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LAGRANGIAN DISTRIBUTIONS

ON ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

SANDRO CORIASCO, MORITZ DOLL, AND RENÉ SCHULZ

Abstract. We develop the notion of Lagrangian distribution on a scattering manifold

X. The latter is a manifold with boundary, with the boundary being viewed as points

“at infinity”. In analogy with the classical case, a Lagrangian distribution is associated

with a submanifold ⇤ of the compactified cotangent bundle of X. The submanifold ⇤ is

Lagrangian with respect to a symplectic structure induced by the scattering geometry

of X. Our analysis relies on the parametrization properties of ⇤ by means of local phase

functions, and the study of the maps which preserve the scattering structure. We study

the principal symbol map associating Lagrangian distributions with sections of a line

bundle over ⇤. In particular, we establish the principal symbol short exact sequence.
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Introduction

In this article we develop a theory of Lagrangian distributions on asymptotically

Euclidean manifolds. Lagrangian distributions were defined by Hörmander [20] as a tool

to obtain a global calculus of Fourier integral operators. The latter are widely applied, e.g.

in the study of partial di↵erential equations [16], spectral theory [15], index theory [2] and

mathematical physics [18]. Motivating examples for the necessity of studying Lagrangian
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2 S. CORIASCO, M. DOLL, AND R. SCHULZ

distributions on asymptotically Euclidean spaces include fundamental solutions to the

Klein-Gordon equation, which exhibit Lagrangian behavior “at infinity”, see [12], as well

as simple or multi-layers which arise when solving partial di↵erential equations along

infinite boundaries or Cauchy hypersurfaces, see [5].

In local coordinates, a classical Lagrangian distribution u on a manifold X is given by

an oscillatory integral of the form

(0.1) I'(a) =

Z

Rs
e
i'
a(x, ✓) d✓,

for some symbol a 2 S
m(Rd

⇥ Rs) and a phase function ' on a subset of Rd
⇥ Rs

bounded in x. The key feature of the classical theory of Lagrangian distributions is that

each such distribution is globally associated to a Lagrangian submanifold ⇤ ⇢ T
⇤
X,

locally parametrized by the phase function ', and that its leading order behavior can be

invariantly described by its principal symbol, which is a section in a line bundle on ⇤. In

this article, we prove that the situation on asymptotically Euclidean manifolds is similar,

but with a more delicate structure “at infinity”. To make this precise, we work within the

framework of scattering geometry, developed in [29, 32], see also [19, 41]. In particular,

we provide an extensive introduction to the scattering geometry theory, and describe a

class of naturally arising morphisms, the scattering maps, which play a relevant role in

our analysis. We note that the scattering manifolds may also be seen as Lie manifolds

(see [1]; see also [4]), and in this way our theory complements recent advances in the

theory of Lagrangian distributions and Fourier integral operators on such singular spaces

(via groupoid techniques), see [25].

A class of oscillatory integrals on Euclidean spaces, the local model for our theory,

was studied in [11]. For the scattering manifolds setting, a fitting theory of Lagrangian

submanifolds on Rd was developed in [12]. As a first step, we adapt this to general

scattering manifolds with boundary X = X
o
[ @X, the boundary being viewed as infinity.

On such manifolds, the environment for microlocalization is then the compactified

scattering cotangent bundle sc
T
⇤
X, a manifold with corners of codimension 2 and its

boundary W = @
sc
T
⇤
X. Indeed, the boundary may be seen as a stratified space, and the

two boundary faces of sc
T
⇤
X, which intersect in the corner, inherit a type of contact

structure. The geometric objects of study in our theory are then Legendrian submanifolds

of the faces W which intersect in the corner and are the boundary of some Lagrangian

submanifold in the interior and smooth (distribution) densities thereon. Hence the

compactification in the fiber is natural from the point of view of symplectic geometry.

Another reason for the compactification in the base space variable, as well as in the

fiber, is that the localizing cut-o↵ functions used for the microlocalization are compactly

supported in both the sets of variables, which is an advantage in most computations,
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and makes more evident the symmetric role of variable and covariable, which is a main

feature of this setting.

The prototype of a scattering geometry is the Euclidean space Rd, identified with the

interior of the unit ball Bd under radial compactification. Under this identification, the

local symbol class of the naturally associated pseudodi↵erential calculus is given by the

so-called classical SG-symbols, see Section 1 below. Namely,

(0.2) SG
me,m 

cl (Rd
⇥ Rd) ' ⇢�me

X ⇢
�m 

Y C1(Bd
X ⇥ Bd

Y ),

where ⇢X and ⇢Y are boundary defining functions of Bd
X and Bd

Y , respectively. The wider

class SGme,m (Rd
⇥ Rs) consists of all the functions a 2 C1(Rd

⇥ Rs) satisfying the

global estimates (1.3) on Rd
⇥ Rs. The original definition of the SG-calculus dates back

to the 70s, with the work of Cordes, see [5], and Parenti [35], aimed at studying problems

on Rd, with A = (1 + |x|
2)m(1��), m 2 R, being a basic example of di↵erential elliptic

operator included in the calculus. Schrohe [36] extended the SG-calculus to a class of

manifolds, the so-called SG-manifolds, including for instance manifolds with finitely

many cylindrical ends, and more generally, so-called S -manifolds (see again [5]). Such

manifolds admit a (natural) scattering structure [29], giving rise to the same calculus,

whose residual elements are operators with smooth kernels “rapidly decaying at infinity”.

The subclass SG
me,m 

cl (Rd
⇥Rs) consists of all those a 2 SGme,m (Rd

⇥Rs) which admit

a polyhomogeneous expansion (cf. [17, 29, 38, 41]). The classical SG-calculus has also

been employed and developed by Schulze in his approach to pseudodi↵erential calculi

on singular manifolds (cf. [17, 38]) The analysis of the SG Fourier integral operators on

Rd started in [6, 7, 8]. Note that the weight factors appearing in the identification (0.2)

encode the information about the orders, in particular, the rate of “decay/growth at

infinity” associated with the component me. The handling and the study of the e↵ects of

such factors (not present in the case of the analogous theory on smooth, closed manifolds)

is one of the main aspects of our analysis. It is crucial, in particular, in the construction of

the principal symbol map, see our main theorem below, in connection with the principal

part of classical SG-symbols.

We start from the relationship between the classes of “local Lagrangian distributions”

[11], defined by means of SG-classical symbols, and the (globally defined) sc-Lagrangian

submanifolds on scattering manifolds [12]. The link with Lagrangian distributions is now as

follows. We prove that, despite the singular geometry, any sc-Lagrangian submanifold ⇤ ⇢

W locally admits a parametrization through some phase function ', via a generalization

of the map

�' : C' ! ⇤' (x, ✓) 7!
�
x, dx'(x, ✓)

�
,
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where C' = (d✓')�1
{0}. For each such a phase function, a Lagrangian distribution can

be expressed locally as an oscillatory integral as in (0.1). Up to Maslov factors and some

density identifications, the restriction of a(x, ✓) to C' yields the principal symbol of u,

and is interpreted as a (density valued) function on ⇤ by identification via �'. Indeed,

the main theorem characterizing the principal symbol reads as follows.

Theorem. Let ⇤ be a sc-Lagrangian on X. Then there exists a surjective principal

symbol map

j
⇤
me,m 

: Ime,m (X,⇤)! C1(⇤,M⇤ ⌦ ⌦
1/2),

where M⇤ is the Maslov bundle and ⌦1/2
denotes the half-density bundle over ⇤. Moreover,

its null space is I
me�1,m �1(X,⇤) and we have the short exact sequence

0 �! I
me�1,m �1(X,⇤) �! I

me,m (X,⇤)
j⇤me,m 
�����! C1(⇤,M⇤ ⌦ ⌦

1/2) �! 0.

Equivalently,

I
me,m (X,⇤)/Ime�1,m �1(X,⇤) ' C1(⇤,M⇤ ⌦ ⌦

1/2).

One possible application of the principal symbol is to calculate the singularities of

Tr e�itP for t 6= 0 of a scattering pseudo-di↵erential operator P 2  
me,m 
sc for me,m > 0.

The case t = 0 was calculated in [3, 10] and gives the leading contribution in the Weyl

law, whereas the singularities at t 6= 0 are related to the sharp and refined error terms

(cf. [15] for the case of compact manifolds without boundary).

We have the following examples of (scattering) Lagrangian distributions.

(1) Standard Lagrangian distributions of compact support, [20, 23], in particular La-

grangian distributions on compact manifolds X without boundary, are scattering

Lagrangian distributions, using the identification

Fiber-conic sets in T
⇤
X \ {0} ! Sets in S

⇤
X

rescaling
 ! Sets in W

 
.

(2) Legendrian distributions of [32]. Here, the distributions are smooth functions

whose singularities at the boundary are of Legendrian type, meaning in W
e.

(3) Conormal distributions, meaning the distributions where the Lagrangian, see

Section 2.4, is @
�
sc
T
⇤
X

0� for a (k-dimensional) p-submanifold X
0
⇢ Y . These dis-

tributions correspond, under compactification of base and fiber, to the oscillatory

integrals given in local (pre-compactified) Euclidean coordinates by

u(x0, x00) =

Z
e
ix0⇠

a(x, ⇠) d⇠, a(x, ⇠) 2 SG
me,m 

cl (Rd
⇥ Rd�k).

If we consider a linear subspace Rk
⇢ Rd, then the class of translation invari-

ant conormal distributions is a subset of conormal distributions. These can be



5

represented by oscillatory integrals of the form

u(x0, x00) =

Z
e
ix0⇠

a(⇠) d⇠, a(⇠) 2 S
m
cl (Rd�k).

A prototypical example is given by (derivatives of) �0(x0) ⌦ 1. Conormal dis-

tributions arise as (simple or multiple) layers when solving partial di↵erential

equations along infinite boundaries or Cauchy surfaces.

(4) Examples of scattering Lagrangian distributions which are of none of the previous

types arise in the parametrix construction to hyperbolic equations on unbounded

spaces, in particular constant coe�cient hyperbolic equations on Rd. We refer to

[37] for a discussion of the two-point function for the Klein-Gordon equation (cf.

also [39] for the wave equation). The later example is especially important, since

in Quantum Field Theory the usage of the distinguished parametrices of [16] are

limited by the fact that the error term is not compact (cf. [13]).

Note that the kernels of pseudo-di↵erential operators on X ⇥X are not scattering

conormal distributions associated with the diagonal� ⇢ X⇥X whenX is a manifold with

boundary. This can be mitigated by blowing up the corner @X ⇥ @X, see Remark 4.12.

Summarizing, our results show that the theory of Lagrangian distributions, classically

studied either locally or on compact manifolds without boundary, may be generalized to

a theory of Lagrangian distributions on Euclidean spaces or manifolds with boundaries,

hence a much wider class of geometries. It is formulated in a way that makes it transferable

to other singular geometries, as well as manifolds with corners.

The paper is organized as follows. In Section 1 we give an introduction to scattering

geometry. In particular, we discuss the natural class of maps between scattering manifolds,

compactification and scattering amplitudes. In Section 2 we define the Lagrangian

submanifolds and phase functions that arise in our theory. In Section 3 we discuss

the techniques of classifying phase functions which parametrize the same Lagrangian

submanifold. In Section 4 we define the Lagrangian distributions in this setting, starting

from oscillatory integrals, and study their transformation properties. Finally, in Section

5, we define the principal symbol of Lagrangian distributions and prove its invariance.
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1. Preliminary definitions

In the following, we will recall some elements of the geometric theory known as

“scattering geometry”, cf. [29, 30, 32, 41]. To start with, we need to recall some groundwork

on the analysis on manifolds with corners, for which we adopt the definition of [28, 31],

cf. also [26] and [24] for a discussion on the di↵erent notions of manifolds with corners in

the literature.

1.1. Manifolds with corners and scattering geometry. We recall the following

extrinsic definition of a (smooth) manifold with (embedded) corners.

Manifolds with corners and C1
-functions. Let X be a paracompact Hausdor↵ space. As

in the case of manifolds without boundary, a manifold with corners is defined in terms of

local charts. A d-dimensional chart with corners (of codimension k) on X is a pair (U,�),

where U is an open subset of [0,1)k ⇥Rd�k for some 0  k  d, and � : U ! �(U) ⇢ X

is a homeomorphism. If k = 1 we call (U,�) a chart with boundary. As usual, we define

compatibility between charts and an atlas of charts and therefore obtain a definition

of manifolds with boundary and manifolds with corner (abbreviated mwb and mwc,

respectively, in the following). For every manifold with corners X of dimension d there

exists a d-dimensional C1-manifold eX without boundary with X ⇢ X̃, and the interior

X
o of X is open in eX and non-empty when d > 0. We denote by C1(X) the space of

the restrictions of the elements of C1( eX) to X. The tangent space TX and di↵erentials

of maps f : X ! Y , Tf : TX ! TY , between manifolds with corners X,Y , are obtained

as restrictions of the corresponding objects on eX and eY .

We always assume X to be compact and assume that there is a finite collection of

C1-functions on X̃, {⇢i}i2I , called boundary defining functions (abbreviated bdf), such

that X =
T

i2I{p 2 X̃, ⇢i(p) � 0}, and at every point where ⇢j = 0 for every j 2 J ⇢ I,

the di↵erentials of these ⇢j are supposed to be linearly independent. In particular,

d⇢j 6= 0 when ⇢j = 0. We also always assume to be working in local coordinates of the

form x : p 7! (⇢1, . . . , ⇢k, x1, . . . , xd�k)(p), where k is the number of boundary defining

functions1

Remark 1.1. Joyce calls this notion a (compact) manifold with embedded corners (cf.

Remark 2.11 in [24]). By Proposition 2.15 in [24], we see that, locally, a boundary defining

function always exists, and the property that all corners are embedded ensures that a

global boundary defining function exists. Most of the times the actual choice of boundary

defining function is not relevant (cf. Proposition 2.15).

1Note that the ⇢j cannot always be chosen as coordinates at interior points, since their di↵erential may
vanish in the interior. As it is customary, we disregard this minor technical inconvenience in order to allow
for an easier consistent notation and think of the ⇢ to be replaced by any other admissible coordinate
function there.
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Let p 2 X. Then the depth of p, depth(p), is the number of independent boundary

defining functions vanishing at p, which coincides with the co-dimension of the boundary

stratum in which p is contained. We recall that for j 2 {0, . . . , d} one sets @jX = {p 2

X | depth(p) = j}. In particular, Xo = @0X and @X =
S

j>0 @jX. We note that as such,

the boundary of a mwc is not a mwc itself, but rather a topological manifold. Nevertheless,

it is possible to define smooth functions on @X as the set of restrictions smooth functions

on X to @X.

Given a relatively open subset U of a manifold with corner X, we say that U is interior

if U \ @X = ;. Otherwise, we always assume that U contains all interior points of the

boundary U \ @X and call U a boundary neighborhood.

We will write f 2 C1(U) if and only if there is an extension ef 2 C1(X) that coincides

with f on U . The space ⇢�m1
1 · · · ⇢

�mk
k C1(U) is the space of functions h 2 C1(Uo) such

that ⇢m1
1 · · · ⇢

mk
k h extends to an element of C1(U).

The class of mwc that interest us is that of (products of) fiber bundles where both the

base as well as the fiber are allowed to be a compact manifold with boundary (abbreviated

“mwb”). The archetype of such a mwc is the product of two mwbs. Indeed, if X and Y

are mwbs, B = X ⇥ Y is a mwc. We write B = @B and we have (adopting the notation

of [12, 17])

B = (@X ⇥ Y
o) [ (Xo

⇥ @Y )| {z }
=@1B

[ (@X ⇥ @Y )| {z }
=@2B

=: Be
[ B

 
[ B

 e
.

We now describe the basics of scattering geometry, cf. [29, 30, 32, 41]. We first recall the

guiding example.

Definition 1.2 (Radial compactification of Rd). Pick any di↵eomorphism ◆ : Rd
! (Bd)o

that, for |x| > 3, is given by

◆ : x 7!
x

|x|

✓
1�

1

|x|

◆
.

Then its inverse is given, for |y| � 2
3 , by

◆
�1 : y 7!

y

|y|
(1� |y|)�1

.

The map ◆ is called the radial compactification map. We may hence view Rd as the interior

of the mwb Bd and call @Bd “infinity”.

Denote by [x] a smooth function Rd
! (0,1) that, for |x| > 3, is given by x 7! |x|.

Then (◆�1)⇤[x]�1 is a boundary defining function on Bd (and we view [x]�1 as a boundary

defining function on Rd). Indeed, for |y| > 2/3 it is given by y 7! 1� |y| = ⇢Y .
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Remark 1.3. In scattering geometry, the explicit choice of compactification of Rd often

di↵ers from ours, see [32]. Write hxi =
p
1 + |x|2 for x 2 Rd and define

x 7!

✓
1

hxi
,
x

hxi

◆
=: (f⇢Y , ey) .

This maps Rd into the interior of the half-sphere with positive first component, and f⇢Y
and d � 1 of the ey = f⇢Y · x functions may be chosen as local coordinates. Because of

the following computation, both compactifications are equivalent, meaning they yield

di↵eomorphic manifolds. In fact, for |x| > 3, we may write

hxi
�1 = [x]�1 1

1 + [x]�2 , [x]�1 = hxi�1 1p
1� hxi�2

.

Hence, hxi�1 and [x]�1 yield equivalent boundary defining functions on Rd.

Definition 1.4 (Scattering vector fields on mwbs). Let X be a mwb, with boundary

defining function ⇢. Consider the space b
V(X) of vector fields tangential to @X. Then

sc
V(X) is the space ⇢ b

V(X). Near any point with ⇢ = 0, the vector fields {⇢2@⇢, ⇢@xj}

generate sc
V(X). In particular, sc

V(X) contains vector fields supported in X
o.

By the Serre-Swan theorem, there exists a C1-vector bundle sc
TX such that sc

V(X) are

its C1-sections. We have a natural inclusion map sc
TX ,! TX. Note that {⇢2@⇢, ⇢@xj}

are, as elements of sc
TpX, non-vanishing at boundary points p 2 @X despite ⇢ = 0. The

inclusion reverses for the dual bundles T
⇤
X ,!

sc
T
⇤
X. In coordinates, we denote the

dual elements to {⇢
2
@⇢, ⇢@xj} by

n
d⇢
⇢2 ,

dxj

⇢

o
, and these span the sections of sc

T
⇤
X near

the boundary.

