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A B S T R A C T

Functional connectivity is derived from inter-regional correlations in spontaneous fluctuations of brain activity,
and can be represented in terms of complete graphs with continuous (real-valued) edges. The structure of
functional connectivity networks is strongly affected by signal processing procedures to remove the effects of
motion, physiological noise and other sources of experimental error. However, in the absence of an established
ground truth, it is difficult to determine the optimal procedure, and no consensus has been reached on the most
effective approach to remove nuisance signals without unduly affecting the network intrinsic structural features.
Here, we use a novel information-theoretic approach, based on von Neumann entropy, which provides a measure
of information encoded in the networks at different scales. We also define a measure of distance between net-
works, based on information divergence, and optimal null models appropriate for the description of functional
connectivity networks, to test for the presence of nontrivial structural patterns that are not the result of simple
local constraints. This formalism enables a scale-resolved analysis of the distance between a functional connec-
tivity network and its maximally random counterpart, thus providing a means to assess the effects of noise and
image processing on network structure. We apply this novel approach to address a few open questions in the
analysis of brain functional connectivity networks. Specifically, we demonstrate a strongly beneficial effect of
network sparsification by removal of the weakest links, and the existence of an optimal threshold that maximizes
the ability to extract information on large-scale network structures. Additionally, we investigate the effects of
different degrees of motion at different scales, and compare the most popular processing pipelines designed to
mitigate its deleterious effect on functional connectivity networks. We show that network sparsification, in
combination with motion correction algorithms, dramatically improves detection of large scale network structure.
1. Introduction

Complex networks theory provides a robust framework to study the
structural and functional organization of brain connectivity, which can
be naturally represented as a graph (Newman, 2010), a collection of
nodes (anatomical brain regions) and edges (functional or structural
coupling between nodes), as in Fig. 1.

Several foundational concepts have been borrowed from network
theory and have become part of the neuroscience parlance. By way of
example, properties like small-worldness (Bassett and Bullmore, 2006),
scale-freeness (van den Heuvel et al., 2008) and modularity (Sporns and
o.bifone@iit.it (C. Nicolini).
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Betzel, 2016; Nicolini and Bifone, 2016; Nicolini et al., 2017) have been
demonstrated in brain networks, providing insight into their complex
topological organization and its bearing on the dynamical processes
underlying brain function in health and disease (Sporns, 2010).

However, despite its increasing popularity, this approach is still the
subject of debate, and a number of seemingly simple, yet critically
important questions remain open. For example, a widely accepted mea-
sure of the distance between graphs, e.g. to compare a network with an
appropriate null model, is still missing, and so is a measure of the in-
formation encoded in a network. This problem is exacerbated by the lack
of a ground truth structure for brain networks.
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Fig. 1. Examples of a resting state functional brain network. In Panel A., nodes
represent brain regions, connected by links whose value is obtained by aver-
aging Fisher transformed Pearson correlations over many subjects. Radius of
nodes indicates the degree, while their colors indicate the modular membership
as overlaid on a surface template in Panel B. The partition entails four com-
munities and is found with the Louvain algorithm (Blondel et al., 2008),
modularity value Q � 0:4.
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Neuroimaging methods, like functional MRI (fMRI), electroencepha-
lography and magnetoencephalography (EEG, MEG) are often used to
assess brain functional connectivity; the resulting networks depend
tremendously on data processing and experimental parameters, but the
lack of an established reference makes it challenging to determine the
optimal procedures univocally. Glaring examples of this problem include
the ongoing debate regarding the use of Global Signal Regression
(Murphy et al., 2009) in resting-state functional connectivity, or the
application of thresholds for network sparsification (Bordier et al., 2017;
van den Heuvel et al., 2017; Hallquist and Hillary, 2019), as well as the
physical meaning of thresholding weighted networks (Robinson, 2019)
or the spatial effects of cortex geometry in determining brain network’s
properties (Henderson and Robinson, 2011).

Specific network metrics (such as node degree distribution or
modularity) have often been used for network comparison, but they do
not capture the intrinsically multiscale structure of brain networks,
focusing only on specific local or global features. Moreover, such mea-
sures describe properties that may also be present in random networks.
By way of example, large values of modularity have been observed in
random networks (Guimera et al., 2004) as well as in natural networks.
Hence, a measure of the distance between a given brain network and an
appropriate null model, i.e., a random counterpart that satisfies certain
constraints, would be essential to address the fundamental question: how
far from random are brain networks?

Information-theoretic measures based on the Shannon entropy would
appear to be a natural choice to address this issue, but an extension of this
formalism to complex networks has proven challenging, although useful
in specific contexts (De Domenico et al., 2015; Anand and Bianconi,
2009).

Recently, pioneering work by De Domenico and Biamonte (De
Domenico and Biamonte, 2016) has demonstrated the use of spectral
entropies to define distances between pairs of complex networks. Spe-
cifically, those authors recognized that the Laplacian of the adjacency
matrix describing a given network can be used to construct a matrix that
satisfies the same mathematical properties of quantum mechanical den-
sity matrices, thus enabling the extension of von Neumann entropy to
complex networks. Several implications of this elegant development may
be useful for the analysis of brain networks. Differently from other
methods, this approach does not rely on a subset of network descriptors
(Squartini and Garlaschelli, 2017), but provides an information-based
2

measure that takes into account the entire network structure at all
scales. The strength of this formalism lays in the dynamical description of
a diffusion process taking place over the network, with the characteristic
time described by a parameter β that determines the diffusion scale.
Hence, spectral entropies provide a scale-resolved, information-based
metric to define and optimize network models.

