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Traditional methods for flow cytometry (FCM) data processing 

rely on subjective manual gating. Recently, several groups 

have developed computational methods for identifying 

cell populations in multidimensional FCM data. The Flow 

Cytometry: Critical Assessment of Population Identification 

Methods (FlowCAP) challenges were established to compare the 

performance of these methods on two tasks: (i) mammalian 

cell population identification, to determine whether automated 

algorithms can reproduce expert manual gating and (ii) sample 

classification, to determine whether analysis pipelines can 

identify characteristics that correlate with external variables 

(such as clinical outcome). This analysis presents the results 

of the first FlowCAP challenges. Several methods performed 

well as compared to manual gating or external variables 

using statistical performance measures, which suggests that 

automated methods have reached a sufficient level of maturity 

and accuracy for reliable use in FCM data analysis.

Flow cytometers provide high-dimensional quantitative meas-
urement of light scatter and fluorescence emission properties of 
hundreds of thousands of individual cells in each analyzed sam-
ple. FCM is used routinely both in research labs to study normal 
and abnormal cell structure and function and in clinical labs to 
diagnose and monitor human disease as well as response to ther-
apy and vaccination. In a typical FCM analysis, cells are stained 
with fluorochrome-conjugated antibodies that bind to the cell 
surface and intracellular molecules. Within the flow cytometer, 
cells are passed sequentially through laser beams that excite the 
fluorochromes. The emitted light, which is proportional to the 
antigen density, is then measured. The latest flow cytometers can 
analyze 20 different characteristics for individual cells in complex  
mixtures1, and recently developed mass spectrophotometry–
based cytometers could dramatically increase this number2–4.

A key step in the analysis of FCM data is the grouping of indi-
vidual cell data records (that is, events) into discrete populations 
on the basis of similarities in light scattering and fluorescence. 
This analysis is usually accomplished by sequential manual 

 partitioning (‘gating’) of cell events into populations through 
visual inspection of plots in one or two dimensions at a time. Yet 
many problems have been noted with this approach to FCM data 
analysis, including its subjective, time-consuming nature and the 
difficulty in effectively analyzing high-dimensional data5.

Since 2007, there has been a surge in the development and 
application of computational methods to FCM data in an effort to 
overcome these serious limitations in manual gating–based analy-
sis, with successful results reported in each case6–28. However, it 
has been unclear how the results from these approaches com-
pared with each other and with traditional manual gating results 
because every new algorithm was assessed using distinct data 
sets and evaluation methods. To address these shortcomings, 
members of the algorithm development, FCM user, and software 
and instrument vendor communities initiated the FlowCAP 
project (http://flowcap.flowsite.org/). The goals of FlowCAP are 
to advance the development of computational methods for the 
identification of cell populations of interest in FCM data by pro-
viding the means to objectively test and compare these methods, 
and to provide guidance to the end user about how best to use 
these algorithms. Here we report the results from the first two 
FlowCAP-sponsored competitions, which evaluated the ability 
of automated approaches to address two important use cases: cell 
population identification and sample classification.

RESULTS
FlowCAP I: cell population identification challenges
The goal of these challenges was to compare the results of 
assigning cell events to discrete cell populations using com-
putational tools with the results from manual gates produced 
by expert analysts. Algorithms competed in the four following 
challenges. For “Challenge 1: completely automated”, we com-
pared completely automated gating algorithms for exploratory 
analysis. Software used in this challenge either did not have any 
tuning parameters (for example, skewing parameters or den-
sity thresholds) or had tuning parameters whose values were 
fixed in advance and used across all data sets. For “Challenge 2:  
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manually tuned,” we compared semiautomated gating algo-
rithms with manually adjusted parameters tuned for individual 
data sets. For “Challenge 3: assignment of cells to populations 
with predefined number of populations,” we compared algo-
rithms for cases in which the number of expected populations 
was known. “Challenge 4: supervised approaches trained using 
human-provided gates” was similar to Challenge 2, with 25% 
of the manual gates (that is, population membership labels) for 
each data set provided to participants for training and tuning 
their algorithms.

Four human data sets (graft-versus-host disease (GvHD), 
 diffuse large B-cell lymphoma (DLBCL), symptomatic West Nile 

virus (WNV) and normal donors (ND)) and one mouse data set 
(hematopoietic stem cell transplant (HSCT)) were used for these 
challenges (Online Methods).

For these challenges, the current standard practice for FCM 
data analysis—manual gating performed by expert analysts from 
the laboratory that generated the data sets—was used for com-
parison against cell population membership defined by each 
automated algorithm. The F-measure statistic (the harmonic 
mean of precision and recall; Online Methods) was used for this 
comparison. An F-measure of 1.0 indicates perfect reproduc-
tion of the manual gating result with no false positive or false 
negative events.

Table 1 | Participating algorithms: algorithms that were applied in at least one challenge

Algorithm name Availabilitya Brief descriptionb SN/ref.c

Cell population identification
ADICyt Commercially available Hierarchical clustering and entropy-based merging 1.1.1/–
CDP Python source code Bayesian nonparametric mixture models, calculated using massively parallel 

computing on GPUs
1.1.2/ ref. 25

FLAME R package Multivariate finite mixtures of skew and heavy-tailed distributions 1.1.3/ref. 9
FLOCK C source code Grid-based partitioning and merging 1.1.4/ref. 13
flowClust/Merge Two R/BioC packages t mixture modeling and entropy-based merging 1.1.5/refs. 7,8
flowKoh R source code Self-organizing maps 1.1.6/–
flowMeans R/BioC package k-means clustering and merging using the Mahalanobis distance 1.1.7/ref. 15
FlowVB Python source code t mixture models using variational Bayes inference 1.1.8/–
L2kmeans JAVA source code Discrepancy learning 1.1.9/ ref. 26
MM, MMPCA Windows and Linux 

executable
Density-based Misty Mountain clustering 1.1.10/ref. 14

NMFcurvHDR R source code Density-based clustering and non-negative matrix factorization 1.1.11/ref. 10
SamSPECTRAL R/BioC package Efficient spectral clustering using density-based downsampling 1.1.12/ref. 12
SWIFT MATLAB source code Weighted iterative sampling and mixture modeling 1.1.13/ ref. 27
RadialSVM MATLAB source code Supervised training of radial SVMs using example manual gates 1.1.14/ref. 6
Ensemble clustering R/CRAN package Combines the results of all participating algorithms Online Methods/refs. 39,40

Sample classification
2DhistSVM Pseudocode 2D histograms of all pairs of dimensions and support vector machines 1.2.1/–
admire-lvq MATLAB source code 1D features and learning vector quantization 1.2.2/–
biolobe Pseudocode k-means and correlation matrix mapping 1.2.3/–
daltons MATLAB source code Linear discriminant analysis and logistic regression 1.2.4/–
DREAM–A Pseudocode 2D and 3D histograms and cross-validation of several classifiers 1.2.5/–
DREAM–B Pseudocode 1D Gaussian mixtures and support vector machines 1.2.6/–
DREAM–C Pseudocode 1D gating and several different classifiers 1.2.7/–
DREAM–D Pseudocode 4D clustering and bootstrapped t-tests 1.2.8/–
EMMIXCYTOM, uqs R source code Skew-t mixture model and Kullback-Leibler divergence 1.2.9/–
fivebyfive Pseudocode 1D histograms and support vector machines 1.2.10/–
flowBin R package High-dimensional cluster mapping across multiple tubes and support  

vector machines
1.2.11/–

flowCore-flowStats R source code Sequential gating and normalization and a beta-binomial model 1.2.12/ ref. 28
flowPeakssvm, 
Kmeanssvm