We now consider the compactified scattering cotangent bundle
sc
T
⇤
X, which is the

fiber-wise radial compactification of sc
T
⇤
X. The new-formed fiber boundary may be

identified with a rescaling of the cosphere bundle, called sc
S
⇤
X. Since X is a mwb, scT

⇤
X

is a compact manifold with corners. The boundary of W = sc
T
⇤
X, which we denote2 by

W, splits into three components: the boundary faces

W
e := sc

T
⇤
@XX, W

 := sc
S
⇤
XoX, W

 e := sc
S
⇤
@XX.

This geometric situation (with X identified as the zero section) near the boundary is

summarised in Figure 1 (cf. [12, 32]).

The exterior derivative d lifts to a well-defined scattering di↵erential scd on the scattering

geometric structure. In coordinates, with ⇢ a local boundary defining function, we write

scdf = ⇢
2
@⇢f

d⇢

⇢2
+

d�1X

j=1

⇢@xjf
dxj
⇢

.(1.1)

2This is a slight change of notation compared to [29] where it is denoted Csc.
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W
 

W
e

W
 e

X
o

sc
T
⇤
X

@X

Figure 1. The boundary faces and corner of sc
T
⇤
X

Note that for f 2 C1(X), this means that as a section of scT ⇤
X, scdf necessarily vanishes

on the boundary. In fact, we may extend scd to the space ⇢�1C1(X) and obtain a map

scd : ⇢�1C1(X) �! sc
⇥(X) = �(scT ⇤

X).

That is, in local coordinates near the boundary,

scd(⇢�1
f) = ⇢

�1 scdf � f
d⇢

⇢2
= (�f + ⇢@⇢f)

d⇢

⇢2
+

d�1X

j=1

@xjf
dxj
⇢

.

Remark 1.5. We note that ⇢�1C1(X) and similarly defined spaces are independent of

the actual choice of boundary defining function ⇢ (cf. Remark 1.1).

Example 1.6. Outside a compact neighborhood of the origin, polar coordinates provide

an isomorphism Rd ⇠= R+ ⇥ Sd�1. The vector fields @r and 1
r@xj , xj being coordinates on

Sd�1, correspond (up to a sign) under radial inversion ⇢ = 1
r to ⇢2@⇢ and ⇢@xj . Hence,

scattering vector fields on Bd arise as the image of the vector fields of bounded length on

Rd under radial compactification.

Definition 1.7. A scattering manifold (also called asymptotically Euclidean manifold)

is a compact manifold with boundary X, whose interior is equipped with a Riemannian

metric g that is supposed to take the form, in a tubular neighborhood of the boundary,

g =
(d⇢)⌦2

⇢4
+

g@

⇢2
,

where ⇢ is a boundary defining function and g@ 2 C1(X, Sym2
T
⇤
X) restricts to a metric

on @X.

Any mwb may be equipped with a scattering metric.
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Example 1.8. In polar coordinates, the metric on Rd
\ {0} can be written as

g = (dr)⌦2 + r
2
gSd�1 .

Pulled back to Bd using ◆, that is r = (1� |y|)�1 = ⇢
�1 near the boundary, this becomes

gBd =
(d⇢)⌦2

⇢4
+

gSd�1

⇢2
.

In the sequel, in the case of mwbs X, Y , Z, . . . , we will always implicitly choose a

boundary defining function denoted by ⇢X , ⇢Y , ⇢Z , . . . , respectively.

Definition 1.9 (Scattering vector fields on product type manifolds). For a product

B = X ⇥ Y , with X and Y mwbs, we may introduce sc
V(B) as ⇢X⇢Y (bV(B)). Near a

corner point the resulting bundle sc
T
⇤
B is hence generated, if x = (⇢X , x) and y = (⇢Y , y)

are local coordinates on X and Y , respectively, by

⇢
2
X⇢Y @⇢X , ⇢X⇢Y @xj , ⇢X⇢

2
Y @⇢Y , ⇢X⇢Y @yk .

The space sc
V(B) splits into horizontal and vertical vector fields3, sc

V
X(B) and sc

V
Y (B),

respectively, and we define sc
⇥

X(B) as the set of (scattering) 1-forms w 2 sc
⇥

1(B) such

that w(v) = 0 for all v 2 sc
V
Y (B).

Given complete set of coordinates x = (⇢X , x), y = (⇢Y , y) on X and Y , respectively,

we see that sc
⇥

X(B) is the set of sections generated by

d⇢X
⇢
2
X⇢Y

,
dxj
⇢X⇢Y

.

The underlying vector bundle will be denoted by sc
H

X
B. Similarly, we define sc

⇥
Y (B)

and sc
H

Y
B. It is important to note that we have the following “rescaling identifications”:

(1.2)

sc
⇥

X(B) 3
d⇢X
⇢
2
X⇢Y

 ! ⇢
�1
Y

d⇢X
⇢
2
X

2 ⇢
�1
Y C1(Y, sc⇥(X)),

sc
⇥

X(B) 3
dxj
⇢X⇢Y

 ! ⇢
�1
Y

dxj
⇢X
2 ⇢

�1
Y C1(Y, sc⇥(X)).

Again, we may define the scattering exterior di↵erential scd, induced by the usual

exterior di↵erential d, and extend it to a map

scd : ⇢�1
X ⇢

�1
Y C1(B) �! sc

⇥(B).

3Consider the projection prX : B ! X. Then v 2 scV(B) satisfies v 2 scVX(B) if v(pr⇤Xf) = 0 for all
f 2 C 1(X). The set scVY (B) is defined in analogy.
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In terms of the scattering di↵erentials on X and Y we may decompose scd as scd =
scdX + scdY , where

scdX : ⇢�1
X ⇢

�1
Y C1(B)! sc

⇥
X(B),

scdY : ⇢�1
X ⇢

�1
Y C1(B)! sc

⇥
Y (B).

1.2. Amplitudes.

Definition 1.10 (Amplitudes of product-type). Let B be a mwc, {⇢j}j=1...k a complete

set of bdfs. Then a is called an amplitude of order m 2 Rk if

a 2 ⇢
�m1
1 · · · ⇢

�mk
k C1(B).

For an open subset U of X, a locally defined amplitude of product type is an element of

⇢
�m1
1 · · · ⇢

�mk
k C1(U). For p 2 @X we call a elliptic at p if ⇢m1

1 · · · ⇢
mk
k a(p) 6= 0. We write

Ċ1
0 (X) :=

\

m2Rk

⇢
�m1
1 · · · ⇢

�mk
k C1(B)

for the smooth functions vanishing at the boundary of infinite order.

For p 2 @B we call a rapidly decaying at p if there exists a neighborhood U of p such

that a vanishes of infinite order on U \ @B, that is a 2 Ċ1
0 (U).

We now study the leading boundary behavior of these amplitudes. For simplicity, we

only consider B = X ⇥ Y for mwbs X and Y .

Definition 1.11. Let a 2 ⇢
�me
X ⇢

�m 

Y C1(B) and write a = ⇢
�me
X ⇢

�m 

Y f for some f 2

C1(B). Given a coordinate neighborhood U of a point p 2 B
•, we define symbols �•(a)

of a on U by
8
>><

>>:

�
e(a)(x,y) = ⇢

�me
X ⇢

�m 

Y f(0, x,y), p 2 B
e
[ B

 e

�
 (a)(x,y) = ⇢

�me
X ⇢

�m 

Y f(x, 0, y), p 2 B
 
[ B

 e

�
 e(a)(x,y) = ⇢

�me
X ⇢

�m 

Y f(0, x, 0, y) p 2 B
 e
.

The tuple (� (a),�e(a),� e(a)) is denoted by �(a) and called the principal symbol of a.

Fix ✏ > 0 so small that ⇢X and ⇢Y can be chosen as coordinates on B respectively

whenever ⇢X < ✏ and ⇢Y < ✏. We choose a cut-o↵ function � 2 C1(R) such that �(t) = 0

for t > ✏/2 and �(t) = 1 for t < ✏/4.

Definition 1.12. For any a 2 ⇢
�me
X ⇢

�m 

Y C1(B) the amplitude

ap(x,y) = �(⇢X)�e(a)(x,y) + �(⇢Y )�
 (a)(x,y)� �(⇢X)�(⇢Y )�

 e(a)(x,y)

is called the principal part of a.
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While ap does depend on the choice of �, its leading boundary asymptotics do not. By

Taylor expansion of f , we obtain:

Lemma 1.13. The principal part ap of a satisfies a� ap 2 ⇢
�me+1
X ⇢

�m +1
Y C1(B).

Example 1.14 (Classical SG-symbols). Let B = Bd
⇥ Bs, where Bd and Bs are the

radial compactifications of Rd and Rs. The space of so-called classical SG-symbols,

SG
me,m 

cl (Rd
⇥Rs), is that of a 2 C1(Rd

⇥Rs) such that (◆�1
⇥◆

�1)⇤a 2 ⇢�me
X ⇢

�m 

Y C1(B).

These symbols are then precisely those that satisfy the estimates

(1.3)
���@↵x @

�
✓ a(x, ✓)

��� . hxime�|↵|
h✓i

m �|�|

and admit a polyhomogeneous expansion, see [17, 29, 41] and the principal symbol of a

corresponds to its homogeneous coe�cients, see [17, Chap. 8.2].

We will need to consider density-valued amplitudes and integrate amplitudes on

mwbs. For this, we introduce the space of scattering �-density bundles, cf. [29], where
sc⌦�(X) = ⇢

��(d+1)⌦�(X) in terms of the usual �-density bundle. Note that sc⌦� does

not depend on the choice of boundary defining function.

Example 1.15. Under the radial compactification, the canonical Lebesgue integration

density on Rd, dx 2 ⌦1(Rd), is mapped to ◆⇤dx 2 sc⌦1(Bd). In particular, we obtain

◆⇤dx = ⇢
�(d+1)d⇢ dSd�1. More generally, if (X, g) is a scattering manifold, then the metric

induces a canonical volume scattering 1-density µg.

Since the density bundle is a line bundle, any choice of scattering density provides a

section of it and allows for an identification of scattering densities on X and C1-functions.

We denote the set of all smooth sections of the bundle sc⌦�(X) by C1(X,
sc⌦�(X)),

and the tempered distribution densities (Ċ1
0 )0(X,

sc⌦�(X)) are the continuous linear

functionals on Ċ1
0 (X,

sc⌦1��(X)).

Lemma 1.16. Let X be a mwb and Y a manifold without boundary. Then, integration

over Y induces a map

Z

Y
: C1

c (X ⇥ Y,
sc⌦1(X ⇥ Y )) �! ⇢

� dimY
X C1

c (X,
sc⌦1(X)).

Remark 1.17. More generally, let X and Y be mwbs and Z a manifold without boundary.

Consider a fiber bundle f : X ! Y with typical fiber Z. For every scattering density

µ 2 C1(X,
sc⌦1(X)) the pushforward

f⇤µ 2 ⇢
� dimZ
Y C1

c (Y, sc⌦1(Y ))

is defined locally by integration along the fiber.
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Let (U, ) be a trivializing neighborhood of the fiber bundle, that is U ⇢ Y open,

 : X ! U ⇥ Z smooth and f |f�1(U) = prM �  . Assume without loss of generality that

µ is supported on f
�1(U). Then set

f⇤µ =

Z

Z
µ �  j .

1.3. Scattering maps. We now introduce and characterize the class of maps whose

pull-backs preserve amplitudes of product type. They are a special case of interior b-maps

in the sense of [28], and humbly mimicking Melrose’s naming conventions we call them

sc-maps. We first introduce them on manifolds with boundary and then generalize to

manifolds with higher corner degeneracy, such as products of mwcs.

Definition 1.18 (sc-maps on mwb). Let Y and Z be mwbs. Suppose  : Y ! Z. Then

 is called an sc-map if for any m 2 R and a 2 ⇢
�m
Z C1(Z) it holds that:

(1)  ⇤
a 2 ⇢

�m
Y C1(Y );

(2) if p 2  (Y ) with p =  (q) and (⇢mZ a)(p) > 0, then (⇢mY  
⇤
a)(q) > 0.

Remark 1.19. In particular,  maps the boundary of Y into that of Z. It also follows

that T maps inward pointing vectors at the boundary (meaning vectors with strictly

positive @⇢-component) to inward pointing vectors at the corresponding points. Indeed,

we see that, at the boundary,  ⇤@⇢Z = h
�1
@⇢Y .

Remark 1.20. It is obvious that the composition of two sc-maps is again a sc-map.

It is straightforward to adapt this definition to that of a local sc-map by replacing Y

and Z with open subsets.

Lemma 1.21 (sc-maps in coordinates). Let Y and Z be mwbs, U ⇢ Y and V ⇢ Z open

subsets. A smooth map  : U ! V is a local sc-map if and only if

(1.4)  ⇤
⇢Z = ⇢Y h for some h 2 C1(Y ) with h > 0.

Hence, any local di↵eomorphism of mwbs is a local scattering map. Moreover:

Lemma 1.22. Let X,Z be mwbs. Given any open, bounded set U ⇢ Rd
, define the

projection prZ : Z ⇥ U ! Z, (z, y) 7! z. Then idX ⇥ prZ is a sc-map.

We now investigate the action of pull-backs by sc-maps on the objects introduced

above. The following assertions can be verified in local coordinates.

Lemma 1.23. Let Y and Z be mwbs, U ⇢ Y and V ⇢ Z open subsets. Let  : U ! V

be a local sc-map. Then, the following properties hold true.

•  ⇤
yields a map ⇢

m
Z

sc
⇥

k(V )! ⇢
m
Y

sc
⇥

k(U) for any m 2 R and k 2 N. Moreover,

for ✓ 2 ⇢
m
Z

sc
⇥

k(V ), we have
scd( ⇤

✓) =  ⇤(scd✓).
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•  ⇤
yields a map

sc⌦�(V )! sc⌦�(U) for any � 2 [0, 1].

• The map T
⇤ : T ⇤

V ! T
⇤
U lifts to a map

sc
T
⇤
 : sc

T
⇤
V !

sc
T
⇤
U . In local

coordinates, away from fiber-infinity,
sc
T
⇤
 is given by

( (y), ⇣) 7!
�
y, ◆(t(J )(◆�1⇣))

�
,

wherein J is the Jacobian of  at y. The extension to fiber-infinity is obtained

by taking interior limits |⇣|
�1
! 0.

We observe that sc-maps provide a natural class of maps between scattering manifolds.

Corollary 1.24. Suppose Y is a mwb, (Z, ⇢Z , g) a scattering manifold,  a sc-map

Y ! Z which is an immersion. Then (Y, ⇤
⇢Z , ⇤

g) is a scattering manifold.

Proof. We first observe that  ⇤
⇢Z is a boundary defining function on Y . Indeed,

(1.5) d ⇤
⇢Z = h d⇢Y + ⇢Y dh.

This implies, at the boundary, h d⇢Y 6= 0. The scattering metric on Z pulls back to

 ⇤
g =  ⇤ (d⇢Z)

⌦2

⇢
4
Z

+ ⇤ g@
⇢
2
Z

=
(d ⇤

⇢Z)⌦2

( ⇤⇢Z)4
+

 ⇤
g@

( ⇤⇢Z)2
,

which is again a scattering metric. ⇤

Corollary 1.25. Any scattering manifold Y of dimension s is locally di↵eomorphic to

Bs
. Moreover, any scattering density on Y can locally be written as the pull-back by one

on Bs
.

We now extend the notion of sc-map to manifolds with corners.

Definition 1.26 (sc-maps on mwc). Let Y and Z be mwcs. Then, a smooth map

 : Y ! Z is a local sc-map for some complete sets of local bdfs {⇢Yi}i2I and {⇢Zi}i2I if:

For all i 2 I we have  ⇤
⇢Zi = ⇢Yihi for some hi 2 C1(Y ) with hi > 0.

Remark 1.27. In particular,  maps the boundary of Y into that of Z.

As mentioned before, sc-maps are special cases of b-maps. In fact, they are those

interior b-maps that are smooth maps in the sense of [24]. The only di↵erence with the

smooth maps in [24] is that, therein,  ⇤
⇢Zi ⌘ 0 is allowed.

Example 1.28. In particular, if  1 : Y1 ! Z1 and  2 : Y2 ! Z2 are sc-maps on mwb,

then  1 ⇥ 2 : Y1 ⇥ Y2 ! Z1 ⇥ Z2 is a sc-map on the resulting product mwc.

Remark 1.29. Note that we fix the ordering of the boundary defining functions. This is

important, in particular, when considering sc-maps between products X ⇥ Y ! X ⇥ Z

or of the form X ⇥ Y !
sc
T
⇤
X. Most of the times, the choice of bdfs will be clear from

the context.
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Note that, on a mwb, it is possible to extend any map @X 7! @X with x 7! x
0 to a

scattering map, by setting (⇢X , x) 7! (⇢X , x
0) in a collar neighborhood of @X given by

X ⇠= [0, ✏)⇥ @X. The following proposition grants us the ability to continue scattering

maps from a corner into the interior.

Proposition 1.30. Let B1 = X1 ⇥ Y1 and B2 = X2 ⇥ Y2 be products of mwbs. Let  e
,

  be two (local) scattering maps near a point p 2 B
 e
1 ,

 e : Be
1 �! B

e
2 and   : B 1 �! B

 
2

such that  e =   when restricted to B
 e
1 . Then there exists a (local) scattering map  

on a neighborhood U ⇢ B1 of p with  • =  |B• such that

(1.6) @⇢X1
 ⇤
⇢Y2 = @⇢Y1

 ⇤
⇢X2 = 0 on B1.

If  e
and   are local di↵eomorphisms near p (in their respective boundary faces), then

 is a local di↵eomorphism near p.

Proof. This is Whitney’s extension theorem for smooth functions, applied to the system

of functions (and their derivatives)

( e)⇤x, ( e)⇤y, ( e)⇤⇢Y on B
e
1,

(  )⇤⇢X , (  )⇤x, (  )⇤y on B
 
1 ,

together with the conditions (1.6) and

Dx,y 
⇤
⇢Y2 = 0 on B

 
1 ,

Dx,y 
⇤
⇢X2 = 0 on B

e
1.