The same framework enables measuring the distance between net-
works that can be rigorously defined in terms of quantum relative en-
tropy, or information divergence (Wilde, 2013). This quantifies the
information gain when a model is used to explain an empirical obser-
vation. Moreover, minimization of relative entropy can be used to opti-
mize model parameters (De Domenico and Biamonte, 2016; Nicolini
et al., 2018), or to select different models based on their ability to
reproduce the data.

Here, we extend the novel formalism to the study of brain functional
connectivity, and demonstrate its potential to address a few open prob-
lems in the analysis of resting-state connectivity networks.

Firstly, we implement two new models of maximally-random net-
works with specific local or global properties to evaluate their deviation
from their original counterparts at different scales. The simpler model
describes a class of networks where the total number of links and total
weight are constrained to match those of another network. The latter
model addresses the more general case in which both degree and strength
sequence are preserved upon randomization of the edges.

At variance with previous null models based on integer link weights
(Squartini et al., 2015; Mastrandrea et al., 2014), and as an important
point of novelty, our models are applicable to networks with continuous
weights, like those derived from functional connectivity, and can be
optimized fixing their density to that of the original network, by
including an external threshold parameter.

A most contentious methodological issue in graph analysis, as applied
to the study of brain connectivity, is the one of network sparsification.
Functional connectivity networks are generally derived from pairwise
correlations of spontaneous fluctuations extracted from each pair of brain
regions, resulting, by definition, in a fully connected weighted matrix.
However, dense networks are computationally demanding, and weak
links, which represent the overwhelming majority of edges, might
contain spurious correlations. Network sparsification is then an essential
step to recover the network structure.

A number of different thresholding techniques have been proposed
(Hallquist and Hillary, 2019; van den Heuvel et al., 2017; Bordier et al.,
2017; Santarnecchi et al., 2014; Lohse et al., 2014; Schwarz and McGo-
nigle, 2011; de Vico Fallani et al., 2017) but the choice of the threshold,
which strongly affects the topological features extracted from the
network, such as the highly specific intermodular links (Zalesky et al.,
2016), remains somewhat arbitrary, and according to some authors,
ill-posed (Robinson, 2019). Adding to this, it is now argued that the
sparsification procedure itself might actually inject artifactual structures
within the network of interest. A recent study, indeed, revealed the
introduction of some complex features in random networks as a sole
result of thresholding (Cantwell et al., 2019). Altogether, given the lack
of agreement on the best thresholding level, and the uncertain signifi-
cance of the weakest and negative links, there is a trend to completely
avoid the application of a threshold, and to work with fully connected
networks (Schlesinger et al., 2017; Goulas et al., 2015; Bassett et al.,
2011; Rubinov and Sporns, 2011). Starting from the above consider-
ations, here we apply the novel formalism of spectral entropies to
investigate the effects of thresholding on resting-state networks, with the
aim to assess whether this practice is beneficial for the extraction of in-
formation on the large-scale organization of the network, and whether an
optimal threshold that maximizes separation between a network and its
random counterpart exists.

Other open issues in the functional connectivity field relate to more
basic aspects of image processing. For example, it is well known that
small head movements during the resting-state fMRI scan can substan-
tially impact the subsequent functional connectivity analysis (Power
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et al., 2011; Van Dijk et al., 2012; Satterthwaite et al., 2012). Motion
artifacts are a significant cause of spurious correlations that can sub-
stantially affect the structure of functional connectivity networks derived
from functional MR. The search for an optimal strategy for the correction
of motion-related noise has become a center of attention in the field
(Ciric et al., 2017; Satterthwaite et al., 2019; Parkes et al., 2018).
Moreover, non-neural physiological activity, like cardiovascular pulsa-
tion, respiratory cycle and autonomic fluctuations can inject spurious
correlations across multiple frequencies (Siegel et al., 2014; Marchitelli
et al., 2016). A plethora of different noise correction techniques have
been introduced, all aiming at the reduction or removal of the impact of
in-scanner motion effects (Ciric et al., 2017; Burgess et al., 2016).
However, a consensus on the most effective approach to removing mo-
tion effects without substantially affecting the network intrinsic struc-
tural features is still lacking. For example, a major debate revolves
around the application of a global signal regression (GSR) (Fox et al.,
2009; Saad et al., 2012; Aquino et al., 2019). The aggressiveness of ap-
proaches based on GSR, and the subsequent introduction of negative
correlations in the network following its application, has made it the
subject of discussion in the neuroscientific community, despite its
apparent efficacy in removing spatially correlated spurious fluctuations.
Here, we seek to demonstrate the potential use of the spectral entropy
formalism to study the effects of some of the most popular motion
correction procedures on network structure. To this end, we assess the
effects of motion on the information contained in the network at different
scales, and compare the efficacy of various data processing pipelines for
the recovery of structural information in the presence of different degrees
of motion.

2. Materials and methods

2.1. Null models for continuous (real-valued) thresholded networks

In network science, and in the study of statistical properties of graphs,
a null-model is a mathematical entity representing a family of graphs that
match some of the properties of a network, while remaining maximally
noncommittal with regard to properties not explicitly specified (Jaynes,
1957; Park and Newman, 2004; Squartini and Garlaschelli, 2017). Null
models provide a powerful way to test whether nontrivial, high-order
network patterns are genuine or just the outcome of simpler local prop-
erties. The configuration model of Newman’s modularity (Newman,
2006), for example, is a null model in which the link probability pij is only
based on the degrees of each edge endpoints i and j. A large deviations
from the predicted link probability in a subset of edges, is an indication
that non-trivial relations exist between those links, which cannot be
explained by the degrees alone.