R package k-means and density-based clustering and support vector machines 1.2.13/ref. 16

flowType, flowType 
FeaLect

Two R/BioC packages 1D gates extrapolated to multiple dimensions and bootstrapped LASSO  
classification

1.2.14/refs. 17,18

jkjg JAVA source code 1D Gaussian and logistic regression 1.2.15/–
PBSC C source code Multidimensional clustering and cross-sample population matching using a  

relative distance order
1.2.16/ ref. 13

PRAMS R source code 2D clustering and logistic regression 1.2.17/–
Pram Spheres, CIHC Pseudocode Genetic algorithm and gradient boosting 1.2.18/–
Random Spheres Pseudocode Hypersphere-based Monte Carlo optimization 1.2.18/–
SPADE, BCB MATLAB, Cytoscape, 

R/BioC
Density-based sampling, k-means clustering and minimum spanning trees 1.2.19/ref. 23

SPCA+GLM Pseudocode 1D probability binning and principal-component analysis 1.2.20/–
SWIFT MATLAB source code SWIFT clustering and support vector machines 1.2.21/ ref. 27
Team21 Python source code 1D relative entropies 1.2.22/–
aSee Supplementary Table 3 for algorithm contact information. bSee Supplementary Note 1 for more details about each program. cSupplementary Note 1 section (SN) and reference citation.
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Algorithm performance. Fourteen research groups submitted  
36 analysis results (Table 1 and Supplementary Note 1). The 
results of the cell population identification challenges are sum-
marized in Table 2 and Supplementary Figure 1. Not all algo-
rithms were applied in all challenges. For example, supervised 
classification methods, such as RadialSVM, require training data 
to establish classification rules and therefore were not appropriate  
for Challenges 1–3. Algorithms were sorted by their rank perform-
ance score for each challenge (Online Methods). Many algorithms 
performed well in multiple challenges on multiple data sets, with 
F-measures exceeding 0.85. Some algorithms were always in the 
top group—that is, F-measures were not significantly different 

from the top algorithm—such as ADICyt in Challenges 1–3  
and SamSPECTRAL in Challenge 3; some were in the top  
group for some of the data sets (such as flowMeans, FLOCK and 
FLAME in Challenge 1); and some were never in the top group 
(such as flowKoh).

Allowing participants to tune algorithmic parameters did not 
result in much improvement, as the highest overall F-measure 
did not increase (0.89 for both completely automated and manu-
ally tuned algorithms); only three of the six algorithms that par-
ticipated in both Challenge 1 and Challenge 2 (SamSPECTRAL, 
CDP and flowClust/Merge) demonstrated a modest improve-
ment in overall F-measure, and in some cases the F-measures 

Table 2 | Summary of results for the cell identification challenges

F-measurea

GvHD DLBCL HSCT WNV ND Mean
Runtime  
h:mm:ssb

Rank  
scorec

Challenge 1: completely automated
ADICyt 0.81 (0.72, 0.88) 0.93 (0.91, 0.95) 0.93 (0.90, 0.96) 0.86 (0.84, 0.87) 0.92 (0.92, 0.93) 0.89 4:50:37 52
flowMeans 0.88 (0.82, 0.93) 0.92 (0.89, 0.95) 0.92 (0.90, 0.94) 0.88 (0.86, 0.90) 0.85 (0.76, 0.92) 0.89 0:02:18 49
FLOCK 0.84 (0.76, 0.90) 0.88 (0.85, 0.91) 0.86 (0.83, 0.89) 0.83 (0.80, 0.86) 0.91 (0.89, 0.92) 0.86 0:00:20 45
FLAME 0.85 (0.77, 0.91) 0.91 (0.88, 0.93) 0.94 (0.92, 0.95) 0.80 (0.76, 0.84) 0.90 (0.89, 0.90) 0.88 0:04:20 44
SamSPECTRAL 0.87 (0.81, 0.93) 0.86 (0.82, 0.90) 0.85 (0.82, 0.88) 0.75 (0.60, 0.85) 0.92 (0.92, 0.93) 0.85 0:03:51 39
MMPCA 0.84 (0.74, 0.93) 0.85 (0.82, 0.88) 0.91 (0.88, 0.94) 0.64 (0.51, 0.71) 0.76 (0.75, 0.77) 0.80 0:00:03 29
FlowVB 0.85 (0.79, 0.91) 0.87 (0.85, 0.90) 0.75 (0.70, 0.79) 0.81 (0.78, 0.83) 0.85 (0.84, 0.86) 0.82 0:38:49 28
MM 0.83 (0.74, 0.91) 0.90 (0.87, 0.92) 0.73 (0.66, 0.80) 0.69 (0.60, 0.75) 0.75 (0.74, 0.76) 0.78 0:00:10 28
flowClust/Merge 0.69 (0.55, 0.79) 0.84 (0.81, 0.86) 0.81 (0.77, 0.85) 0.77 (0.74, 0.79) 0.73 (0.58, 0.85) 0.77 2:12:00 24
L2kmeans 0.64 (0.57, 0.72) 0.79 (0.74, 0.83) 0.70 (0.65, 0.75) 0.78 (0.75, 0.81) 0.81 (0.80, 0.82) 0.74 0:08:03 20
CDP 0.52 (0.46, 0.58) 0.87 (0.85, 0.90) 0.50 (0.48, 0.52) 0.71 (0.68, 0.75) 0.88 (0.86, 0.90) 0.70 0:00:57 19
SWIFT 0.63 (0.56, 0.70) 0.67 (0.62, 0.71) 0.59 (0.55, 0.62) 0.69 (0.64, 0.74) 0.87 (0.86, 0.88) 0.69 1:14:50 15
Ensemble clustering 0.88 0.94 0.97 0.88 0.94 0.92 – 64

Challenge 2: manually tuned
ADICyt 0.81 (0.71, 0.89) 0.93 (0.91, 0.95) 0.93 (0.90, 0.96) 0.86 (0.84, 0.87) 0.92 (0.92, 0.93) 0.89 4:50:37 34
SamSPECTRAL 0.87 (0.79, 0.94) 0.92 (0.89, 0.94) 0.90 (0.86, 0.93) 0.85 (0.83, 0.88) 0.91 (0.91, 0.92) 0.89 0:06:47 31
FLOCK 0.84 (0.76, 0.90) 0.88 (0.85, 0.91) 0.86 (0.83, 0.89) 0.84 (0.82, 0.86) 0.89 (0.87, 0.91) 0.86 0:00:15 23
FLAME 0.81 (0.75, 0.87) 0.87 (0.84, 0.90) 0.87 (0.82, 0.90) 0.84 (0.83, 0.85) 0.87 (0.86, 0.87) 0.85 0:04:20 23
SamSPECTRAL-FK 0.87 (0.80, 0.94) 0.85 (0.81, 0.89) 0.90 (0.86, 0.92) 0.76 (0.71, 0.81) 0.92 (0.91, 0.93) 0.86 0:04:25 23
CDP 0.74 (0.67, 0.80) 0.89 (0.86, 0.91) 0.90 (0.88, 0.92) 0.75 (0.71, 0.78) 0.86 (0.85, 0.88) 0.83 0:00:18 19
flowClust/Merge 0.69 (0.53, 0.78) 0.87 (0.85, 0.90) 0.96 (0.94, 0.97) 0.77 (0.75, 0.79) 0.88 (0.81, 0.91) 0.83 2:12:00 18
NMFcurvHDR 0.76 (0.69, 0.82) 0.84 (0.83, 0.86) 0.70 (0.67, 0.74) 0.81 (0.77, 0.84) 0.83 (0.83, 0.84) 0.79 1:39:42 13
Ensemble clustering 0.87 0.94 0.98 0.87 0.92 0.91 – 41