Note that, if  e and   are local di↵eomorphisms at p, the di↵erential of  is an

invertible block matrix, and hence  is a local di↵eomorphism. ⇤

Lemma 1.31. Let X and Y be mwbs. Consider a sc-map  : X ⇥ Y ! X ⇥ Y of

product form  =  X ⇥ Y , with sc-maps  X on X, and  Y on Y , respectively. Assume

a 2 ⇢
�m 

Y ⇢
�me
X C1(X ⇥ Y ). With the notation of Definition 1.11 and 1.12, we have:

�
 ( ⇤

a)� ⇤(� a) 2 ⇢
�m +1
Y ⇢

�me
X C1

,

�
e( ⇤

a)� ⇤(�ea) 2 ⇢
�m 

Y ⇢
�me+1
X C1

,

( ⇤
a)p � 

⇤(ap) 2 ⇢
�m +1
Y ⇢

�me+1
X C1

.

Proof. We will only prove the first identity, the others follows by similar arguments. Write

( ⇤
⇢X)(x) = ⇢XhX(x) and ( ⇤

⇢Y )(y) = ⇢Y hY (y). If a = ⇢
�me
X ⇢

�m 

Y f then

( ⇤
a)(x,y) = ⇢

�me
X ⇢

�m 

Y h
�me
X (x)h

�m 

Y (y)( ⇤
f)(x,y).
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This implies

�
 ( ⇤

a)(x,y) = ⇢
�me
X ⇢

�m 

Y h
�me
X (x)h

�m 

Y (0, y)( ⇤
f)(x, 0, y),

 ⇤(� a)(x,y) = ⇢
�me
X ⇢

�m 

Y h
�me
X (x)h

�m 

Y (y)( ⇤
f)(x, 0, y).

Using Taylor’s theorem, we obtain that h
�m 

Y (y) � h
�m 

Y (0, y) 2 ⇢Y C1(X ⇥ Y ), and

therefore � ( ⇤
a)� ⇤(� a) 2 ⇢

�m +1
Y ⇢

�me
X C1(X ⇥ Y ), as claimed. ⇤

Corollary 1.32. The principal part of a 2 ⇢
�m 

Y ⇢
�me
X C1(X ⇥ Y ) is well-defined as an

element of

⇢
�me
X ⇢

�m 

Y C1(X ⇥ Y )/⇢�me+1
X ⇢

�m +1
Y C1(X ⇥ Y ).

Moreover, the principal part does not depend on the choice of boundary-defining functions.

Remark 1.33. Note that the space

⇢
�me
X ⇢

�m 

Y C1(X ⇥ Y )/⇢�me+1
X ⇢

�m +1
Y C1(X ⇥ Y )

can be identified with C1(@(X ⇥ Y )), which identifies our notion of principal symbol

with that of [30, Section 6.4].

The following lemma is one of the main technical tools in this article. We have

already observed that the local model of a scattering manifold near the boundary is

the radial compactification of Rd. We now show that scattering maps arise naturally as

the composition of vector-valued amplitudes and radial compactification. Furthermore,

we clarify the relation between total derivative and the scattering di↵erential under

compactification.

Lemma 1.34. Let Y be a mwb. Assume f 2 ⇢
�1
Y C1(Y,Rd) with ⇢Y |f | 6= 0 on @Y .

4

Then,  = ◆ � f extends to a local sc-map Y ! Bd
. Moreover, the matrix of coe�cients of

scdf =

0

BB@

scdf1
.
.
.

scdfd

1

CCA

has the same rank as the di↵erential T of  .

Proof. Since ◆ is a di↵eomorphism, ◆ � f is a smooth map while ⇢Y > " and we may

thus restrict our attention to a neighborhood of @Y where ⇢Y |f | is everywhere non-

vanishing. As usual, we pick a suitable collar neighborhood of product type such that

locally Y = [0, ")⇥@Y , and we write dim(Y ) = s and y = (⇢Y , y) for the coordinates. We

have to compute  ⇤
⇢Z . Write f(⇢Y , y) = ⇢

�1
Y h(⇢Y , y) for h 2 C1(Y,Rd) with h(0, y) 6= 0

4This means ⇢Y f is the restriction to Y o of an element of g 2 C 1(Y,Rd) with g 6= 0 on @Y .
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for all (0, y) 2 @Y . Since ⇢Y is assumed su�ciently small, |f(y)| = ⇢
�1
Y |h(y)| may be

assumed su�ciently large and hence

 (y) = (◆ � f)(y) =
f(y)

|f(y)|

✓
1�

1

|f(y)|

◆
=

h(y)

|h(y)|

✓
1�

⇢Y

|h(y)|

◆
.

In this form,  clearly extends up to the boundary. The boundary defining function on

Bd is, in this coordinate patch, ⇢Z = 1� |x|. Thus,

 ⇤
⇢Z =

1

|f(y)|
= ⇢Y

1

⇢Y |f(y)|
.

By assumption, ⇢Y |f(y)| = |h(y)| is smooth and non-vanishing, which proves that  is

an sc-map.

For the second half of the statement we first observe that, since ◆ is a di↵eomorphism

Rd
! (Bd)o and scd coincides, up to a rescaling by a non-vanishing factor, with the usual

di↵erential in the interior, we may restrict our attention to the boundary @Y . Then we

compute

scdf(y) = ⇢
2
Y @⇢Y f(y)

d⇢Y
⇢
2
Y

+
s�1X

j=1

⇢Y @yjf(y)
dyj
⇢Y

= (�h(y) + ⇢Y @⇢Y h(y))
d⇢Y
⇢
2
Y

+
s�1X

j=1

@yjh(y)
dyj
⇢Y

.

We identify scdf with its coe�cients (s⇥ d)-dimensional block matrix
⇣
�h(y) + ⇢Y @⇢Y h(y) (@yjh(y))j=1,...,s�1

⌘
.

At the boundary ⇢Y = 0 we obtain
⇣
�h (@yjh)j=1,...,s�1

⌘
(0, y).(1.7)

We want to compare the rank of (1.7) with that of the di↵erential of  at the point

(0, y) 2 @Y . As shown above, the function  is given, at an arbitrary point y = (⇢Y , y)

close enough to @Y , by

h(y)

|h(y)|

✓
1�

⇢Y

|h(y)|

◆
,

whose di↵erential at (0, y) is the block matrix

T (0, y) =
⇣
�

h
|h|2 + @⇢Y

h
|h|

⇣
@yj

h
|h|

⌘

j=1,...,s�1

⌘
(0, y).(1.8)

Now observe that, since they are derivatives of unit vectors, @yj
h
|h| and @⇢Y

h
|h| are

orthogonal to h, which is itself non-zero.5 Therefore, the rank of T (0, y) equals that of

5Recall that, in fact, |v(t)| = 1 , v(t) · v(t) = 1 ) 2v(t) · v0(t) = 0 , v(t) ? v0(t).
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the block matrix
⇣
�h

⇣
@yj

h
|h|

⌘

j=1,...,s�1

⌘
(0, y).(1.9)

Finally, we have that

@yjh = @yj

✓
|h|

h

|h|

◆
= |h|@yj

h

|h|| {z }
collinear to @yj

h
|h|

+
(h · @yjh)

|h|2
h

| {z }
collinear to h

.

This means that the null space (and hence the ranks) of (1.7) and (1.9) coincide. ⇤

Example 1.35. The simplest example for a map where Lemma 1.34 applies is given by

the map f = ◆
�1 : Bd

! Rd.

Remark 1.36. Recall (cf. [22, App. C.3]) that the intersection of two C1-submanifolds Y

and Z of a C1-manifold X is clean with excess e 2 N0 if Y \ Z is a C1-submanifold of

X satisfying

Tx(Y \ Z) = TxY \ TxZ, 8x 2 Y \ Z,

codim(Y ) + codim(Z) = codim(Y \ Z) + e.

Example 1.37. Let X be a mwb and a 2 ⇢
�me
X ⇢

�m 

Bs C1(X ⇥ Bs). In this example, we

extend a to a local symbol on a suitable subset of X ⇥ Bs+1.

We view Bs+1 as embedded in Rs+1 with coordinates (y1, . . . , ys, ỹ). Define

| : Bs+1
! Bs

⇥ (�1, 1), (y, ỹ) 7!

 
yp

1� ỹ2
, ỹ

!
,

where y = (y1, . . . , ys). For every " 2 (0, 1), we obtain coordinates on

U = |
�1

{Bs
⇥ (�", ")} = Bs+1

\ {|ỹ| < "},

cf. Figure 2. We note that U is a fiber bundle of base Bs and fiber (�", ").

We verify that | is a sc-map. For this we now view Bs
⇥ (�", ") as a (non-compact)

manifold with boundary6 with boundary defining function ⇢Z = 1 � [y]. Observe that

near the boundary we have

|
⇤
⇢Z = 1�

[y]p
1� ỹ2

= (1�
p
[y]2 + ỹ2) ·

1p
1� ỹ2

·

p
1� ỹ2 � [y]

1�
p
ỹ2 + [y]2

= ⇢Bs+1h.

6This means we view Bs ⇥ (�", ") as embedded in the manifold with boundary Bs ⇥ S1, which can be
embedded in Ss ⇥ S1. For higher dimension, we embed (�", ")r ,! Tr.
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Bs

Bs+1

|

Bs

Bs
⇥ (�", ")

Figure 2. The action of | visualized

Since |ỹ| < ✏, h is positive and in C1(U). Hence | is an sc-map.

As usual, we may perform the same construction fiber-wise on a fiber bundle by

considering local product decompositions to obtain a local sc-map. Namely, let X be an

arbitrary mwb. Then  = idX ⇥ | is again a sc-map on the product X ⇥
�
Bs
⇥ (�", ")

�
.

Using Lemma 1.22 and Remark 1.20, wee see that  ̃ =  �(idX⇥prBs) : X⇥U ! X⇥Bs

is a sc-map. Hence,  ̃⇤
a 2 ⇢

�me
X ⇢

�m 

Bs+1 C
1(X ⇥ U).

2. Phase functions and Lagrangian submanifolds

2.1. Clean phase functions.

Definition 2.1 (Phase functions). Let X and Y be mwbs, B = X ⇥ Y . Let U be an

open subset in B. Then, a real valued ' 2 ⇢�1
X ⇢

�1
Y C1(U) is a local (sc-)phase function

if it is the restriction of some e' 2 ⇢
�1
X ⇢

�1
Y C1(B) to U such that scd'̃(p) 6= 0 for all

p 2 B \ @U .

If U = B, that is ' 2 ⇢�1
X ⇢

�1
Y C1(B) with scd'(p)|B 6= 0, we call ' a global sc-phase

function.

Remark 2.2. Phrased di↵erently, if U is an interior open set, ' is just a smooth function.

In the non-trivial case of U being a boundary neighborhood, the above definition means

that, for every p 2 @B in the  - or  e-component of the boundary of U , there exists an

element ⇣ 2 sc
V(B) such that ⇣(') is elliptic at p, meaning ⇣(') 2 C1(X ⇥ Y ) satisfies�

⇣'
�
(p) 6= 0. It is, by compactness, bounded away from zero at the possible limit points

in @U . In the following, we usually do not write e' but simply identify e' and ' at these

limit points.

Example 2.3 (SG-phase functions). If B = Bd
⇥ Bs, such ' correspond to so-called

(classical) SG-phase functions on Rd
⇥ Rs, cf. [11, 12], but with a relaxed condition as
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kxk ! 1. Indeed, in light of the SG-estimates (1.3), the previous definition translates to

(2.1) |hxi
�1
r✓'|

2 + |h✓i
�1
rx'|

2
� C for |✓|� 0.

The relationship between these and “standard” phase functions which are homogeneous

in ✓ is discussed in [12]. Examples of SG-phase functions are the standard Fourier phase

x · ✓ on Rd
x ⇥ Rd

✓ and x0h✓i � x · ✓ on Rd+1
x0,x ⇥ Rd

✓ .

Definition 2.4 (The set of critical points). Let X and Y be mwbs, B = X ⇥ Y ,

' 2 ⇢
�1
X ⇢

�1
Y C1(B) a (local) phase function. A point p 2 B (in the domain of ') is called

a critical point of ' if scdY '(p) = 0, that is, if ⇣(')(p) = 0 for every ⇣ 2 sc
V
Y (B). We

define

(2.2) C' = {p 2 B |
scdY '(p) = 0}.

We set C' = C' \ B and specify

C
•
' = C' \ B

• for • 2 {e, , e}.

We now adapt the usual definition of a clean phase function from the classical setting

to the case with boundary.

Definition 2.5 (Clean phase functions). A phase function ' is called clean if the

following conditions hold:

1.) there exists a neighborhood U ⇢ B of @B such that C' \ U is a manifold with

corners with @C' ⇢ @B;

2.) the tangent space of TpC' is at every point p given by those vectors in v 2 TpB

such that v(⇣(')) = 0 for all ⇣ 2 sc
V
Y , that is, T (scdY ')v = 0;

3.) the intersections C•
' = C' \ B

• are clean.

The last condition is equivalent to the existence of w 2 TC•
'
C
•
' such that

(T scdY ')(w + @⇢•) = 0.(2.3)

This means that, for some w tangent to B
•, we have w + @⇢• 2 TC•

'
C'. Here, ⇢• is the

bdf of B•. We now discuss the implications of these conditions.

Lemma 2.6. Let ' be a clean phase function. Then either we are in the “non-corner

crossing case” 1a.) or in the “corner crossing case” 1b.), namely:

1a.) both C
e
' and C

 
' are closed manifolds (without boundary) and C

 e
' = ;;

1b.) C' consists of two components, Ce
' and C

 
' , which are both submanifolds (with

boundary), of the same dimension dim(C')� 1, with joint boundary C
 e
' = @Ce

' =

@C
 
' of B. The intersection of Ce

' and C
 
' in C

 e
' is again clean.
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In both cases, the di↵erential of
scdY ' : B ! sc

T
⇤
B, viewed as a map T (scdY ') : TB !

T (scT ⇤
B), characterizes TC

•
':

2.) The tangent space of Ce
' and C

 
' at each point p is given by those vectors v 2 TB

•

such that v(⇣(')) = 0 for all ⇣ 2
sc
V
Y
, that is T (scdY ')v = 0.

By condition 3.) of Definition 2.5, we have dim(ker(T (scdY '))) = dimC'. Hence, the

restrictions of T (scdY ') to the individual boundary components of B on C' are of constant

rank. Namely,

rk(T (scdY ')) =

8
>><

>>:

s� e on C
o
',

s� e� 1 on C
 
' and C

e
',

s� e� 2 on C
 e
' ,

for some fixed number e, called the excess of ', which is given by

e = dimC' � d.

Remark 2.7. Conversely, if the rank of T (scdY ') is constant in a neighborhood of each

critical point of scdY ', then ' is clean by the constant rank theorem. In case e = 0, ' is

called non-degenerate, and the two characterizations coincide. The corresponding case of

SG-phase functions (on Rd) was studied in [12].

2.2. The associated Lagrangian. In the classical local theory without boundary on

subsets of Rd
⇥ (Rs

\ {0}), see [22, Chapter XXI.2], the set of critical points C' is realized

as an immersed Lagrangian in T
⇤Rd by the map (x, ✓) ! (x,'0

x(x, ✓)). In the present

setting, the situation is more complicated. Following [12], we define an analogous map

�' on the mwc B = X ⇥ Y into sc
T
⇤
X.

For that, we consider the following sequence of maps: Using the “rescaling identifications”

(1.2), we may view (x,y)! scdX'(x,y) as a map in ⇢�1
Y C1(Y, sc⇥(X)). Since sc

⇥(X)

are the sections of sc
T
⇤
X, composing with the radial compactification yields, in view of

Lemma 1.34, a map into the compactified fibers of sc
T
⇤
X.

Definition 2.8. The map �' : B ! sc
T
⇤
X is defined by

(x,y) 7!
�
x, ◆(scdX'(x,y))

�
.

Lemma 2.9. There is a neighborhood U ⇢ B of C' such that �' : U ! sc
T
⇤
X is a local

sc-map.

Proof. We write, x = (⇢X , x), y = (⇢Y , y) for coordinates in B, x and ⇠ = (⇢⌅, ⇠) for

coordinates in sc
T
⇤
X. Since �' is the identity in the first set of variables, we have �⇤'x = x.

In the second set of variables, �' acts as ◆ � scdX', with scdX' 2 ⇢
�1
Y C1(Y, sc⇥(X)).

Notice that on C
 
' [ C

 e
' , we have scdX'(x,y) 6= 0, since scd' 6= 0 on B

 
[ B

 e and
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scdY ' = 0 on C'. Hence, due to compactness, we may find a neighborhood of C ' [ C
 e
'

on which scdX'(x,y) 6= 0. Writing ' = ⇢
�1
X ⇢

�1
Y f for f 2 C1(X ⇥ Y ), this means

(�f + ⇢X@⇢Xf)
d⇢X
⇢
2
X⇢Y

+
d�1X

j=1

@xjf
dxj
⇢X⇢Y

6= 0.

Rescaling and viewing scdX' as a map in ⇢�1
Y C1(Y, sc⇥(X)), we express scdX' as

(2.4) scdX' = ⇢
�1
Y

0

@(�f + ⇢X@⇢Xf)
d⇢X
⇢
2
X

+
d�1X

j=1

@xjf
dxj
⇢X

1

A .

Composing with ◆, we are therefore in the situation of Lemma 1.34, up to additional

smooth dependence on the X-variables, and conclude that �' is a local sc-map.

On C
e
', away from C

 e
' , we have that ⇢Y 6= 0 and correspondingly scdX'(x,y) stays

bounded. Since ◆ maps bounded arguments into the interior, we find �'
⇤
⇢⌅ 6= 0. Since

�' is smooth, �' is an sc-map. ⇤

In particular, ◆(scdX'(x,y)) maps boundary points with ⇢Y = 0 to boundary points of

the fiber, that is to W
 
[W

 e.

Definition 2.10. We define L' = �'(C') and ⇤' := �'(C'). We further write ⇤•
' for

�'(C•
') ⇢W

• for • 2 {e, , e}. We say that ' parametrizes L' and ⇤'.

Theorem 2.11. The map �' : C' ! sc
T
⇤
X is of constant rank d. Its image L' as well

as the boundary and corner faces ⇤•
' = �'(C•

') are immersed manifolds of dimension

dim⇤•
' = dim C

•
' � e. Furthermore, �' : C' ! ⇤' is a submersion.

The proof is inspired by that of Lemma 2.3.2 in [14] (adapted to clean phase functions),

but much more involved, due to the presence of the compactification. We treat this new

phenomenon by carefully applying Lemma 1.34.

Proof. We obtain the rank of T�' for �' : C' ! sc
T
⇤
X by computing the dimension of

its null space. Let v = �⇢X · @⇢X + �x · @x + �⇢Y · @⇢Y + �y · @y be a vector at a point

p = (⇢X , x, ⇢Y , y) 2 C'. For the moment, we assume ⇢Y > 0. We write �' = (id⇥ ◆) � `'
with

`' : X ⇥ Y
o
!

sc
T
⇤
X (x, y) 7! (x, scdX'(x, y)).

