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SHARP WEYL ESTIMATES FOR TENSOR PRODUCTS
OF PSEUDODIFFERENTIAL OPERATORS

UBERTINO BATTISTI, MASSIMO BORSERO, AND SANDRO CORIASCO

Abstract. We study the asymptotic behavior of the counting function
of tensor products of operators, in the cases where the factors are either
pseudodi↵erential operators on closed manifolds, or pseudodi↵erential
operators of Shubin type on Rn, respectively. We obtain, in particular,
the sharpness of the remainder term in the corresponding Weyl formulae,
which we prove by means of the analysis of some explicit examples.

Contents

Introduction 1
Acknowledgements 5
1. Preliminary Results 5
2. Spectral asymptotics for the tensor product of two operators 8
3. Spectral asymptotics for the tensor product of r operators 12
4. Sharpness of the result 18
5. Appendix. The Dirichlet divisors problem 25
References 26

Introduction

Let P be a positive self-adjoint operator of order m > 0 with domain
H

m(M) ,! L
2(M), M a Riemannian, n-dimensional smooth closed mani-

fold. Assume that the resolvent of P is compact, so that the spectrum is
discrete and given by a sequence of eigenvalues with finite multiplicities. Let
{�j}j2N = �(P ) be the set of the eigenvalues of P , repeated according to
their multiplicity. The counting function NP (⌧) is defined as

NP (⌧) =
X

�j2�(P )\[0,⌧)

1 =
X

�j<⌧

1.(1)

The Weyl law, see, e.g., [Hör68,Hör07], describes the asymptotic expansion
of the counting function NP (⌧), as ⌧ goes to infinity. It is well known that
that the leading term of the asymptotic expansion of (1) depends on the
dimension of the manifold, on the order of the operator and on its principal
symbol, see, e.g., [Hör07]. Similar formulae can be obtained in many other
di↵erent settings, see [SV97] and [ANPS09] for a detailed analysis and sev-
eral developments. To mention a few specific situations, see [Shu87,HR81]
for the case of the Shubin calculus on Rn, [BN03] for the anisotropic Shubin
calculus, [BC11,CM13,Nic03] for the SG-operators on Rn and the manifolds
with ends, [GL02] for operators on conic manifolds, [Mor08] for operators
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on cusp manifolds, [DD13] for operators on asymptotic hyperbolic mani-
folds, [Bat12,BGRP13] for bisingular operators.

In this paper we study the counting function of the tensor product of
r pseudodi↵erential operators. We consider the cases of Hörmander oper-
ators on closed manifolds and of the Shubin calculus on Rn. In the case
r = 2, for classical Hörmander operators on closed manifolds, the operators
we consider are a subclass of the so-called bisingular operators, studied by
L. Rodino in [Rod75] (see also [NR06]) in connection with the multiplica-
tive property of the Atiyah-Singer index [AS68]. An asymptotic expansion
of the counting function of bisingular operators was obtained by the first
author in [Bat12]. The basic tool was the spectral ⇣-function, in the spirit
of Guillemin’s so-called soft proof of the Weyl law [Gui85]. This method
allows to determine the leading term of the asymptotic expansion in the
non-symmetric case (corresponding to a simple first pole of the spectral ⇣-
function). In the symmetric case the spectral ⇣-function has a first pole
of order 2. Using a theorem due to Aramaki [Ara88], it has been possible
to determine the leading term, which has a behavior of type ⌧

p log ⌧ , as
well as the second term, which has a behavior of type ⌧

p, p being the first
pole of the spectral ⇣-function. However, it was not possible, through the
aforementioned method, to give a good estimate of the remainder term. We
notice that the asymptotic behavior of the counting function in the bisingu-
lar case has some similarities with the Weyl law in the setting of SG-classical
operators on manifolds with ends [BC11,CM13].

A version of bisingular operators, based on Shubin pseudodi↵erential cal-
culus on Rn, was introduced in [BGRP13]. The counting function was stud-
ied also in this setting, obtaining results analogous to those which hold for
the “standard” bisingular calculus.

In this paper we consider the same class of operators studied in [GPRVar],
namely, tensor products of r pseudodi↵erential operators, that is

A = A1 ⌦ . . .⌦Ar.

In the sequel we will assume either that each Aj is a classical Hörmander
pseudodi↵erential operator on a nj-dimensional closed manifolds Mj , that
is Aj 2 L

mj

cl (Mj), j = 1, . . . , r, or that each Aj belongs to a classical global
Shubin class on Rnj , that is, Aj 2 G

mj

cl (Rnj ), j = 1, . . . , r. We also assume
that A is positive, self-adjoint and Fredholm. It is straightforward to check
that the Fredholm property of A implies that Aj is invertible for any j =
1, . . . , r. We illustrate here our results in the case r = 2, see Section 3 below
for the statements which hold for an arbitrary number of factors.

Denoting by � (A1) = {�j}j2N and � (A2) = {µk}k2N the spectra of A1

and A2, with eigenvalues repeated according with their multiplicities, we
easily obtain that the spectrum of A is given by

�(A) = {�j · µk}(j,k)2N2 .

Therefore

NA(⌧) =
X

⇢2�(A)\[0,⌧)

1 =
X

�j ·µk<⌧

1.(2)
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Assume that A = A1 ⌦ A2 is positive, self-adjoint and Fredholm, with
A1 2 L

m1
cl (M1), A2 2 L

m2
cl (M2), m1,m2 > 0, dimM1 = n1, dimM2 = n2,

and n1
m1

>
n2
m2

. Our first main result, proved in Theorem 2.3, states that,
under such assumptions,
(3)

NA(⌧) =

8
>>>>>>><

>>>>>>>:

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

✓
⌧

n1�1
m1

◆
if

n2

m2
<

n1 � 1

m1
,

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

✓
⌧

n1�1
m1 log ⌧

◆
if

n2

m2
=

n1 � 1

m1
, ,

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

⇣
⌧

n2
m2

⌘
if

n2

m2
>

n1 � 1

m1

for ⌧ ! +1. In (3), ⇣ denotes the spectral ⇣-function and

C1 =
1

(2⇡)n1

Z

M1

Z

Sn1�1

d✓1dx1

[am1(x1, ✓1)]
n1
m1

.

A similar statement holds for the tensor product of two Shubin operators
with positive order. Moreover, using spherical harmonics, we show that the
estimate (3) is sharp.

In [GPRVar], Gramtchev, Pilipović, Rodino and Vindas considered the
same class of operators, finding a slightly weaker estimate for the remainder
term of the Weyl formula. Explicitely, they prove that, under the assump-
tions stated above,

NA(⌧) =
C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O(⌧ �)

where max
n

n1�1
m1

,
n2
m2

o
< � <

n1
m1

.

The asymptotic expansion in (3) is related with the position of the first
poles of the spectral ⇣-function associated with A1 and A2, as sketched in
the following pictures.

R

iR

n1
m1

n1�1
m1

n2
m2

First two poles of ⇣(A1)
First pole of ⇣(A2)

Case n2
m2

< n1�1
m2
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R

iR

n1�1
m1

n1
m1

n2
m2

First two poles of ⇣(A1)
First pole of ⇣(A2)

Case n2
m2

= n1�1
m2

R

iR

n1
m1

n1�1
m1

n2
m2

First two poles of ⇣(A1)
First pole of ⇣(A2)

Case n2
m2

> n1�1
m2

The key point in the proof of our results is the following equivalence,
explained in (13):

NA (⌧) =
X

�j ·µk<⌧

1 =
X

µk<⌧

NA2

✓
⌧

µk

◆
.