Desirable null models do not trade complexity for sufficiency or
redundancy (Betzel and Bassett, 2017): two constraints leading to the
same ensemble should be merged into one. Moreover, null models should
be neither too complicated nor too simple. Too many parameters and the
null model no longer represents the state of maximal agnosticism as
overfitting the data precisely displays all its features. Conversely, too few
parameters and the picture it conveys is oversimplified, hence lacking
explanatory power.

In this sense, we are looking for a model of rs-fMRI networks that is
complex enough to match simple features of the network, but remaining
completely uninformative over higher-order patterns. A similar model
should at most deal with local properties of networks, i.e. quantities
which are only functions of the immediate neighbors of the nodes, or
more precisely, linear functions of the adjacency matrix (Squartini and
Garlaschelli, 2017). In some cases, local constraints such as the number
of links or the degree sequence may already fully contain all the infor-
mation conveyed by the network. Networks of this kind have no statis-
tical patterns or regularities (Betzel and Bassett, 2017; Peixoto, 2015)
beyond those described by local properties: local features explicitly
enforced represent a null hypothesis that we can use as a reference to
3

quantify significant deviations or patterns.
As an another design choice for a proper null model for resting-state

fMRI networks, we should take into account the continuous nature of link
weights, the binary backbone, and weighted structural patterns. Impor-
tantly, here we only deal with positive link weights, as in the literature
most of the graph-theoretical quantities have no simple interpretations in
networks with negative links. Specific null models of Pearson correlation
matrices, where one retain both positive and negative correlations, have
been presented by MacMahon and Garlaschelli (2015) and Masuda et al.
(2018).

Here we extend previous random graph models (Squartini and Gar-
laschelli, 2011; Mastrandrea et al., 2014; Garlaschelli and Loffredo,
2008; Cimini et al., 2019) to networks with real-valued links distributed
over a connectivity backbone modeled by the degree and strength
sequence. These local variables are the optimal trade-off to shape the
irreducible and unavoidable complexity needed to accommodate the
heterogeneous structure of real networks. Nonetheless, we also describe
a simpler model with only two global constraints, namely the total
number of links and weight.

In the next section we will show that the former model captures most
of the long-range connectivity and mesoscopic structures, while the latter
adequately describes local features but remains uninformative of larger-
scale structure.

Hereby, we embrace the Exponential Random Graph model (ERGM)
(Park and Newman, 2004; Newman, 2010; Obando and De Vico Fallani,
2017) and analytically build the maximally random counterparts of real
networks where only specific features are reproduced, on average. The
details of the mathematical formalism of the Exponential Random Graph
model are given in Appendix A.1. Due to its nature, the ERGM defines
ensembles with soft constraints: little fluctuations around the average
have smaller but non-zero probability. This is at variance with micro-
canonical approaches, also known as rewiring algorithms, like the one of
Maslov and Sneppen (2002), where zero probability is assigned to net-
works with even the slightest violation of the desired properties (Cimini
et al., 2019). However, the analytical tractability, together with unbi-
asedness, flexibility and easiness of sampling methods (Squartini and
Garlaschelli, 2017), make Exponential Random Graphs a very powerful
tool to define null models.

We first describe a model where the number of links and total weight
are constrained and then move to the more general case where both the
degree and the strength sequences of the network are considered. Most
importantly, both models include a hard thresholding procedure
(Esfahlani and Sayama, 2018; van den Heuvel et al., 2017; Schwarz and
McGonigle, 2011) that is often used in analysis pipelines.

2.1.1. Random networks with fixed links number and weight
Here we introduce the Continuous Weighted Thresholded Enhanced

Random Graph Model, or simply CWTERG, as the random graph model
that fixes the average total number of links L⋆ and the average total
weight W⋆, together with an external threshold parameter t. The
CWTERG is obtained within the ERGM formalism described in Appendix
A.2, by a Hamiltonian that explicitly enforces these two properties and
reads:

HCWTERGðGju; vÞ¼ uLðGÞ þ vWðGÞ; (1)

where the Lagrangian multipliers θ of the problem are the two scalars, u
and v. This Hamiltonian is designed to weight the contribution of binary
links with the term u and the contribution of weighted links with the term
v. The role of the threshold parameter t becomes clear if a dense network
is fed in the model, and its null network is sought for as a function of the
threshold.

Fitting the CWTERG model to a network requires to solve a system of
two nonlinear equations, hence finding the values of the Lagrangian
multipliers bu; bv such that the observed number of links and total weights
L⋆;W⋆ are:
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N
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(2)

Alternatively, one can find the optimal estimates of bu; bv by maximi-
zation of the log-likelihood of the model L CWTERG:

L CWTERGðGju; vÞ¼ � uLðGÞ� vWðGÞ �
�
N
2

�
log
�
tþ e�u�vt

v

�
: (3)

We report in Appendix A.2 the entire theoretical derivation of the
expressions for the ensemble averages of the number of links and total
weight, as well as the probability density function of the model.