Assume that T `'(p)v = 0 and v 2 TpC'. The condition T `'(p)v = 0 implies that �⇢X = 0

and �x = 0. Let ṽ = �⇢Y · @⇢Y + �y · @y. Hence the assumptions are reduced to

(2.5)
ṽ
scdX'(p) = 0,

ṽ
scdY '(p) = 0,
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where ṽ is interpreted as acting on the coe�cient functions of the di↵erentials.

In coordinates, these coe�cient functions are given by

scdX'(p) = ⇢
�1
Y (�f + ⇢X@⇢Xf, @xf)(p),

scdY '(p) = (�f + ⇢Y @⇢Y f, @yf)(p).

Using �f + ⇢Y @⇢Y f = 0 and @yf = 0, it is easily seen that on C' the assumptions

(2.5) are equivalent to
0

BBB@

⇢X⇢
�2
Y (⇢Y @⇢Y � 1)@⇢Xf ⇢X⇢

�1
Y @⇢X@yf

⇢
�2
Y (⇢Y @⇢Y � 1)@xf ⇢

�1
Y @x@yf

⇢Y @⇢Y @⇢Y f ⇢Y @⇢Y @yf

@⇢Y @yf @y@yf

1

CCCA

 
�⇢Y

�y

!
= 0.(2.6)

The cleanness condition translates to the dimension of the nullspace of T scdX' being

constantly e. We identify T
scdY ' with the matrix

J =

0

BBB@

(⇢Y @⇢Y � 1)@⇢Xf @y@⇢Xf

(⇢Y @⇢Y � 1)@xf @y@xf

⇢Y @⇢Y @⇢Y f @y@⇢Y f

⇢Y @⇢Y @yf @y@yf

1

CCCA
.(2.7)

The matrices appearing in (2.6) and (2.7) are related by

J =

0

BBB@

⇢Y ⇢
�1
X 0 0 0

0 ⇢Y 0 0

0 0 ⇢
�1
Y 0

0 0 0 1

1

CCCA

0

BBB@

⇢X⇢
�2
Y (⇢Y @⇢Y � 1)@⇢Xf ⇢X⇢

�1
Y @⇢X@yf

⇢
�2
Y (⇢Y @⇢Y � 1)@xf ⇢

�1
Y @x@yf

⇢Y @⇢Y @⇢Y f ⇢Y @⇢Y @yf

@⇢Y @yf @y@yf

1

CCCA

 
⇢Y 0

0 1

!
.

This proves that (2.5) is equivalent to v 2 kerT scdY ' under our assumptions ⇢Y > 0

and ⇢X > 0, and the rank of `' is given by

rk `' = dimTpC' � dimkerT scdY ' = (d+ e)� e = d.

Now assume that ⇢X = 0. We see that the first row of (2.6) vanishes identically,

but we have the additional condition (2.3), implying that, at ⇢X = 0, the first row of

(2.7) depends linearly on the other rows. Therefore, the rank of `' is still d at points

with ⇢X = 0. The composition with id ⇥ ◆ changes nothing for ⇢Y > 0, since ◆ is a

di↵eomorphism there.

To perform the limit ⇢Y ! 0, we have to examine carefully the e↵ect of the presence

of the compactification ◆, in the spirit of the proof of Lemma 1.34. For v 2 TpC' such

that T�'(p)v = 0, that is, as above, of the form

v = �⇢Y · @⇢Y + �y · @y,
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we now obtain the set of equations

(2.8)
v
�
◆
scdX'

�
(p) = 0,

v
scdY '(p) = 0,

which are equivalent to the set of equations
 
@⇢Y ◆

scdX' @y◆
scdX'

@⇢Y @yf @y@yf

! 
�⇢Y

�y

!
= 0.(2.9)

We need to compare the rank of the coe�cient matrix in (2.9) with that of T scdY ' at

points of the form (⇢X , x, 0, y). For this purpose, we go through a series of “reductions”,

along the lines of the proof of Lemma 1.34, to simplify the comparison. First, we can

identify scdX' with

⇢
�1
Y

 
�f + ⇢X@⇢Xf

@xf

!
=: ⇢�1

Y h.

Note that h 6= 0 near C ' , since ' is a phase function. As in the proof of Lemma 1.34, the

evaluation at (⇢X , x, 0, y) then gives
 
@⇢Y ◆

scdX' @y◆
scdX'

@⇢Y @yf @y@yf

!
=

 
�

h
|h|2 + @⇢Y

h
|h| @y

h
|h|

@⇢Y @yf @y@yf

!
.(2.10)

Since all derivatives of h
|h| are orthogonal to h

|h| and h 6= 0, the rank of the matrix (2.10)

equals the one of
 
�

h
|h|2 @y

h
|h|

0 @y@yf

!
.(2.11)

In fact, in (2.10), as well as in (2.11), the first column is linearly independent of the

others. Now we write

@yj
h

|h|
=

1

|h|
@yjh�

(h · @yjh)

|h|3
h

| {z }
collinear to h

,

and remove the collinear summands, which again does not change the rank of the matrix

(2.11). Therefore, the rank of (2.10) is the same as the one of
 
�

h
|h|2

1
|h|@yh

0 @y@yf

!
.(2.12)

Multiplying the first d rows and the first column of (2.12) by the non-vanishing factor

|h|, again the rank does not change, and we can look at
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�h @yh

0 @y@yf

!
=

0

B@
f � ⇢X@⇢Xf �@yf + ⇢X@y@⇢Xf

�@xf @y@xf

0 @y@yf

1

CA .(2.13)

On C' at ⇢Y = 0 this equals
0

B@
�⇢X@⇢Xf ⇢X@y@⇢Xf

�@xf @y@xf

0 @y@yf

1

CA .(2.14)

Finally, we observe that the dimension of the null space of (2.14) is, by cleanness of '

(in particular by (2.3) applied to C
 
' or C e' ), the same as the one of

0

BBB@

�@⇢Xf @y@⇢Xf

�@xf @y@xf

0 @y@⇢Y f

0 @y@yf

1

CCCA
= T

scdY '|C ' ,(2.15)

namely e. Therefore, the rank of �' equals d = (d+ e)� e near C', which concludes the

proof. ⇤
Lemma 2.12. The map �' : C' ! L' is a local fibration and the fiber is everywhere a

smooth manifold without boundary.

Proof. Since �' is locally an sc-map, T�' maps the set of vectors at the boundary that

are inwards pointing into itself, see Remark 1.19. Therefore �' is a so-called “tame”

submersion in the sense of [34, Lemma 1.3]. As such, it is a local fibration and the fiber

is a manifold without boundary. ⇤

2.3. Symplectic properties of the associated Lagrangian. As in the classical the-

ory, L' is an immersed Lagrangian submanifold, and its boundary faces ⇤• are immersed

Legendrian submanifolds. Let us briefly recall these concepts. For more information, the

reader is referred to [12, 32, 19].

As a cotangent space, T ⇤
X

o carries a natural symplectic 2-form ! induced by the

canonical 1-form ↵ 2 C1(T ⇤
X

o
, T

⇤(T ⇤
X

o)) as ! = d↵. This 1-form can be recovered

from ! by setting ↵ = %
 y ! for the radial vector field % on C1(T ⇤

X
o), which is given

by %
 = ⇠ · @⇠ in canonical coordinates. We now write (x, ⇠) = (⇢X , x, ⇢⌅, ⇠) for the

coordinates in the mwc sc
T
⇤
X which are obtained from the rescaled canonical coordinates

under radial compactification in the fiber, cf. [32]. Then %
 corresponds to ⇢⌅@⇢⌅ on

C1(T
⇤
X

o). For the purpose of scattering geometry, it is natural to rescale further and

define, on T
⇤(scT

⇤
X)o,

↵
 := ⇢

2
⌅@⇢⌅y!.
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There exists another form of interest, namely

↵
e := ⇢

2
X@⇢Xy!.

We now extend these forms to T
⇤(scT

⇤
X) and define the boundary restrictions of ↵•.

Observe that, while their explicit form depends on the choice of bdfs, the induced contact

structure at the boundary does not, see next Lemma 2.13

Lemma 2.13. The forms ↵
•
extend to 1-forms on W

•
, denoted by the same letter. The

induced contact structures do not depend on the choice of bdfs.

Example 2.14. On T
⇤Rd ⇠= Rd

⇥Rd, with canonical coordinates (x, ⇠), the vector fields

%
 and %e correspond to % = ⇠ ·@⇠ and %e = x ·@x. The symplectic 2-form is

P
j d⇠j ^dxj

and hence

%
 y! = ⇠ · dx and %

ey! = �x · d⇠.

Obviously, the coe�cients of these forms diverge as [⇠]!1 and [x]!1. The rescaled

forms “at the boundary at infinity” then correspond to

↵
 =

⇠

[⇠]
· dx and ↵

e = �
x

[x]
· d⇠.

After a choice of coordinates near the respective boundaries, this is the general local

geometric situation.

We are now in the position to formulate the symplectic properties of ⇤', cf. [11]. Recall

that a submanifold N of a symplectic manifold (M,!) is Lagrangian if !|TN = 0 and a

submanifold N of a contact manifold (M,↵) is Legendrian if ↵|TN = 0.

Proposition 2.15. The immersed manifolds defined in Theorem 2.11 satisfy:

1.) L
o
' is an immersed Lagrangian submanifold with respect to the 2-form ! on

(scT
⇤
X)o ⇠= T

⇤
X;

2.) ⇤ ' is Legendrian with respect to the canonical 1-form ↵
 
on W

 ⇠= S
⇤(Xo);

3.) ⇤e
' is Legendrian with respect to the 1-form ↵

e
on W

e ⇠= T
⇤
@XX.

We take this as the definition of an sc-Lagrangian, cf. [12].

Definition 2.16 (sc-Lagrangians). Let ⇤ := ⇤ [⇤e ⇢W . ⇤ is called an sc-Lagrangian

if:

1.) ⇤ = ⇤ \W
 is Legendrian with respect to the canonical 1-form ↵

 on W
 =

sc
S
⇤
XoX;

2.) ⇤e = ⇤ \W
e is Legendrian with respect to the 1-form ↵

e on W
e = sc

T
⇤
@XX;

3.) ⇤ has a boundary if and only if ⇤e has a boundary, and, in this case,

⇤ e := @⇤ = @⇤e = ⇤ \ @⇤e,
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with clean intersection.

Figure 3, which is taken from [12], summarizes, schematically, the relative positions of

⇤e
' and ⇤ ' near the corner in W . We may take the analysis one step further in order

W
 

W
e

W
 e

⇤ e

x, ⇠

⇢X

⇢⌅ ⇤e

⇤ 

Figure 3. Intersection of ⇤ ⇢W
 and ⇤e

⇢W
e at the corner W e

to stress the Legendrian character of the boundary components near the corner and to

reveal the symplectic properties of ⇤ e by blow-up. For the sake of brevity here, we move

this analysis to the appendix, Section A.

We may sum up our previous analysis by stating the next Theorem 2.17.

Theorem 2.17. For a clean phase function ', ⇤' = �'(C') is an immersed sc-

Lagrangian.

Definition 2.18. We say that an sc-Lagrangian ⇤ is locally parametrized by a phase

function ' if, over the domain of definition of ', we have ⇤ = ⇤'.

In particular, if ⇤ is locally parametrized by a phase function, then it is admissible.

Conversely, we have the following result, cf. [12].

Proposition 2.19. If ⇤ is an sc-Lagrangian, then it is locally parametrizable by a clean

phase function ', that is ⇤•
\U

• = ⇤•
' \U

•
for some open subset U ⇢W

•
. In particular,

⇤ arises as the boundary of some Lagrangian submanifold L' of
sc
T
⇤
X.

Remark 2.20. The proof of Proposition 2.19 in [12] is based on concrete parametrizations

in Rd
⇥ Rd. It applies here nonetheless, since any d-dimensional manifold with boundary

X can be locally modelled by Bd. Hence, sc
T
⇤
X can be locally modelled by Bd

⇥ Bd and

thus, under inverse radial compactification (applied to both factors), by Rd
⇥ Rd. Note

that in [12] we imposed additional conditions, namely

(2.16) ⇤e
\ (@X ⇥ ◆({0})) = ;,
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and that x · ⇠ = 0 in local canonical coordinates on ⇤ e, since this is always true for a

parametrized Lagrangian (see (2.17) below). However, condition (2.16) is equivalent to

the stronger assumption that scd' 6= 0 also on B
e, which we do not impose here. The

assumption x · ⇠ = 0, in turn, is superfluous, since it already follows from the symplectic

assumptions on ⇤ e, as we now show.

Assume that both ⇠ · dx ⌘ 0 and �x · d⇠ ⌘ 0 on a bi-conic submanifold L of Rd
⇥ Rd.

Then we must have d(x · ⇠) = 0. However, when |x| and |⇠| tend to 1, this blows up

unless x · ⇠ = 0. This shows that x · ⇠ = 0 is indeed automatically fulfilled.

This corresponds to the fact that, for the bi-homogenous principal symbol of a phase

function ' e, we have, when r✓'(x, ✓) = 0, that (cf. [12])

(2.17) hx,rx'(x, ✓)i = '(x, ✓) = h✓,r✓'(x, ✓)i = 0,

where we have used Euler’s identity for homogeneous functions twice.

2.4. Scattering conormal bundles. In this section, we consider the simple example

of a scattering conormal bundle. Consider a k-dimensional submanifold X
0
⇢ X which

intersects the boundary of X cleanly or not at all (called p-submanifold in [31]). In the

following, we assume an intersection with the boundary. Then there exist local coordinates

(⇢X , x
0
, x

00) such that X 0 is locally given by

X
0 = {(⇢X , x

0
, x

00) | ⇢X � 0, x0 = 0 2 Rd�1�k
, x

00
2 Rk�1

}.

We can now consider the compactified scattering conormal sc
T
⇤
X

0
⇢

sc
T
⇤
X0X. The

boundary faces of sc
T
⇤
X

0 constitute a Lagrangian.

In fact, write X = ◆(Rd), so that X 0 corresponds to a subspace of Rd of the form

X
0 = {(x0, x00) | x0 = 0 2 Rd�k

, x
00
2 Rk

}.

We can then introduce Y = ◆(Rd�k) and �(x, y) = x
0
· y on Rd

⇥ Rd�k, which is an

SG-phase function, taking into account (2.1). The true phase function on X ⇥ Y is then

(◆�1
⇥ ◆

�1)⇤�. We can then compute C' = X
0
⇥ Y and ⇤' = sc

T
⇤
X

0.

Indeed, in the Euclidean setting, ⇤' corresponds to the the three conic manifolds

⇤e
' = {(0, x00, ⇠0, 0)} ⇢ (Rd

\ {0})⇥ Rd

⇤ e' = {(0, x00, ⇠0, 0)} ⇢ (Rd
\ {0})⇥ (Rd

\ {0})

⇤ ' = {(0, x00, ⇠0, 0)} ⇢ Rd
⇥ (Rd

\ {0})

which have the claimed symplectic properties. Compactification of the Rd-components

and projection of the conic (Rd
\ {0})-component to the corresponding sphere then yields

the compactified notions in sc
T
⇤
X.
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3. Phase functions which parametrize the same Lagrangian

In this section, we adapt the classical techniques for exchanging the phase function

locally parametrizing a given Lagrangian, see [40, Chapter 8.1], to the setting with

boundary. Since ⇤', not L', is our true object of interest, we say that two phase functions

'i, i = 1, 2, locally parametrize the same Lagrangian at p0 2W if ⇤'1 = ⇤'2 in a small

(relatively) open neighborhood of p0 in the respective boundary faces.

Our first observation is the following:

Lemma 3.1. If ' 2 ⇢
�1
X ⇢

�1
Bs C1(X ⇥Bs) is a local phase function and r 2 C1(X ⇥Bs),

then '+ r is still a local phase function and it parametrizes the same Lagrangian as '.

Proof. Since r 2 C1(X ⇥Bs), scdr = 0 when restricted to the boundary. Therefore, '+ r

is still a local phase function. By the same reason, C' = C'+r. Finally, we have

�'+r(x, by) = (x, ◆(scdX('+ r))).

Computing scdX('+ r) in coordinates, see (2.4),

scdX' = ⇢
�1
Y

0

@(�f + ⇢X@⇢Xf + ⇢Y ⇢
2
X@⇢Xr)

d⇢X
⇢
2
X

+
d�1X

j=1

(@xjf + ⇢Y ⇢X@xjr)
dxj
⇢X

1

A ,

we observe that at ⇢X = 0, the contribution from r vanishes. The same is true in the

limit of ⇢Y ! 0 under application of ◆, see also Lemma 1.34. ⇤

3.1. Increasing fiber variables. Given a clean phase function ' 2 ⇢�1
X ⇢

�1
Bs C

1(X⇥Bs)

with excess e, define e 2 ⇢�1
X ⇢

�1
Bs C

1(X ⇥ Bs
⇥ (�", ")) as follows:

e (x,y, ỹ) = '(x,y) +
ỹ
2

⇢X⇢Bs
.

We see that scd e 6= 0 when scd' 6= 0 and scdBs⇥(�✏,✏) ̃ = 0 if and only if ỹ = 0 and
scdBs' = 0. Thus,

C e = {(x,y, 0) | (x,y) 2 C'} ,

which implies that the excess is not changed, and ⇤ e = ⇤'. Summing up,  is a local

clean phase function in s+ 1 fiber variables with the same excess e as ' and (locally)

parametrizing the same Lagrangian as '.

This construction may once again be moved to balls, by using Example 1.37 and

setting  =  ⇤ e . Then  2 ⇢�1
X ⇢

�1
Bs+1C

1(X ⇥ U). Using the fact that scd =  ⇤ e , we
see that  is a clean phase function parametrizing ⇤' with excess e. Again, X ⇥ Bs can

be exchanged by any relatively open subset, hence starting with local phase functions.

3.2. Reduction of the fiber variables. Starting again from a clean phase function

' 2 ⇢
�1
X ⇢

�1
Bs C

1(X ⇥ Bs) with excess e, we now construct a (local) phase function  in
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the smallest possible number of phase variables (without changing the excess) which

(locally) parametrizes the same Lagrangian. The argument is similar to the classical one,

but extra attention needs to be paid at to what happens near points with ⇢Y = 0, namely,

we have to keep ⇢Y as a parameter.

