k−1, xnk], xnk ∈ [A,B]

}
= 0 ,

due to assumption (d). Hence,

w(xnk)

v(xnk)
∆xnk ≤ c

∫ xnk

xn,k−1

w(x)

v(x)
dx ∀xnk ∈ [A,B] with c 6= c(n, k) .

If v−1w : {x ∈ I0 : x ≤ A} −→ R is non-increasing, then

w(xnk)

v(xnk)
∆xnk ≤

∫ xnk

xn,k−1

w(x)

v(x)
dx ∀xnk < A, k ≥ 1 .

If v−1w : {x ∈ I0 : x ≤ A} −→ R is non-decreasing, then we use as-
sumption (c) and get

w(xnk)

v(xnk)
∆xnk ∼n,k

w(xnk)

v(xnk)
∆xn,k+1 ≤

∫ xn,k+1

xnk

w(x)

v(x)
dx ∀xnk < A, k ≥ 1 ,

with (if necessary) an appropriately chosen xn,n+1 > xnn . For xnk > B
we can proceed analogously (noting that B can be chosen sufficiently
large such that, for all n ≥ n0 , v

−1w is monotone on the interval
[xn,k0−1, xn,k0) containing B). Summarizing we obtain (3.13). �
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It is obvious how we have to formulate Lemma 12 in case λnk > 0
and xnk ∈ I0 are given for k = k1(n), . . . , k2(n) .

3.2. The case of an exponential weight on (0,∞). Consider the
integral equation

(3.14) f̃(x)−
∫ ∞

0

K̃(x, y)w(y)f̃(y) dy = g̃(x) , 0 < x <∞ , ,

where g̃ ∈ C̃u(0,∞) and K̃ : (0,∞)2 −→ C are given functions and

where w(x) = wα,β(x) = e−x
−α−xβ , α > 0 , β > 1 , u(x) = ua,δ(x) =

(1 + x)δ[w(x)]a , a ≥ 0 , δ ≥ 0 . Here we use the Gaussian rule w.r.t.
the weight w(x) = wα,β(x) and study the Nyström method

(3.15) f̃n(x)−
n∑
k=1

λwnkK̃(x, xwnk)f̃n(xwnk) = g̃(x) , 0 < x <∞ .

Let us check conditions (A) - (F), for which we choose

w1(x) = ua0,δ0(x) := (1 + x)δ0 [w(x)]a0 , δ0, a0 ∈ R ,

and

u1(x) = ua1,δ1(x) = (1 + x)δ1 [w(x)]a1 , δ1 ≥ 0 , 0 < a1 ≤ 1 ,

and assume that

(A2) K0(x, y) := u(x)K̃(x, y)w1(y) is continuous on [0,∞]2 ,
(B2) 0 < a+ a0 < 1 , δ + δ0 ≥ 0 or a+ a0 = 1 , δ + δ0 > 1 ,
(C2) 0 < a1 < 1 , δ1 ≥ 0 or a1 = 1 , δ1 > 1 ,
(D2) a1 > a0 + a .

Note that, due to Lemma 12 (cf. [23, Prop. 3.8], for checking the
conditions of Lemma 12 see also [19, 14, 29])

(3.16)
n∑
k=1

λwnk
u1(xwnk)

≤ c with c 6= c(n)

if u−1
1 w ∈ L1(0,∞) , which is equivalent to assumption (C2). We also

see that (B2) implies (w1u)−1w ∈ L1(0,∞) . Condition (A2) together

with (D2) guarantess that u(x)K̃(x, .)u−1 ∈ Cu1(0,∞) for all x ∈
[0,∞] . Hence, we see that (A2) - (D2) together with Corollary 6,(a)
imply (A) – (F), and we can apply Corollary 9 together with Corollary
6,(b) to (3.14) and (3.15) to get the following.

Proposition 13. Let w(x) = e−x
−α−xβ , α > 0 , β > 1 , and u(x) =

(1 + x)δ[w(x)]a , a ≥ 0 , δ ≥ 0 . Assume that (A2), (B2), (C2), and
(D2) are fulfilled and that equation (3.14) has only the trivial solution
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in C̃u(0,∞) in case of g̃(x) ≡ 0 . Then, for g̃ ∈ C̃u(0,∞) and all suf-

ficiently large n , equation (3.11) has a unique solution f̃ ∗n ∈ C̃u(0,∞)
and∥∥f̃ ∗ − f̃ ∗n∥∥u,∞ ≤ c sup

{
E2n−1

(
u(x)K̃(x, .)f̃ ∗

)
u1,∞

: 0 ≤ x ≤ ∞
}
,

where f̃ ∗ ∈ C̃u(0,∞) is the unique solution of (3.14) and c 6= c(n, g) .

