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1. Electroweak (and QCD) Tools at NLO

In the past years, many groups have concentrated their efforts on the development of several
codes to produce theoretical prediction with next-to-leading-order (NLO) accuracy. Most of them
have been created to deal with QCD corrections, but recently a lot of interest have been devoted
to the electroweak (EW) sector of the Standard Model (SM). The core programs are the libraries
for the computation of one-loop integrals like FF [1], LooPTooLS [2], CUTTOOLS [3], QCD-
LooP [4], SAMURAI [5], ONELOOP [6], PJFRY [7], GOLEM95C [8], PACKAGE-X [9]. The last
published package is COLLIER [10], a fast and stable library for the calculation of tensor integrals’.
These libraries are usually included in matrix elements generators, to compute one-loop QCD
and EW amplitudes for elementary processes. Some examples are FEYNARTS/FORMCALC [11,
12, 13], BLACKHAT [14], HELAC-1LOOP [15], NGLUON [16], MADLOOP [17], GOSAM [18]
and OPENLOOPS [19]. Most of them were developed with a focus on QCD corrections, but re-
cently EW corrections have been included also in OPENLOOPS [20, 21] and MADLOOP [22, 23].
The last published code is RECOLA [24], designed for the automated calculation of both EW
and QCD corrections®>. The production of theoretical predictions is then achieved by parton-
level Monte Carlo event generators, like MCFM [25], ALPGEN [26], VBENLO [27], MAD-
GRAPH5_AMC@NLO [28], which rely on the above-listed programs or on internal matrix el-
ement generators. The matching to parton shower is performed through matching programs (as
MC@NLO [29] and POWHEG-B0X [30]) and general-purpose event generators like PYTHIA [31,
32], HERWIG [33] and SHERPA [34, 35].

In order to give an idea of the efficiency of the codes for the computation of matrix elements, in
Table 1 we present the CPU time needed by the RECOLA+COLLIER package for the computation
of some processes of physical interest at the LHC. The amount of memory for executables, object
files and libraries is usually negligible, while the RAM needed does not exceed 2 Gbyte even for
complicated processes.

NLO | Process Computation of 1 PS point
REcoLA +  COLLIER

ud —1"vgg 1.6ms + 3.2 ms

QCD | ud —1tv,ggg 49ms + 61 ms
uii = 1vil'" Vpgg 26ms  + 48 ms

uii — 171~ 28ms  + 17 ms

QSD uﬁ—>l+l_§§ 38ms  + 70 ms
EW wii — 171 tf 47 ms + 36 ms
uit — "1 uig 713 ms  + 565 ms

Table 1: Performances of RECOLA+COLLIER for the computation of QCD corrections (second row) and
QCD+EW corrections (third row) for some sample processes, on a personal computer with processor In-
tel(R) Core(TM) 15-2450M CPU @2.50 GHza. The given CPU time refers to the computation of the matrix
elements for one phase-space (PS) point, i.e. for one configuration of external momenta.

'COLLIER can be downloaded from http://collier.hepforge.org.
ZRECOLA is available from http://recola.hepforge.org.
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2. Drell-Yan

The importance of the Drell-Yan process to determine the W-Mass and the effective weak
mixing angle at LHC and the exceptional experimental precision of the measurements have driven
a considerable effort for the computation of theoretical predictions. The current state of the art
of higher-order corrections includes QCD NNLO corrections in a parton-shower framework sup-
plemented by higher-order effects [36, 37]. Concerning EW effects, the NLO corrections, supple-
mented by leading higher-order effects from multiple photon emission and universal weak effects,
are also known [38, 39, 40]. The NLO EW and QCD corrections have been combined in a parton
shower framework in [41, 42].

Recently the enhanced contributions in pole approximation to the mixed NNLO QCD-EW
corrections have been addressed in [43, 44]. In pole approximation the Feynman diagrams that are
enhanced by the resonant propagator of the W or Z boson can be classified according to Figure 1.
The initial-initial O(o ) corrections are only partially known (a consistent computation would also
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Figure 1: The leading contributions in pole approximation for the Drell-Yan process (from left to right):
factorizable initial-initial corrections, factorizable initial-final corrections, factorizable final-final corrections
and non-factorizable corrections.

need a PDF set including O(0, ) corrections, not available yet); in any case they are expected to be
much smaller than the huge QCD corrections. The final-final corrections and the non-factorizable
corrections are negligible. The dominant contributions come from the factorizable initial-final
corrections. An example of the impact of these corrections can be inferred from Figure 2. The
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Figure 2: Initial-final factorizable corrections to the transverse-mass (left) and transverse-lepton-
momentum (right) distributions for W+ production, compared with the naive 5&5 X Og approximation.

corrections in the transverse-mass distribution turn out to be small and well approximated by the
naive QCD xXEW approximation. This does not hold anymore in the transverse-lepton-momentum
distribution, where the naive product 5&5 x Og fails to describe the large corrections for py ,+ >
My /2. From the analysis of the Drell-Yan process with and without lepton recombination, the



Electroweak corrections

authors of [44] have estimated the impact of the factorizable mixed NNLO QCD-EW corrections
on the determination of the W mass, to be respectively of around —4MeV and —14MeV.