Remark 3.2. In the classical theory, meaning for homogeneous phase functions, it is

possible to reduce the number of fiber variables under the assumption that the ma-

trix @
2
✓✓'(x, ✓) has rank r > 0 on C'. However, since a classical phase function ' is

homogeneous in ✓, it holds that ✓ · r✓' = ' and hence the second radial derivative

is automatically zero on C'. Furthermore, the radial variable can always be chosen to

parametrize ⇤'.

We proceed as in the proof of Theorem 2.11. We first recall that, for p0 2 C', writing

' = ⇢
�1
Y ⇢

�1
X f with f 2 C

1(X ⇥ Bs), we have there

(3.1) 0 = scdY ' = (�f + ⇢Y @⇢Y f, @ykf) .

We then identify TY
scdY ' in coordinates with the matrix

(3.2) JY ' =

 
⇢Y @

2
⇢Y f �@yjf + ⇢Y @yj@⇢Y f

@⇢Y @ykf @yj@ykf

!
.

We see, using (3.1), that on C
 
' ⇢ {⇢Y = 0} this becomes

(3.3) JY '
��
C '

=

 
0 0

@⇢Y @ykf @yj@ykf

!
.

Therefore, the rank of this matrix is at most s� 1. Indeed, we observe that, by (2.3), at

⇢Y = 0 we have d⇢Y 6= 0 on TC
 
' and hence we can always choose ⇢Y as a parameter to

locally describe C
 
' .

Remark 3.3. By the same argument, ⇢X can be chosen as a parameter close to B
e, while,

close to B
 e, both ⇢X and ⇢Y can be chosen as parameters to represent C'.

We now seek to reduce the remaining set of variables under the assumption that

(3.4) The matrix
�
@yj@yk⇢X⇢Y '

�
jk

has rank r > 0 at p0 2 C
 
' [ C

 e
' .

Since at points where ⇢Y 6= 0 the variable ⇢Y behaves like all other variables, the same

restriction does not hold near a point p 2 C
e
'. Here, we simply assume that

(3.5) The matrix TY
scdY ' has rank r > 0 at p0 2 C

e
'.

Since up to multiplication by ⇢Y > 0 in one row, (3.2) is the Hessian of h (with respect

to y), this is equivalent to rk(HY f) = r > 0. The two conditions may be summarized
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into one. Namely, consider the scattering Hessian (with respect to the y-variables) of '

(3.6)

sc
HY ' =

 
⇢
2
Y ⇢X@⇢Y ⇢

2
Y ⇢X@⇢Y ' ⇢Y ⇢X@yj⇢

2
Y ⇢X@⇢Y '

⇢
2
Y ⇢X@⇢Y ⇢Y ⇢X@yk' ⇢Y ⇢X@yj⇢Y ⇢X@yk'

!

= ⇢Y ⇢X

 
⇢
2
Y @

2
⇢Y f �@yjf + ⇢Y @yj@⇢Y f

⇢Y @⇢Y @ykf @yj@ykf

!
.

Then ⇢�1
Y ⇢

�1
X

sc
HY ' becomes, at a point in C':

⇢
�1
Y ⇢

�1
X

sc
HY ' =

 
0 0

0 @yj@ykf

!
, if p0 2 C

 
' [ C

 e
' ;

⇢
�1
Y ⇢

�1
X

sc
HY ' =

 
⇢
2
Y @

2
⇢Y f ⇢Y @yj@⇢Y f

⇢Y @⇢Y @ykf @yj@ykf

!
, if p0 2 C

e
'.

Notice that we can factorize these matrices as

(3.7)

 
⇢Y 0

0

! 
@
2
⇢Y f @yj@⇢Y f

@⇢Y @ykf @yj@ykf

! 
⇢Y 0

0

!
,

the rank of which therefore is, for ⇢Y 6= 0, that of the standard Hessian of f , HY f .

Therefore, our assumption may be expressed as:

(3.8) The matrix ⇢�1
Y ⇢

�1
X

sc
HY ' has rank r > 0 at p0 2 C'.

We may now proceed as in the standard theory and introduce a splitting of variables

y = (y0
,y

00) such that (@y00@y00f)jk is an invertible r ⇥ r matrix. We can then apply the

implicit function theorem to

0 = scdY ' = (�f + ⇢Y @⇢Y f, @ykf)

at p0. We obtain a map from an open neighborhood of p0,

k : (x,y0) 7!
�
x,y

0
,y

00(x,y0)
�
,

such that C' and the range of k locally coincide. Note that k is a scattering map, since

⇢Y is always one of the y
0 near the  -face.

Then 'red = ' � k is a clean local phase function in d⇥ (s� r) variables with excess

e, and k provides a local isomorphism C'red ! C'. Furthermore, at stationary points

p0 and k(p0), we have that ◆(scdX'red) = ◆(scdX'), since scdY ' = 0 there. Hence, 'red

locally parametrizes the same Lagrangian as '.

Remark 3.4. Note that, after applying a change of coordinates in the y variables, 'red

may be assumed to be defined on Bd
⇥ Bs�r, see also Lemma 3.7 below.

Summing up, we can formulate the next Proposition 3.5.
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Proposition 3.5. Let ' 2 ⇢
�1
Y ⇢

�1
X C1(X ⇥ Bs) be a local clean phase function of excess

e. Assume

⇢
�1
Y ⇢

�1
X

sc
HY ' has rank r > 0 at a stationary boundary point p0 2 C'.

We may then define a local phase function ' 2 ⇢
�1
Y ⇢

�1
X C1(X ⇥ Bs�r) of excess e

parametrizing the same Lagrangian.

We mention that, locally, the minimal number of fiber variables y that a clean phase

function of excess e locally parametrizing L' has to possess is

smin = d+ e� n,

where n is the (local) number of independent x variables on L'. This follows from a

simple dimension argument: the dimension of L' is d, that of C' is d+ e, and the one

of the projection to x of C' coincides with that of L'. Note that, by cleanness of the

intersection C' \ B
 , near ⇤ we have smin > 0.

3.3. Increasing the excess. Given a (local) clean phase function ' 2 ⇢�1
X ⇢

�1
Bs C

1(X ⇥

Bs) with excess e, define  := pr⇤X⇥Bs' on X ⇥ (Bs
⇥ (�", ")), viewing Bs

⇥ (�", ") as

an open subset of Bs
⇥ S1, which is a manifold with boundary whose boundary defining

function may be chosen as pr⇤Bs⇢Bs . In particular we have, with the obvious identifications,

scdBs⇥(�",") = pr⇤X⇥Bs (scdBs') .

Then C = C'⇥(�", ") and hence dim(C•
 ) = dim(C•

')+1. Furthermore, � = pr⇤X⇥Bs�'

and ⇤' = ⇤ . Summing up,  is a local clean phase function in s+ 1 fiber variables with

excess e+ 1, defined and (locally) parametrizing the same Lagrangian as '.

As before, we may choose to keep working on balls by invoking the construction from

Example 1.37 and replacing  with

 ⇤
 = e ⇤

' 2 ⇢
�1
X ⇢

�1
Bs+1C

1(X ⇥ U).

In this way, since  is a di↵eomorphism,  becomes a clean phase function with excess

e + 1 defined on a relatively open subset of X ⇥ Bs+1 and similarly we may raise the

excess by any natural number.

Example 3.6. The standard Fourier phase on R⇥ R, '(x, ⇠) = x · ⇠, cannot be seen as

an SG-phase on all of R⇥ R2 by setting  (x, ⇠, ⌘) = x · ⇠. Indeed,

hxi
2
|rx'(x)|

2 + h(⇠, ⌘)i|r⇠,⌘'|
2 = (1 + x

2)⇠2 + (1 + ⇠
2 + ⌘

2)x2(3.9)

= hxih⇠i+ x
2
⌘
2
� 1

For ⇠ = 0 and x = 0 and ⌘ ! 1, this vanishes but should be bounded from below by

c(1 + |⌘|)2 if  were an SG-phase function, given (2.1).
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Reviewing Example 1.37, the ray ⇠ = 0, x = 0 and ⌘ 6= 0 corresponds precisely to the

poles in Figure 2 which were cut o↵. Indeed, (3.9) is bounded from below by hxi2h(⇠, ⌘)i2

in any neighborhood where |⇠|
|⌘| > c and hence a local phase function in such sets.

3.4. Elimination of excess. Assume now that ' is a phase function on X ⇥ Bs

with excess e and that at some point p0 = (⇢X,0, x0, ⇢Y,0, y0) 2 C' we have �'(p0) =

(⇢X,0, x0, ⇢⌅,0, ⇠0). Then, by Lemma 2.12, the preimage of (⇢X,0, x0, ⇢⌅,0, ⇠0) under �',

meaning the fiber in C' through p0, is an e-dimensional smooth submanifold. Locally,

since �' is a submersion we may, by [24, Prop. 5.1], reduce to the case of a projection,

that is, we may find a splitting y = (y0, y00) near p0 such that �' does not depend on y
00.

Then,

'̃(⇢X , x, ⇢Y , y
0) := '(⇢X , x, ⇢Y , y

0
, y

00
0)

defines a phase function without excess (i.e., a non-degenerate phase function) that

parametrizes the same Lagrangian as '. As usual, we may again reduce to the case of a

ball and hence replace ' by a phase function on an open subset of X ⇥ Bs�e.

3.5. Equivalence of phase functions. We will now discuss the changes of phase

function under a change of coordinates and which phase functions can be considered

equivalent. We first check how the stationary points of a phase function transform under

changes by local di↵eomorphisms.

Lemma 3.7. Let X1, Y1, X2, Y2 be mwbs, set Bi = Xi ⇥ Yi, i 2 {1, 2}, and let

' 2 ⇢
�1
X2
⇢
�1
Y2

C
1(B2) be a (local) phase function. Assume g : X1 ! X2, h : Y1 ! Y2 to

be di↵eomorphisms, and set F = g ⇥ h. Then, F
⇤
' 2 ⇢

�1
X1
⇢
�1
Y1

C
1(B1) is a (local) phase

function with the same excess of ', and we have

CF ⇤' =
�
(x1,y1) 2 B1 |F (x1,y1) 2 C'

 
, LF ⇤' = (scT

⇤
g)(L').

Remark 3.8. This means that, while the boundary defining function ⇢⌅1 of sc
T
⇤
X1 does

not vanish, LF ⇤' can then be computed as

LF ⇤' =
�
(x1, ◆(

t(Jg)◆�1(⇠1)) 2
sc
T
⇤
X1 | (g(x1), ⇠1) 2 L'

 
.

As ⇢⌅ ! 0, ⇤ F ⇤' is obtained by taking interior limits, see also Lemma 1.34.

Proof of Lemma 3.7. The result for C' follows immediately from the first assertion in

Lemma 1.23. The statement for L' then follows by writing

(3.10) �F ⇤'(x1,y1) = (scT
⇤
g)(�'(x2,y2))

near a point (x1,y1) 2 (CF ⇤')o such that (x2,y2) = (g(x1), h(x1,y1)). Indeed, at these

stationary points, scdXF
⇤
' = F

⇤(scdX'), since there scdY ' = 0. Since equality (3.10)
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holds in the interior, the result at the boundary faces can be obtained as interior limits

(see also Lemma 2.9). ⇤

Remark 3.9. The di↵eomorphism g ⇥ h may be replaced by a single di↵eomorphism

F : X1 ⇥ Y1 ! X2 ⇥ Y2 locally of product type near the boundary faces of X2 ⇥ Y2, i.e.,

a (local) di↵eomorphism that is a fibered-map at the boundary.

We now define in which sense two phase functions may be considered equivalent.

Definition 3.10. Let X, Y1, Y2 be mwbs, Bi = X⇥Yi. Let 'i 2 ⇢
�1
X ⇢

�1
Yi

C
1(Bi). We say

that '1 and '2 are equivalent at a pair of boundary points (x0
,y

0
1) 2 B1 and (x0

,y
0
2) 2 B2

if there exists a local di↵eomorphism F : X ⇥ Y2 ! X ⇥ Y1 of the form F = id⇥ g with

g(x0
,y

0
2) = y

0
1 such that the following two conditions hold true:

(3.11) F
⇤
'1 � '2 is smooth in a neighborhood U of (x0

,y
0
2),

(3.12) ⇢X⇢Y2 (F
⇤
'1 � '2) restricted to C'2 \ @U vanishes to second order.

Lemma 3.11. Equivalent phase functions parametrize the same Lagrangian, that is

⇤F ⇤'1 = ⇤'2. Moreover, we have CF ⇤'1 = C'2.

Proof. This follows from Lemmas 3.1 and 3.7. ⇤

We now associate to any local phase function its principal phase part, which corresponds

in the SG-case to the leading homogeneous components of '. From the fact that the

principal part of Definition 1.12 is obtained from the boundary restrictions of ', we

observe, using F = id⇥ id and Lemma 1.13:

Lemma 3.12. A local phase function ' and its principal part 'p are equivalent.

Remark 3.13. In particular, each phase function is locally equivalent at the e- and  -face,

respectively, to a homogeneous (w.r.t. ⇢X or ⇢Y ) phase function, after a choice of collar

decomposition. In general, this is not true near the corner B e.

Since the di↵erence in condition (3.12) is restricted to the boundary, it does not

restrict the behavior of F ⇤
'1 � '2 into the direction transversal to the boundary, e.g.

@⇢X⇢X⇢Y2(F
⇤
'1 � '2) at Ce

'2
. The following lemma states the transformation behavior

of this directional derivative.

Lemma 3.14. Let X,Y1, Y2 be mwbs and let F : X ⇥ Y2 ! X ⇥ Y1 be a sc-map of the

form F = id⇥ . Set h = ⇢
�1
Y2

F
⇤
⇢Y1 . Consider a clean phase function ' on X ⇥ Y1 and

write f = ⇢X⇢Y1'. Then we have the following transformation laws:

hF
⇤
@⇢Y1

⇢
�1
X f = @⇢Y2

F
⇤
⇢
�1
X f, on F

⇤
C
 
' ,

F
⇤
⇢
�1
Y1
@⇢Xf = @⇢XF

⇤
⇢
�1
Y1

f, on F
⇤
C
e
'.
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Proof. On F
⇤
C
 
' , we have that

@⇢Y2
F

⇤
f = hF

⇤
@⇢Y1

f + F
⇤(@y1f)@⇢Y2y1 = hF

⇤
@⇢Y1

f,

where we have used @y1f = 0 on F
⇤
C
 
' . This proves the first equality.

On F
⇤
C
e
', we compute

@⇢XF
⇤
⇢
�1
Y1

f1 = F
⇤
⇢
�1
Y1
@⇢Xf1 + F

⇤(@⇢Y1⇢
�1
Y1

f1) @⇢XF
⇤
⇢Y1 + F

⇤(⇢�1
Y1
@y1f1) @⇢XF

⇤
y1

= ⇢
�1
Y2

h
�1

F
⇤
@⇢Xf1.

Therein, we used @y1f1 = 0 and @Y1⇢
�1
Y1

f1 = 0 on C'1 . ⇤

Remark 3.15. The previous lemma, combined with Lemma 3.12, will imply that, away

from the corner, any phase function can be replaced by an equivalent phase function

without radial derivative (at C') and the vanishing of this derivative at C' is preserved

under application of scattering maps.

This corresponds to the fact that, in the classical theory, one can always choose a

homogeneous phase functions. The (non-homogeneous) terms of lower order which arise

in transformations can be absorbed into the amplitude.

The rest of this section will be dedicated to establishing a necessary and su�cient

criterion for the local equivalence of phase functions.

Lemma 3.16. Let X, Y1, Y2 be mwbs such that dim(Y1) = dim(Y2), and set Bi = X⇥Yi,

i 2 {1, 2}. Let 'i 2 ⇢
�1
X ⇢

�1
Yi

C
1(Bi) be phase functions which have the same excess, and

assume that there exist p
0
i = (x0

,y
0
i ) 2 C'i, i 2 {1, 2}, such that

�'1(x
0
,y

0
1) = �'2(x

0
,y

0
2),

and, close to (x0
,y

0
i ), i 2 {1, 2}, both phases parametrize the same Lagrangian ⇤, i.e.,

locally ⇤ = ⇤'i , i 2 {1, 2}. Then, there exists a local di↵eomorphism F : B2 ! B1 of the

form F = id⇥ g with F (x0
,y

0
2) = (x0

,y
0
1), such that F

⇤
'1 = ⇢X⇢Y2

ef1 with CF ⇤'1 = C'2 ,

locally. Moreover, locally near (x0
,y

0
2),

(3.13) (f2 � ef1)|B2 vanishes of second order at any point of C'2.

Remark 3.17. Notice that (3.13) means that the principal part of F ⇤
'1 and '2 in Lemma

3.16 coincide on C'2 .

Proof of Lemma 3.16. Since �'i are local fibrations from C'i to ⇤'i , i 2 {1, 2}, and

⇤'1 = ⇤'2 = ⇤, there is a local fibered di↵eomorphism F : B2 ! B1 of the form

F = id⇥ g, locally locally near (x0
,y

0
1) = F (x0

,y
0
2), such that the following diagram is

commutative.
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⇤

C'2 C'1

�'2 �'1

9F

Note that F is not uniquely determined, not even on C'2 when the phases are merely

clean and not non-degenerate.

After application of F , we may assume that Y1 = Y2 =: Y , y0
1 = y

0
2 =: y0 and, locally,

C'1 = C'2 =: C'. We now show that the restriction of f1 and f2 to a relative neighborhood

of (x0
,y

0) in C' vanishes of second order. Recall that, since scdY '1 = scdY '2 = 0, for any

p = (x,y) 2 C' we have

(3.14)
⇣
⇢Y @⇢Y f1 � f1 @ykf1

⌘
=
⇣
⇢Y @⇢Y f2 � f2 @ykf2

⌘
= 0

Furthermore, since '1 and '2 parametrize the same Lagrangian, we also have �'1(p) =

�'2(p), that is, ◆(
scdX'1(p)) = ◆(scdX'2(p)). We treat separately the cases p 2 C

e
' and

p 2 C
 
' [ C

 e
' .

If p 2 C
e
', we then find

(3.15)

◆((⇢�1
Y ⇢X@⇢Xf1(p)� f1(p), ⇢

�1
Y @xkf1(p))) = ◆((⇢�1

Y ⇢X@⇢Xf2(p)� f2(p), ⇢
�1
Y @xkf2(p))).