4. The Nyström method based on product integration
formulas

Let again I0 and I be equal to (−1, 1) , (0,∞) , or (−∞,∞) and
[−1, 1] , [0,∞] , or [−∞,∞] , respectively. Here we discuss the nu-
merical solution of the Fredholm integral equation (3.1) by means of
approximating the operator

(4.1) K̃ : C̃u(I0) −→ C̃u(I0) , , f̃ 7→
∫
I

K̃(., y)w(y)f̃(y) dy

by

(4.2)
(
K̃nf̃

)
(x) =

∫
I

H̃(x, y)

u(y)

[
LnS̃(x, .)uf̃

]
(y)w(y) dy , x ∈ I0 ,

where K̃(x, y) = H̃(x, y)S̃(x, y) and Lng is the algebraic polynomial of
degree less than n with (Lng)(xnk) = g(xnk) , k = 1, . . . , n . Using the
formula

(Lng)(x) =
n∑
k=1

g(xnk)`nk(x) with `nk(x) =
n∏
j=1

x− xnj
xnk − xnj

,

we conclude(
K̃nf̃

)
(x) =

n∑
k=1

∫
I

H̃(x, y)

u(y)
`nk(y)w(y) dy S̃(x, xnk)u(xnk)f̃(xnk) .

So, here we have kn = n . Furthermore, this means that, for equation
(2.1) considered in the space C(I) , the operator K : C(I) −→ C(I)
defined in (2.4) is approximated by Kn : C(I) −→ C(I) also given by
(2.4), where K(x, y) is defined in (3.5) and where (cf. (2.5))

(4.3) Λnk(x) =

∫
I

H(x, y)`nk(y) dy S(x, xnk) = λFnk(H(x, .))S(x, xnk)

with H(x, y) =
u(x)H̃(x, y)w(y)

u(y)
, S(x, y) = S̃(x, y) , and

(4.4) λFnk(f) =

∫
I

f(y)`nk(y) dy .
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In order to check, under which conditions the assumption (H3) is sat-
isfied, we should use

∣∣∣∣∣
n∑
k=1

λFnk(f)g(xnk)−
∫
I

f(y)g(y) dy

∣∣∣∣∣ =

∣∣∣∣∫
I

f(y) [(Lng)(y)− g(y)] dy

∣∣∣∣
(4.5)

≤
(∫

I

∣∣∣∣f(y)

u(y)

∣∣∣∣p dy) 1
p

‖(Lng − g)u‖Lq(I) ,

where p > 1 , 1
p

+ 1
q

= 1 , and u is an appropriate weight function.

4.1. The case of Jacobi weights. Consider the case where w(x) =
vα,β(x) , α, β > −1 , and v(x) = vγ,δ(x) , γ, δ ≥ 0 .

Lemma 14. Let w = vα,β , α, β > −1 , p > 1 , γ0, δ0 ≥ 0 , and γ0 >
α
2

+ 1
4

+ 1
p
− 1 , δ0 >

β
2

+ 1
4

+ 1
p
− 1 . Then, condition (H3) is fulfilled

for `nk(x) = `wnk(x) =
n∏
j=1

x− xα,βnj
xα,βnk − x

α,β
nj

in (4.4) as well as X0 = Lp

v−γ0,−δ0

and Cv = C , i.e. v ≡ 1 .

Proof. First, X0 = Lp

v−γ0,−δ0
is continuously embedded in L1 , since

γ0, δ0 ≥ 0 . Second, we can use the fact (cf. [31, Theorems 1 and 2]) that
there is a constant c > 0 such that

∥∥(g − Lwng)vγ0,δ0
∥∥
q
≤ cEn−1(g)∞

for all g ∈ C if and only if
vγ0,δ0
√
wϕ
∈ Lq with ϕ(x) =

√
1− x2 , i.e.,

γ0 −
α

2
− 1

4
> −1

q
and δ0 −

β

2
− 1

4
> −1

q
.

Hence, (4.5) can be applied to all f ∈ X0 , all g ∈ C , and u = vγ0,δ0 .
�

Remark 15. We remark that Lemma 14 improves the result mentioned
in [34, Section 4.5], where γ0 and δ0 are chosen as

max

{
α

2
+

1

4
, 0

}
and max

{
β

2
+

1

4
, 0

}
,

respectively.