2.1.2. Random networks with fixed degrees and strengths
The CWTERG model describes the ensemble of networks whose total

weight and number of links are constrained to reflect those of the
observed graph. Hence it can be considered an extension of the Erd}os-
Renyi random graph model to thresholded weighted networks. However,
this model only describes networks with uniform connectivity patterns,
and it ignores the heterogeneity of the degrees and strengths. To over-
come this issue, here we introduce the Continuous Weighted Thresholded
Enhanced Configuration Model, or CTWECM, by defining a Hamiltonian
that simultaneously considers the degree and strength sequences:

HCWTECMðGju; vÞ¼
X
i<j

�
ui þ uj

�
Θ
�
wij � t

�þ �vi þ vj
�
wijΘ

�
wij � t

�
; (4)

where ui; vi are the Lagrangianmultipliers associated to node degrees and
strength, respectively. The node degrees are obtained as the sum of bi-
nary variables, hence the Heaviside function Θ is exactly centered at t,
taking values one or zero if the edge weight exceeds the cut-off threshold.
Similarly, the threshold t shapes the sequence of nodes strength, by
contributing with a factor

P
j
wij for weights greater than the cut-off t.

Although it may appear different, the structural form of the Hamiltonian
of the CWTECM is the same as the one of the previously introduced
CWTERG: the detailed analytical expression of the probability density
function is reported in Appendix A.3.

Fitting the CWTECM to a network requires solving a system of 2N
non-linear equations,N of them for the degrees andN for the strengths, to
find the values of the Lagrangian multipliers bu; bv such that the original
degrees k⋆i and strengths s⋆i are:

8>>><>>>:
k⋆i ¼

X
j 6¼i

1

1þ �vi þ vj
�
teðuiþujÞþðviþvjÞt

s⋆i ¼
X
j6¼i

�
vi þ vj

�
t þ 1�

vi þ vj
�
t
��
vi þ vj

�
teðuiþujÞþðviþvjÞt þ 1

�:
(5)

In the same spirit of the CWTERG, the optimal parameters bu; bv can
either be found by solution of the above system of 2N equations, or by
maximization of the model log-likelihood that reads:

L CWTECMðGju; vÞ¼ �
X
i

uikiðGÞ�
X
i

visiðGÞ

�
X
i<j

log
�
tþ e�ui�uj�tðviþvjÞ

vi þ vj

�
: (6)

In the following we will study the properties of these two null models
at different scales using a powerful information theoretical tool, based on
the analogy with quantum statistical mechanical systems.
4

2.2. Spectral entropies

Classical maximum entropy methods are a tool for describing the
ensemble of networks that show on average the same desired descriptors.
However, when considering the problem of comparing two networks at
all scales on a wide variety of metrics, classical maximum entropy
methods fail in providing a statistically reliable tool, as one should design
and solve a specific maximum entropy problem for every specific
descriptor (Park and Newman, 2004; De Domenico and Biamonte, 2016).

It is possible to extend the maximum entropy approach to networks
represented as quantum mechanical systems, by replacing the Shannon
entropy with the von Neumann entropy (De Domenico and Biamonte,
2016; Nicolini et al., 2018):

SðρÞ¼ � Tr½ρlogρ�; (7)

where ρ is the von Neumann density matrix, a Hermitian and positive
definite matrix with unitary trace, that admits a spectral decomposition
as:

ρ¼
Xn
i¼1

λiðρÞφiφ
T
i (8)

for an orthonormal basis fφig and eigenvalues λiðρÞ.
By application of the same maximum entropy principle discussed in

the previous sections, but constraining the networks to have, on average,
the same Laplacian (see Appendix A) one finds that the role of classical
probability in this case is replaced by the following density matrix:

ρ¼ e�βL

Tr
½e�βL� (9)

that describes the result of constraining the diffusion properties on the
networks, and is in the form of a quantum Gibbs-Boltzmann distribution.
Intuitively, the elements of ρ represent the normalized amount of infor-
mation transferred in a diffusion process between two nodes. The de-
nominator Z ¼ Tr½e�βL� is the so-called partition function of the system
(to be distinguished from Z in Eq. (A.6) of the null models), which can
also be expressed as the sum of the eigenvalues of the matrix e�βL (Golub
and Van Loan, 1996) as follows:

Z¼Tr½e�βL� ¼
X

n
i¼1 e

�βλiðLÞ (10)

with λiðLÞ the eigenvalues of the Laplacian L. The von Neumann density
matrix defined in Eq. (9) is based on exponentially scaled eigenvalues of
the graph Laplacian, and contains contributions at different scales of
patterns in the network, tuned by the scalar β. The role of β is far from
trivial (Nicolini et al., 2018): it can be interpreted as an inverse tem-
perature (in classical statistical mechanics) or a normalized time (Nic-
olini et al., 2018) in modeling heat diffusion over the network. In the
β → 0 limit, the density matrix can be expanded linearly as ρeI� L and
carries information about local connectivity patterns. On the other hand,
for β → ∞, the diffusive behaviour is governed by the smallest non-zero
eigenvalue of the Laplacian λ2, hence ρee�βλ2φ2φ

T
2 , where φ2 is the

eigenvector associated to λ2. This eigenvector is also called the Fiedler
eigenvector and embodies the large scale structure of the graph (Xiao
et al., 2005).

The Laplacian spectrum encloses several critical topological proper-
ties of graphs (Estrada, 2011; Anderson and Morley, 1985; Merris, 1994;
de Lange et al., 2014). For instance, the multiplicity of the zero eigen-
value corresponds to the number of connected components, while the
multiplicity of each eigenvalue is related to graph symmetries (Merris,
1994; de Lange et al., 2014, 2016), and the concept of expanders and
isoperimetric number are connected to the first and second-largest ei-
genvalues (Cheeger, 1969; Donetti et al., 2006). Moreover, the graph
Laplacian appears often in the study of random walkers (Lov�asz, 1993;
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Masuda et al., 2017), diffusion (Bray and Rodgers, 1988), combinatorics
(Mohar, 1991), and a large number of other applications (Merris, 1994;
Mohar, 1991). For this reason, the spectral entropy, which is ultimately
based on Laplacian eigenvalues, describes a large number of typical
properties of the network, aggregated in a single quantity.