Since ⇢Y 6= 0 on C
e
', and ◆ is a di↵eomorphism on the interior, this implies

f1(p) = f2(p), @xkf1(p) = @xkf2(p), k = 1, . . . , d� 1.

Combining this with (3.14), this further implies

@⇢Y f1(p) = @⇢Y f2(p), @ykf1(p) = @ykf2(p), k = 1, . . . , s� 1.

Since (x,y) are a complete set of variables on B
e, we can indeed conclude that f1 � f2

vanishes of second order along C
e
'.

If p 2 C
 
' or p 2 C

 e
' , (3.14) implies that

f1(p) = f2(p) = 0, @ykf1(p) = @ykf2(p), k = 1, . . . , s� 1.

We have to evaluate (3.15) as a limit ⇢Y ! 0+, using, as in Lemma 1.34, ◆(z) = z
|z|(1�

1
|z|).

We obtain that, with

v1 = (⇢X@⇢Xf1, @xkf1), v2 = (⇢X@⇢Xf2, @xkf2),

v1
kv1k = v2

kv2k , but not necessarily v1 = v2, in which case the proof would be complete.

We now modify F in order to achieve v1 = v2. Notice that, since '1 and '2 are phase

functions, we have v1 6= 0 at C'. We can therefore scale '1 by means of the local
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di↵eomorphism (near C')

eF : (⇢Y , y)! (⇢Y r(⇢X , x, ⇢Y , y), y),

where r(⇢X , x, ⇢Y , y) =
kv2k
kv1k . Notice that, by our previous computations, r|Ce

'[C
 e
'

= 1,

and eF is the identity for ⇢Y = 0. Therefore, by Lemma 3.7,

C eF ⇤'1
= C'1 , and ⇤ eF ⇤'1

= ⇤'1 .

By definition, for eF ⇤
'1 we have

ef1 := ⇢X⇢Y
eF ⇤
'1 =

kv2k

kv1k
(F ⇤

f1).

Therefore,

(⇢X@⇢X
ef1, @xk

ef1) =
kv2k

kv1k
· (⇢XF

⇤(@⇢Xf1), F
⇤(@xk

ef1)) =: ev1,

since the derivatives acting on r produce a ⇢Y factor, and then vanish along C
 
' . Hence,

ev1 = v2, which completes the proof. ⇤

Remark 3.18. The additional computations in the proof of the previous lemma near the

face C
 
' correspond to the fact that, classically, x · ✓ and x · (2✓) both parametrize

⇤ =
n
(0, ⇠) | ⇠ 2 Rd

\ {0}
o
.

In fact, we observe from the same proof that we may choose the norm of (⇢X@⇢Xf1, @xkf1)

at any point of ⇤ ' without changing ⇤'.

Theorem 3.19 (Equivalence of phase functions). Let X, Y1, Y2 be mwbs such that

dim(Y1) = dim(Y2), and set Bi = X ⇥ Yi, i 2 {1, 2}. Let 'i 2 ⇢
�1
X ⇢

�1
Yi

C
1(Bi), i 2 {1, 2},

be phase functions which have the same excess. Assume that there exist (x0
,y

0
i ) 2 C'i,

i 2 {1, 2}, such that

�'1(x
0
,y

0
1) = �'2(x

0
,y

0
2),

and, close to (x0
,y

0
i ), i 2 {1, 2}, both phase functions parametrize the same Lagrangian

⇤, i.e., locally ⇤ = ⇤'i , i 2 {1, 2}. Then, the phase functions '1 and '2 are equivalent at

(x0
,y

0
1) and (x0

,y
0
2) if and only if

(3.16) sgn
⇣
⇢
�1
Y1
⇢
�1
X

sc
HY1'1

⌘
= sgn

⇣
⇢
�1
Y2
⇢
�1
X

sc
HY2'2

⌘
.

Remark 3.20. Before we go into the details of the proof, we recall the expression for the

di↵erential in condition (3.16) in coordinates. By (3.7) we have, writing ' = ⇢
�1
X ⇢

�1
Y f ,

⇢
�1
Y ⇢

�1
X

sc
HY ' =

 
⇢Y 0

0

! 
@
2
⇢Y f @yj@⇢Y f

@⇢Y @ykf @yj@ykf

! 
⇢Y 0

0

!
.
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Hence, for ⇢Y 6= 0 the signature of this matrix coincides with the signature of HY f . For

⇢Y = 0 it is instead that of the Hessian of f restricted to ⇢Y = 0, that is, of the matrix

obtained taking second order derivatives only with respect to the boundary variables,�
@yj@ykf(0, y)

�
jk
.

Proof of Theorem 3.19. We first prove that condition (3.16) is necessary. In view of

Lemma 3.11, we only need to compare sc
HY1'1 and sc

HY2'2 by writing

(3.17) sc
HY2'2 =

sc
HY2F

⇤
'1 +

sc
HY2('2 � F

⇤
'1).

We write r = ('2 � F
⇤
'1), which, by assumption, satisfies r 2 C1(X ⇥ Y2). Therefore,

⇢
�1
Y2
⇢
�1
X

sc
HY2r vanishes at the boundary. Indeed, in local coordinates we have

⇢
�1
Y ⇢

�1
X

sc
HY2r =

 
⇢Y ⇢X@⇢Y ⇢

2
Y @⇢Y r ⇢

2
Y ⇢X@yj@⇢Y r

⇢Y ⇢X@⇢Y ⇢Y @ykr ⇢Y ⇢X@yj@ykr

!
.

Thus, we have, at the boundary,

(3.18) sgn
⇣
⇢
�1
Y2
⇢
�1
X

sc
HY2F

⇤
'1

⌘
= sgn

⇣
⇢
�1
Y2
⇢
�1
X

sc
HY2'2

⌘
.

By computing these di↵erentials in coordinates at corresponding stationary points, using

(3.7), this implies (3.16).

For the su�ciency of (3.16), we assume familiarity of the reader with the equivalence

of phase function theorem in the usual homogeneous setting, see [40, Prop. 4.1.3], [40,

Prop. 4.1.3] and sketch briefly that the argument goes through with little modification.

By Lemma 3.16 we may assume Y1 = Y2. Note that equivalence is achieved for

'i = ⇢X⇢Y fi if the fi agree on the boundary. The condition on sc
HY 'i means precisely

that the signatures of the Hessians of the fi in the tangential derivatives agree in the

interior and the signatures of the Hessians of the restriction of the fi to ⇢Y = 0 as well,

see Remark 3.20. As such, we may use the same techniques as in the classical situation to

construct a di↵eomorphism on the boundary which transforms the restriction of f1 into

that of f2, cf. also [12]. This di↵eomorphism is then extended by means of Proposition

1.30 into the interior. For sake of brevity, we omit the details here. ⇤

Remark 3.21. Note that near (x0
,y

0) 2 C
 
' , we can also invoke the classical equivalence

theorem directly. We need to find a transformation

F : (x, 0, y) 7! (x, 0, ỹ(x, y))

such that F
⇤
'1 = '2. For � > 0 we set �j(x,�, y) = �fj(x, 0, y), j 2 {1, 2}. Then

�j are equivalent phase functions in the usual homogeneous sense on X ⇥ (R+ ⇥ Y ).

Indeed, evaluating d�j and scd'j in coordinates, we see that d�j 6= 0 and �j is manifestly

homogeneous. Furthermore, the signatures of HY �j are the same as those of sc
HY 'j .
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Since the fj are equal up to second order, the �j are equivalent in the usual sense and

there exists a �-homogeneous G : (x,�, y) 7! (x,�, ỹ(�,x, y)) which is homogeneous such

that G⇤
�1 = �2. Setting F = G|�=1 and possibly applying a scaling, as in the proof of

Lemma 3.16, concludes the proof for (x0
,y

0) 2 C
 
' .

4. Lagrangian distributions

In this section, we will address the class of Lagrangian distributions on scattering

manifolds. First, we introduce oscillatory integrals associated with a phase function

and show that they are well-defined in the usual sense. Then, we define Lagrangian

distributions as a locally finite sum of oscillatory integrals, where the phase function

parametrizes a Lagrangian submanifold. Using the results from the previous section, we

are able to reduce the number of fiber-variables to a minimum and see that the order of

the Lagrangian distribution is well-defined independently of the dimension of the fiber.

4.1. Oscillatory integrals associated with a phase function.

Definition 4.1. Let Y be a mwb. For the remainder of this section, m" denotes a family

of functions m" 2 Ċ1
0 (Y ), " 2 (0, 1], such that, for all k 2 N0, ↵ 2 Nd�1

0 , " 2 (0, 1],

(4.1)
���(⇢2Y @⇢Y )k(⇢Y @y)↵m"(y)

���  Ck,↵ ⇢
k+|↵|
Y ,

and m"(y)! 1 as "! 0, for all y 2 Y
o.

Remark 4.2. We observe that (4.1) does not depend on the choice of bdf and is preserved

under pullbacks by sc-maps. It is possible to find such a family on any manifold with

boundary. In fact, any choice of tubular neighborhood U of @Y such that U ⇠= [0, �)⇥ @Y

with coordinates (⇢Y , y) introduces a dilation in the first variable. Take a function

� 2 C1
c [0,1) such that �(x) = 1 on [0, �]. Then set m" = 1 on Y \ U and

m"(⇢Y , y) =

8
<

:
�("⇢�1

Y ) if "⇢�1
Y > �/2,

1 otherwise.

Definition 4.3. Consider X, Y mwbs, U ⇢ X ⇥ Y an open subset, ' 2 ⇢�1
X ⇢

�1
Y C1(U)

a phase function and a 2 ⇢
�me
X ⇢

�m 

Y C1(X ⇥ Y,
sc⌦1/2(X) ⇥ sc⌦1(Y )) an amplitude

supported in U . Then I'(a) 2 (Ċ1
0 )0(X,

sc⌦1/2(X)) is defined as the distributional

1/2-density acting on f 2 Ċ1
0 (X,

sc⌦1/2(X)) by

(4.2) hI'(a), fi := lim
"&0

ZZ

X⇥Y

�
e
i'
a · (f ⌦m")

�
.

Remark 4.4. If X and Y are equipped with a scattering metric, we have a canonical

identification of functions and 1-densities provided by the volume form. Therefore, we
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can freely choose whether to view functions and distributions as matching (distributional)

1-, 0- or 1
2 -densities.

Remark 4.5. When X = Bd and Y = Bs, these oscillatory integrals correspond, under

(inverse) radial compactification, to the tempered oscillatory integrals analyzed in [12, 37].

Lemma 4.6. The expression (4.2) yields a well-defined tempered distribution (density)

on X. In particular, it is independent of the choice of m".

Proof. Assume, without loss of generality, that we have a fixed scattering metric and

we can identify scattering densities and functions. Let U ⇢ X ⇥ Y =: B be an open

neighborhood of the boundary B
 such that scd' 6= 0 on U .

On X ⇥ Y \ U , the dominated convergence theorem implies that (4.2) is well-defined.

The integrand u" = e
i'
a(f ⌦m") converges pointwise and is dominated by |a · f |, which

is bounded for ⇢Y > c.

On U , as in the classical theory, we can define a first order scattering di↵erential

L 2 Di↵1
sc(U) which has the property that Lei' = e

i'. By Proposition 1 from [29], we

see that L
t
2 Di↵1

sc(U). Using repeated integration by parts and (4.1), we are able to

increase the order in ⇢X and ⇢Y to arbitrary powers, and an application of the dominated

convergence theorem then finishes the proof. ⇤

After an arbitrary choice of scattering metrics, we may locally identify (X, gX) and

(Y, gY ) with subsets of Bd and Bs, respectively. Then, using some explicit local isomorphism

 =  X ⇥ Y , we can identify densities with functions using the induced measures µX

and µY . After use of a partition of unity, we may locally express (4.2) as

hI'(a), fi := lim
"&0

ZZ

Bd⇥Bs
 ⇤

⇣
e
i'(⇢X ,x,⇢Y ,y)

a(⇢X , x, ⇢Y , y)m"(⇢Y , y)f(⇢X , x)
⌘

(4.3)

= lim
"&0

ZZ

Bd⇥Bs
e
i ⇤'(⇢X ,x,⇢Y ,y) em"(⇢Y , y)ea(⇢X , x, ⇢Y , y) ef(⇢X , x)dµBddµBs(4.4)

where ef =  ⇤
f |dµBd |

�1/2 and ea 2 ⇢�me

Bd ⇢
�m 

Bs C1(Bd
⇥ Bs) satisfies ea efdµBddµBs = af .

Summing up, we may always transform to locally work on Bd
⇥Bs and in local coordinates

we work with usual oscillatory integrals.

Since (4.2) does not depend on the choice of m", as it is usual we drop it from the

notation and write, in the sense of oscillatory integrals,

(4.5) I'(a) :=

Z

Y
e
i'
a.

4.1.1. Singularities of oscillatory integrals. Recall that there is a notion of wavefront-set

adapted to the pseudo-di↵erential scattering calculus, called the scattering wavefront-set,

cf. [5, 29, 9].



41

Definition 4.7. Let u 2 (Ċ1
0 )0(X,

sc⌦1/2). A point z0 2 W = @
�
sc
T
⇤
X
�
is not in the

scattering wavefront-set, and we write z0 /2WFsc(u), if there exists a scattering pseudo-

di↵erential operator A whose symbol is elliptic at z0 such that Au 2 Ċ1
0 (X,

sc⌦1/2).

Proposition 4.8. For the oscillatory integral in (4.2), we have

WFsc(I'(a)) ✓ ⇤'.

Furthermore, if z 2 ⇤' and a is rapidly decaying near �
�1
' (z), then z /2WFsc(I'(a)).

Remark 4.9. The (sc-)singular support of u is defined as follows: a point p0 2 X is

contained in singsuppsc(u) if and only if for every f 2 C1(X) with f(p0) = 1 we have

fu /2 Ċ1
0 (X). Similar to the classical wavefront-set and singular support, we have that

pr1(WFsc(u)) = singsuppsc(u). Thus, in particular, if a is rapidly decaying near C', then

I'(a) 2 Ċ1
0 (X).

We refer the reader to [11, 37] for the details of this analysis of the wavefront-sets.

The proof is carried out as in the classical setting: first, a characterization of WFsc in

terms of cut-o↵s and the Fourier transform is achieved, and then one estimates FI'(a)

in coordinates.

Proposition 4.8 gives another insight why we consider ⇤' as the true object of interest

associated with a phase function, not L'. In fact, considering (4.2) once more, we see

that we may modify phase function and amplitude in the integral by any real valued

function  2 C1(X ⇥ Y ), writing

e
i'
a = e

i('+ )
⇣
e
�i 

a

⌘
.

Then e
�i 

a 2 ⇢
�me
X ⇢

�m 

Y C1(X ⇥ Y ), and hence it is still an amplitude, and '+  is

a new local phase function. Now, while in general L' 6= L'+ , we have ⇤' = ⇤'+ , by

Lemma 3.1. This underlines that only ⇤' and not L' can be associated with I'(a) in an

intrinsic way. Nevertheless, it is often convenient to have L' available during the proofs.

4.2. Definition of Lagrangian distributions. The class of oscillatory integrals asso-

ciated with a Lagrangian is – as in the classical theory – not a good distribution space,

since in general it is not possible to find a single global phase function to parametrize ⇤.

Instead, we introduce the following class of Lagrangian distributions. Note that, by our

previous findings, we may always reduce an oscillatory integral on X ⇥ Y into a finite

sum of oscillatory integrals over X ⇥ Bs for s = dim(Y ).

Definition 4.10 (sc-Lagrangian distributions). Let X be a mwb, ⇤ ⇢ @
sc
T
⇤
X a sc-

Lagrangian. Then, Ime,m (X,⇤), (me,m ) 2 R2, denotes the space of distributions that

can be written as a finite sum of (local) oscillatory integrals as in (4.5), whose phase
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functions are clean and locally parametrize ⇤, plus an element of Ċ1
0 (X). More precisely,

u 2 I
me,m (X,⇤) if, modulo a remainder in Ċ1

0 (X),

(4.6) u =
NX

j=1

Z

Yj

e
i'jaj ,

where, for j = 1, . . . , N :

1.) Yj is a mwb of dimension sj ;

2.) 'j 2 ⇢
�1
Yj
⇢
�1
X C1(X ⇥ Yj) is a local clean phase function with excess ej , defined

on an open neighborhood of the support of aj , which locally parametrizes ⇤;

3.) aj 2 ⇢
�m ,j

Yj
⇢
�me,j

X C1�
X ⇥ Yj ,

sc⌦1/2(X)⇥ sc⌦1(Y )
�
with

(m ,j ,me,j) =

✓
m +

d

4
�

sj

2
�

ej

2
,me �

d

4
+

sj

2
�

ej

2

◆
.

We also set

I
�1,�1(X,⇤) =

\

(m ,me)2R2

I
m ,me(X,⇤),

I(X,⇤) = I
+1,+1(X,⇤) =

[

(m ,me)2R2

I
m ,me(X,⇤).

Remark 4.11. The reason for the choice of the aj in the scattering amplitude densities

spaces of order (me,j ,m ,j) will be explained in Section 4.4.

Remark 4.12. As mentioned in the introduction, kernels of scattering pseudodi↵erential

operators on a scattering manifold X are sc-Lagrangian distributions. In fact, in this

case the underlying manifold is X ⇥X, which is a manifold with corners. Furthermore

� ⇢ X ⇥X does not hit the corner @X ⇥ @X in a clean way, that is, � ⇢ X ⇥X is not

a p-submanifold. Similarly, the phase function associated to the SG-phase (x � y)⇠ 2

SG1,1
cl (R2d

⇥ Rd) is not clean.

The geometric obstruction of � ⇢ X⇥X—or more generally the graphs of (scattering)

canonical transformations—not being a p-submanifold can be overcome by lifting the

analysis to a blow-up space, see [27, 32]. Let X,Y be manifolds with boundaries and

denote by M = [X ⇥ Y ; @X ⇥ @Y ] the blown-up space. Choose a relatively open set

U ⇢ M̄ such that Ū \ @2M = ;. Then U is a manifold with boundary and we can define

Lagrangian distributions with compact support on U . By the Schwartz kernel theorem, we

may associate to a Lagrangian distribution KA 2 I(U,⇤) an operator A : X ! Y acting

by hAu, vi = hKA, u⌦ vi for all u 2 C1
0 (X,

sc⌦1/2(X)) and v 2 C1
0 (Y, sc⌦1/2(Y )). This

gives a class of Fourier integral operators (FIOs) on scattering manifolds. We postpone

the construction of the full theory of scattering FIOs, including composition, mapping

properties, and propagation of singularities, to a subsequent paper.