As a consequence of Lemma 14 and of Lemma 5, we have to assume
that H(x, .) satisfies condition (H2) for X0 = Lp

v−γ0,−δ0
with appropriate

γ0, δ0 and p as in Lemma 14. The aim of the remaining part of this
subsection is to weaken this conditon in a certain way.
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By L log+ L(a, b) we denote the set of all measurable functions f :

(a, b) −→ C for which the integral ρ+(f) :=

∫ b

a

|f(x)|
(
1 + log+ |f(x)|

)
dx

is finite. For f ∈ L1(a, b) , by Hb
af we denote the Hilbert transform of

f , (
Hb
af
)

(x) :=

∫ b

a

f(y) dy

y − x
, a < x < b

(as Cauchy principal value integral). From [32, (1),(2)] we infer the
following.

Lemma 16. Let −∞ < a < b < ∞ . If f ∈ L log+ L(a, b) and g ∈
L∞(a, b) , then

(4.6)
∥∥gHb

af
∥∥

1
+
∥∥fHb

ag
∥∥

1
≤ c‖g‖∞ρ+(f)

with c 6= c(f, g) and

(4.7)

∫ b

a

g(x)
(
Hb
af
)

(x) dx = −
∫ b

a

f(x)
(
Hb
ag
)

(x) dx .

Let us use the abbreviations w(x) = vα,β(x) , pn(x) = pα,βn (x) ,

xnk = xα,βnk , and ∆xnk = xnk − xn,k−1 , k = 1, . . . , n , xn0 = −1 ,
Lp = Lp(−1, 1) , and L log+ L = L log+ L(−1, 1) , as well as H = H1

−1 .
The relations

(R1) |pn(x)|
√
w(x)ϕ(x) ≤ c for x ∈ An :=

[
xn1 − 1

2
,
xnn + 1

2

]
, c 6=

c(n) ,

(R2)
1

|p′n(xnk)|
∼n,k ∆xnk

√
w(xnk)ϕ(xnk) (see [31, (14)]),

(R3) for a fixed summable function v : [−1, 1] −→ C and a fixed
` ∈ N ,

n∑
k=1

∆xnk |p(xnk)v(xnk)| ≤ c

∫
An

|p(x)v(x)| dx

for all polynomials p ∈ P`n := {P ∈ P : degP ≤ `n} and with
c 6= c(n, p)

are well-known. Note that (R1) is a consequence of the estimate (see
[8, Theorem 1.1])

(4.8)
∣∣pα,βn (x)

∣∣ (√1− x+
1

n

)α+ 1
2
(√

1 + x+
1

n

)β+ 1
2

≤ c 6= c(n, x) ,

−1 < x < 1 , and the relation θn,k−1 − θnk ∼n,k 1
n
, k = 1, . . . , n + 1 ,

n ∈ N , where θnk ∈ [0, π] and xnk = cos θnk , θn,n+1 = 0 (cf. [30, (5)]).
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Lemma 17. Let w(x) = vα,β(x) and v(x) = vγ,δ(x) be Jacobi weights
satisfying

(4.9)
α

2
+

1

4
> γ ≥ 0 and

β

2
+

1

4
> δ ≥ 0 .

Then, there is a constant c 6= c(n, f, g) such that, for all functions

f : (−1, 1) −→ C with fv ∈ L∞ and all g with
g
√
wϕ
∈ L log+ L ,

‖gLwnf‖1 ≤ c ρ+

(
g
√
wϕ

)
‖fv‖∞ .

Proof. Write ‖gLwnf‖1 = J1 + J2 + J3 , where

J1 = ‖gLwnf‖L1(An) , J2 = ‖gLwnf‖L1(−1,
xn1−1

2 ) , J3 = ‖gLwnf‖L1(xnn+1
2

,1) .

Define

p̃n(y) :=

{
pn(y) : y ∈ An ,

0 : y 6∈ An ,
and g̃n(y) :=

{
g(y) : y ∈ An ,

0 : y 6∈ An ,

as well as hn(y) := sgn [g(y) (Lwnf) (y)] , and consider

J1 =

∫
An

hn(y)g(y) (Lwnf) (y) dy =
n∑
k=1

f(xnk)

p′n(xnk)

∫
An

pn(y)

y − xnk
g(y)hn(y) dy

(R2)

≤ c‖fv‖∞
n∑
k=1

∆xnk

√
w(xnk)ϕ(xnk)

v(xnk)
|Gn(xnk)| ,

where

Gn(x) =

∫
An

pn(y)Qn(y)− pn(x)Qn(x)

y − x
g(y)hn(y)