Challenge 3: assignment of cells to populations with predefined number of populations
ADICyt 0.91 (0.84, 0.96) 0.96 (0.94, 0.97) 0.98 (0.97, 0.99) 0.95 0:10:49 26.2
SamSPECTRAL 0.85 (0.75, 0.93) 0.93 (0.91, 0.95) 0.97 (0.95, 0.98) 0.92 0:02:30 26.2
flowMeans 0.91 (0.84, 0.96) 0.94 (0.91, 0.96) 0.95 (0.93, 0.96) 0.93 0:00:01 23.4
TCLUST 0.93 (0.91, 0.96) 0.93 (0.91, 0.95) 0.93 (0.90, 0.95) 0.93 0:00:40 23.4
FLOCK 0.86 (0.79, 0.93) 0.92 (0.89, 0.94) 0.97 (0.95, 0.98) 0.92 0:00:02 22.2
CDP 0.85 (0.77, 0.92) 0.92 (0.89, 0.94) 0.76 (0.72, 0.81) 0.84 0:00:21 16.9
flowClust/Merge 0.88 (0.82, 0.93) 0.90 (0.86, 0.94) 0.83 (0.79, 0.88) 0.87 0:49:24 15.9
FLAME 0.85 (0.79, 0.91) 0.90 (0.86, 0.93) 0.86 (0.82, 0.91) 0.87 0:03:20 15.9
SWIFT 0.90 (0.84, 0.95) 0.00 (0.00, 0.00) 0.88 (0.84, 0.92) 0.59 0:01:37 11.9
flowKoh 0.85 (0.80, 0.90) 0.85 (0.82, 0.88) 0.87 (0.84, 0.91) 0.86 0:00:42 9.5
NMF 0.74 (0.69, 0.78) 0.84 (0.80, 0.88) 0.80 (0.76, 0.84) 0.79 0:01:00 7.5
Ensemble clustering 0.95 0.97 0.98 0.97 – 35

Challenge 4: supervised approaches trained using human-provided gates
RadialSVM 0.89 (0.83, 0.95) 0.84 (0.80, 0.87) 0.98 (0.96, 0.99) 0.96 (0.94, 0.97) 0.93 (0.92, 0.94) 0.92 0:00:18 21
flowClust/Merge 0.92 (0.88, 0.95) 0.92 (0.89, 0.94) 0.95 (0.92, 0.97) 0.84 (0.82, 0.86) 0.89 (0.88, 0.90) 0.90 5:31:50 19
randomForests 0.85 (0.78, 0.91) 0.78 (0.74, 0.83) 0.81 (0.79, 0.83) 0.87 (0.84, 0.90) 0.94 (0.92, 0.95) 0.85 0:02:06 15
FLOCK 0.82 (0.77, 0.87) 0.91 (0.89, 0.93) 0.86 (0.76, 0.93) 0.86 (0.82, 0.89) 0.86 (0.77, 0.92) 0.86 0:00:05 13
CDP 0.78 (0.68, 0.87) 0.95 (0.93, 0.97) 0.75 (0.71, 0.78) 0.86 (0.84, 0.88) 0.83 (0.80, 0.86) 0.83 0:00:15 11
Ensemble clustering 0.91 0.94 0.95 0.92 0.94 0.93 – 26
aIn each data set/challenge, the top algorithm (highest mean F-measure) and the algorithms with overlapping confidence intervals with the top algorithm are boldface (see Online Methods for 
F-measure calculations). bRun time was calculated as time per CPU per sample. cAlgorithms are sorted by rank score within each challenge (see Online Methods for rank score calculations). 
Data sets: GvHD, graft-versus-host disease; DLBCL, diffuse large B-cell lymphoma; WNV, symptomatic West Nile virus; ND, normal donors; HSCT, hematopoietic stem cell transplant.
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actually decreased after human intervention (for example, with 
FLAME). In contrast, providing the number of cell populations 
sought in Challenge 3 made predictions more accurate for seven 
of the eight algorithms that participated in both Challenge 1 and 
Challenge 3, with five algorithms achieving overall F-measures 
greater than 0.9 (ADICyt, SamSPECTRAL, flowMeans, TCLUST 
and FLOCK). In addition, providing a set of example results for 
algorithm training and parameter tuning in Challenge 4 improved 
the results of flowClust/Merge by 0.13 and allowed the Radial 
SVM approach to outperform the fully automated algorithms 
used in Challenge 1 for four of the five data sets. Taken together, 
these results suggest that estimating the correct number of cell 
populations (as defined by manual gates) remains a challenge 
for most automated approaches, and providing training data 
improves performance.

Table 2 and Supplementary Figure 2 show the estimated run 
times of the algorithms on single-core CPUs or GPUs (for CDP 
only). Run times ranged from 1 s to >4 h per sample. ADICyt, 

which had the highest rank score in the first three challenges, 
also required the longest run times. flowMeans, FLOCK, FLAME, 
SamSPECTRAL and MM&PCA needed substantially shorter run 
times and still performed reasonably well in comparison with 
ADICyt. Note that, owing to hardware and software differences, 
these numbers may not be precisely comparable; the information 
is provided to give some sense of the differences in time require-
ments for these specific implementations.

Improving algorithmic performance by combining predic-

tions. Much as in other data analysis settings (see ref. 29 for 
a review), combining results from different cell population 
identification methods provides improved accuracy over any 
individual method. For all four cell population identification 
challenges, ensemble clustering, which combines the results of 
all the submitted algorithms (Online Methods), resulted in a 
higher overall F-measure and rank score than any individual 
algorithm (Table 2 and Supplementary Figs. 3 and 4). In addi-
tion, ensemble clustering gave a higher F-measure for each of the 
individual data sets in each challenge, with only four exceptions 
in Challenge 4.

In addition to identifying cell populations more accurately, 
ensemble clustering can provide an alternative approach for 
evaluating algorithms by using ablation analysis to measure 
their contribution to the combined predictions. For example, 
in Challenge 3, when only four algorithms were included in the 
ensemble (TCLUST, ADICyt, FLAME and SWIFT), the F-measure  
was still close to 0.95 (Supplementary Fig. 5). Adding two more 
algorithms to the set resulted in only a minor improvement. 
Similar patterns were observed in the other challenges. Although 
the absolute order differed in the ablation analysis, algorithms 
with higher F-measures tended to be removed later (that is, they 
had a larger contribution to the ensemble). We also performed 
the ablation analysis in the reversed order (meaning that the 
algorithm with maximum contribution was removed first). As 
expected, the algorithms with a higher F-measure tend to be 
excluded earlier (Supplementary Fig. 6).