The argument is then a careful application of the well known sharp Weyl
law. A main aspect is the possibility to estimate the reminder term, in the
Weyl law of A2 evaluated in ⌧

µk
, uniformly with respect to µk.

The paper is organized as follows. In Section 1, we shortly recall the Weyl
laws in the case of the Hörmander calculus on closed manifolds and of the
Shubin calculus on Rn. We also study the asymptotic behavior of the sum

X

µk<⌧

1

µ
c

k

for di↵erent ranges of c 2 R, where {µk}k2N is the spectrum of an operator
in the calculus we consider. In Section 2, we prove our main results in the
case of tensor products of two factors. In Section 3, we extend the results
to the case of tensor products of r > 2 factors. In Section 4, we show that
our estimates of the remainder term of the Weyl law are sharp, focusing
again on the case of tensor products of two factors. Finally, we collect
in the Appendix some remarks concerning the connection of this analysis
with lattice problems, in particular with the Dirichlet divisor problem in
the classic setting and in the anisotropic case.
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1. Preliminary Results

We recall well known results on the sharp Weyl law in the case of oper-
ators on closed manifolds and of operators of Shubin type on Rn, see, e.g.,
Hormander [Hör68], Hellfer, Robert [HR81], see also [He84].

Theorem 1.1 (Sharp Weyl law). Let A be a positive self-adjoint elliptic
classical pseudodi↵erential operator in L

m

cl (M), with M a closed manifold
of dimension n, and let � (A) = {�j}j2N be its spectrum. Then,

(4) NA(�) =
X

�j<�

1 =
CA

n
�

n
m +RA (�) ,

where

CA =
1

(2⇡)n

Z

M

Z

Sn�1

d✓dx

[am (x, ✓)]
n
m
,

with am the principal homogeneous symbol of A, and

lim sup
�!+1

���NA (�)� CA
n
�

n
m

���

�
n�1
m

= lim sup
�!+1

|RA (�)|

�
n�1
m

< +1.(5)

Analogously, let P 2 G
m

cl (Rn) be a positive self-adjoint elliptic classical
pseudodi↵erential operator of Shubin type on Rn with m > 0, and let
� (P ) = {µk}k2N be its spectrum. Then,

(6) NP (�) =
X

µk<�

1 =
KP

2n
�

2n
m +RP (�) ,

where

KP =
1

(2⇡)2n

Z

S2n�1

d✓

[pm (✓)]
2n
m

,

with pm the principal homogeneous symbol of P , and

lim sup
�!+1

���NP (�)� KP
2n �

2n
m

���

�
2n�1
m

= lim sup
�!+1

|RP (�)|

�
2n�1
m

< +1.

The next Propositions 1.2 and 1.3 will be crucial in our proof of the Weyl
law with sharp remainder for tensor products. They follow as consequence
of well known properties of the spectra of positive self-adjoint operators. We
examine in detail only the case of Hörmander pseudodi↵erential operators
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on closed manifold, since the argument for the case of Shubin operators is
similar.

Proposition 1.2. Let M be a closed manifold of dimension n, and A 2

L
m

cl (M), m > 0, be elliptic, positive and self-adjoint, with spectrum �(A) =
{µk}k2N. Define

(7) FA(⌧, c) =
X

µk<⌧

1

µ
c

k

=

8
>>>>><

>>>>>:

F1 (⌧) if c >
n

m
,

F2 (⌧) if c =
n

m
,

F3 (⌧) if c <
n

m
.

Then,

lim sup
⌧!+1

⇣(A, c)� F1 (⌧)

⌧
n
m�c

= 1, lim sup
⌧!+1

F2 (⌧)

log ⌧
= 2, lim sup

⌧!+1

F3 (⌧)

⌧
n
m�c

= 3,

for suitable positive constants 1, 2, 3. That is, for ⌧ ! +1,

⇣(A, c)� F1(⌧) = O

⇣
⌧

n
m�c

⌘
, F2(⌧) = O (log ⌧) , F3(⌧) = O

⇣
⌧

n
m�c

⌘
.

Proof. If c >
n

m
it is immediate that the series

P1
k=0

1
µ
c
k
is convergent, in

view of the holomorphic properties of the spectral ⇣-function associated
with A. To prove the asymptotic properties of ⇣(A, c)�F1(⌧), we switch to

B = A
1/m, so that the order of B is one and �(B) = µ

1/m
k

. We have

⇣(A, c)� F1(⌧) =
X

µk�⌧

1

µ
c

k

=
X

µ
1/m
k �⌧1/m

1⇣
µ
1/m
k

⌘
cm

=

Z +1

⌧1/m

1

µcm
dNB(µ).(8)

Since B is of order one, it is well known that

NB(�+ 1)�NB(�)  ] {�(B) \ [�,�+ 1]} = O(�n�1),� ! +1(9)

(see, e.g., [GS94, § 12]). Using (9) and the properties of Stieltjes integral,
we obtain, for ⌧ ! +1,

⇣(A, c)� F1(⌧) =

Z +1

⌧1/m

1

µcm
dNB(µ)



1X

j=[⌧1/m]�1

sup
µ2[j,j+1]

✓
1

µcm

◆
(NB(j + 1)�NB(j))

 

1X

j=[⌧1/m]�1

1

jcm�n+1

 

Z +1

[⌧1/m]�1

1

(t� 1)cm�n+1dt

= 
1

cm� n
[⌧1/m � 2]n�mc

2 O

⇣
⌧

n
m�c

⌘
.

where [a] denotes the minimum integer such that [a] � a.
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To prove the results for F2 and F3 we can assume, without loss of gener-
ality, that µ0 = µ̃0 = 1. Using again the properties of the Stieltjes integral,
we write

FA(⌧, c) =

Z
⌧
1/m

1

1

µcm
dNB(µ) 

[⌧1/m]X

j=1

sup
µ2[j,j+1]

✓
1

µcm

◆
(NB(j + 1)�NB(j)) .

Let us initially suppose that c > 0, so that 1
xc is a decreasing function on

[1,+1). In view of (9), we have

Z
⌧
1/m

1

1

µcm
dNB(µ) 

[⌧1/m]X

j=1

1

jcm
O(jn�1)  e

[⌧1/m]X

j=1

1

jcm�n+1

 e
 Z [⌧1/m]

1
t
n�cm�1

dt+ 1

!
.(10)

By integration, we find

FA(⌧, c) =

Z
⌧
1/m

1

1

µcm
dNB(µ) 

8
>><

>>:

e1
n� cm

⌧
n
m�c if 0 < c <

n

m
,

e2m log ⌧ if c =
n

m
,

as claimed. Finally, if c  0, then 1
µc is a non-decreasing function and also

in this case, similarly to (10), we obtain

FA(⌧, c)  

Z [⌧1/m]

1
(x+ 1)n�cm�1

dx 
e3

n� cm
⌧

n
m�c

.

The proof is complete. ⇤

Proposition 1.3. Let P 2 G
m

cl (Rn) be an elliptic, positive and self-adjoint
Shubin operator of order m > 0, with spectrum given by �(P ) = {�j}j2N.
Define

(11) FP (⌧, c) =
X

�j<⌧

1

�
c

j

=

8
>>>>><

>>>>>:

F1 (⌧) if c >
2n

m
,

F2 (⌧) if c =
2n

m
,

F3 (⌧) if c <
2n

m
.