Qn(y)
dy

for some polynomial Qn ∈ P`n positive on An (` ∈ N fixed). Then, due
to Gn ∈ P`n+n−1 and (R3),

J1 ≤ c‖fv‖∞
∫
An

|Gn(x)|
√
w(x)ϕ(x)

v(x)
dx

≤ c‖fv‖∞

[∫ 1

−1

√
w(x)ϕ(x)

v(x)
(Hp̃ng̃nhn) (x) k1

n(x) dx

+

∫ 1

−1

√
w(x)ϕ(x)

v(x)
|p̃n(x)|Qn(x)

(
Hghn
Qn

)
(x) k2

n(x) dx

]

=: c‖fv‖∞
[
J ′1 + J ′′1

]
,
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where k1
n(x) = sgn [(Hp̃ng̃nhn) (x)] and k2

n(x) = sgn

[(
Hghn
Qn

)
(x)

]
.

With the help of (4.7), (R1), and (4.6), we get

J ′1 = −
∫ 1

−1

p̃n(x)g̃n(x)hn(x)

(
H
√
wϕ

v
k1
n

)
(x) dx

≤ c

∥∥∥∥ g
√
wϕ
H
√
wϕ

v
k1
n

∥∥∥∥
1

≤ c

∥∥∥∥√wϕv
∥∥∥∥
∞
ρ+

(
g
√
wϕ

)
and, by choosing Qn(x) ∼n,x

√
w(x)ϕ(x) for x ∈ An (see [28, Lemma

2.1]),

J ′′1 ≤ c

∫ 1

−1

√
w(x)ϕ(x)

v(x)

(
Hghn
Qn

)
(x) k2

n(x) dx

= −c
∫ 1

−1

g(x)hn(x)

Qn(x)

(
H
√
wϕ

v
k2
n

)
(x) dx

≤ c

∥∥∥∥ g
√
wϕ
H
√
wϕ

v
k2
n

∥∥∥∥
1

≤ c

∥∥∥∥√wϕv
∥∥∥∥
∞
ρ+

(
g
√
wϕ

)
.

Now, let us estimate J3 , the term J2 can be handled analogously. We
get

J3 =

∫ 1

xnn+1
2

hn(y)g(y) (Lwnf) (y) dy =
n∑
k=1

f(xnk)

p′n(xnk)

∫ 1

xnn+1
2

pn(y)

y − xnk
g(y)hn(y) dy

(R2)

≤ c‖fv‖∞
n∑
k=1

∆xnk

√
w(xnk)ϕ(xnk)

v(xnk)

∫ 1

xnn+1
2

|pn(y)g(y)|
y − xnk

dy

Note that, due to the assumptions on w and u , α + 1
2
> 0 . Hence, in

view of (4.8),

|pn(y)|
√
w(y)ϕ(y)

y − xnk
≤ c

1− xnk
, y ∈

[
xnn + 1

2
, 1

]
,

since, for y ∈
[
xnn + 1

2
, 1

]
, we have y − xnk ≥

1− xnk
2

. We conclude

J3 ≤ c‖fv‖∞
n∑
k=1

√
w(xnk)ϕ(xnk)

v(xnk)(1− xnk)

∫ 1

xnn
2

+1

|g(y)| dy√
w(y)ϕ(y)

(R3)

≤ c‖fv‖∞
∫ 1

−1

√
w(x)ϕ(x)

(1− x)v(x)
dx

∥∥∥∥ g
√
wϕ

∥∥∥∥
1

≤ c‖fv‖∞ ρ+

(
g
√
wϕ

)
,
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since
α

2
+

1

4
− γ − 1 > −1 . �

Lemma 18. Let v : I −→ [0,∞) be a weight function as in Definition
4 and R : I2 −→ C be a function such that Rx ∈ Cv for all x ∈ I ,
where Rx(y) = R(x, y) , and such that R(x, y)v(y) is continuous on I2 .
Then, for every n ∈ N , there is a function Pn(x, y) such that Pn,x(y) =
Pn(x, y) belongs to Pn for every x ∈ I and lim

n→∞
sup

{
|R(x, y)− Pn(x, y)|v(y) : (x, y) ∈ I2

}
=

0 .

Proof. Let εn > 0 and, for every x ∈ I , choose Pn,x ∈ Pn such that

‖(Rx − Pn,x)v‖∞ < En(Rx)v,∞ + εn .