43

The next result follows from Proposition 4.8.

Proposition 4.13. Let ⇤ ⇢ @
sc
T
⇤
X be a sc-Lagrangian, and u 2 I(X,⇤). Then

WFsc(u) ✓ ⇤.

As in the classical case, the class of Lagrangian distributions contains the globally

regular functions (cf. Treves [40, Chapter VIII.3.2]):

Lemma 4.14. Let ⇤ ⇢ @ sc
T
⇤
X be a sc-Lagrangian. Then

(4.7) Ċ1
0 (X,

sc⌦1/2(X)) = I
�1,�1(X,⇤).

Proof. We first prove the inclusion “◆”. Choose a finite covering of sc
T
⇤
X with open

sets {Xj}
N
j=1 such that there exists a clean phase function 'j on each Xj parametrizing

⇤\ sc
T
⇤
Xj , j = 1, . . . , N . Let {gj}Nj=1 be a smooth partition of unity subordinate to such

covering. We view Xj as a subset of X ⇥ Bd, j = 1, . . . , N .

Let � 2 Ċ1
0 (Bd

,
sc⌦1(Bd)) such that

R
� = 1. For any f 2 Ċ1

0 (X,
sc⌦1/2(X)) we set

aj = e
�i'jgj · (f ⌦ �), fj =

Z

Bd
e
i'jaj , j = 1, . . . , N.

We see that

aj 2 Ċ1
0 (X ⇥ Bd

,
sc⌦1/2(X)⇥ sc⌦1(Bd)), j = 1, . . . , N,

and, summing up,

NX

j=1

fj(x) =

Z

Bd

0

@
NX

j=1

gj(x, y)

1

A · (f(x)⌦ �(y)) = f(x).

The inclusion “✓” is achieved by di↵erentiation under the integral sign. ⇤

4.3. Transformations of oscillatory integrals. In Section 3 we have seen several

procedures that allow to switch from one phase function to others that parametrize

the same Lagrangian. We will now exploit these to transform oscillatory integrals into

“standard form”. In the sequel, we will always assume, by a partition of unity, that the

support of the amplitude is suitably small.

4.3.1. Transformation behavior and equivalent phase functions. Now we reconsider (4.3),

to express the transformation behavior of the oscillatory integrals under fiber-preserving

di↵eomorphisms. With the chosen notation and a local phase function '1, we have

(4.8) I'1(a) =

Z

Y1

e
i'1a =

Z

Y2

e
iF ⇤'1F

⇤
a = IF ⇤'1(F

⇤
a)
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for any di↵eomorphism F : X ⇥ Y2 ! X ⇥ Y1 of the form F = id⇥ g. Assume that '2 is

equivalent to '1 by F , see Definition 3.10. After the transformation, we rewrite (4.8) as

(4.9)

Z

Y2

e
i'2e

i(F ⇤'1�'2)F
⇤
a.

Now, since F
⇤
'1 � '2 is smooth up to the boundary, the same holds for ei(F

⇤'1�'2) and

this factor can be seen as part of the amplitude. Therefore, we may write

(4.10) I'1(a) = I'2

�
(F ⇤

a) exp(i(F ⇤
'1 � '2))

�
.

In particular, we can express I'(a), near any boundary point of the domain of definition,

using the principal part of ' introduced in Definition 1.12, namely

(4.11) I'p(ea), with ea = a exp
�
i('� 'p)

�
.

By Lemma 3.12, '�'p 2 C1 and thus ea 2 ⇢�me
X ⇢

�m 

Y C1(B). In the following construc-

tions, we always assume that ' is replaced by its principal part, cf. Remark 3.15.

4.3.2. Reduction of the fiber. We will now analyze the change of boundary behavior under

a reduction of fiber variables near p0 2 supp(a) \ C'. Hence, we assume that

⇢
�1
Y ⇢

�1
X

sc
HY ' has rank r > 0 at p0 2 C'.

We assume, as explained above, that the oscillatory integral is in the form (4.11), namely,

' is replaced by its principal phase part. We observe that, at the boundary point p0,

rk(⇢�1
Y ⇢

�1
X

sc
HY ') = rk(⇢�1

Y ⇢
�1
X

sc
HY �('p)).

By Proposition 3.5, we can define a local phase function 'red parametrizing the same

Lagrangian as '. In particular, after a change of coordinates by a scattering map, we can

assume (x,y) 2 X ⇥ Bs�r
⇥ (�", ")r, and 'red is given by

'red(x, ⇢Y , y
0) = '(x, ⇢Y , y

0
, 0),

where ⇢Y = ⇢Bs�r is the boundary defining function on Bs�r and on Bs�r
⇥ (�", ")r. We

introduce

(4.12) e'(x,y) = 'red(x, ⇢Y , y
0) +

1

2
⇢
�1
X ⇢

�1
Y Q(y00),

where Q is a non-degenerate quadratic form with the same signature as @y00@y00f at p0.

Then, by Theorem 3.19, ' is equivalent to e' by a local di↵eomorphism F = id⇥ g. Note

that 'red is equal to its principal part, because we assumed that ' is replaced by 'p.

We may assume that a is supported in an arbitrarily small neighborhood of the

stationary points of '. Indeed, we may achieve this for a general amplitude a by applying
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a cut-o↵ in y
00 and writing a = �a+ (1� �)a. The oscillatory integral with amplitude

(1� �)a produces a term in Ċ1
0 (X,⌦1/2(X)), by Remark 4.9.

Therefore, choosing the support of a small enough, we may perform the change of

variables by the local di↵eomorphism F as in (4.10). We write, motivated by Lemma

1.16 and Example 1.37,

ared(x, ey)
|dey00

|

⇢
r
eY
· [h(x, ey)]r = (F ⇤

a)(x, ey),

which is assumed supported in some compact subset of (�✏, ✏)r. Then I'(a) is transformed

into I'red(b) where

(4.13) b(x, ⇢Y , y
0) = ⇢

�r
Y

Z

(�",")r
e

i
2⇢

�1
X ⇢�1

Y Q(y00)
⇣
e
i(F ⇤'(x,y)�e'(x,y))

ared(x,y)
⌘
dy00.

We claim that b(x, ⇢Y , y0) is again a (density valued) amplitude. First, it is clear that b

decays rapidly at (x, ⇢Y , y0) if a decays rapidly at (x, ⇢Y , y0, 0). In particular, b is smooth

away from B.

We now we apply the stationary phase lemma [21, Lem. 7.7.3] to (4.13), which yields

the asymptotic equivalence, as ⇢Y ⇢X ! 0,

(4.14)

b(x, ⇢Y , y
0) = ⇢

r/2
X ⇢

�r/2
Y | detQ|

�1/2
e

i
4⇡sgn(Q)

e
i(F ⇤'(x,⇢Y ,y0,0)�e'(x,⇢Y ,y0,0))

ared(x, ⇢Y , y
0
, 0)

+O
�
⇢
�m � r

2+1
Y ⇢

�me+
r
2+1

X

�
.

Similar asymptotics hold for all derivatives of b. We may hence view b as a (density

valued) amplitude of the order

(4.15) (m0
e,m

0
 ) =

⇣
me �

r

2
,m +

r

2

⌘
.

By Remark 3.15 we see that, away from the corner, F ⇤
'� e' vanishes at C'. Therefore,

the principal part of b does not depend on '. Hence, by comparision of principal parts,

cf. Lemma 1.13, (4.14) reduces to

(4.16) b(x, ⇢Y , y
0) ⇠ ⇢r/2X ⇢

�r/2
Y | detQ|

�1/2
e

i
4⇡sgn(Q)

ared(x, ⇢Y , y
0
, 0)

modulo terms of lower order.

4.3.3. Elimination of excess. Assume now that ' is a clean phase function of excess

e > 0. Near some point in C', as described in Section 3.4, we may make the following

geometric assumptions after application of some di↵eomorphism F : We assume that

Y = Bs�e
⇥ (�✏, ✏)e and that the fibers of C' ! ⇤' are given by constant (x, ⇢Y , y0) and
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arbitrary y
00. We proceed as in [40] and define

(4.17) e'(⇢X , x, ⇢Y , y
0) := '(⇢X , x, ⇢Y , y

0
, 0).

We observe that for any fixed y
00 the phase function �(y00), defined as

(4.18) [�(y00)](x, ⇢Y , y
0) = '(x, ⇢Y , y

0
, y

00),

is equivalent to e'. Indeed, since @y00scdY ' = 0, the di↵erential sc
HY �(y00) has the same

signature as sc
HBs�e e' and both parametrize the same Lagrangian with the same number

of phase variables (s� e). Therefore, Theorem 3.19 guarantees the existence of a family of

di↵eomorphisms G(y00) : (x, ⇢Y , y0) 7! (x, g(x, ⇢Y , y0, y00)) such that, defining eG : (x,y) =

(x, ⇢Y , y0, y00) 7! (x, g(x, ⇢Y , y0, y00), y00),

(4.19) eG⇤
'� e'

is smooth everywhere, and vanishes on Ce' away from the corner by Remark 3.15. Then

we may express I'(a) as Ie'(b), where

(4.20) b(x, ⇢Y , y
0) = ⇢

�e
Y

Z

(�",")e
e
i( eG⇤'�e')(x,⇢Y ,y0,y00)( eG⇤

a)red(x, ⇢Y , y
0
, y

00) dy00

and

( eG⇤
a)red(x,y)

|dy00|

⇢
e
eY
· [h(x,y)]e

= ( eG⇤
a)(x,y).

Since eG⇤
'� e' is smooth, b is again an amplitude of order

(4.21) (m̃e, m̃ ) = (me,m + e) .

Notice that at points in C' away from the corner, eG⇤
' � e' vanishes and hence (4.20)

reduces to

(4.22) b(x, ⇢Y , y
0) = ⇢

�e
Y

Z

(�",")e
( eG⇤

a)red(x, ⇢Y , y
0
, y

00) dy00.

4.4. The order of a Lagrangian distribution. We will now obtain the definition of

the order of I'(a), which is invariant with respect to all the three steps described above.

Lemma 4.15. The numbers µ = m + s/2 + e/2 and µe = me � s/2 + e/2 remain

constant under reduction of fiber-variables and elimination of excess.

Proof. Consider a Lagrangian distribution A = I'(a) where a has order m ,me and

dimY = s with excess e and r reduceable fiber variables. After the reduction of fiber,

we obtain an amplitude a
0 with order m0

e = me � r/2,m0
 = m + r/2 (cf. (4.15)), with

excess e0 = e and number of fiber variables s0 = s� r. The elimination of excess yields

an amplitude a
# with order m

#
e = me,m

#
 = m + e (cf. (4.21)), excess e

# = 0 and
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s
# = s� e. It is now straightforward to check that

m + s/2 + e/2 = m
0
 + s

0
/2 + e/2 = m

#
 + s

#
/2 + e

#
/2,

me � s/2 + e/2 = m
0
e � s

0
/2 + e/2 = m

#
e � s

#
/2 + e

#
/2.

⇤

This shows that the tuple (µ , µe) can be used to define the order of a Lagrangian

distribution.

We still have the freedom to add arbitrary constants to both orders. In order to choose

these constants, we compare our class of Lagrangian distributions with Hörmander’s

Lagrangian distributions and the Legendrian distributions of Melrose–Zworski [32]. First,

consider the Delta-distribution �0, which is in the Hörmander class Id/4 and µ = d/2.

Therefore, we choose m = µ � d/4 to obtain the same  -order for �0. Similarly, the

constant function is a Legendrian distribution of order �d/4 and µe = 0, and therefore

we choose me = µe+ d/4. Note that we use the opposite sign convention for the me-order

then in [32].

5. The principal symbol of a Lagrangian distribution

We will now define the principal symbol map j
⇤
me,m 

on I
me,m (X,⇤). Similarly to

the classical theory, it takes values in a suitable (density) bundle on ⇤. This is coherent

with the notion of principal symbol map jme,m for scattering operators, see [29, 30],

as well as of principal part for classical SG symbols, see [17, 37], which both provide

smooth objects defined on W = @
sc
T
⇤
X � ⇤. We adapt the construction in [40] (see

also [23, 20]), starting from the simplest case of local non-degenerate phase functions

parametrizing ⇤, up to the general case of local clean functions.

Let ⇤ ⇢W be an sc-Lagrangian, which on B = X⇥Y is locally parametrized by a local

non-degenerate phase function ' 2 ⇢�1
Y ⇢

�1
X C1(U), U ⇢ B. Let a 2 ⇢

�m 

Y ⇢
�me
X C1�

X ⇥

Y,
sc⌦1/2(X)⇥sc⌦1(Y )

�
be supported in U , and let I'(a) be a (micro-)local representation

of u 2 I
me,m (X,⇤) as a single oscillatory integral.

We now fix a 1-density µX on X. Any choice of 1 density µY on Y then trivializes the

one-dimensional bundle C1(X ⇥ Y,
sc⌦1/2(X)⌦ sc⌦1(Y )), and any element is given by

a multiple of ⇢�(d+1)/2
X ⇢

�s�1
Y

p
µX ⌦ µY . Any choice of coordinates (⇢Y , y) in Y allows

for us to express µY locally as @µY
@(⇢Y ,y) d⇢Y dy, meaning as having a smooth density

factor with respect to the (local) Lebesgue measure. As such, we rewrite the amplitude

a 2 ⇢
�m 

Y ⇢
�me
X C1(X ⇥ Y,

sc⌦1/2(X)⌦ sc⌦1(Y )) in any choice of local coordinates as

⇢
m 

Y ⇢
me
X a(x,y) = a(x,y) ⇢�(d+1)/2

X ⇢
�s�1
Y

p
µXd⇢Y dy.(5.1)

for a 2 C1(X ⇥ Y ).
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5.1. Non-degenerate equivalent phase functions. As above (cf. (2.4)), when U is

a neighborhood of a point close to the boundary B, we can there identify scdY ' with the

map,

(x,y) 7! �(x,y) =
�
� f(x,y) + ⇢Y @⇢Y f(x,y) @yf(x,y)

�
2 Rs

,

locally well-defined on a neighborhood of C' within U .

In view of the non-degeneracy of ', � has a surjective di↵erential, so that we can

consider the pullback of distributions d' = �⇤
�, with � = �0 2 D

0(Rs) the Dirac

distribution, concentrated at the origin, on Rs (cf. [21, Ch. VI]). More explicitly, choosing

functions (t1, . . . , td) =: t, which restrict to a local coordinate system (up to the boundary)

on C', the pull-back d' can be expressed locally as the density

d' =

����det
@(t,�)

@(x,y)

����
�1

dt = �'(t) dt.

Consider another local non-degenerate phase function e' parametrizing ⇤, defined on

an open subset eU ⇢ X ⇥ eY , such that e' = F
⇤
', with a (local, fibered) di↵eomorphism

F = id⇥g : X⇥ eY ! X⇥Y . Since F is a sc-map, there exists a function h 2 C1(X⇥Y )

such that (F ⇤
⇢Y )(x, ey) = ⇢eY · h(x, ey).

As above, we identify scdY e' with the map e� and define de' and �e'(et) in terms of the

functions etj = F
⇤
tj , which are local coordinates on Ce', provided eU is small enough.

In the sequel, we show how objects defined in these two choices (t,') and (et, e') are
related. For that, we implicitly assume all objects evaluated at corresponding points

(x,y) 2 C' (parametrized by t) and (x, ey) = F (x,y) 2 Ce' (parametrized by et).

Lemma 5.1. The functions �e'(et) and �'(t) are related by

�e'(et) = h(x,y)s+1

����det
@g(x, ey)
@ey

����
�2

�'(t(et)).

Proof of Lemma 5.1. By direct computation, e� and � are related by a matrix M�e� via

(5.2) e�(x, ey) = �(F (x, ey)) ·M�e�(x, ey),

where

M�e�(x, ey) =

0

BBB@

[h(x, ey)]�2@⇢Y

@⇢eY
(x, ey) [h(x, ey)]�2

⇢
�1
eY
@⇢Y

@ey (x, ey)

[h(x, ey)]�1
⇢eY

@y

@⇢eY
(x, ey) [h(x, ey)]�1@y

@ey (x,
ey)

1

CCCA

and

| detM�e�(x, ey)| = h(x, ey)�s�1
·

����det
@g(x, ey)
@ey

���� .
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Di↵erentiating (5.2), we obtain, using that e�(x,y) = �(F (x, ey)) = 0 on Ce',

(5.3)

@e�
@(x, ey)(x,

ey) = t
M�e�(x, ey) ·

@(�(F (x, ey)))
@(x, ey)

= t
M�e�(x, ey) ·


@�

@(x,y)
(F (x, ey))

�
·

@F

@(x, ey)(x,
ey).

Furthermore, we have

@et
@(x, ey)(x,

ey) =


@t

@(x,y)
(F (x, ey))

�
·

@F

@(x, ey)(x,
ey).

Summing up, we find

(5.4)
@(et, e�)
@(x, ey)(x,

ey) = diag( d,
t
M�e�(x, ey)) ·


@(t,�)

@(x,y)
(F (x, ey))

�
·

@F

@(x, ey)(x,
ey),

which in turn implies, using F = id⇥ g,

�e'(et) =

�����
@(et, e�)
@(x, ey)(x,

ey)

�����

�1

= [h(x, ey)]s+1

����det
@g(x, ey)
@ey

����
�2

�'(t(et)),

as claimed. ⇤

We define

(5.5) w' = (⇢�me
X ⇢

�m �(s+1)/2
Y a)|C' ·

q
|d'|,

with a given in (5.1), which is a half-density on (the interior of) C'.

To define we' accordingly, we check that I'(a) transforms under the action of F as
Z

Y
e
i'
a =

Z

eY
e
i(F ⇤')(x,ey)

F
⇤
h
⇢
�me
X ⇢

�m 

Y a ⇢�(d+1)/2
X ⇢

�s�1
Y

p
µX ⌦ d⇢Y dy

i
(x, ey)

=

Z

eY
e
ie'(x,ey)

⇢
�me
X ⇢

�m 

eY
ea(x, ey) (⇢�(d+1)/2

X ⇢
�s�1
eY
p
µX ⌦ d⇢eY dey),

where

(5.6) ea(x, ey) = a(F (x, ey))h(x, ey)�m �s�1

����det
@g(x, ey)
@ey

���� .

We define, coherently with (5.5), we' = ⇢
�me
X ⇢

�m �(s+1)/2
eY

ea
p
|de'|.