Then,

lim sup
⌧!+1

⇣(P, c)� F1 (⌧)

⌧
2n
m �c

= 1, lim sup
⌧!+1

F2 (⌧)

log ⌧
= 2, lim sup

⌧!+1

F3 (⌧)

⌧
2n
m �c

= 3,

for suitable positive constants 1, 2, 3. That is, for ⌧ ! +1,

⇣(P, c)� F1(⌧) = O

⇣
⌧

2n
m �c

⌘
, F2(⌧) = O (log ⌧) , F3(⌧) = O

⇣
⌧

2n
m �c

⌘
.
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2. Spectral asymptotics for the tensor product of two
operators

We start considering the case of the tensor product of 2 operators. Let
M1,M2 be two compact manifolds of dimension n1, n2, respectively. Let
A = A1 ⌦ A2, Aj 2 L

mj

cl (Mj), mj > 0, j = 1, 2. Assume that the spectra of
A1 and A2 are sequences of eigenvalues, and set

�(A1) = {�j}j2N, �(A2) = {µk}k2N,

so that
�(A) = {�j · µk : �j 2 �(A1), µk 2 �(A2)}.

For simplicity, we start with the case m1 = 1 and n1 >
n2
m2

. Let c be
an arbitrary positive constant and B an operator with spectrum �(B) =
{µk}k2N, then �(cB) = {c · µk}k2N. There is a simple and useful formula
relating the counting functions Nc B and NB, namely

NcB(⌧) =
X

c·µk<⌧

1 =
X

µk<
⌧
c

1 = NB

⇣
⌧

c

⌘
.(12)

In particular, (12) implies that, without loss of generality, we can assume1

�j > 1 and µk > 1 for all j, k. Let us now summarize the hypotheses on the
factors A1, A2.

Assumptions 1.

M1,M2 smooth closed manifolds of dimensions n1, n2, respectively;

A = A1 ⌦A2, A1 2 L
1
cl(M1), A2 2 L

m2
cl (M2), m2 > 0, n1 >

n2

m2
;

A1, A2 positive, self-adjoint, elliptic;

� (A1) = {�j}j2N , � (A2) = {µk}k2N , �j > 1, µk > 1, for all j, k.

Since �j , µk > 1 for all j, k, using (12), we have2

NA(⌧) =
X

�j ·µk<⌧

1 =
X

µk<⌧

0

@
X

�j ·µk<⌧

1

1

A =

=
X

µk<⌧

NµkA1(⌧) =
X

µk<⌧

NA1

✓
⌧

µk

◆
.(13)

Proposition 2.1. Let A, A1 and A2 be as in Assumptions 1. Then,

NA(⌧) =
X

µk<⌧

 
C1

n1

✓
⌧

µk

◆
n1

+
1

µ
n1�1
k

rk(⌧)

!
,

with

C1 =
1

(2⇡)n1

Z

M1

Z

Sn1�1

d✓1dx1

[am1(x1, ✓1)]
n1
m1

,(14)

1In fact, if that condition were not true, we could consider the operator c2A, with
c = (min{�j , µk}� ")�1, " > 0 small enough.

2Recall that �j > 1 for all j. In the first term of (13) we can reduce the summation to
µk < ⌧ since, otherwise, we would have �k · µk � ⌧ for all j, and the second summation
would be zero.
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and rk(⌧) is O
�
⌧
n1�1

�
, uniformly with respect to µk. That is, there exists

a positive constant C such that

|rk(⌧)|  C⌧
n1�1

, for all k 2 N.(15)

Proof. By (13) we have

NA(⌧) =
X

µk<⌧

NA1

✓
⌧

µk

◆
.

Using (4), we can write

(16) NA(⌧) =
X

µk<⌧

✓
C1

n1

⌧
n1

µ
n1
k

+RA

✓
⌧

µk

◆◆
.

Equation (5) implies that

|RA(t)|  t
n1�1

, t > 1,

for a suitable constant . Since µk < ⌧ )
⌧

µk
> 1 in the summation (16),

we can write
����RA

✓
⌧

µk

◆����  C

✓
⌧

µk

◆
n1�1

.

Hence, setting

rk(⌧) = µ
n1�1
k

RA

✓
⌧

µk

◆
,

we have the assertion.
⇤

Lemma 2.2. Let A,A1, A2 be as in Assumptions 1, and assume n1 >
n2

m2
.

Then we have, for ⌧ ! +1,

NA(⌧) =

8
>>>>>><

>>>>>>:

C1

n1
⇣ (A2, n1) ⌧n1 +O(⌧n1�1) if

n2

m2
< n1 � 1,

C1

n1
⇣ (A2, n1) ⌧n1 +O

�
⌧
n1�1 log ⌧

�
if

n2

m2
= n1 � 1,

C1

n1
⇣ (A2, n1) ⌧n1 +O

⇣
⌧

n2
m2

⌘
if

n2

m2
> n1 � 1,

where C1 is given by (14).

Proof. Using Proposition 2.1 we obtain

NA(⌧) =
X

µk<⌧

✓
C1

n1

✓
⌧

µk

◆
n1

+
1

µk
n1�1

rk (⌧)

◆
,
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where rk(⌧) is uniformly O
�
⌧
n1�1

�
for ⌧ ! +1, in the sense of (15). We

can then write����NA(⌧)�
C1

n1
⇣(A2, n1)⌧

n1

����

=

�����
X

µk<⌧

 
C1

n1

⌧
n1

µ
n1
k

+
1

µ
n1�1
k

rk(⌧
n1�1)

!
�

C1

n1
⇣(A2, n1)⌧

n1

�����


C1

n1
⌧
n1 |FA2(⌧, n1)� ⇣(A2, n1)|+

�����
X

µk<⌧

1

µ
n1�1
k

rk(⌧
n1�1)

�����


C1

n1
⌧
n1 |FA2(⌧, n1)� ⇣(A2, n1)|+ C⌧

n1�1
FA2(⌧, n1 � 1).(17)

Let us start with the case n1 � 1 >
n2
m
. Using (17), we find

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���
⌧n1�1


C1

n1
lim sup
⌧!+1

⌧ |⇣(A2, n1)� FA2(⌧, n1)|+ C lim sup
⌧!+1

FA2(⌧, n1 � 1).

Since
n1 > n1 � 1 >

n2

m2
)

n2

m2
� n1 < �1,

⇣(A2, n1) � F1(⌧) = O

⇣
⌧

n2
m2

�n1
⌘
for ⌧ ! +1, in view of Proposition 1.2.

It follows that

lim sup
⌧!+1

⌧ |⇣(A2, n1)� F1(⌧)|  eC lim sup
⌧!+1

⌧

n2
m2

�n1+1
= 0,

which implies

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���
⌧n1�1

 C lim sup
⌧+1

FA2(⌧, n1�1) = C⇣(A2, n1�1).

Since n1�1 >
n2
m2

, ⇣(A2, n1�1) is finite, and we have the desidered assertion.
In the case n1 � 1 = n2

m2
, from (17) we analogously get

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���
⌧n1�1 log ⌧


C1

n1
lim sup
⌧!+1

⌧

log ⌧
|⇣(A2, n1)� FA2(⌧, n1)|+ C lim sup

⌧!+1

1

log ⌧
FA2

✓
⌧,

n2

m2

◆
.

Since n1 > n1 � 1 = n2
m2

, in view of Proposition 1.2 we find

⇣(A2, n1)� F1(⌧) = O
�
⌧
�1
�
, FA2

✓
⌧,

n2

m2

◆
= F2(⌧) = O (log ⌧) ,

so that

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���
⌧n1�1 log ⌧

 eC,

as claimed.
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Finally, in the case n1 � 1 <
n2
m2

, (17) gives

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���

⌧

n2
m2


C1

n1
lim sup
⌧!+1

⌧
n1� n2

m2 |⇣(A2, n1)� FA2(⌧, n1)|+

C lim sup
⌧!+1

⌧
n1�1� n2

m2 FA2(⌧, n1 � 1).