Algorithm performance with refined manual gates. In the popu-
lation identification challenges, predefined populations identified 
by human experts corresponded to a single set of manual gates 
prepared by the original data providers for comparison. However, 
manual gating is known to be subjective and potentially error 
prone even in the hands of domain experts30. Without detailed 
guidance on the goals of FlowCAP, the data providers tended to 
focus gating only on cells considered relevant to the goals of their 
studies and therefore provided incomplete population delineation 
in some cases. In addition, relying on a single set of gates meant 
that inconsistencies in manual gating between different analysts 
were not taken into account. To address these deficiencies, we 
instructed eight individuals from five different institutions to 
identify all cell populations (exhaustive gating) discernible in 
the HSCT and GvHD data sets (Supplementary Note 2). These 
data sets were selected because they had the highest and lowest 
overall F-measures, representing the best and worst cases for the 
automated methods, respectively.

A consensus of the eight manual gates was first constructed 
as a reference (Online Methods). Algorithm comparison against 
this reference started with cell populations in the entire data set 
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Figure 1 | F-measure results of cell population identification challenges. 
Average manual and algorithm F-measures are represented against the 
manual consensus cluster as a function of the number of populations 
included, ranked from most consistent to least consistent. For a given 
population, consistency was defined as the agreement among manual 
gates, calculated as the average manual F-measures against the manual 
consensus cluster for that population. All populations across all samples 
were included in this calculation, and, as such, the numbers on the x axis 
should be multiplied by 12 and 30 (for GvHD and HSCT, respectively) to 
reflect the total number of populations in all samples in the reference. 
Individual manual gating results are plotted as gray lines. (a) Graft-
versus-host disease (GvHD) data set. (b) Hematopoietic stem cell 
transplant (HSCT) data set.
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that demonstrated the best match across all eight manual gates 
and then gradually proceeded to include more cell populations 
with weaker matches between the human analysts (Fig. 1). The 
inclusion of cell populations with less agreement between the 
human experts resulted in a gradual reduction in F-measures 
for both individual manual gates and algorithms, suggesting 
that certain populations were more difficult to resolve for both 
manual and automated analysis, especially for the GvHD data 
set. However, the overall relative performance of algorithms for 
both data sets using these multiple sets of exhaustive gates was 
generally consistent with the initial results. For example, the top 
four algorithms for the HSCT data set were FLAME, ADICyt, 
flowMeans and MM&PCA for both the initial and the consensus 
manual gates (Supplementary Table 1). In addition, ensemble 
clustering performed well within the range of manual results, 
especially for the most consistent populations.

As an alternative to the overall F-measures, we used consen-
sus manual clusters as a reference in a per-population analysis 
(Online Methods) to determine whether certain cell popula-
tions were responsible for high or low algorithm performance 
by determining F-measures for each cell population separately 
(Fig. 2 and Supplementary Figs. 7 and 8). For most popula-
tions in both samples, the high F-measure values highlighted 
the close agreement between manual and automated results. For 
example, cell population no. 3 in the HSCT data set demon-
strated high pairwise F-measures between all of the algorithms 
and manual gates, which indicated that this cell population was 
easily identified manually and algorithmically. In contrast, cell 
population no. 5 was effectively identified by only the manual 

gates and a few of the algorithms: SWIFT, ADICyt, CDP and 
FLOCK. Similar conclusions were reached for the GvHD data 
set (Supplementary Figs. 9 and 10).

Practical considerations. The F-measure analysis provides a rig-
orous quantitative measure of algorithm performance for popula-
tion identification. On the basis of this analysis, although several 
algorithms performed well on individual data sets, combining 
the results of a subset of the algorithms produced better results 
than did individual algorithms in almost every case. The per-
population analysis showed that the best-matching algorithms 
were not always the same for each population, suggesting that 
different algorithms may have different abilities to resolve popu-
lations, depending on the exact structure of the data. This result 
was not surprising given the wide range of strategies used by 
the different algorithms, and it motivates the recommendation 
for using an ensemble approach over any single algorithm for 
optimal performance.

Further demonstration of the practical utility of ensemble clus-
tering of automated algorithm results is provided through a visual 
example using the HSCT data set (Fig. 3). Cell population clas-
sification by ensemble clustering was compared against consensus 
manual gating in two- and three-dimensional dot plots. One 
sample was selected as an example of strong agreement and one 
sample was selected as an example of weak agreement between 
the computational and manual results. For both samples shown, 
cell events determined to be members of the same cell population 
by ensemble clustering were nearly always located within a single 
polygon from manual gating. CD45.1 and CD45.2 are allotype 
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Figure 2 | Per-population pairwise comparisons  
of the cell population identification challenges.  
Average F-measures of all pairs of results for  
the five cell populations across all samples in  
the hematopoietic stem cell transplant (HSCT)  
data set are represented as heat maps. The  
heat-map color in individual squares reflects  
the pairwise agreement between each method  
for each cell population independently, and  
the position in the matrix reflects the pattern  
of agreement across all methods on the basis  
of hierarchical clustering. The manual-gate  
consensus cluster for each sample was used as a  
reference for matching of the automated results  
of that sample. Pairwise F-measures between  
all algorithms and manual gates for the HSCT data set are shown. The dendrogram groups the algorithms and manual gates on the basis of the similarities 
between their pairwise F-measures. EC, ensemble clustering.
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markers of murine hematopoietic cells that 
are frequently used to distinguish between 
donor and recipient cells after transplanta-
tion, with CD45.1 marking recipient cells 
and CD45.2 marking donor cells in this 
case. In one sample (Fig. 3a,b), ensemble 
clustering identified some CD45.2+ cells 
that were either Ly65+ or Mac1+ (indicat-
ing that they are either granulocytes or 
monocytes from the myeloid lineage) and 
others that were both Ly65− and Mac1− 
(indicating that they are lymphocytes), 
thus indicating repopulation of both major hematopoietic line-
ages and successful hematopoietic stem cell engraftment. In con-
trast, although the other sample (Fig. 3c,d) was found to contain 
CD45.2+, Ly65/Mac1− lymphocytes, no CD45.2+, Ly65/Mac1+ 
granulocytes/monocytes were observed, which indicated unsuc-
cessful stem cell engraftment. Thus, ensemble clustering was 
found to be an excellent method for automated assessment of 
hematopoietic stem cell engraftment using CD45 allotype mark-
ers in mouse models.

FlowCAP II: sample-classification challenges
Another important application for FCM analysis is the use of 
biomarker patterns in FCM data for the purpose of sample clas-
sification. We assembled a benchmark of three data sets in which 
the subjects/samples were associated with an external variable that 
could be used as an independent measure of truth for sample clas-
sification. The benchmark consisted of three data sets for (i) stud-
ying the effect of human immunodeficiency virus (HIV) exposure 
on African infants who were either exposed to HIV in utero but 
uninfected (HEU) or unexposed (UE), (ii) diagnosis of acute mye-
loid leukemia (AML) using AML and non-AML samples from a 
reference diagnostic laboratory and (iii) discriminating between 
two antigen stimulation groups of post-HIV vaccination T cells 
(Gag versus Env stimulated) from the HIV Vaccine Trials Network 
(HVTN) (Online Methods). For each data set, half of the correct 
sample classifications were provided to participants for training 
purposes; the other half were used for independent testing and 
validation. For the AML challenge, additional results were sub-
mitted through the DREAM (Dialogue for Reverse Engineering 
Assessment and Methods)31–34 initiative.