It remains to prove that lim
n→∞

sup {En(Rx)v,∞ : x ∈ I} = 0 . If this is

not the case, then there are an ε > 0 and n1 < n2 < . . . such that
Enk(Rxk)v,∞ ≥ 2ε for certain xk ∈ I . Due to the compactness of I , we
can assume that xk −→ x∗ for k −→∞ . In virtue of the continuity of
R(x, y)v(y) , we can conclude that ‖(Rxk −Rx∗)v‖∞ < ε for all k ≥ k0 .
Since ‖(Rxk − p)v‖∞ ≥ 2ε for all p ∈ Pnk and k ∈ N , we obtain, for
p ∈ Pnk and k ≥ k0 ,

2ε ≤ ‖(Rxk − p)v‖∞ ≤ ‖(Rxk −Rx∗)v‖∞+‖(Rx∗ − p)v‖∞ < ε+‖(Rx∗ − p)v‖∞
and, consequently, ‖(Rx∗ − p)v‖∞ > ε for all p ∈ Pnk and k ∈ N , in
contradiction to Rx∗ ∈ Cv . �

Let us come back to the integral operator K : C[−1, 1] −→ C[−1, 1] ,

(4.10) (Kf)(x) =

∫ 1

−1

K(x, y)f(y) dy

and its product integration approximation Kn : C[−1, 1] −→ C[−1, 1] ,

(4.11) (Knf)(x) =
n∑
k=1

Λnk(x)f(xwnk) =

∫ 1

−1

H(x, y) (LwnSxf) (x) dx ,

where Sx(y) = S(x, y) ,
(4.12)

K(x, y) = H(x, y)S(x, y) , and Λnk(x) = S(x, xwnk)

∫ 1

−1

H(x, y)`wnk(y) dy .

Proposition 19. Consider (4.10) and (4.11) together with (4.12) in the
Banach space C[−1, 1] . If the Jacobi weights w = wα,β and v = vγ,δ

satisfy the conditions of Lemma 17 and if

(a)
Hx√
wϕ
∈ L log+ L for all x ∈ [−1, 1] , where Hx(y) = H(x, y) ,
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(b) sup

{
ρ+

(
Hx√
wϕ

)
: −1 ≤ x ≤ 1

}
<∞ ,

(c) lim
x→x0

ρ+

(
Hx −Hx0√

wϕ

)
= 0 for all x0 ∈ [−1, 1] ,

(d) the map [−1, 1]2 −→ C , (x, y) 7→ S(x, y)v(y) is continuous with
Sx ∈ Cv for all x ∈ [−1, 1] ,

then the operators Kn form a collectively compact sequence, which con-
verges strongly to the operator K .

Proof. At first we show that Kn converges strongly to K . Indeed, for
f ∈ C[−1, 1] , a function P (x, y) , which is a polynomial in y of degree
less than n , and Px(y) = P (x, y) , we have

|(Knf) (x)− (Kf) (x)|

≤
∫ 1

−1

|H(x, y) [Lwn (Sxf − Px)] (x)| dx+

∫ 1

−1

|H(x, y) [S(x, y)f(y)− P (x, y)]| dx

≤ c

[
ρ+

(
Hx√
wϕ

)
+
∥∥Hxv

−1
∥∥

1

]
‖(Sxf − Px)v‖∞ ,

where we took into account Lemma 17 and that condition (a) together
with (4.9) impliesHxv

−1 ∈ L1(−1, 1) .Moreover, sup {‖Hxv
−1‖1 : −1 ≤ x ≤ 1} <

∞ due to condition (b). Thus,

‖Knf −Kf‖∞ ≤ c sup
−1≤x≤1

‖(Sxf − Px)v‖∞ ,

which proves the desired strong convergence by referring to Lemma 18.
A consequence of this is that the set {‖Knf‖∞ : f ∈ C[−1, 1], ‖f‖∞ ≤ 1}
is bounded. Furthermore, for ‖f‖∞ ≤ 1 ,

|(Knf)(x)− (Knf)(x0)|

≤
∫ 1

−1

|H(x, y) [Lwn (Sx − Sx0)f ] (y)| dy

+

∫ 1

−1

|[H(x, y)−H(x0, y)] (LwnSx0f) (y)| dy

Lemma 17

≤ c

[
ρ+

(
Hx√
wϕ

)
‖(Sx − Sx0)v‖∞ + ρ+

(
Hx −Hx0√

wϕ

)
‖Sx0v‖∞

]
.