Since n1 >
n2
m2

> n1 � 1, Proposition 1.2 implies

⇣(A2, n1)�F1(⌧) = O

⇣
⌧

n2
m2

�n1
⌘
, FA2 (⌧, n1 � 1) = F3 (⌧) = O

⇣
⌧

n2
m �n1+1

⌘
.

Therefore,

lim sup
⌧!+1

���NA(⌧)�
C1
n1

⇣(A2, n1)⌧n1

���

⌧

n2
m2

< +1.

The proof is complete. ⇤

We can now prove our main result.

Theorem 2.3. Let M1,M2 be two closed manifolds of dimension n1, n2,
respectively. Let A = A1 ⌦ A2, where Aj 2 L

mj

cl (Mj), mj > 0, j = 1, 2,

are positive, self-adjoint, invertible operators, with
n1

m1
>

n2

m2
. Then, for

⌧ ! +1,

NA(⌧) =

8
>>>>>>><

>>>>>>>:

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

✓
⌧

n1�1
m1

◆
if

n2

m2
<

n1 � 1

m1
,

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

✓
⌧

n1�1
m1 log ⌧

◆
if

n2

m2
=

n1 � 1

m1
,

C1

n1
⇣

✓
A2,

n1

m1

◆
⌧

n1
m1 +O

⇣
⌧

n2
m2

⌘
if

n2

m2
>

n1 � 1

m1
,

where C1 is given by (14).

Proof. Without loss of generality, we can assume m1 = 1,m2 = m > 0,
possibly considering an appropriate power of A, see [Bat12]. Moreover,
again without loss of the generality, we can assume that all the eigenvalues
are strictly larger than one, so that the Assumptions 1 are fulfilled. Then,
the claim follows from Lemma 2.2. ⇤

The case of the tensor product of two Shubin operators can be treated in
a completely similar fashion, using Proposition 1.3 in place of Proposition
1.2, and the Weyl law (6) which holds in this setting.

Theorem 2.4. Let P = P1 ⌦ P2 and Pj 2 G
mj

cl (Rnj ), mj > 0, j = 1, 2,

be positive, self-adjoint, invertible operators, with
2n1

m1
>

2n2

m2
. Then, for
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⌧ ! +1,

NP (⌧) =

8
>>>>>>><

>>>>>>>:

K1

2n1
⇣

✓
P2,

2n1

m1

◆
⌧

2n1
m1 +O

✓
⌧

2n1�1
m1

◆
if

2n2

m2
<

2n1 � 1

m1
,

K1

2n1
⇣

✓
P2,

2n1

m1

◆
⌧

2n1
m1 +O

✓
⌧

2n1�1
m1 log ⌧

◆
if

2n2

m2
=

2n1 � 1

m1
,

K1

2n1
⇣

✓
P2,

2n1

m1

◆
⌧

2n1
m1 +O

✓
⌧

2n2
m2

◆
if

2n2

m2
>

2n1 � 1

m1
,

where

K1 =
1

(2⇡)2n1

Z

S2n1�1

d✓1

[pm1(✓1)]
2n1
m1

.

3. Spectral asymptotics for the tensor product of r operators

As in the previous sections, to avoid redundancy we will prove in detail
our results for tensor products of r factors only in the case of operators
belonging to the Hörmander calculus on closed manifolds. We will then omit
the proof of the analogous Theorem 3.4 for the case of operators belonging
to the Shubin calculus, which can be obtained by similar arguments.

The main tool in the study of the extension of Theorem 2.3 to the product
of r � 2 factors is a refined version of Proposition 1.2. Let us first state the
hypotheses.

Assumptions 2.

M1, . . . ,Mr smooth closed manifolds of dimensions n1, . . . , nr, respectively;

A = A1 ⌦ · · ·⌦Ar, Aj 2 L
mj

cl (Mj), mj > 0, j = 1, . . . , r;

Aj positive, self-adjoint, elliptic, j = 1, . . . , r;

� (Aj) =
�
j
µkj

 
kj2N

,
j
µ1 > 1, j = 1, . . . , r.

Proposition 3.1. Let A,Aj , j = 1, . . . , r, be as in Assumptions 2. Set

p = max

⇢
n1

m1
, . . . ,

nr

mr

�
, S =

⇢
j 2 {1, . . . , r} :

nj

mj

= p

�
, s = ]S,

and define, for ⌧ ! +1,

FA(⌧, c) =
X

1µk1
· ... · rµkr<⌧

1

(1µk1)
c · . . . · (rµkr)

c
=

8
><

>:

F1(⌧) if p < c,

F2(⌧) if p = c,

F3(⌧) if p > c.

Then,

lim sup
⌧!+1

���
Q

r

j=1 ⇣(Aj , c)� F1(⌧)
���

⌧p�c (log ⌧)s�1 = 1,

lim sup
⌧!+1

F2 (⌧)

(log ⌧)s
= 2,

lim sup
⌧!+1

F3 (⌧)

⌧p�c (log ⌧)s�1 = 3,
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that is, for ⌧ ! +1,

rY

j=1

⇣(Aj , c)� F1(⌧) = O

⇣
⌧
p�c (log ⌧)s�1

⌘
,

F2(⌧) = O ((log ⌧)s) , F3(⌧) = O

⇣
⌧
p�c (log ⌧)s�1

⌘
.

Proof. We will make use of the straightforward inequality

(18) FA(⌧, c) =
X

1µk1
· ... · rµkr<⌧

1

(1µk1)
c · . . . · (rµkr)

c


rY

j=1

X

jµkj
<⌧

1

(jµkj )
c
,

as well as of the following consequence of the absolute convergence of the
involved series,

(19)
rY

j=1

⇣(Aj , c) = lim
⌧!+1

rY

j=1

X

jµkj
<⌧

1

(jµkj )
c
=
X 1

(1µk1)
c · . . . · (rµkr)

c
,

where c belongs to the holomorphic domain of the functions ⇣(Aj , z), j =
1, . . . , r, and the last summation in (19) is taken on all the r-tuples of eigen-
values (1µk1 , . . . ,

r
µkr) 2 �(A1)� · · ·� �(Ar).

Case p = c. Let us split the last term in (18) as

rY

j=1

X

jµkj
<⌧

1

(jµkj )
c
=

0

B@
Y

j 62S

X

jµkj
<⌧

1

(jµkj )
c

1

CA ·

0

@
Y

t2S

X

tµkt<⌧

1

(tµkt)
c

1

A .

Recalling that nj

mj
< c for all j /2 S, that is, c belongs to the holo-

morphic domain of ⇣(Aj , ·) for j /2 S, and that nt
mt

= c for all t 2 S,
using Proposition 1.2 we have
0

B@
Y

j /2S

X

jµkj
<⌧

1

(jµkj )
c

1

CA ·

0

@
Y

t2S

X

tµkt<⌧

1

(tµkt)
c

1

A

=

0

@
Y

j 62S
⇣(Aj , c)

1

A · O ((log ⌧)s) = O ((log ⌧)s) ,

which implies our claim in this case, in view of (18).