Algorithm performance. We received a total of 43 submissions 
(Table 1 and Supplementary Note 1), including 14 through the 
DREAM project (Supplementary Note 3). The results of this 
challenge are summarized in Table 3, Supplementary Figure 11 
and Supplementary Tables 2 and 3. The precision, recall, accu-
racy and F-measure values on the test set show that for two of 
the data sets (AML and HVTN), many algorithms were able to 
perfectly predict the external variables. For example, flowCore-
flowStats, flowType-FeaLect, Kmeanssvm, PRAMS, SPADE and 
SWIFT all gave perfect classification accuracy (that is, F-measure 
= 1.0) on the HVTN data set. For the third data set (HEUvsUE), 
despite mostly accurate predictions on the training data, none of 
the algorithms performed well on the test data. The lack of good 
performance of any algorithm on this data set combined with a 
theoretical consideration of the underlying biology (nonproduc-
tive HIV exposure several months before sampling may not lead 
to long-term changes in peripheral blood cell populations) sug-
gests that these samples may be unclassifiable on the basis of the 
FCM markers used.

Outlier analysis. In all data sets, the misclassifications were uni-
formly distributed across the test sets (Fig. 4a and Supplementary 

Figs. 12 and 13), with only a single exception (sample no. 340 of 
the AML data set), suggesting that no systematic problems were 
causing misclassifications. Visualization of FCM data from the 
sample no. 340 outlier in comparison with those of typical AML 
and non-AML subjects suggested that the outlier, like typical AML 
cases, had a sizable CD34+ population; however, the forward-scatter 
values overlapped with those of normal lymphocytes (Fig. 4b–g). 
Obtaining additional information on this patient was not possible. 

Figure 3 | Comparison of manual-gate 
consensus and ensemble clustering results. Dots 
are color-coded by population membership as 
determined by ensemble clustering, with donor-
derived (CD45.2+) granulocytes/monocytes 
in green and donor-derived lymphocytes 
in red. Colored polygons enclose regions 
corresponding to the consensus clustering 
of manual gates. Fluorochromes used: FITC, 
fluorescein isothiocyanate; PE, phycoerythrin; 
APC, allophycocyanin. (a,b) Sample for which 
all of the cell populations have been accurately 
identified. (c,d) Sample in which the tail of 
the blue population has been misclassified as 
orange by the algorithms, resulting in a lower  
F-measure for the blue population. The red, blue, 
green, purple and orange cell populations match 
cell population 1–5 of Figure 2, respectively.
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However, an independent evaluation of the FCM results by a hemato-
pathologist suggested alternative explanations for why this sample 
was an outlier. For one, the forward scatter (roughly proportional 
to the diameter of the cell) of the blasts was lower than that found in 
other AML patients. Leukemic blast size shows wide variation from 
patient to patient, and even within a given patient, being medium 
to large in size in most35 and very small (‘microblastic’) in rare 
patients (as in refs. 36,37). The other possibility is that given the 
lower blast frequency (16.7%), this patient may have been diag-
nosed with high-grade myelodysplasia (blasts 10%–19%)—a pre-
leukemic condition—rather than AML, which requires a blast count 
of >20% for diagnosis. Alternatively, the patient may have AML by 
morphological blast count, but FCM may be underestimating the 
blast frequency because of hemodilution of the bone marrow speci-
men or presence of cell debris or unlysed red blood cells38.

Predictive cell populations identified. Previous manual  
gating–based analysis of the HVTN data identified the CD4+ 
interleukin-2 (IL-2)+ T-cell subpopulation as discriminative 
between Env- and Gag-stimulated samples, with the propor-
tion of CD4+ IL-2+ cells in the Env-stimulated samples being 
systematically higher than in the Gag-stimulated samples (data 
not shown). This effect was not observed in manually gated 
placebo data, which indicates that it is vaccine specific and 
consistent with the Env glycoprotein 120 boost given to study 

participants. Notably, examination of the features selected by 
automated methods for classification between Env- and Gag-
stimulated samples revealed that, of the eight methods that 
directly identified predictive features, four selected features 
containing the CD4+ IL-2+ phenotype. The sample classifica-
tions using the CD4+ IL-2+ population gated manually were 
slightly less accurate than the automatic results obtained from 
the same population. Post hoc examination of the data revealed 
that several of the control and stimulated samples in the data 
set were matched from different experimental runs, suggest-
ing a possible run-specific effect. When these samples were 
filtered out of the analysis, manual gating was able to perform 
as accurately as the algorithms, which suggests that the algorith-
mic approaches were actually more robust with respect to the 
technical variation than the manual analysis. For more details, 
see Supplementary Note 4.

Practical considerations. Of the three data sets assembled to test 
algorithms in the sample-classification challenge, the AML data 
set represents an important real-world patient-classification use 
case. FCM is the laboratory method of choice for the diagnosis of 
acute leukemia because it not only allows for the identification of 
abnormal cell populations via comparison with normal blood or 
bone marrow but also allows for the classification of the disease 
into different subtypes with different prognoses and treatment 

Table 3 | Performance of algorithms in the sample-classification challenges on the validation cohorta

Recall Precision Accuracy F-measure Recall Precision Accuracy F -measure Recall Precision Accuracy F-measure

Challenge 1: HEUvsUE Challenge 2: AML Challenge 3: HVTN

FlowCAP
2DhistsSVMb 0.50 0.091 0.50 0.15 0.00 0.95 0.99 0.97
EMMIXCYTOM 0.95 0.95 0.99 0.95
flowBin 0.012 0.00 0.45 0.00 0.10 0.30 0.92 0.46
flowCore-flowStats 0.56 0.455 0.55 0.50 1.00 1.00 1.00 1.00
flowPeakssvm 1.00 1.00 1.00 1.00
flowType 0.58 0.636 0.59 0.61 0.95 0.95 0.99 0.95 0.88 0.71 0.81 0.79
flowType-FeaLect 0.55 0.545 0.55 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kmeanssvm 1.00 1.00 1.00 1.00
PBSC 0.33 0.273 0.36 0.30 0.75 0.75 0.94 0.75 0.95 0.95 0.95 0.95
PRAMS 1.00 1.00 1.00 1.00
Pram Spheres 0.36 0.364 0.36 0.36 0.90 0.90 0.90 0.90
Random Spheres 0.95 0.95 0.99 0.95
SPADE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SWIFT 0.67 0.545 0.64 0.60 1.00 1.00 1.00 1.00

DREAM
admire-lvq 1.00 1.00 1.00 1.00
bcb 1.00 1.00 1.00 1.00
biolobe 1.00 1.00 1.00 1.00
cihc 1.00 0.95 0.99 0.97
daltons 1.00 1.00 1.00 1.00
DREAM–A 0.95 0.95 0.99 0.95
DREAM–B 1.00 0.85 0.98 0.92
DREAM–C 1.00 0.85 0.98 0.92
DREAM–D 0.95 0.95 0.99 0.95
fivebyfive 0.95 1.00 0.99 0.98
jkjg 1.00 1.00 1.00 1.00
SPCA+GLM 0.89 0.85 0.97 0.87
team21 1.00 1.00 1.00 1.00
uqs 1.00 0.95 0.99 0.97
aNot all algorithms were applied in all challenges. Particularly, a large number of algorithms participated through the DREAM project that included only the AML data set. Data sets: HEUvsUE, 
HIV-exposed–uninfected versus unexposed; AML, acute myeloid leukemia; HVTN, identification of antigen stimulation groups of post–HIV vaccine T cells. bContact information of the participat-
ing teams can be found in Supplementary Table 3.
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options. Of the 25 algorithms that participated in the AML sample- 
classification challenge, 12 provided perfect classification of all 
359 patient samples (F-measure = 1.00) into the AML versus non-
AML categories using data from 2,872 separate FCM staining 
samples. An additional eight algorithms were discrepant on only 
sample no. 340 classification, which, although labeled as a non-
AML sample, appears to be a borderline case. This impressive 
result, in which 80% of the automated methods performed near 
perfectly in the classification of acute leukemia, indicates that 
these methods can now be incorporated into diagnostics pathol-
ogy laboratory workflows for the diagnosis of AML, and possibly 
other neoplastic diseases, thereby eliminating the labor-intensive, 
subjective and error-prone features of manual analysis.