Lemma 5.2. The half-densities we' and w' are related by

we' = F
⇤
w'

in (the interior of) Ce'.
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Proof. We obtain from (5.6) and Lemma 5.1 that

ea(x, ey)
���e'(et)

��1/2 = a(F (x, ey))h(x, ey)�m �(s+1)/2
���'(t(et))

��1/2 .

Then, using the local coordinates t and et = F
⇤
t introduced above, on Ce' we find

we' = F
⇤
⇣
⇢
�me
X ⇢

�m �(s+1)/2
Y a

⌘ ���'(t(et))
��1/2

q��det
��

= F
⇤
⇣
⇢
�me
X ⇢

�m �(s+1)/2
Y a |�'(t)|

1/2
p

|dt|
⌘
= F

⇤
w'.

⇤

As a half-density valued amplitude, w' is of order (me,m � (s + 1)/2), as shown

by the computations above. In accordance with the definition of the principal part (cf.

Definition 1.12), we set

w' =

✓
a ·

q
|d'|

◆����
C'

.

As seen above, w' transforms to we' under the pull-back via F . Since �' is a local

di↵eomorphism C' ! L', we can also consider

↵' = (�')⇤(w'),

which yields a local half-density on ⇤'. The fact that, for the two equivalent phase

functions ' and e', we have �e' = �' � F , together with the transformation properties of

w', shows that

↵e' = ↵' = ↵,

that is, ↵e' and ↵' are equivalent local representations of a half-density ↵ defined on ⇤,

in the local parametrizations ⇤e' and ⇤', respectively.

We now prove that the same holds true if e' is merely a non-degenerate phase function

equivalent to ' in the sense of Definition 3.10. First, if we repeat the construction ofp
|de'| described above, all the computations remain valid modulo terms, generated by e�,

which contain an extra factor ⇢X⇢eY . This is due to

F
⇤
'� e' 2 C1(eU)

, ⇢
�1
X ⇢

�1
eY
ef(x, ey) = ⇢

�1
X ⇢

�1
eY
h(x, ey)�1(F ⇤

f)(x, ey) + g(x, ey), g 2 C1(eU)

, ef(x, ey) = h(x, ey)�1(F ⇤
f)(x, ey) + ⇢X⇢eY g(x, ey), g 2 C1(eU).

Then, by rescaling we' through multiplication by ⇢me
X ⇢

m +(s+1)/2
eY

and then restricting w'

on Ce', such additional terms identically vanish.

Moreover, by Lemma 3.12 and Remark 3.15, we know that, in a neighborhood eU of any

point in the interior of Ce
e' or C e' , which does not intersect C ee' , it can be assumed, after

passage to the principal parts, that e' = F
⇤
' on Ce' \ @ eU , see Section 4.3.1. It follows
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that the factor exp(i(F ⇤
'� e')), appearing in ea (cf. (4.10)) also disappears, away from

the corner, when restricting to the faces Ce
e' or C e' .

Finally, we observe that w' and we' are obtained as restrictions of smooth objects

on X ⇥ Y and X ⇥ eY to their respective boundaries. As such, their transformation

behavior extends, by continuity, to the corner as well, producing smooth objects on C'

and Ce'. By push-forward through �e' and �', we find again that ↵e' = ↵' = ↵ locally on

⇤e' = ⇤' = ⇤.

5.2. Non-degenerate phase functions, reduction of the fiber. We now consider

a ' such that reduction of fiber variables, see Section 3.2, is possible. By the argument

in Section 5.1, we may then write I'(a) = I'red(b) with b from (4.13). We now compare

↵' to the analogously defined half-density �'red . We can replace the phase function ' by

the equivalent phase function given in (4.12), and this does not a↵ect ↵'. Hence we may

assume that ' is of the form '(x,y) = 'red(x,y0) + 1
2⇢

�1
X ⇢

�1
Y hQy

00
, y

00
i.

As such, we assume, in this splitting of coordinates, C' ⇢ {(x,y0
, 0)}. We find:

Lemma 5.3. Under the identification C'red ⇥ {0} = C', we have

q
|d'| = | detQ|

� 1
2

q
|d'red |.

Proof. We compute

�(x,y) =
�
� fred(x,y

0) + ⇢Y @⇢Y fred(x,y
0) @y0fred(x,y

0) 0
�

+
�
�

1

2
hQy

00
, y

00
i 0 @y00Q(y00)

�

=: (�red(x,y
0) 0) +

�
 (y00) Qy

00�
2 Rs�r

⇥ Rr
.

Therefore,

@(t,�)

@(x,y)
(x,y) =

0

BBBBBB@

@t

@x
(x,y)

@t

@y0 (x,y)
@t

@y00
(x,y)

@�red

@x
(x,y0)

@�red

@y0 (x,y0) �
1

2

@ 

@y00
(y00)

0 0 Q

1

CCCCCCA
.
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Consequently,

q
|d'| =

����det
@(t,�)

@(x,y)

����
�1/2

Ce'

p
|dt|

=

����det
@(t,�red)

@(x,y0)

����
� 1

2

C'red

· | detQ|
� 1

2

p
|dt|

= | detQ|
� 1

2

q
|d'red |.

⇤

Notice that7 a = ared. We compute, by (4.14), modulo amplitudes of lower order,

(5.7)

b(x,y0) = ⇢
�me+r/2
X ⇢

�m �r/2
Y | detQ|

�1/2
e
i⇡4 sgn(Q)a(x,y0

, 0)
p
µX(⇢�(s�r+1)/2

Y |dy
0
|).

We observe that b is an amplitude of order (me � r/2,m + r/2) and find

b(x,y0) = | detQ|
�1/2

e
i⇡4 sgn(Q)a(x,y0

, 0) +O
�
⇢X⇢Y

�
,

which implies, using Lemma 5.3,

w'red =

✓
b(x,y0)

q
|d'red |

◆����
C'red

= e
i⇡4 sgn(Q)

✓
a(x,y)

q
|d'|

◆����
Ce'

= e
i⇡4 sgn(Q)w'.

This, in turn, finally gives

�'red = (�'red)⇤(w'red) = e
i⇡4 sgn(Q)

· (�')⇤(w') = e
i⇡4 sgn(Q)

· ↵'.

5.3. Clean phase functions, elimination of the excess. We now proceed with the

last reduction step, namely, we consider a clean phase function and eliminate its excess.

As in Section 4.3.3, we assume Y = Bs�e
⇥ (�✏, ✏)e with the fibers of C' ! ⇤' given by

constant (x, ⇢Y , y0) and arbitrary y
00
2 (�✏, ✏)e.

Switching to the phase function e' in (4.17), we may write I'(a) = Ie'(b) with b defined

in (4.20). We apply the construction of the previous section, and obtain the density

�e' = (�e')⇤
�
b ·

p
|de'|

�
Ce'

from the data (e', b).
Alternatively, we may study the parameter dependent family of oscillatory integrals

I�(y00)(a(y
00)) with phase functions �(y00) defined in (4.18) and amplitudes

a(y00) : (x, ⇢Y , y
0) 7! ⇢

�e
Y a(x, ⇢Y , y

0
, y

00) = ⇢
�e
Y a(x,y),

7Observe that ared is obtained by splitting of the density and weight factors in two steps.



53

with corresponding principal parts a(y00). Since �(y00) is non-degenerate, we can define

the parameter dependent family of half-densities on ⇤

↵�(y
00) = (��(y00))⇤

⇣
a(y00) ·

q
|d�(y00)|

⌘

C�(y00)
,

and finally set

(5.8) �e' =

Z

(�",")e
↵�(y

00) dy00.

Proposition 5.4. The half-densities on ⇤e' = ⇤' = ⇤ given by �e' and �e' coincide.

Proof. We consider the smooth family of di↵eomorphisms G(y00) = id⇥ g(y00), depending

on the parameter y00, involved in eG from (4.19). Assuming the amplitudes a(y00) supported

away from the corner points, we can suppose, as above, G(y00)⇤�(y00)� e' = 0. We now

compute, using Lemma 3.7 and the expression (4.20), together with the transformation

properties of w',

⇣
be' ·

q
|de'|

⌘
(x, ⇢Y , y

0)|Ce' = be'(x, ⇢Y , y
0)|Ce'

�����det
@(et, e�)
@(x,y0)

�����

� 1
2

Ce'

q
|det|

((5.6))) =

Z

(�",")e
a(G(x,y))|Ce'

����det
@g

@y0 (x,y)

����
Ce'

[h(x,y)]
�m �s�1
Ce'

⇥

⇥

�����det
@(et, e�)
@(x,y0)

�����

� 1
2

Ce'

q
|det| dy00

(Lemma 5.1)) =

Z

(�",")e
G(y00)⇤

"
a(x,y)|C�(y00)

����det
@(t,�(y00))

@(x,y0)

����
� 1

2

C�(y00)

p
|dt|

#
dy

00

(Def. of d�(y00) )) =

Z

(�",")e
G(y00)⇤

h⇣
a(y00) ·

q
|d�(y00)|

⌘
(x, ⇢Y , y

0)
i

C�(y00)
dy

00
.

Applying (�e')⇤ to the left-hand side, we obtain �e'. To apply (�e')⇤ to the right-hand

side, we first recall that e' and �(y00) are equivalent by G(y00). Using again Lemma 3.7

(see also Lemma 3.16), this implies

(5.9) �e' = ��(y00) �G(y00)) (�e')⇤ = (��(y00))⇤ �G(y00)⇤.
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Since �e' does not depend on y
00, we can take it inside the integral and use (5.9), finally

obtaining

�e' = (�e')⇤

"Z

(�",")e
G(y00)⇤

h⇣
a(y00) ·

q
|d�(y00)|

⌘i

C�(y00)
dy

00

#

=

Z

(�",")e
(��(y00))⇤ �G(y00)⇤ �G(y00)⇤

h⇣
a(y00) ·

q
|d�(y00)|

⌘i

C�(y00)
dy

00

=

Z

(�",")e
(��(y00))⇤

h⇣
a(y00) ·

q
|d�(y00)|

⌘i

C�(y00)
dy

00 =

Z

(�",")e
↵�(y

00) dy00 = �e'.

Extension to the corner points as in the previous subsections proves the claim. ⇤

We already showed that the half-density ↵ associated with I'(a) is invariant under a

change of equivalent non-degenerate phase functions. Together with the argument above,

this also shows that the half-density � associated with I'(a) remains the same under the

change of equivalent phase functions which are clean with the same excess.

5.4. Principal symbol and principal symbol map. Let u 2 I
me,m (X,⇤). Consider

any local representation of u, as introduced in Definition 4.10, with clean phase function

' with excess e associated with ⇤ and a some local symbol density. The arguments in

the previous subsections show how to associate with these data a half-density �, defined

on ⇤. We also showed that switching to an equivalent phase function, as well as the

elimination of the excess, do not change �. The reduction of the fiber variables replaces

� with �0 such that

�
0 = e

i⇡4 sgn(Q)
�,

with Q from (4.12). Let e� be the half-density defined by an integral representation Ie'(ea),
with another phase function e' associated with ⇤. Then, similarly to [40], in general we

have

(5.10) e� = e
i(��e�)⇡4 �,

where � = sgn
�
⇢
�1
Y ⇢

�1
X

sc
HY '

�
, and e� = sgn

⇣
⇢
�1
eY
⇢
�1
X

sc
HeY e'

⌘
. Denote by er the number

of fiber variable for e', es the dimension of eY and ee the excess of e', and define the integer

number

 =
1

2
(� � e� � s+ es+ e� ee).

Then, (5.10) is equivalent to

(5.11) i

e
i(s�e)⇡4 � = e

i(es�ee)⇡4 e�.

We are then led to the following definition of principal symbol map.
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Definition 5.5. Let u 2 I
me,m (X,⇤). We define I (u) = {(Yj ,'j)} as the collection of

manifolds and associated clean phase functions (Yj ,'j) locally parametrizing ⇤, giving

rise to local representations of u in the form I'j (aj). With each pair (Y,') 2 I (u) we

associate the half-density �, as described in Subsection 5.3, in such a manner that, for any

other element (eY , e') 2 I (u), we have the coherence relation (5.11) in �'(Y ) \ �e'(eY ).

We call the collection of half-densities {�j}, each one associated with (Yj ,'j) 2 I (u),

the principal symbol of u, and write j
⇤
me,m 

(u) = {�j}.

By an argument completely similar to the one in [40], we can prove the following result.

Theorem 5.6. Let ⇤ be a sc-Lagrangian on X. Then, the map

(5.12) j
⇤
me,m 

: Ime,m (X,⇤) 3 u 7! {�j}

given in Definition 5.5 is surjective. Moreover, the null space of the map (5.12) is

I
me�1,m �1(X,⇤), and thus (5.12) defines a bijection

classes in I
me,m (X,⇤)/Ime�1,m �1(X,⇤) 7! {�j}.

The image space of j
⇤
me,m 

can be seen as C1(⇤,M⇤ ⌦ ⌦1/2), where M⇤ is the Maslov

bundle over ⇤.

Appendix A. Resolution of Lagrangian singularities near the corner

In this appendix, we show that ⇤ e may be viewed as a Legendre manifold with respect

to a (degenerate) contact form, well defined on the blow-up of the corner component

W
 e of sc

T
⇤
X.

We have already stated that the forms

↵
 := ⇢

2
⌅@⇢⌅y! and ↵

e := ⇢
2
X@⇢Xy!.

are well-defined in the interior near the respective boundary face W
e or W and extend

to it. The freedom in choosing the boundary defining function has as a consequence that

these forms are merely well-defined up to a multiple by a positive function, however their

contact structure at the boundary (which is all we need to characterize ⇤• as Legendrian)

is independent of the choice of bdfs. Neither form extends to the corner component W e.

Instead of the rescaled 1-forms, we now consider the non-rescaled forms

sc
↵
 := ⇢⌅@⇢⌅y!

sc
↵
e := ⇢X@⇢Xy!

as sections of sc
T
⇤(scT ⇤

X
o). Then, these extend as scattering one forms on sc

T
⇤
X, cf.

[32, (2.11)].
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Lemma A.1. The forms
sc
↵
 
and

sc
↵
e
extend from

sc
T
⇤
X

o
to scattering one-forms on

sc
T
⇤
X. In a particular choice of coordinates (see [32] and Remark 1.3) they are given by

sc
↵
e =

d⌘1
⇢X⇢⌅

�
⌘1d⇢⌅
⇢X⇢

2
⌅

+ ⌘
00 dx

⇢X⇢⌅
,

sc
↵
 = ⌘1

d⇢X
⇢⌅⇢

2
X

+ ⌘
00 dx

⇢X⇢⌅
.

Here, ⌘ = (⌘1, ⌘00) are smooth functions of (⇢⌅, ⇠), d � 1 of which may be chosen as

coordinates.

Again, the (scattering) contact structures of these forms, when restricted to the

respective boundary faces, do not depend on the choice of bdf, since two choices of bdf

only di↵er by positive factors. These forms sc
↵
• will then vanish on ⇤•, • 2 {e, }, since

one can identify the kernels of sc
↵
• with that of ↵• by rescaling there. Furthermore, both

sc
↵
 as well as sc

↵
e vanish when restricted to ⇤ e.

Example A.2. On T
⇤Rd with canonical coordinates (x, ⇠), this corresponds to both the

forms

⇠ · dx and � x · d⇠

vanishing on the bi-conic (in x and ⇠) manifold with base ⇤ e, cf. [12].

Hence, ⇤ e is, in some sense, (scattering) isotropic.8 We note, however, that the ⇤ e

is not Lagrangian with respect to any symplectic form on W
 e, since

dim(⇤ e) = d� 2 6= d� 1 =
dim(W e)

2
.

However, we may now blow-up the corner W
 e in sc

T (X) and consider the front face

�
�1(W e) in [scT (X);W e], which is a 2d� 1 dimensional manifold, see Figure 4. Here,

� : [scT (X);W e]! sc
T (X),

is the blow-down map.

Proposition A.3. The lift of the form

↵
 e =

⇢X⇢⌅

2
(sc↵ + sc

↵
e)

to the blowup space

[scT
⇤
X;W e]

�
��!

sc
T
⇤
X

restricts to a contact 1-form on the front face �
�1

W
 e
. Moreover, �

�1(⇤ e) is Legendrian

with respect to ↵
 e
.

8Not with respect to the standard symplectic form, since it does not extend to the boundary, but to a
rescaling of it.



57

W
 

W
e

�
�1(W e)

�
�1(⇤ e)

@(��1(⇤ e))

⇤ 

⇤e

Figure 4. Resolution of ⇤e
' near the corner

Proof. We note that

↵
 e = ⇢X⇢⌅

1

2
(⇢X@⇢X + ⇢⌅@⇢⌅)y!.

In the special choice of coordinates of Lemma A.1, we compute

↵
 e =

1

2
⌘1

✓
d⇢X
⇢X
�

d⇢⌅
⇢⌅

◆
+

1

2
d⌘1 + ⌘

00dx

Now, smooth coordinates on the blow up of sc
T
⇤
X along W

 e = {⇢X = ⇢⌅ = 0} are

given by

(A.1)

8
<

:
⇢ = ⇢X ⌧ = ⇢⌅

⇢X
(x, ⇠) ⇢X > ⇢X

⇢ = ⇢⌅ ⌧ = ⇢X
⇢⌅

(x, ⇠) ⇢⌅ > ⇢X

In any case, �⇤↵ e is of the form

↵
 e = ±

1

2
⌘1

d⌧

⌧
+

1

2
d⌘1 + ⌘

00dx

Since ⌧ = 0 marks the boundary of the front face ��1
W

 e, ↵ e is a 1-form on the interior

of ��1
W

 e. Finally, ↵ e vanishes on ��1⇤ e since sc
↵
 and sc

↵
e vanish on ⇤ e. ⇤
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Universitätsbibliothek Göttingen, 2014.

[38] B.-W. Schulze. Boundary Value Problems and Singular Pseudo-di↵erential Operators. J. Wiley &

sons, Chichester, 1998.

[39] M. A. Shubin, Pseudodi↵erential Operators and Spectral Theory. Springer-Verlag, Berlin, 1987.

[40] F. Treves, Introduction to pseudodi↵erential and Fourier integral operators, Vol. 1-2. The University

Series in Mathematics. Plenum Press, New York-London, 1980.

[41] J. Wunsch and M. Zworski, Distribution of Resonances for asymptotically Euclidean Manifolds, J.

Di↵erential Geometry 55 (2000), 43-82.

Dipartimento di Matematica “G. Peano”
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