3. pp — V+jets

The production of a vector boson in association with jets is an important process at the LHC,
as background of Higgs production and in the search of new physics. The detailed study of QCD
and EW NLO corrections of pp — V + 1 jet done in [45] reveals large EW corrections of Sudakov
origin in high-energy regions, which need to be combined in a multijet approach with the known
huge QCD corrections in TeV regions.

The computation of NLO QCD corrections of order &(a}a?) to pp — V +2 jets have been
addressed in [46], while a subset of & (Ocsoc“) corrections have been computed in [47]. The domi-
nant EW corrections of order 2o have been considered by two groups [48, 20, 21] finding good
agreement [49]. Figure 3 gives an example of the size of the EW corrections for pp — 71 jj
and pp — vV jj and shows again the large effects of Sudakov logarithms in the high p; regions.
For the second process, which is the SM irreducible background for the search of new physics in
the production of two jets with missing transverse energy, the analysis based on the selection cuts
of [50] shows overall EW corrections of —10% for the total cross section.
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Figure 3: EW corrections of order &'(a2a?) of the pr distribution of the hardest jet for pp — /71~ jj with
basic cuts (first row) and for pp — vV jj with cuts inspired by [50] (second row).

The production of a vector boson with more than two jets is known at NLO QCD for pp —
W+ < 5j[51] and pp — Z+ < 4j [52] and at NLO EW only for pp — W+ < 3j with on-shell W
[20]. Jet multiplicity can be also successfully studied by matching NLO predictions with parton
shower and by merging all of the underlying matrix elements with up to two light partons at the
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Born level. This procedure is well understood in QCD and has been applied in [53] for pp —
V + jets, reproducing present LHC data also at high jet multiplicities.

Less simple is the extension of this procedure to cover the combination of QCD and EW cor-
rections. The problem has been recently addressed in [21]. In the first two plots of Figure 4 are
shown the py distribution of the hardest jet for pp — V + 1,2 jets with NLO QCD and EW correc-
tions with fixed jet multiplicities. The tail of the distribution is for kinematic reasons populated by
pp — V + 2 jets, giving rise to huge QCD corrections for pp — V + 1 jet (where the second jet is
present just at LO in the computation) and hiding the large negative EW corrections. In order to
combine QCD and EW corrections, a merging procedure is therefore necessary. A first rough merg-
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Figure 4: NLO QCD and EW corrections for the pr distribution of the hardest jet for pp — V + 1 jet (left),
pp — V + 2 jets (center) and for the merging of pp — V + 1,2 jets via exclusive sums.

ing of pp — V + 1,2 jets has been done in [21] using exclusive sums, i.e. dividing the phase-space
in two regions according to the value assumed by the ratio

=2, 3.1

For ry/; below some rg‘;tl just pp — V + 1 jet contributes to the cross section, while the region
defined by ry/; > r%‘/‘tl is only populated by pp — V + 2 jets. As shown in Figure 4, this stabilizes
QCD corrections and the typical negative EW effects appear. In order to proceed in a more pre-
cise framework and take advantage of the QCD merging procedure, the author of [21] propose to
approximate the one-loop EW corrections with their virtual part (where the IR divergences have
been properly regularized with the inclusion of the counterterms described in [54]) and insert these
approximated EW corrections in the MEPS@NLO merging framework. The approximation well
describes the behavior of EW corrections in many observables®, allowing a well defined combina-
tion of QCD and EW in the merging procedure. The results for the pr distribution of the hardest
jet and of the W boson are shown in Figure 5. In both cases the enhanced QCD corrections have

3The most striking exceptions are the invariant mass distributions involving charged leptons, where the neglected
real QED radiation can lead to corrections of a few tens of percent in the off-shell region below the Breit-Wigner peak.
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pp — {7 7+0,1,2j @13 TeV pp — {7 7+0,1,2j @13 TeV
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Figure 5: Combination of QCD and EW corrections for the pr distributions of the hardest jet (left) and of
the W boson (right), after the merging procedure in the MEPS @NLO framework.

disappeared, revealing an accidental cancellation between one-loop EW corrections and LO in-
terference effects in the tail of pr ; and the expected large EW Sudakov effects for high prw.
For this latter distribution the result of the merging is quantitatively consistent with the factorized
QCDXxEW prescription for the combination of QCD and EW corrections.

4. pp —~tt+H,V

Another recent development in the computation of EW corrections concerns the production of
a tf pair in association with a Higgs or a vector boson. The NLO QCD corrections to pp — ¢tf + H
matched with parton shower are known for on-shell ¢, 7, H [55, 56, 57], while results with all off-
shell ¢f effects are available only at fixed order [58]. The EW corrections have been computed
in [22, 59], again with on-shell top, antitop and Higgs boson. The computation of NLO QCD and
EW corrections to pp — #f + V have been carried out in [23] (for oh-shell ¢, £, V).