The HVTN challenge represented a relatively difficult problem 
of distinguishing between T-cell responses to two viral antigens 
present in the same HIV vaccine. Considering the modest results 
of previous manual analysis (data not shown), we were surprised 
by the high performance of classification algorithms in the HVTN 
challenge. This was an important conclusion of this part of 
FlowCAP: that several sample-classification algorithms performed 
much better than expected. Notably, two of the four algorithms that 
provided results for both of the data sets (flowType-FeaLect and 
SPADE) gave perfect classifications for both, thereby suggesting 
that automated methods perform very well in sample classification, 
even for data sets that were challenging for manual analysis.

DISCUSSION
The FlowCAP project represents a community effort to develop 
and implement evaluation strategies to judge the performance of 
computational methods developed for FCM data analysis. Two sets 
of benchmark FCM data were assembled to evaluate automated 
gating methods on the basis of their ability to either reproduce 
cell populations defined through expert manual gating or classify 
samples according to external variables. Seventy-seven different 
computational pipeline/challenge combinations were evaluated 
through these efforts. Every approach to automated FCM analysis 
published in the last 5 years, as well as several unpublished meth-
ods, participated in at least one of the challenges. Participation by 
the flow informatics community was not only widespread but also 
collaborative, including the sharing of ideas and the distribution of 
work to avoid duplication of efforts. The recent establishment of 
the flow informatics discipline has also coincided with the growth 
of the open-source software philosophy, which has been widely 
adopted by the flow informatics community. This open-access 
philosophy has most certainly contributed to the rapid maturation 
of these novel methods. One of the sample classification challenges 
was organized in collaboration with the DREAM initiative31–34, 
which aims at nucleating the systems biology community around 
important computational biology problems. Given the growing 
use of FCM data in systems biology research, the collaboration 
between DREAM and FlowCAP was natural and fruitful.

One of the major goals of the FlowCAP project was to deter-
mine whether automated algorithms had reached a level of 
maturity such that they could be considered practically useful 
for routine FCM data analysis. Although none of the individual 
methods provided perfect results for all use cases and sample sets, 
the results clearly show that automated methods are now practical 
for many FCM use cases. From the cell population identification 
challenges, it is now clear that many of the individual algorithmic 
techniques provide excellent delineation of many different cell 
populations in diverse data sets. Because users are often focused 
on the analysis of well-defined subsets of cell populations in a 
given experiment, many high-ranking techniques (especially 
those that can learn from manual gating examples) appear to be 
well suited for this purpose.

In addition, ensemble clustering provides further improvement 
by combining the best results from multiple methods, giving excel-
lent performance across all of the cell population identification 
data sets. The mean F-measure values and rank scores showed 
that the combined predictions obtained by ensemble clustering 
were more accurate than the results from individual algorithms 
and individual manual gates. This is important because in prac-
tice it may not be feasible to solicit multiple experts for manual 
gating; however, it is realistic to run multiple automated methods  
at minimal cost. The ablation analysis (Supplementary Note 3)  
 confirmed that increasing the number of algorithms in the ensemble  
resulted in improved predictions up to a certain point. In cases 
in which algorithms with high scores were more frequent, the 
ensemble clustering performed better and was less sensitive to 
the exclusion of several of the algorithms (Challenges 1 and 3). 
This suggests that having several good algorithms is necessary 
to obtain good ensemble results, but there might be a point after 
which adding more algorithms does not significantly improve the 
results. Particularly, when a large number of algorithms with high 
F-measures were available (the entire HSCT data set and the top 
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Figure 4 | Acute myeloid leukemia (AML) subject detected as an outlier 
by the algorithms. (a) Total number of misclassifications for each sample 
in the test set (sample nos. 180–359) of the AML data set. (b–g) Forward 
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50 most consistently identified populations in the GvHD data set), 
the ensemble clustering outperformed the individual algorithms. 
When the individual algorithms were performing poorly (the 
remaining cell populations in the GvHD data set), the ensemble 
clustering’s performance decreased as well. However, it remains 
to be determined whether this reflects a poor performance of the 
automated methods or poor performance of manual gating.

In the sample-classification challenges, many individual meth-
ods provided perfect sample-classification accuracy for two dif-
ferent representative data sets, with the leukemia classification 
use case being an important practical example. The excellent per-
formance of automated methods, even with the relatively chal-
lenging HVTN data set, was somewhat surprising but indicates 
that automated methods can perform well on sample classification 
use cases, detecting useful biomarkers in FCM data. Although 
this result is promising, it will be important to obtain additional 
sample classification data sets for future FlowCAP challenges to 
determine whether they have reached a level of maturity suffi-
cient for broad routine use, especially for clinical diagnosis appli-
cations. The third data set (HEUvsUE), on which none of the 
algorithms performed well, revealed an additional interesting 
outcome from the sample classification challenges: situations in 
which algorithms consistently perform well on training data but 
poorly on test data may indicate sample sets that are not classifi-
able given the data provided.

In conclusion, the FlowCAP project has provided a valuable 
venue for comparison of computational methods for FCM data 
analysis. Though there is still much to be done to make these 
methods optimally useful and broadly adopted (Supplementary 

Note 5), the results presented here are promising and suggest 
that automated methods will soon supplement manual FCM data 
analysis methods. The ability to rapidly, objective and collabora-
tively compare these methods through FlowCAP should catalyze 
rapid progress in the flow informatics field.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Availability. To promote reproducible research41, the detailed meth-
odologies for all approaches participating in FlowCAP are included 
by reference to free, open-source software packages or algorithms, 
or through detailed descriptions (as pseudocode) as described in 
Supplementary Note 1. The display items presented in this manu-
script can be fully reproduced using the scripts provided on the 
FlowCAP website (http://flowcap.flowsite.org/codeanddata/).  
Raw data annotated with MIFlowCyt descriptions42 are available 
through FlowRepository (http://flowrepository.org/) via the fol-
lowing experiment IDs: FR-FCM-ZZY2 (GvHD), FR-FCM-ZZYY 
(DLBCL), FR-FCM-ZZY3 (WNV), FR-FCM-ZZY6 (HSCT), FR-
FCM-ZZYZ (ND), FR-FCM-ZZZU (HEUvsUE), FR-FCM-ZZYA 
(AML), and FR-FCM-ZZZV (HVTN).

Cell population identification. Data sets. The following data sets 
were used in the Cell Population Identification challenges:

Diffuse large B-cell lymphoma (DLBCL). The DLBCL data set 
consists of data from 30 randomly selected lymph node biopsies 
from patients treated at the British Columbia Cancer Agency 
between 2003 and 2008. Cell suspensions were produced from 
freshly disaggregated lymph node biopsies. Patients were histo-
logically confirmed to have DLBCL. This data set was provided 
by A. Weng at the BCCRC.

Symptomatic West Nile virus (WNV). Samples are human 
peripheral blood mononuclear cells (PBMCs) from patients 
with symptomatic WNV infection stimulated in vitro  
with peptide pools representing different regions of the WNV 
polyprotein. This data set was provided by J. Bramson at 
McMaster University.