Case p > c. To simplify notation, we can suppose, without loss of generality,

p = n1
m1

. Recalling the assumption j
µkj > 1, j = 1, . . . , r, we observe

that

1
µk1 · . . . ·

r
µkr < ⌧ ,

2

4
rY

j=2

(jµkj ) < ⌧ ^ 1 <
1
µk1 <

⌧Q
r

j=2(
jµkj )

3

5 .
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In fact, the ( implication is immediate, while

1
µk1 · . . . ·

r
µkr < ⌧ ^

1
µk1 > 1

) 1 <
1
µk1 <

⌧Q
r

j=2(
jµkj )

) 1 <
1
µk1 <

⌧Q
r

j=2(
jµkj )

^

rY

j=2

(jµkj ) < ⌧.

Then, we can write

FA(⌧, c) = F3(⌧)

=
X

2µk2
·...·rµkr<⌧

1

(2µk2)
c · . . . · (rµkr)

c

X

1<1µk1
<

⌧
2µk2

·...·rµkr

1

(1µk1)
c

=
X

Qr
j=2(

jµkj
)<⌧

1Q
r

j=2(
jµkj )

c

Z ⌧Qr
j=2(

jµkj
)

1

1

µc
dNA1(µ).

Switching to B = (A1)
1

m1 , recalling that then �(B) = {(1µk1)
1

m1 }

and3

Z ⌧Qr
j=2(

jµkj
)

1

1

µc
dNA1(µ) =

Z
"

⌧Qr
j=2(

jµkj
)

# 1
m1

1

1

µcm1
dNB(µ),

using (9) with n1 in place of n, it turns out that, for ⌧ ! +1,

F3(⌧) =
X

Qr
j=2(

jµkj
)<⌧

1Q
r

j=2(
jµkj )

c
O

  
⌧Q

r

j=2(
jµkj )

!
p�c

!

=

2

4
X

2µk2
·...·rµkr<⌧

1

(2µk2)
p · . . . · (rµkr)

p

3

5O
�
⌧
p�c

�
.

Using the result of the case p = c above, with s� 1 in place of s, we
conclude

F3(⌧) = O

⇣
⌧
p�c (log ⌧)s�1

⌘
,

as claimed.

Case p < c. Since c >
nj

mj
for all j = 1, . . . , r, c belongs to the holomorphic

domain of all the functions ⇣(Aj , z), j = 1, . . . , r. Then, by (19), in

3That is,

X

1<1µk1
< ⌧

2µk2
·...·rµkr

=
1

(1µk1)
c
=

X

1<(1µk1
)

1
m1 <

"
⌧

2µk2
·...·rµkr

# 1
m1

=
1h

(1µk1)
1

m1

icm1

similarly to the proof of Proposition 1.2.
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this case we have, for all ⌧ ,

rY

j=1

⇣ (Aj , c)� FA(⌧, c) =
rY

j=1

⇣ (Aj , c)� F1(⌧)

=
X 1

(1µk1)
c · . . . · (rµkr)

c
�

X

1µk1
· ... · rµkr<⌧

1

(1µk1)
c · . . . · (rµkr)

c

=
X

1µk1
· ... · rµkr�⌧

1

(1µk1)
c · . . . · (rµkr)

c

We will prove the claim by induction on the number of operators.
The case r = 2 is proven in Proposition 1.2. Let us then suppose
that the desired estimate holds true for a tensor product of r � 1
operators, r � 2, and let us prove that it holds true also for a tensor
product of r operators.

We can again suppose, without loss of generality, p = n1
m1

. Since,
clearly,

1
µk1 · . . . ·

r
µkr � ⌧ )

1
µk1 �

⌧Q
r

j=2(
jµkj )

^

2

4
rY

j=2

(jµkj ) < ⌧ _

rY

j=2

(jµkj ) � ⌧

3

5 ,

we can write

rY

j=1

⇣(Aj , c)� F1 (⌧) =

X
Qr

j=2(
jµkj

)<⌧

1Q
r

j=2(
jµkj )

c

Z +1

⌧Qr
j=2(

jµkj
)

1

µc
dNA1 (µ)(20)

+
X

Qr
j=2(

jµkj
)�⌧

1Q
r

j=2(
jµkj )

c

Z +1

⌧Qr
j=2(

jµkj
)

1

µc
dNA1 (µ) .(21)

Let us first consider (20). Arguing as in the previous case p > c, and
using the case p = c with s� 1 in place of s, we find, for ⌧ ! +1,

X
Qr

j=2(
jµkj

)<⌧

1Q
r

j=2(
jµkj )

c

Z +1

⌧Qr
j=2(

jµkj
)

1

µc
dNA1 (µ)

=
X

Qr
j=2(

jµkj
)<⌧

1Q
r

j=2(
jµkj )

c
O

  
⌧Q

r

j=2
jµkj

!
p�c

!

= O

⇣
⌧
p�c (log ⌧)s�1

⌘
,

which is the desired estimate. We now show that (21) fulfills the
same the same holds for. Using the fact that ⇣(A1, c) is finite, we
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can estimate (21) as

X
Qr

j=2(
jµkj

)�⌧

1Q
r

j=2(
jµkj )

c

Z +1

⌧Qr
j=2(

jµkj
)

1

µc
dNA1 (µ)



X
Qr

j=2(
jµkj

)�⌧

1Q
r

j=2(
jµkj )

c
⇣(A1, c).(22)

By the inductive hypothesis, we see that (22) is O
⇣
⌧
ep�c (log ⌧)es�1

⌘

for ⌧ ! +1, where ep = max
n

nj

mj

o
r

j=2
 p and es < s. Therefore,

it is also O

⇣
⌧
p�c (log ⌧)s�1

⌘
for ⌧ ! +1, and the same of course

holds for (21), in view of the above estimate.

The proof is complete. ⇤

Assumptions 3. Let A,A1, . . . , Ar be as in Assumptions 2, and suppose
that there exists l 2 {1, . . . , r} such that

nl

ml

> max

⇢
nj

mj

�

j2{1,...,r}\{l}
.

For notational simplicity, in the next two statements we also assume, with-
out loss of generality, that l = 1. As in the previous section, we first consider
the case when m1 = 1. We will denote by µj�2

the product
Q

r

j=2
j
µkj , where

j�2 denotes the multiindex (k2, . . . , kr) 2 Nr�1. The following proposition
is an extension of Proposition 3.2.

Proposition 3.2. Let A,A1, . . . , Ar be as in Assumptions 3. Then,

NA(⌧) =
X

µj�2
<⌧

 
C1

n1

 
⌧

µj�2

!
n1

+
1

µ
n1�1
j�2

rj�2
(⌧)

!
,

where C1 is given by (14) and rj�2
is O

�
⌧
n1�1

�
, uniformly with respect to

µj�2
, for any j�2. That is, there exists a positive constant C such that

|rj�2
(⌧) |  C⌧

n1�1
, for all j�2 2 Nr�1

.

Proposition 3.2 implies the next lemma, which is a multidimensional ver-
sion of Lemma 2.2. We omit the proof, since the argument is analogue to
the one used to prove Lemma 2.2, similarly to what has been done in the
proof of Proposition 3.1.

Lemma 3.3. Let A,A1, . . . , Ar be as in Assumptions 3. Let us suppose
that m1 = 1 and n1 >

nj

mj
, j = 2, . . . , r, and set

p = max

⇢
nj

mj

�

j=2,...,r

, S =

⇢
j = 2, . . . , r :

nj

mj

= p

�
, s = ]S.
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Then we have, for ⌧ ! +1,

NA(⌧) =

8
>>>><

>>>>:

CA ⌧
n1 +O

�
⌧
n1�1

�
if p < n1 � 1,

CA ⌧
n1 +O

�
⌧
n1�1 (log ⌧)s

�
if p = n1 � 1,

CA ⌧
n1 +O

⇣
⌧
p (log ⌧)s�1

⌘
if p > n1 � 1,

where

CA =
C1

n1

rY

j=2

⇣ (Aj , n1)

and C1 is given by (14).