The results for the total cross section, as given in [23], are shown in Table 2. When the selection
cut requiring high py external particles is applied, large EW corrections appear, but remain inside
the QCD uncertainties, which represent the dominant contribution to the theoretical error for this
process. It is important to notice that the real radiation of an additional heavy boson (HBR)* gives
a non negligible contribution for W production.

4This contribution usually ignored in literature, because its final states are supposed to be distinguishable from
tf+H, V. The authors of [23] argue that such an argument is not physical without a detailed study on the decay products
of the vector bosons.
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JLo(pb) dqep %] Sew(%] | Onsr[%]
ttH | 13TeV | 3.617-107" | 29.7768 +2.8 | —1.4+0.0 | 0.89
13TeV* | 1.338-1072 | 24278 £45 | —8.5+£02 | 1.87
100TeV 23.57 408793 +£1.0 | —2.7+0.0 | 091
tiZ | 13TeV |5.282-1071 | 45.97224£2.9 | —4.1£0.1 | 096
13TeV* | 1.955-1072 | 402" 133 +£4.7 | —11.5£03 | 2.13
100TeV 37.69 5047108 +£1.1 | —54+00 | 0.85
fiw* | 13TeV | 2.496-10"" | 50.1732+£2.4 | —8.0£0.2 | 3.88
13TeV* | 7.749-1073 | 59.77189+3.1 | —=20.0+0.5 | 7.41
100TeV | 3.908 15647380 £24 | —9.6+£0.1 | 21.52
fiw= | 13TeV | 1.265-107" | 51.57}38+£2.8 | —7.0£02 | 6.50
13TeV* | 3.186-1073 | 66.37307+£3.9 | —19.1£0.6 | 15.01
100TeV 2.833 153.67370+2.2 | —8.84+0.1 | 2891

Table 2: Total cross section for pp — 7+ H, V (on-shell ¢, 7, H, V) for different center of mass energy with
basic selection cuts. The blue numbers refer to the cross section with the additional cut pr > 200GeV for
the outgoing particles. The LO cross section is given in the third column, while the forth and fifth columns
contain QCD and EW correction respectively. The correction from undetected radiation of real heavy bosons
is given in the sixth column.

S. pp— VV

The EW corrections to the production of a heavy vector boson in association with a photon
has been recently computed in [60, 61], including the leptonic decay of the vector boson. The
state of the art for this process also includes NLO QCD corrections matched with parton shower
for pp — [Tvy,I” vy [62] and NNLO corrections to pp — [T/~ y,vvy [63]. The impact of EW
corrections can be seen in Figure 6. Besides the expected large EW effects at high p7 ,, the photon-
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Figure 6: Impact of EW corrections on pr,y (left), M;+, (center) and M+, (right) distributions. CS and NCS
refer respectively to the collinear-safe and non-collinear-safe situations, corresponding to the cases where

photon-lepton recombination is performed or not. gy and gg refer to photon-induced and quark-induced
contributions respectively.

induced corrections Ogw 4y are huge in this region; they are however plagued by the uncertainties
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of photon PDF of up to 100% and can be reduced to 10 — 15% by a jet veto. The M+, distribution
receives EW corrections of the order of few percent around the W-mass peak, essentially due to
photonic emission (usually well described by parton shower). The same photonic corrections are
responsible of the large EW corrections in the M;+;- distribution around the Z-mass peak.

For the production of two heavy vector bosons, NLO QCD corrections are available at the
level of parton shower Monte Carlo generators [64, 65, 66, 67, 68, 69], with multijet merging
[70], together with NNLO fixed order QCD computations [71, 72, 73, 74, 75]. Very recently the
EW corrections to pp — ptpu~e*e” and pp — u* vy e v, have been studied in [76, 77]. Some
of their results are shown in Figure 7. The My, distribution of pp — p™ " eTe™ presents large
photonic corrections around the 2My peak (well approximated by parton showers) and moderate
weak corrections. These ones change sign (from —3% to +6%) rendering their inclusion via a
global rescaling factor impossible. The py .- distribution of pp — 1™ v, e~ V, shows large negative
EW corrections (~ —20% at pr .- ~ 400GeV) of Sudakov origin, partially compensated by the
positive contribution of the yy-induced tree-level process.
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Figure 7: EW corrections to the My, distribution of the process pp — " eTe™ (left) and to the PTe
distribution of the process pp — i vy e~ V. (right). In the right upper panel, LO and yy refers to gg and yy
initiated channels respectively, while EW stand for to the full NLO EW prediction. The right lower panel
compares the relative corrections induced by the gq, q7, and yy channels as well as their sum (EW).

6. Conclusions

I have presented the last developments in the theoretical computations of EW NLO corrections.
A lot of effort has been devoted by several groups in the automatization of the calculations at the
level of matrix elements and the available tools in the EW sector of the Standard Model have
reached the same efficiency as the programs for NLO QCD. Such programs have been used in
parton-level Monte Carlo (MC) generators to make predictions for non trivial LHC processes,
whose results quantify the impact of EW corrections and show large negative corrections at the
TeV scale. I have presented also the first implementations of EW calculations in general-purpose
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MC generators and the first attempts to combine EW and QCD corrections in a multijet merging
procedure.
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