Hence, due to (b), (c), and (d), the set {Knf : f ∈ C[−1, 1], ‖f‖∞ ≤ 1}
is equicontinuous in each point x0 ∈ [−1, 1] , and so equicontinuous on
[−1, 1] . �
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4.2. The case of an exponential weight on (0,∞). Here, in case

w(x) = wα,β(x) = xαe−x
β
, 0 < x <∞ , α ≥ 0 , β > 1

2
, we are going to

prove results analogous to Lemma 17 and Proposition 19. Note that
quadrature rules with such weights were introduced and investigated in
[27]. Moreover, we mention that in [20] there are considered numerical
methods and presented numerical results for Fredholm integral equa-
tions of second kind, basing on interpolation processes w.r.t. the nodes
{xwnk}.

We again set pn(x) = pwn (x) and {xnk} = {xwnk} and, additionally,

xn,n+1 = an , where an = an(
√
w) ∼n n

1
β is the Mhaskar-Rahmanov-

Saff number associated with the weight
√
w(x) . Let us fix θ ∈ (0, 1) ,

set nθ = min k ∈ 1, . . . , n : xnk ≥ θan , and define, for a function f :
(0,∞)→ C ,

(4.13) L∗nf =

nθ∑
k=1

f(xnk)`
∗
nk , `∗nk(x) =

pwn (x)(an − x)

p′n(xnk)(x− xnk)(an − xnk)
.

Then, we have (L∗nf) (xnk) = f(xnk) for k = 1, . . . , nθ and (L∗nf) (xnk) =
0 for k = nθ + 1, . . . , n + 1 , as well as, for ∆xnk = xnk − xn,k−1 ,
k = 1, . . . , n , xn0 = 0 ,

(R4) sup
{
|pn(x)|

√
w(x)

√
|an − x|x : 0 < x < ∞

}
≤ c < ∞ with

6= c(n) (see [19, 14]),

(R5)
1

|p′n(xnk)|
∼n,k ∆xnk

√
w(xnk)

√
(an − xnk)xnk , k = 1, . . . , n (see

[19, 14]),
(R6) for fixed ` ∈ N , there is a constant c 6= c(n, p) such that (see

[18])

nθ∑
k=1

∆xnk |p(xnk)| ≤ c

∫ θan

0

|p(x)| dx for all p ∈ P`n .

Remark 20. The constant on the right-hand side of (4.6) does not
depend on the interval [a, b] , i.e., we have, for −∞ < a < b <∞ ,

(4.14)
∥∥gHb

af
∥∥

1
+
∥∥fHb

ag
∥∥

1
≤ c‖g‖∞ρ+(f)

for all g ∈ L∞(a, b) and f ∈ L log+ L(a, b) , where c 6= c(f, g, a, b) .
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Indeed, if c1 is the constant in (4.6) in case a = 0 and b = 1 , then, by
setting x = χ(t) = (b− a)t+ a and y = χ(s) ,∫ b

a

∣∣∣∣g(x)

∫ b

a

f(y) dy

y − x

∣∣∣∣ dx+

∫ b

a

∣∣∣∣f(x)

∫ b

a

g(y) dy

y − x

∣∣∣∣ dx
= (b− a)

[∫ 1

0

∣∣∣∣g(χ(t))

∫ 1

0

f(χ(s)) ds

s− t

∣∣∣∣ dt+

∫ 1

0

∣∣∣∣f(χ(t))

∫ 1

0

g(χ(s)) ds

s− t

∣∣∣∣ dt]

≤ c1‖g‖∞,[a,b]
∫ 1

0

|f(χ(t))|
(
1 + log+ |f(χ(t))|

∣∣ dt = c1‖g‖∞,[a,b]ρ+,[a,b](f) .

Lemma 21. Let ψ(x) =
√
x , x ≥ 0 and v(x) = (1 + x)δ

√
w(x) ,

δ ≥ 1
4
. Then, there is a constant c 6= c(n, f, g) such that, for all func-

tions f : (0,∞) −→ C with fv ∈ L∞(0,∞) and all g with
g√
wψ
∈

L log+ L(0,∞) ,

‖gL∗nf‖L1(0,∞) ≤ c ρ+

(
g√
wψ

)
‖fv‖∞ .