Finally, using powers of the operator A, it is possible to extend the result
to the case where all the factors have arbitrary positive order, which is,
together with Theorem 3.5 below for the tensor product of r factors in the
Shubin calculus, our next main result.

Theorem 3.4. Let M1, . . . ,Mr be closed manifolds of dimension n1, . . . , nr,
respectively. Let A = A1 ⌦ · · · ⌦ Ar, where Aj 2 L

mj

cl (Mj), mj > 0,
j = 1, . . . , r, are positive, self-adjoint, invertible operators, and assume that

there exists l 2 {1, . . . , r} such that nl
ml

> max
n

nj

mj

o

j2{1,...,r}\{l}
. Set

p = max

⇢
nj

mj

�

j2{1,...,r}\{l}
, S =

⇢
j = 1, . . . , r, j 6= l :

nj

mj

= p

�
, s = ]S.

Then, for ⌧ ! +1,

NA(⌧) =

8
>>>>>>><

>>>>>>>:

CA ⌧

nl
ml +O

✓
⌧

nl�1
ml

◆
if p <

nl � 1

ml

,

CA ⌧

nl
ml +O

✓
⌧

nl�1
ml (log ⌧)s

◆
if p =

nl � 1

ml

,

CA ⌧

nl
ml +O

⇣
⌧
p (log ⌧)s�1

⌘
if p >

nl � 1

ml

,

where

CA =
Cl

nl

Y

j=1,...,r
j 6=l

⇣

✓
Aj ,

nl

ml

◆
, Cl =

1

(2⇡)nl

Z

Ml

Z

Snl�1

d✓ldxl

[aml (xl, ✓l)]
nl
ml

.

Theorem 3.5. Let P = P1 ⌦ · · · ⌦ Pr and Pj 2 G
mj

cl (Rnj ), mj > 0, j =
1, . . . , r, be positive, self-adjoint, invertible operators, and assume that there

exists l 2 {1, . . . , r} such that 2nl
ml

> max
n

2nj

mj

o

j2{1,...,r}\{l}
. Set

p = max

⇢
2nj

mj

�

j2{1,...,r}\{l}
, S =

⇢
j = 1, . . . , r, j 6= l :

2nj

mj

= p

�
, s = ]S.
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Then, for ⌧ ! +1,

NP (⌧) =

8
>>>>>>><

>>>>>>>:

KP ⌧

2nl
ml +O

✓
⌧

2nl�1
ml

◆
if p <

2nl � 1

ml

,

KP ⌧

2nl
ml +O

✓
⌧

2nl�1
ml (log ⌧)s

◆
if p =

2nl � 1

ml

,

KP ⌧

2nl
ml +O

⇣
⌧
p (log ⌧)s�1

⌘
if p >

2nl � 1

ml

,

where

KP =
Vl

2nl

Y

j=1,...,r
j 6=l

⇣

✓
Pj ,

2nl

ml

◆
, Vl =

1

(2⇡)2nl

Z

S2nl�1

d✓l

[pml(✓l)]
2nl
ml

.

4. Sharpness of the result

In this section we show that the estimates obtained in Theorem 2.3 are
sharp. To begin, we choose two pseudodi↵erential operators on spheres,
whose spectrum we can describe explicitly. Namely, we set

A1 = (��S2 + 2)� 2

✓
��S2 +

1

4

◆ 1
2

2 L
2
cl(S2), A2 = ��S1 + 1 2 L

2
cl(S1),

where A1 is considered as an unbounded operator on L
2(S2), where S2 is

the 2-dimensional sphere, and A2 is considered as an unbounded operator
on L

2(S1), where S1 is the 1-dimensional sphere. It is well known, see,
e.g., [Shu87, §3], that

� (��S2) =
�
k
2 + k | k 2 N, mult

�
k
2 + k

�
= (2k + 1)

 
,

� (��S1) =
�
n
2
| n 2 N, mult

�
n
2
�
= 2

 
,

where mult (⌧) is the multiplicity of the eigenvalue ⌧ . Therefore, by the
functional calculus of operators,

� (A1) =
�
k
2
� k + 1 | k 2 N, mult

�
k
2
� k + 1

�
= (2k + 1)

 
,(23)

� (A2) =
�
n
2 + 1 | n 2 N, mult

�
n
2 + 1

�
= 2

 
,(24)

since the eigenfunction of A1 and ��S2 are the same. Notice that all the
eigenvalues of A1 are larger then 1, therefore

NA1(⌧) = 0, ⌧  1.(25)

Knowing precisely the eigenvalues of A1 together with their multiplicities,
we can write, for ⌧ > 1,

NA1(⌧) =
X

k2�k+1<⌧

mult
�
k
2
� k + 1

�

=
X

k2�k+1<⌧

(2k + 1) =
k̄X

k=0

(2k + 1)

where

k̄
2
� k̄ + 1 < ⌧ 

�
k̄ + 1

�2
�
�
k̄ + 1

�
+ 1 = k̄

2 + k̄ + 1, ⌧ > 1.
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That is,

(26)

NA1(⌧) =
k̄X

k=0

(2k + 1) =
X

k2+kk̄2+k̄

mult
�
k
2 + k

�
= N��S2

✓
k̄
2 + k̄ +

1

2

◆
,

provided that

k̄
2
� k̄ + 1 < ⌧ 

�
k̄ + 1

�2
�
�
k̄ + 1

�
+ 1 = k̄

2 + k̄ + 1, ⌧ > 1.

Using a well known result on the counting function of the Laplacian on the
spheres (see [Shu87]), we have, for each k̄ 2 N,

N��S2

✓
k̄
2 + k̄ +

1

2

◆
= k̄

2 + 2k̄ + 1.

So, in view of (26), supposing ⌧ > 1, we find

NA1(⌧) = k̄
2 + 2k̄ + 1,

k̄
2
� k̄ + 1 < ⌧ 

�
k̄ + 1

�2
�
�
k̄ + 1

�
+ 1 = k̄

2 + k̄ + 1.

The asymptotic expansion (4) implies that

NA1 (⌧) = ⌧ +R (⌧) , R = O

⇣
⌧

1
2

⌘
.

We can then obtain a bound for R(⌧):

R(⌧) = NA1 (⌧)� ⌧

= k̄
2 + 2k̄ + 1� ⌧, k̄

2
� k̄ + 1 < ⌧  k̄

2 + k̄ + 1.

Therefore, for ⌧ > 16,

R(⌧) � k̄
2 + 2k̄ + 1� k̄

2
� k̄ � 1 = k̄ >

3
p
⌧

4
,

which implies, in particular, that the remainder is positive for ⌧ > 16. We
also have

R(⌧) < k̄
2 + 2k̄ + 1� k̄

2 + k̄ � 1 = 2k̄ < 4
p
⌧ ,

and we can conclude that

3
p
⌧

4
 R(⌧)  4

p
⌧ , ⌧ > 16.(27)

Summing up, we proved that

NA1(⌧) = ⌧ +R(⌧),(28)

NA2(⌧) = 2 ⌧
1/2 +O(1),(29)

where the R(⌧) in (28) satisfies (27). Notice that both A1 and A2 are
elliptic, invertible and positive, so it is possible to consider powers of these
operators of arbitrary exponent. Now, we examine separately the three
di↵erent situations that can arise.
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Case n1
m1

>
n2
m2

and n1�1
m1

>
n2
m2

. Let us consider the operator

B = A1 ⌦A
2
2.