Normal donors (ND). For this data set, the investigators exam-
ined differences in the response of a variety of cell types to various 
stimuli for a set of healthy donors. For the samples used here, the 
time periods were relatively short, such that the surface markers 
would not be expected to change. The staining panel contains 
antibodies to surface markers and intracellular proteins. Note that 
these experiments were done with phosflow-fixed cells, and thus 
some of the populations are not as distinct or clean as would be 
seen with other processing methods. This data set was provided 
by H. Rand at Amgen, Inc.

Hematopoietic stem cell transplant (HSCT). This set contains 
data from 30 randomly selected samples derived from HSCT 
experiments done in the Terry Fox Laboratory. Suspensions were 
produced from bone marrow cells. The suspensions were depleted 
of erythroid precursors by immunomagnetic removal of biotin-
conjugated anti-Ter119–labeled cells using EasySep reagents 
(STEMCELL Technologies). This data set was provided by the 
C. Eaves at the BCCRC.

Graft-versus-host disease (GvHD). Data were derived from 
12 FCM samples designed to identify cellular signatures that  
predict or correlate with early detection of GvHD. PBMCs  
were collected from patients pre– and post–allogeneic blood 
and marrow transplantation. Cells were isolated using Ficoll-
Hypaque and then were cryopreserved for subsequent batch 
analysis. The data set was publicly available as part of previous 
research43, with additional analysis provided by J. Schoenfeld 
at Treestar, Inc.

The protein markers evaluated are listed in Supplementary 

Table 4.

Data preprocessing. The following preprocessing steps were applied 
to these data sets before they were provided to the participants: 
(i) compensation (to account for the overlap of emission spectra 
from fluorochrome labels); (ii) transformation to linear space 
(to scale data appropriately for visualization); (iii) pre-gating for 
removal of irrelevant cells (for example, dead cells, as routinely 
performed by human analysts).

Clustering F-measure. The F-measure is the harmonic mean 
of the precision and recall according to the equation F =  
(2 × Pr × Re)/(Pr + Re). Precision (Pr) and recall (Re) can be 
described in terms of a 2 × 2 contingency table comparing results 
for a test method—in this case, the results of a cell population 
identification algorithm—with some reference method—in this 
case, the results of manual gating by the subject matter expert as 
the current standard practice—with true positive (TP) defined 
as the situation in which the positive assignment of the predic-
tion algorithm matches a positive assignment of manual gating, 
false positive (FP) when the positive assignment of the prediction 
algorithm matches a negative assignment of manual gating, and 
false negative (FN) when the negative assignment of the predic-
tion algorithm matches a positive assignment of manual gating. 
Recall is calculated as TP/(TP + FN); precision is calculated as TP/ 
(TP + FP). F-measure values are always in the interval [0,1], with 
1 indicating a perfect prediction.

In this analysis, Pr corresponds to the number of cells cor-
rectly assigned to a cluster divided by the total cells assigned to 
that cluster, and Re corresponds to the number of cells correctly 
assigned to a cluster divided by all the cells that should have been 
assigned to that cluster. Given a correct set of reference clusters 
C = {c1, c2, …, cn}, and a clustering result K = {k1, k2, …, km}, the 
number of matches between combinations of C and K is a matrix,  
M = [aij], where i  [1,n] and j  [1,m]. Then Pr(ci,kj) = aij/|kj|  
and Re(ci,kj) = aij/|ci|, where |ci| denotes the number of elements 
in ci. The F-measure to compare one cluster to another is then 
F(ci,kj) = (2 × Pr(ci,kj) × Re(ci,kj))/(Pr(ci,kj) + Re(ci,kj)). To calcu-
late the F-measure of an entire clustering result, for each cluster 
ci in the reference, a set of F-measures against every predicted 
cluster kj is calculated, and the largest F-measure (best match), 
normalized by the size of kj is reported. The sum of these scores 
produces a total F-measure, defined as 

F C K
c

N
F c ki

ci C
i j

kj K
( , ) { ( , )}max

To show the relationship between F-measure and recall and 
precision, we plotted recall, precision and F-measure values for 
flowMeans when the number of clusters was iterated from 2 to 10 
(Supplementary Fig. 14), using the same HSCT sample plotted in 
the main manuscript. For this sample, four populations were iden-
tified by manual gating, whereas ensemble clustering suggested 
that there are five populations. This figure provides some intuition 
about F-measure behavior. For example, missing one cluster (total 
of three clusters) results in a drop of less than 0.05 in F-measure, 
but missing two clusters (total of two clusters) results in a drop 
of 0.3. However, identifying an additional cluster (remember that 
the ensemble clustering suggested that there are actually five real 
populations) doesn’t decrease the F-measure. The figure also shows 
the trade-off between recall and precision. From 2 to 5 populations, 
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recall and F-measure increase, and precision decreases slightly. 
After that, precision decreases quickly, whereas recall remains con-
stant, resulting in a decrease in F-measure. F-measure is relatively 
low when either recall or precision is low.

See ref. 44 for a comparison of F-measure versus other metrics 
in the evaluation of clustering algorithms.

Though mean F-measures can be used to assess the perform-
ance of each of the algorithms on each data set, the significance 
of the difference in the F-measure values must be accounted for 
to truly rank the algorithms. Therefore, to measure how sig-
nificant these differences were (i.e., how sensitive they were to 
this specific set of samples), bootstrapping was used to compute 
95% confidence intervals (CIs). Bootstrapping is a nonparamet-
ric, resampling-based method for measuring the accuracy of a 
sample estimate45. For a vector F of F-measure values produced 
by a given algorithm on a given data set, we produced the 95% 
bootstrap percentile CI for the mean as follows: (i) repeat 10,000 
times: sample from F with replacement (sample size = size of F) 
and calculate the mean F-measure of the sample; (ii) report the 
2.5th and 97.5th percentiles of the average F-measures as the CI; 
(iii) end. The results are presented in Supplementary Figure 1. 
Algorithms with overlapping CIs were subsequently considered 
tied (bold in Table 2).

Rank score. To derive an overall ranking of the algorithms, we 
used their rank score, calculated as the sum of fractional rankings 
of each algorithm across different data sets. Fractional ranking 
is based on the Borda count strategy46: for N algorithms, the top 
algorithm scored N points, the second one scored N − 1 points, 
and so on. The last algorithm scored 1 point. The average number 
of points was used in case of ties (i.e., overlapping CIs). For D 
data sets, rank score values are in the [D, N × D] interval; an 
algorithm that scored first in every data set would have a rank 
equal to N × D.

Ensemble clustering. To evaluate the hypothesis that a consensus 
of all methods would provide a result better than any individ-
ual method, we combined populations that were identified by 
all methods using ensemble clustering. The consensus cluster-
ing problem is defined as follows: given a set of partitions (the 
ensemble), find a new partition P that minimizes the dissimilarity 
between P and the partitions in the ensemble. A partition M is 
defined as a binary matrix with each column corresponding to 
a class label. The dissimilarity (d) between a partition P and a 
partition element of the ensemble Q is defined as

d P Q P Q p( , ) min|| ||

where || · ||p is the entry-wise p-norm. The permutation matrix 
provides a mapping between corresponding classes. For exam-
ple, given three observations x, y, z, one partition may label the 
observations as x  A, y  B, z  C, and another may label the 
observations (with independent labels) as y  , x  , z  .  
The partitions in fact are the same if we consider the classes as 
A = , B = , C = . The permutation matrix  determines how 
the classes in P correspond with the classes in Q. When P = 1, the 
measure is known as the Manhattan distance. This distance can be 
calculated efficiently using linear programming methods. Once 
a dissimilarity measure is defined—in our case, the Manhattan 

distance with P = 1—we must solve the harder problem of finding 
the partition P* that minimizes the distance for all of the parti-
tions Q in the ensemble E.