For the sake of comparing two different networks represented by the
density matrices ρ and σ here we use the notion of von Neumann relative
entropy (Wilde, 2013; De Domenico and Biamonte, 2016) that reads:

Sðρ k σÞ¼Tr ½ρðlogρ� logσÞ� (11)

This definition encloses the concept of network similarity, as the
relative entropy is a positive quantity, and is zero if and only if ρ ¼ σ. For
this reason, and in the rest of this manuscript, we quantify the similarity
between a rs-fMRI network represented by density matrix ρ and its ran-
domized counterpart denoted by σ, by means of von Neumann relative
entropy Sðρ k σÞ. Importantly, we evaluate Sðρ k σÞ and not Sðσ k ρÞ as we
are interested to compute the amount of information that is lost when
using the model density σ to describe the data density matrix ρ, and not
viceversa. Additionally, it is straightforward (Nicolini et al., 2018; De
Domenico and Biamonte, 2016) to show that with this order the mini-
mum of relative entropy over all density matrices σ corresponds to the
maximum of a log-likelihood functional, logL ðσÞ, defined as

logL ðσÞ¼Tr½ρlogσ�: (12)

Similarly to Eq. (A.7), in the spectral framework it is possible to
decompose the log-likelihood into the sum of Hamiltonian and free en-
ergy. This happens in equilibrium conditions where the density matrices
ρ and σ are in the form of a Gibbs distribution like specified in Eq. (9). In
particular, denoted ρ⋆ and σrand as the density matrices of a network G⋆

and of its randomized counterpart Grand with Laplacian Lrand, respec-
tively, the resulting spectral log-likelihood from Eq. (12) takes the
following form:

logL ðσrandÞ¼ �Tr ½ρ⋆Lrand� � logTr ½e�βLrand �: (13)

Here we compare networks with their randomized counterparts
sampled from the maximum entropy models CWTERG and CWTECM
using spectral entropies and relative spectral entropies. We leverage
these tools in order to resolve differences between networks at different
scales governed by the diffusion parameter β. Indeed, graph models that
Fig. 2. Von Neumann spectral entropy SðρβÞ as a function of β for a highly-ordered
ρrand. Panel A. For small values of β, the spectral entropy reaches its maximum value
connected components C. Intermediate values of β highlight mesoscopic structures. Th
its positioning on the horizontal axis depends on network links density. Differently f
shows no structure at all scales, hence its von Neumann entropy decreases rapidly. Pa
scale features.

5

preserve the local features (like nodal strength and degree) exhibit
comparatively similar spectral entropies to those of the original coun-
terpart in the regime β → 0. Conversely, mesoscopic structures that
cannot be modeled by solely constraining local features, will result in
different von Neumann entropy S in the large β regime.

This concept is illustrated in Fig. 2, where a highly regular network
and its randomized counterpart are depicted, together with their von
Neumann entropies, over a large range of the β parameter. The orange
line in Fig. 2A, describes the entropy S of the modular network. A large
plateau indicates the tendency of a random walker to remain trapped in
medium-size highly dense subset of nodes: its height is indicative of the
logarithm of the number of modules B. On the other hand in the two
extreme β regimes, entropy tends to its maximum or minimum attainable
values, logN or logC respectively, where C is the number of weakly
connected components. Highly related to this observation is the study of
Lambiotte et al. (2014), that however only measured the number of
detected communities as a function of diffusion time. A
degree-preserving randomized network has more uniform diffusion
properties instead, as testified by the sharply falling blue dashed curve,
where no specific mesoscopic patterns can be found. In the β → 0 limit,
diffusion is only limited to the local neighborhood of nodes, hence, the
orange and blue curves look similar. With a physical metaphor, remi-
nescent of the Infomap algorithm (Rosvall and Bergstrom, 2008), random
walkers spend more time at increasingly larger and isolated structures of
the modular network, from small clusters to larger modules (Fig. 2B).
Finally, at steady-state for β → ∞ both the two curves converge to the
global structure, only specified by the number of connected components.

The concepts and models exposed in this section are implemented in
the open source package networkqit, written in Python.

3. Data and preprocessing

For the purpose of this study we selected publicly available resting-
state networks as benchmarks to test this new theoretical framework.

3.1. Resting-state network

To evaluate the effects of different thresholding on the network
structure, we have chosen a resting-state network computed as a group
average of 27 healthy volunteers (mean age 24 yrs) and described in
network ρ⋆ (orange), and its randomized, degree preserving counterpart (blue),
S ¼ logN, while in the large β limit it tends to the logarithm of the number of
e height of the plateau is related to the overall modularity of the network, while
rom the highly regular ring of cliques (orange), the randomized network (blue)
nel B shows that low β correspond to local features while large β describes large



Fig. 3. Percolation analysis for the healthy resting state dataset of 638 nodes,
described in Crossley et al. (Crossley et al., 2013). The gray curve indicates the
size of the largest connected component as a function of the threshold. The blue
lines correspond to threshold values from 0.1 to 0.5, the orange line is the
percolation threshold, where the largest connected component starts
breaking apart.
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Ref. (Crossley et al., 2013), alongside with the ethical statements. This
functional connectivity network is a popular benchmark for testing
graph-theoretical methods, and was chosen to enable direct comparison
with previous literature. The connectivity matrix is available at Ref
(Crossley et al., 2016). Functional data were acquired with a Siemens
Tim Trio 3T scanner, with a TR¼ 2 s, TE¼ 31 ms, voxel size 3:5� 3:5� 3
mm, for a total of 153 vol recorded for 5 min and 6 s. Regional time-series
were extracted for 638 nodes using Crossley’s parcellation scheme
(Crossley et al., 2013), head rotations and translations together with their
derivatives and mean cerebrospinal fluid time series were regressed and
band-passed (0.01–0.1 Hz). The functional connectivity matrix was
derived computing pairwise Pearson correlations, normalized by the
Fisher transform, and finally across subjects. The network corresponds to
the unthresholded version made publicly available through the Brain
Connectivity Toolbox (BCT (Rubinov and Sporns, 2010),). To assess the
effect of thresholding, we applied a range of different absolute thresh-
olds, from t ¼ 0:1 corresponding to a link density d ¼ 98%, to the point
where the network remains fully connected.