Clearly n1
m1

= 2
2 = 1 >

n2
m2

= 1
4 and n1�1

m1
= 1

2 >
n2
m2

= 1
4 , so we are in the

first case of Theorem 2.3, which states that

NB(⌧) = ⇣(A2
2, 1)⌧ +O

⇣
⌧
1/2

⌘
.(30)

By equations (23) and (24) we obtain

� (B) = {
�
k
2
� k + 1

� �
n
2 + 1

�2
| k, n 2 N,

mult
�
(k2 � k + 1)(n2 + 1)2

�
= 2(2k + 1)}.

Therefore,

NB(⌧) =
n2N, k2NX

(k2�k+1)(n2+1)2<⌧

mult
⇣�

k
2
� k + 1

� �
n
2 + 1

�2⌘

=
n2N, k2NX

(k2�k+1)(n2+1)2<⌧

2 (2k + 1)

= 2
n2N, k2NX

(k2�k+1)< ⌧
(n2+1)2

mult
�
k
2
� k + 1

�

= 2
n2NX

(n2+1)2<⌧

NA1

✓
⌧

(n2 + 1)2

◆
(31)

= 2

0

@
n2NX

(n2+1)2<⌧

⌧

(n2 + 1)2
+R

✓
⌧

(n2 + 1)2

◆1

A .(32)

Notice that in (31) we have made use of (25) to reduce the summation. Let
us now show that the estimate (30) is indeed sharp, that is

lim sup
⌧!+1

��NB(⌧)� ⇣
�
A

2
2, 1

�
⌧
��

⌧1/2
> 0,

by direct computation. In view of (32), we can write

lim sup
⌧!+1

��NB(⌧)� ⇣
�
A

2
2, 1

�
⌧
��

⌧1/2

= lim sup
⌧!+1

���2
P

(n2+1)2<⌧

⇣
⌧

(n2+1)2 +R

⇣
⌧

(n2+1)2

⌘⌘
� ⇣

�
A

2
2, 1

�
⌧

���

⌧1/2

= lim sup
⌧!+1

���2
P

(n2+1)2<⌧
⌧

(n2+1)2 � ⇣
�
A

2
2, 1

�
⌧ + 2

P
(n2+1)2<⌧ R

⇣
⌧

(n2+1)2

⌘���

⌧1/2
.

(33)
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We notice that

lim sup
⌧!+1

���2
P

(n2+1)2<⌧
⌧

(n2+1)2 � ⇣
�
A

2
2, 1

�
⌧

���

⌧1/2

= lim sup
⌧!+1

⌧
1/2(F

A
2
2
(⌧, 1)� ⇣

�
A

2
2, 1

�
),

where we have used the notation introduced in Section 1. By Proposition

1.2, F
A

2
2
(⌧, 1)� ⇣

�
A

2
2, 1

�
= O

⇣
⌧
� 3

4

⌘
, therefore4,

lim sup
⌧!+1

���2
P

(n2+1)2<⌧
⌧

(n2+1)2 � ⇣
�
A

2
2, 1

�
⌧

���

⌧1/2
= 0.

Since, for all ⌧ ,
X

(n2+1)2<⌧

2
⌧

(n2 + 1)2
� ⇣

�
A

2
2, 1

�
⌧  0,

(33) becomes

lim sup
⌧!+1

��NB(⌧)� ⇣
�
A

2
2, 1

�
⌧
��

⌧1/2

� � lim sup
⌧!+1

⇣
�
A

2
2, 1

�
� 2

P
(n2+1)2<⌧

⌧

(n2+1)2

⌧1/2
+ 2 lim sup

⌧!+1

X

(n2+1)2<⌧

���R
⇣

⌧

(n2+1)2

⌘���

⌧1/2

�
3

2
lim sup
⌧!+1

X

(n2+1)2<⌧

⌧
1/2

(n2 + 1)⌧1/2

=
3

2
⇣

✓
A

2
2,
1

2

◆
.

Here, we have used the estimates (27) and that the quantities n1
m1

= 1 and
n1�1
n2

= 1
2 are larger than n2

m2
= 1

4 . The latter implies that ⇣
�
A

2
2,

1
2

�
is

a finite, positive quantity5, in view of the holomorphic properties of the
spectral ⇣-function of elliptic positive pseudodi↵erential operators on closed
manifolds, see [See67]. This proves the desired result.

Case n1
m1

>
n2
m2

and n1�1
m1

= n2
m2

. We consider the operator

C = A1 ⌦A2.

Clearly n1
m1

= 2
2 = 1 >

n2
m2

= 1
2 and n1�1

m1
= 1

2 = n2
m2

so that we are in second
case of Theorem 2.3, which now states that

NC(⌧) = ⇣(A2, 1)⌧ + O

⇣
⌧
1/2 log ⌧

⌘
.

Using (23) and (24) we obtain explicitly the spectrum of C, namely

�(C) =
��

k
2
� k + 1

� �
n
2 + 1

�
| mult

��
k
2
� k + 1

� �
n
2 + 1

��
= 2(2k + 1)

 
.

4Actually, here one could prove directly that F1(⌧)� ⇣
�
A2

2, 1
�
is asymptotic to ⌧� 3

4 .
5The convergence of the involved series is straightforward.
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Therefore, using (25),

NC(⌧) =
n2N,k2NX

(k2�k+1)(n2+1)<⌧

2 (2k + 1)

= 2
n2N,k2NX

(k2�k+1)< ⌧
n2+1

mult
�
k
2 + k + 1

�

= 2
n2NX

(n2+1)<⌧

NA1

✓
⌧

n2 + 1

◆

= 2
n2NX

n2+1<⌧

✓
⌧

n2 + 1
+R

✓
⌧

n2 + 1

◆◆
.(34)

Let us check directly that

lim sup
⌧!+1

|NC(⌧)� ⇣(A2, 1)⌧ |

⌧1/2 log ⌧
> 0.(35)

Using (34) and (27) we can write

lim sup
⌧!+1

|NC(⌧)� ⇣(A2, 1)⌧ |

⌧1/2 log ⌧

= lim sup
⌧!+1

���2
P

n2+1<⌧

⇣
⌧

n2+1 +R

⇣
⌧

n2+1

⌘⌘
� ⇣(A2, 1)⌧

���

⌧1/2 log ⌧

� � lim sup
⌧!+1

⌧
1/2

⇣
⇣(A2, 1)� 2

P
n2+1<⌧

1
n2+1

⌘

log ⌧

+ lim sup
⌧!+1

3

4
⌧
1/2

2
P

n2+1<⌧
1

(n2+1)1/2

⌧1/2 log ⌧

� � lim sup
⌧!+1

⌧
1
2
2
P

n2+1�⌧
1

n2+1

log ⌧
+ lim sup

⌧!+1

3

2

P
n2+1<⌧

1
(n2+1)1/2

log ⌧
(36)

Finally, using the results of Proposition 1.2 (or directly, by integral inequal-
ities), we obtain that

lim sup
⌧!+1

⌧
1
2
2
P

n2+1�⌧
1

n2+1

log ⌧
= lim

⌧!+1
⌧

1
2
2
P

n2+1�⌧
1

n2+1

log ⌧
= 0.

Moreover,

lim sup
⌧!+1

3

2

P
n2+1<⌧

1
n2+1

log ⌧
=

3

4
,

so that, by means of (36), the desired result is proven also in this second
case.