P P Q
P Q E

* || ||argmin min
1

This is an NP-hard problem (multidimensional assignment), so 
we used a heuristic method39 that provides approximate solu-
tions for the consensus partition problem, as implemented in the 
CLUE package40.

Ablation analysis was performed as follows. For a set of N algo-
rithms A = {a1, a2, …, aN} and an ensemble clustering result EC, 
the following steps were performed to measure the contribution 
of each individual algorithm to the EC: (i) find the algorithm ai 
that results in the smallest reduction in F-measure when excluded 
from the EC; (ii) remove ai from EC; (iii) record the F-measure 
of EC; (iv) if A is not empty, go to (i); (v) end.

Consensus of manual gates. As discussed in the main text, con-
sensus clustering of manual gates was used to rank the algorithms 
in the refined manual gate analysis. For each population in the 
consensus clusters, the mean F-measure to the matching popula-
tion in all other manual gates was calculated. A comparison of the 
relationship between the score assigned to each cell population in 
the consensus was compared with the absolute or relative cell fre-
quency in linear or log space (Supplementary Figs. 15–17). This 
showed that there was usually considerable agreement between 
human experts and their consensus for large cell populations. 
However, for small populations, there was often (although not 
always) considerable disagreement across the experts. For this 
reason, we focused our ranking on cell populations with an  
F-measure of higher than 0.8. For evaluation of the algorithms, 
we started by limiting the comparison to only those cell popula-
tions that matched strongly across all manual gates (F-measure  
cutoff = 1) and relaxed this condition gradually (Fig. 1).

After we completed the comparison between these independent 
manual gates and the automated results, it became apparent that 
one and perhaps two sets of manual gates were somewhat different 
from the others. We considered whether it might be appropriate 
to remove these from the ensemble of manual gates that was used 
in the F-measure comparison because they might be statistical 
outliers. However, the differences between the individual gates 
represent an expert’s valid interpretation of the data rather than 
statistical noise or outliers, a conclusion supported by the observa-
tion that the outlier effect is observable in only a subset of the cell 
populations. That two of the gating results diverge from the others 
is not a sufficient justification for calling them outliers or discard-
ing them. Removing these two sets of manual gates would, in fact, 
bias the results of our study because the decision would have been 
made after observing the results. For this reason, we would argue 
that removal of an outlier set of manual gates from this analysis is 
not scientifically or statistically justified. Indeed, this wide vari-
ation in manual gating analysis reflects the current state of flow 
cytometry analysis47,48 and provides additional support for the 
importance of adopting objective automated approaches.

Per-population analysis. Human consensus clustering results were 
matched across samples to the sample with the maximum number 
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of populations. Then the human consensus for each sample was 
used as a reference for matching of the automated results of that 
sample. Pairwise F-measures between all algorithms and manual 
gates for the HSCT and GvHD data sets are shown in Figure 2 
and Supplementary Figure 9, respectively. We calculated the den-
drograms using the complete-linkage hierarchical clustering and 
Euclidean distance between the F-measures as the metric.

These results can be used to identify cell populations that are 
responsible for high (or low) F-measures for further visual inves-
tigation. For example, cell population no. 3 in the HSCT data set 
demonstrates a high overall pairwise F-measure between all of the 
algorithms and manual gates (Fig. 2), which suggests that this cell 
population has been relatively easy to identify. This was visually 
confirmed in Supplementary Figures 7 and 8. In contrast, cell 
population no. 2 in the GvHD data set represents a cell popula-
tion that was identified only by manual gating (Supplementary 

Fig. 9). Further evaluation shows that this population (colored in 
red) is generally identical to the cyan population in every channel 
but has a lower FSC (Supplementary Fig. 10). This emphasizes 
the importance of designing methodologies that can use back-
ground biological knowledge in the clustering process. In this 
case, the humans used their knowledge about the scatter chan-
nels to partition these cells into two different populations on the 
basis of cell size despite their similarity in every other channel  
(see Supplementary Fig. 18 for a density plot of the sample).

Sample classification. FlowCAP-II included three data sets for sample 
classification (markers are listed in Supplementary Table 5).

Challenge 1: HIV-exposed–uninfected versus unexposed 
(HEUvsUE). The goal of this challenge was to find cell popula-
tions that can be used to discriminate between HEU (n = 20) and 
UE (n = 24) infants. Blood samples were taken at 6 months after 
birth and were left unstimulated (for control) or stimulated with 
six Toll-like–receptor ligands. In addition to raw FCS files, half of 
the subject labels were provided for training purposes. Algorithms 
were to use these data to label the rest of the samples. These labels 
were used to evaluate algorithm performance.

Challenge 2: acute myeloid leukemia (AML). The goal of this 
challenge was to find cell populations that can discriminate 
between AML positive (n = 43) and healthy donor (n = 316) 
patients. Peripheral blood or bone marrow aspirate samples were 
collected over a 1-year period using eight tubes (tube #1 is an 
isotype control, and #8 is unstained) with different marker com-
binations. In addition to raw FCS files, half of the subject labels 
were provided for training purposes. Algorithms were to use these 
data to label the rest of the samples. These labels were be used to 
evaluate algorithm performance.

Challenge 3: identification of antigen stimulation group of intra-
cellular-cytokine staining of post–HIV vaccine antigen-stimulated 
T cells (HVTN). The goal of this challenge was to correctly label 
the antigen stimulation group of post–HIV vaccine T-cells.  

The data set contains samples from 48 individuals from the HIV 
Vaccine Trials Network. Each individual received an experimental 
HIV vaccine. Samples were collected approximately 10 months 
later and T cells were challenged with two antigens: ENV-1-PTEG 
and GAG-1-PTEG. The response of CD4+ and CD8+ T cells was 
measured by FCM for each group. Cells were found to respond 
differently to the two antigen stimulations. This is essentially a 
classification challenge (see Supplementary Fig. 19 for an exam-
ple). For training purposes, we provided data from 24 individu-
als in each group. The antigen-stimulation label was provided. 
Participants were to correctly identify the antigen stimulation 
group of the test data (n = 24). The complete data set consisted 
of 240 FCS files. The data were compensated, transformed and 
partially gated (gated for singlets, live cells and lymphocytes).

Classification F-measure. The F-measure for classification is 
defined as the harmonic mean of precision and recall (the addi-
tional ‘matching’ step for clustering F-measure is not required). 
Precision is defined as TP/(TP + FP), and recall is defined as 
TP/(TP + FN), where TP, TN, FP and FN are true positives (e.g., 
AML predicted as AML), true negatives, false positives and false 
negatives, respectively.

Participants in the DREAM6/FlowCAP II challenge were 
required to submit a list of subjects ordered according to the con-
fidence assigned to the subject being affected with AML. That 
allowed us to compute more metrics than the ones used in the 
other FlowCAP challenges (Supplementary Note 3).

Features used for classification. A post hoc analysis of the HVTN 
Challenge 3 results was performed to determine whether the fea-
tures used by automated algorithms for sample classification were 
similar to the features selected during manual gating. A detailed 
description of this analysis is presented in Supplementary Note 4 
and Supplementary Figure 20.
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