Above this threshold, nodes start detaching from the main largest
connected component, reflecting the hierarchy of modules comprised in
the network (Gallos et al., 2012). Here, absolute thresholding corre-
sponds to the removal of all edges with weight wij < t where t is a real
positive number. The point where the network breaks apart is dubbed
percolation point. Thus, with the term percolation threshold wemean the
highest value of absolute threshold t⋆ such that the undirected network
remains connected, i.e. it comprises a single connected component. The
percolation analysis of the Crossley network is shown in Fig. 3.
3.2. Motion and motion correction

To study the effects of motion, we selected neuroimaging data from
the MPI-Leipzig Study for Mind-Body-Emotion Interactions project
(LEMON (Mendes et al., 2019),), obtained from the OpenfMRI database,
accession number ds000221. Ethical statements are present in the orig-
inal references by the groups who performed the experiments. Given the
growing concern in the neuroimaging literature regarding the effects of
head motion on resting-state functional connectivity data (Power et al.,
2012), and the impact of different motion-correction techniques (Ciric
et al., 2017), we decided to explore the performance of the two null
models over matrices containing different degrees of motion and
different preprocessing pipelines. Indeed, according to recent findings,
even very small head movements (0.2 mm) can substantially affect
functional connectivity networks, increasing spurious correlations and
6

altering its underlying topology (Power et al., 2012; Van Dijk et al.,
2012). The use of this large data-base has enabled us to select subgroups
of subjects with different levels of motion and adequate size for a sig-
nificant between group comparison.

From this dataset, participants were selected according to the age
range; only participants ranging from 20 to 30 y.o. were included in our
study, to avoid age effects in subsequent analyses. All MRI data were
acquired with a 3T scanner (Magnetom Verio, Siemens Healthcare,
Erlangen, Germany), with the following parameters TR ¼ 1.4 s, TE ¼
39.4 ms, for a total of 657 vol, resulting in 15min and 30 s of recording. A
total of 117 subjects were selected. Structural and functional images were
preprocessed with FSL (v 5.0) (Jenkinson et al., 2012). High-resolution
structural images were registered to the MNI template and segmented
(fast segmentation), separating white matter and ventricles masks.
Functional preprocessing included motion correction and realignment
(mcflirt), coregistration to the structural image using boundary based
registration (BBR) and then normalized to the MNI template. For each
participant, we extracted regional mean time series from 638 parceled
areas, based on the same template employed for the other networks
already addressed in the present study. A Butterworth bandpass filter
between 0.01 and 0.1 Hz was applied to all the time series.

For the purposes of the study, all participants were divided into three
groups according to their degree of motion (Low, Medium, and high-
motion), measured as the proportion of outlier volumes present within
the time series. To evaluate the motion level of each subject, Framewise
Displacement (FD) was computed according to Power (Power et al.,
2012). Timepoints were flagged as outliers affected by motion when FD
> 0.3mm. Criteria for group subdivision, decided after careful inspection
of the data, were the following:

� Low-motion (N ¼ 39): less than 1% data affected.
� Medium-motion (N ¼ 39): data affected between 1% and 5%.
� High-motion (N ¼ 39): more than 5% data affected.

The three groups were balanced for age and sex, but different for in-
scanner motion.

Based on the growing debate related to the best noise-correction
technique to apply on resting-state data, we tested two different pipe-
lines, plus one pipeline where no de-noising strategy was applied. We
selected and analyzed the results on the following pipelines:

� P0: no motion-correction technique applied beside rigid image
realignment carried out with mcflirt (Jenkinson et al., 2002);

� FIX: based on the FMRIB trained classifier of Independent Component
Analysis, components related to noise (FIX (Salimi-Khorshidi et al.,
2014),), extracted from single-subjects time series;

� 9P: a commonmethod that requires the regression of different factors,
such as 6 movement parameters, the average signal extracted from
white matter and cerebrospinal fluid, plus the regression of the global
signal (GSR), measured as the average of all the voxels of the brain
extracted from subject-specific brain masks.

Before the regression of all the confound parameters from subjects’
time series, a Butterworth bandpass filter of 0.01 and 0.1 Hz was applied
to all the regressors, avoiding reintroduction of signal related to nuisance
covariates (Lindquist et al., 2019).

Altogether, we specifically selected pipelines based on different
principles. One strategy relies on independent components classification
(FIX), the second includes the regression of the global signal (9P), a
controversial practice. As a reference, for the simple evaluation of pure
effects of motion over the architecture of the functional network, we
considered a pipeline where only the mandatory image preprocessing
steps (realignment, normalization, coregistration, filtering) have been
applied (P0).