Proof. Write ‖gL∗nf‖L1(0,∞) = ‖gL∗nf‖L1(0,2an) + ‖gL∗nf‖L1(2an,∞) =:

J1 + J2 . Using (R5) we get, with hn(y) = sgn [g(y) (L∗nf) (y)] ,

J1 ≤ c‖fv‖∞
nθ∑
k=1

∆xnk

√
w(xnk)ψ(xnk)

v(xnk)(an − xnk)
3
4

∣∣∣∣∫ 2an

0

pn(y)(an − y)g(y)hn(y)

y − xnk
dy

∣∣∣∣
= c‖fv‖∞

nθ∑
k=1

∆xnk
(xnk)

1
4

(1 + xnk)δ(an − xnk)
3
4

∣∣∣∣∫ 2an

0

pn(y)(an − y)g(y)hn(y)

y − xnk
dy

∣∣∣∣
≤ c
‖fv‖∞
(an)

3
4

nθ∑
k=1

∆xnk |Gn(xnk)| ,

where

Gn(t) =

∫ 2an

0

pn(y)(an − y)Qn(y)− pn(t)(an − t)Qn(t)

y − t
g(y)hn(y)

Qn(y)
dy

and Qn ∈ P`n a polynomial positive on (0, an) (` ∈ N fixed). Since
Gn ∈ P(`+1)n , with the help of (R6) we can estimate

J1 ≤
c‖fv‖∞
(an)

3
4

[∫ 2an

0

∣∣(H2an
0 pn(an − ·)ghn

)
(x)
∣∣ dx

+

∫ 2an

0

∣∣∣∣pn(x)(an − x)Qn(x)

(
H2an

0

ghn
Qn

)
(x)

∣∣∣∣ dx] =: J ′1 + J ′′1 .
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Defining k1
n(x) = sgn

[(
H2an

0 pn(am − ·)ghn
)

(x)
]

and using (4.7) and
(R4), we obtain

J ′1 ≤
c‖fv‖∞
(an)

3
4

∫ 2an

0

pn(x)(an − x)g(x)hn(x)
(
H2an

0 k1
n

)
(x) dx

≤ c‖fv‖∞
∫ 2an

0

|g(x)|√
w(x)ψ(x)

∣∣(H2an
0 k1

n

)
(x)
∣∣ dx (4.14)

≤ c‖fv‖∞ρ+

(
g√
wψ

)
.

In order to estimate J ′′1 , we choose Qn ∈ P`n such that Qn(x) ∼n,x√
w(x)ψ(x) for x ∈ (0, 2an) (see [26]). Then, due to (R4) and (4.7),

J ′′1 ≤ c‖fv‖∞k2
n(x)

(
H2an

0

ghn
Qn

)
(x) dx

≤ c‖fv‖∞
∫ 2an

0

∣∣∣∣∣ g(x)√
w(x)ψ(x)

(
Hk2

n

)
(x)

∣∣∣∣∣ dx (4.14)

≤ c‖fv‖∞ρ+

(
g√
wψ

)
,

where k2
n(x) = sgn

[(
H2an

0
ghn
Qn

)
(x)
]
, . Finally, let us consider J2 .

Again taking into account (R5), we get

J2 ≤ c‖fv‖∞
nθ∑
k=1

∆xnk

√
w(xnk)ψ(xnk)

v(xnk)(an − xnk)
3
4

∣∣∣∣∫ ∞
2an

pn(y)(an − y)g(y)hn(y)

y − xnk
dy

∣∣∣∣
= c‖fv‖∞

nθ∑
k=1

∆xnk
(xnk)

1
4

(1 + xnk)δ(an − xnk)
3
4

∣∣∣∣∫ ∞
2an

pn(y)(an − y)g(y)hn(y)

y − xnk
dy

∣∣∣∣
≤ c‖fv‖∞

(an)
3
4

nθ∑
k=1

∆xnk

∫ ∞
2an

|pn(y)|
√
w(y)

√
y(y − an)

(an)
1
4

(
y − an
y − xnk

) 3
4 |g(y)|√

w(y)ψ(y)
dy ,

where we also used that y − xnk ≥ 2an − an = an . Hence, in virtue of(
y − an
y − xnk

) 3
4

≤ 1 for y > 2an ,

nθ∑
k=1

∆xnk ≤ an , and (R1),

J2 ≤ c‖fv‖∞
∫ ∞

2an

|g(y)|√
w(y)ψ(y)

dy ≤ c‖fv‖∞ρ+

(
g√
wψ

)
.

�

Let us apply Lemma 21 to the integral operator K : C[0,∞] −→
C[0,∞] ,

(4.15) (Kf)(x) =

∫ ∞
0

K(x, y)f(y) dy
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and its product integration approximation Kn : C[0,∞] −→ C[0,∞] ,

(4.16) (Knf)(x) =

nθ∑
k=1

Λ∗nk(x)f(xwnk) =

∫ ∞
0

H(x, y) (L∗nSxf) (x) dx ,

where w(x) = wα,β(x) = xαe−x
β
, α > −1 , β > 1

2
, where L∗n is defined

in (4.13), and where Sx(y) = S(x, y) ,
(4.17)

K(x, y) = H(x, y)S(x, y) , Λ∗nk(x) = S(x, xwnk)

∫ ∞
0

H(x, y)`∗nk(y) dy .