Case n1
m1

>
n2
m2

and n1�1
m1

<
n2
m2

. In this situation we consider the operator

D = A1 ⌦A

3
4
2 .
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Clearly, n1
m1

= 2
2 = 1 >

n2
m2

= 2
3 and n1�1

m1
= 1

2 <
n2
m2

= 2
3 , so we are in the

third case of Theorem 2.3, which implies that

ND(⌧) = ⇣

✓
A

3
4
2 , 1

◆
⌧ +O

⇣
⌧

2
3

⌘
.(37)

It is immediate to observe that

(38) �(D) = {
�
k
2 + k + 1

� �
n
2 + 1

�3/4
|

mult
⇣
(k2 + k + 1)(n2 + 1)3/4

⌘
= 2 (2k + 1)}.

Therefore, using again (25), we obtain

ND(⌧) =
n2N,k2NX

(k2�k+1)(n2+1)3/4<⌧

2 (2k + 1)

= 2
n2N,k2NX

(k2�k+1)< ⌧

(n2+1)3/4

mult
�
k
2
� k + 1

�

= 2
n2NX

(n2+1)3/4<⌧

NA1

 
⌧

(n2 + 1)3/4

!

= 2
n2NX

(n2+1)3/4<⌧

 
⌧

(n2 + 1)3/4
+R

 
⌧

(n2 + 1)3/4

!!
.(39)

Let us now compute directly

lim sup
⌧!+1

���ND(⌧)� ⇣

⇣
A

3/4
2 , 1

⌘
⌧

���

⌧2/3
.

By (39), we find

lim sup
⌧!+1

���ND(⌧)� ⇣(A3/4
2 , 1)⌧

���

⌧2/3

= lim sup
⌧!+1

����2
P

(n2+1)3/4<⌧

✓
⌧

(n2+1)3/4
+R

✓
⌧

(n2+1)
3
4

◆◆
� ⇣

⇣
A

3/4
2 , 1

⌘
⌧

����

⌧2/3

= lim sup
⌧!+1

⌧
�2/3

·

������
2

X

(n2+1)3/4<⌧

⌧

(n2 + 1)3/4
� ⇣

⇣
A

3/4
2 , 1

⌘
⌧+

+2
X

(n2+1)3/4<⌧

R

 
⌧

(n2 + 1)
3
4

!������
.
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We also notice that

lim
⌧!+1

���2
P

(n2+1)3/4<⌧
⌧

(n2+1)3/4
� ⇣

⇣
A

3/4
2 , 1

⌘
⌧

���

⌧2/3

= lim
⌧!+1

⇣

⇣
A

3/4
2 , 1

⌘
⌧ � 2

P
(n2+1)3/4<⌧

⌧

(n2+1)3/4

⌧2/3

= lim
⌧!+1

2 ⌧
1/3

X

(n2+1)3/4�⌧

1

(n2 + 1)3/4
,

and that
X

(n+1)3/2�⌧

1

(n+ 1)3/2


X

(n2+1)3/4�⌧

1

(n2 + 1)3/4


X

n3/2�⌧

1

n3/2
.

Using the standard integral criteria of series convergence, one can easily
check that

lim
⌧!+1

⌧
1/3

X

(n+1)3/2�⌧

1

(n+ 1)3/2
= lim

⌧!+1
⌧
1/3

X

n3/2�⌧

1

n3/2
= 2.

Hence

lim
⌧!+1

2 ⌧
1/3

X

(n2+1)3/4�⌧

1

(n2 + 1)3/4
= 4.(40)

By a similar argument, we also have that

lim
⌧!+1

⌧
�1/6

X

(n2+1)3/4<⌧

1

(n2 + 1)3/8
= 4.(41)

In view of (27), (40) and (41) we finally obtain

lim sup
⌧!+1

���ND(⌧)� ⇣(A3/4
2 , 1)⌧

���

⌧2/3

� lim sup
⌧!+1

ND(⌧)� ⇣(A3/4
2 , 1)⌧

⌧2/3

= � lim
⌧!+1

2 ⌧
1/3

X

(n2+1)3/4�⌧

1

(n2 + 1)3/4

+ lim sup
⌧!+1

2

P
(n2+1)3/4<⌧

R

⇣
⌧

(n2+1)3/4

⌘

⌧2/3

� �4 +
3

2
lim sup
⌧!+1

⌧
�1/6

X

(n2+1)3/4<⌧

1

(n2 + 1)3/8

� �4 + 6 = 2 > 0.(42)

Equation (42) proves the desired result also in this last case.
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5. Appendix. The Dirichlet divisors problem

Counting functions of the type (2) suggest a spectral approach to a promi-
nent type of lattice problem, the so-called Dirichlet divisors problem. Let us
suppose that the spectrum of both A1 and A2 in (2) is formed by all strictly
positive natural numbers, each with multiplicity one. Then,

NA(⌧) =
X

n·m<⌧

1 = D(⌧).

The function D(⌧) is called Dirichlet divisor summatory function and it is
straightforward to check that it amounts the number of points with integer
coordinates belonging to the first quadrant of the Cartesian plane which lie
below the hyperbola xy = ⌧ . In 1849, Dirichlet proved that

(43) D(⌧) = ⌧ log ⌧ + (2� � 1)⌧ +O(⌧1/2),

where � is the Euler-Mascheroni constant, namely

� = lim
⌧!+1

 
X

0<n<⌧

1

n
�

Z
⌧

0

1

x
dx

!
,

or, equivalently,

� = lim
z!1

(z � 1) ⇣R(z),

where ⇣R(z) is the Riemann ⇣-function. Several papers aimed at finding the
sharp remainder term in (43), see [IKKN06] for an overview on this type of

problems. Hardy, in [Har16], proved that O(⌧
1
4 ) is a lower bound for the

remainder in (43). It is conjectured that the sharp estimate in this case is

O(⌧
1
4+✏) or, more precisely, O

�
⌧
1/4 log ⌧

�
. The best known result, due to

Huxley, is that the remainder is O(⌧↵ (log ⌧)�+1), where

↵ =
131

416
⇠ 0, 3149 . . . � =

18627

8320
⇠ 2, 2513 . . . .

In order to have a spectral interpretation of the Dirichlet divisor problem,
a global bisingular calculus based on Shubin calculus has been introduced
in [BGRP13]. Then, the following Hermite-type operator

Hj =
1

2

⇣
�@

2
xj

+ x
2
j

⌘
+

1

2
, j = 1, 2,

has been examined. Using Hermite polynomials, it turns out that �(Hj) =
{n}n2N⇤ , j = 1, 2, and each eigenvalue has multiplicity one. Therefore
�(H1 ⌦H2) = {n ·m}(n,m)2(N⇤)2 and

NH1⌦H2(⌧) = D(⌧).

This clear spectral meaning of the Dirichlet divisor problem was one of
the main motivation of the papers [BGRP13,GPRVar]. For the connection
between Dirichlet divisor problem and standard bisingular operators on the
product of closed manifolds see [Bat12]. Actually, since we deal with the non-
symmetric case, it is not possible to attack directly the traditional Dirichlet
divisor problem through the approach described in the previous sections,
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while our techniques are well suited to treat generalized anisotropic Dirichlet
divisors problems like, for instance,

N
H

↵
1 ⌦H

�
2
(⌧) =

X

n↵·m�<⌧

1, ↵ 6= �.

In [GPRVar] it is proven that

(44) N
H

↵
1 ⌦H

�
2
(⌧) = ⇣

✓
↵

�

◆
⌧

1
� + ⇣

✓
�

↵

◆
⌧

1
↵ +O

⇣
⌧

1
↵+�

⌘
,

where ⇣ is the meromorphic continuation of the Riemann ⇣-function. Notice
that (44) proves the sharpness of (3) in the case n2

m2
>

n1�1
m1

.
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