Differences among groups in terms of connectivity strength were
measured by means of simple t-tests. Overall functional connectivity
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strength in every network was addressed as the mean of all positive links
(van den Heuvel et al., 2017). From an effective pipeline we would
expect a reduction in the differences induced by motion in the three
groups. At the same time, we would expect that the attenuation of these
differences would not alter the topological structure of the functional
network. Conversely, an excessively aggressive motion-correction
approach may also remove genuine correlations, thus erasing
large-scale network structure.

4. Results and discussion

4.1. Null model fitting

As a first application of the models and framework exposed in the
previous sections, in Fig. 4 we report the results of the maximum likeli-
hood estimation of the CWTECM and CWTERG models in the network of
healthy subjects obtained from Crossley et al. (2013) and described in
section 3.1.

The fully-dense network was thresholded at percolation level, corre-
sponding to a links cut-off value of t ¼ 0:55 (12% link-density) as shown
in Fig. 4A. The maximization of log-likelihood resulted in the optimal
parameters bu; bv that define the link probability matrix pij (Eq. (A.29)) in
Fig. 4B, and the expected link weights matrix 〈wij〉 (Eq. (A.30)) in Fig. 4C.
Importantly, panels B and C of Fig. 4 show the ensemble analytical av-
erages, and not numerical averages over a set of samples from the
ensemble. In panels B and C of Fig. 4 the model degrees and strengths are
computed by summing over the rows of the model link probability matrix
and model expected link weights matrix, and are plotted against the real
degrees and strengths.

Even though, theoretically, one should find exact correspondence
between real and model degree sequences, practical consequences of
numerical optimization make the problem hard to solve exactly as a
system of N non-linear equations must be solved with very high precision
(Garlaschelli and Loffredo, 2008). Hence, as a model convergence diag-
nostic, we fitted two linear regressions on both degrees and strengths of
Fig. 4. Continuous Weighted Thresholded Enhanced Configuration Model fitted on a
thresholded at percolation with rows and columns reorganized by the maximum mod
a brain in Panel D. Panels B,C: the link probability and expected link weights as from
of the link probabilities and expected weights matrices. On the horizontal axis the em
and regression slopes are shown as inset. Panel G: the spectral entropy of the network
Panel H: relative entropy of the network with respect to CWTECM (orange line) and C
not shown, as they are scalar numbers, not matrices.
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the real network versus those of the model. The results of the linear re-
gressions are shown in the insets of Panels E and F of Fig. 4. The
regression slope of the degrees is close to identity, a ¼ 0:99 with a R2

coefficient close to 1 but an intercept b ¼ � 0:232. On the other hand,
the strength reconstruction is more accurate with a regression slope
c � 1, a smaller intercept d ¼ 0:016 and a R2 coefficient of one. Ideally,
when the log-likelihood maximization is perfectly converging to the
global maximum u⋆i ;v

⋆
i , these linear regression should return slope 1 and

intercept 0 with R2 � 1.
Panels G and H of Fig. 4 demonstrate the difference between the

optimal models (CTWERG and CWTECM) in terms of spectral entropies
curves and relative entropies as a function of the scale parameter β. The
spectral entropy of the CTWERG model fits that of the original network
only at local scale, and drops rapidly for larger betas. Conversely, the
spectral entropy of the optimal CTWECM closely matches its empirical
counterpart for a wide range of beta, with the exception of the largest
scales. This behaviour indicates that fixing the degree and strength
sequence represents a strong constraint, which determines the network
structure at the meso-scale. Spectral entropy at large scale reflects the
network’s modular organization, which cannot be accounted for by local
constraints. For visualization purposes, Panel H has two different vertical
scales: the relative entropy of the CWTERG model is sixty times larger
than the one of the CWTECM.

4.2. Effects of thresholding

Here we use these null models within the theoretical framework of
spectral entropies to explore the effects of network sparsification on the
structure of functional connectivity networks. Specifically, we applied
different levels of absolute thresholds to the empirical network and to the
models (from t ¼ 0:10 to the point where the network breaks apart).
Hence, we computed the spectral entropies of thresholded networks and
corresponding null models, for different values of β. We then used rela-
tive entropy to quantify the information-theoretic distance as a function
of threshold. The hypothesis is that the distance between the empirical
real functional network. Panel A: The empirical functional connectivity matrix,
ularity community structure, to highlight the community structure as overlaid on
Eq. (6). Panels E,F: the reconstructed degrees and strengths as sum over the rows
pirical degrees (strengths), on the vertical axis the model degrees (strengths): R2

(blue line), CWTECM null model (orange dashed line) and CWTERG null model.
WTERG (green line). Link probability and expected weights for the CWTERG are
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network and its maximally random counterpart depends on the sparsi-
fication threshold, and that there may exist an optimal threshold value
that maximizes this distance, striking the optimal balance between
removal of spurious correlations and undesirable suppression of struc-
tural information.

The results are summarized in Fig. 5, which shows spectral and
relative entropies for the empirical network and both null models at
various threshold levels. Firstly, we observe that at lower threshold levels
(depicted in light blue, Fig. 5) the relative entropy decreases sharply as a
function of β, a result of faster diffusion time. Indeed, lower threshold
levels correspond to denser networks, and consequently faster diffusion.
Decreasing network density results in a right-shift of spectral entropy
curves for all networks, as shown in Fig. 5A,C.

However, the effects of thresholding are different in the empirical
network and in its null models, a result of the structure of the functional
connectivity network that is not accounted for by its randomized
counterparts.