Proposition 22. Consider (4.15) and (4.16) together with (4.17) in

the Banach space C[0,∞] . If v(x) = (1 + x)δ
√
w(x) with δ ≥ 1

4
and if

(a)
Hx√
wψ

∈ L log+ L(0,∞) for all x ∈ [0,∞] , where Hx(y) =

H(x, y) ,

(b) sup

{
ρ+

(
Hx√
wϕ

)
: 0 ≤ x ≤ ∞

}
<∞ ,

(c) lim
d(x,x0)→0

ρ+

(
Hx −Hx0√

wψ

)
= 0 for all x0 ∈ [0,∞] ,

(d) the map [0,∞]2 −→ C , (x, y) 7→ S(x, y)v(y) is continuous with
Sx ∈ Cv for all x ∈ [−1, 1] ,

then the operators Kn form a collectively compact sequence, which con-
verges strongly to the operator K .

Proof. We proceed in an analogous way as in the proof of Proposition
19. For f ∈ C[0,∞] and a function P (x, y) = Px(y) , which is a
polynomial in y of degree less than n , we have

|(Knf) (x)− (Kf) (x)|

≤
∫ 1

−1

|H(x, y) [L∗n(Sxf − Px)] (x)| dx+

∫ ∞
0

∣∣∣∣∣H(x, y)
n+1∑

k=nθ+1

Px(x
w
nk)`

∗
nk(y)

∣∣∣∣∣ dy
+

∫ 1

−1

|H(x, y) [S(x, y)f(y)− P (x, y)]| dx =: J1 + J1 + J3 ,

By Lemma 21,

J1 ≤ c ρ+

(
Hx√
wϕ

)
‖(Sxf − Px)v‖∞ .

Condition (a) together with δ ≥ 1
4

implies Hxv
−1 ∈ L1(−1, 1) , and

hence
J3 ≤

∥∥Hxv
−1
∥∥

1
‖(Sxf − Px)v‖∞ .
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Consequently, since we have also sup {‖Hxv
−1‖1 : −1 ≤ x ≤ 1} < ∞

by condition (b), we get

(4.18) J1 + J3 ≤ c sup
−1≤x≤1

‖(Sxf − Px)v‖∞ .

To estimate J2 , we recall that (see [29, (2.3)])

‖Pnu‖L∞(xnθ ,∞) ≤ c e−c̃ n ‖Pnu‖∞ for Pn ∈ Pm(n)

(m(n) < n , lim
n→∞

m(n) = ∞) for some positive constants c 6= c(n, Pn)

and c̃ 6= c̃(n, Pn) and (cf. [24, pp. 362,373])

n+1∑
k=nθ+1

v(x)`∗nk(x)

v(xwnk)
≤ c nσ

for some σ > 0 and c 6= c(n, x) . Thus,

J2 ≤ c nσ
∥∥Hxv

−1
∥∥

1
‖Pxv‖L∞(xnθ,∞) ≤ cnσe−c̃ n

∥∥Hxv
−1
∥∥

1
‖Pxv‖∞

Px ∈ Pm(n) can be chosen in such a way that sup {‖Pxv‖∞ : x ∈ [0,∞]} <
∞ (in view of Lemma 18). Hence, together with (4.18) we conclude
the strong convergence of Kn to K . Consequently, the set

{‖Knf‖∞ : f ∈ C[0,∞], ‖f‖∞ ≤ 1}
is bounded. Furthermore, for ‖f‖∞ ≤ 1 ,

|(Knf)(x)− (Knf)(x0)|

≤
∫ 1

−1

|H(x, y) [L∗n(Sx − Sx0)f ] (y)| dy

+

∫ 1

−1

|[H(x, y)−H(x0, y)] (L∗nSx0f) (y)| dy

Lemma 21

≤ c

[
ρ+

(
Hx√
wϕ

)
‖(Sx − Sx0)v‖∞ + ρ+

(
Hx −Hx0√

wϕ

)
‖Sx0v‖∞

]
.

Hence, due to (b), (c), and (d), the set {Knf : f ∈ C[−1, 1], ‖f‖∞ ≤ 1}
is equicontinuous in each point x0 ∈ [0,∞] , and so equicontinuous on
[0,∞] . �
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