Indeed, large-scale structures of the empirical network emerge at
higher thresholds (darker blue), as reflected in Fig. 5A by the presence of
“information shoulders” i.e., plateaus in the spectral entropy curve. This
phenomenon is not equally present in the two null models. Should the
thresholding procedure highlight mesoscopic structures only accounted
by local constraints, we would expect similar high values of S on both the
thresholded random counterparts of the empirical graph. However, the
CWTERG shows no indications of a high-level organization at any
threshold, as seen by the sharply falling entropywithin a very small range
of β (Fig. 5C). Indeed, as previously demonstrated, the CWTERG destroys
network structure by completely shuffling nodes’ neighborhoods. As a
result, the diffusion process rapidly spans the whole network, as every
node has uniform probability of being connected to every other node.

On the other hand, the spectral entropy of the CWTECM closely
corresponds to the one of the empirical network over a broad range of β
values. Significant differences only appear at large scales for increasing
Fig. 5. Spectral entropies and relative entropy of the Crossley’s functional connectivit
networks thresholded at absolute values from 0.1 to 0.5. Orange lines denote the netw
are referred to the randomized models. Panels A,B show the results with respe
CWTERG model.
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thresholds. This result shows that degree and strength sequence constrain
local and medium-scale structures. In accordance with the results of
reference (Cantwell et al., 2019), we observed that the large-scale com-
munity structure is the only feature that is not accounted for by local
properties.

This same phenomenon is also reported in Fig. 5B,D where the rela-
tive entropies are shown for both models. The relative entropy for the
CWTERG attains a higher maximum at slightly smaller values of β than
for the CWTECM. Intuitively, it takes less time for a random walker to
explore a random network than a complex network where modules and
local structures may hamper the diffusion process. Moreover, for both
cases, relative entropies accentuate the effects of thresholding, as they
increase with increasing sparsity level, peaking around the percolation
point, just before the network starts breaking apart.

The results in Fig. 5 demonstrate that, in both cases, the maximal
spectral entropy difference of the empirical network from its null model
is found around the percolation threshold.

Taken together, these results demonstrate the beneficial effects of
sparsification to enhance and retrieve the network’s modular structure.
Importantly, we find that this effect is maximal at percolation threshold,
above which the network starts breaking apart into unconnected sub-
units. At low threshold levels, the empirical network is remarkably close
to a random network with similar local features. Only at higher thresh-
olds its meso- and large-scale structure emerges, and difference from the
null models become apparent. Interestingly, the presence of an optimal
threshold appears to be independent of the specific null model. These
results are consistent with previous empirical findings in model networks
(Bordier et al., 2018) and provide a theoretical foundation to the use of
sparsification methods to study the large-scale topology of functional
connectivity networks.
y network compared to its randomized counterparts. Blue shaded lines represent
ork at percolation. Solid lines are referred to the empirical network. Dashed lines
ct to the CWTECM model. Panels C,D show the results with respect to the



Fig. 6. Examples of the effects of head movements over resting-state fMRI signal. Upper panels show the Framewise Displacement (FD) of the three motion groups.
Lower panels show the so-called gray plots of corresponding fMRI scans (see Power et al. (2012)), representing the signal intensity of all voxels in the brain (randomly
ordered) over time. The orange line at FD 0.3 mm represents the limit of outliers.
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4.3. Effects of motion and motion correction

We have also applied the concept of an information-based compari-
son with null models to investigate the effects of motion and motion
correction pipelines typically used in fMRI studies. A major debate in the
resting-state functional connectivity community concerns the effects that
different preprocessing pipelines can have over the functional time series
(Power et al., 2012; Ciric et al., 2017). Here, our goal is to investigate to
what extent motion could render the network more or less similar to its
random counterpart, and the efficacy of different pipelines and thresh-
olding procedures in mitigating the effects of motion.

We used the same atlas with 638 parcels that was used in the previous
examples, and we applied the same model fitting and comparison tech-
niques to resting-state dataset with different degrees of motion and
different motion-correction techniques (see Data and Preprocessing,
section 3). Specifically, we considered three pipelines: P0 with no motion
correction, a second pipeline based on FIX (Salimi-Khorshidi et al.,
2014), and 9P, a pipeline that includes global signal regression (Ciric
et al., 2017). We applied these pipelines on three motion groups: low,
medium, and high-motion (see Data and Preprocessing, section 3). These
three groups are defined on the basis of Framewise Displacement (FD), a
metric commonly used to evaluate the amount of head motion in rsFC
(Power et al., 2011), that is computed as the sum of the absolute values of
the derivatives of the six motion parameters. Power and colleagues
(Power et al., 2014) showed that even small head movements (FD> 0:15
mm) could cause significant changes affecting all voxels in the brain.
These movements can be visually identified utilizing the so called gray-
plots, as shown in Fig. 6. Grayplots depict the signal intensity of every
voxel in the brain over time. Here, we report three examples of how the
magnitude of head movements impacts the whole time series. In Fig. 6
one can appreciate the effects of motion as abrupt changes of voxel in-
tensities in correspondence of head movements. These artifacts give rise
to spurious correlations at different scales.

The three groups here evaluated are perfectly balanced for age and
gender, with exactly the same acquisition procedures, but different for in-
scanner motion. Thus, at the group level, we would expect these partic-
ipants to share same global functional connectivity characteristics.
Possible differences should be driven by the presence of motion.

Firstly, we evaluated the effects of motion on functional connectivity
strength. In line with previous reports (Ciric et al., 2017), we observed a
substantial increase in functional connectivity induced by motion in P0
(Fig. 7). Fig. 7A shows that the distribution of link weights for the me-
dium and high-motion groups is right-shifted compared to the low
groups, reflecting higher correlation strength. At the subject level this
shift is highly significant across all groups (medium > low: p < 10�5;
high > low: p < 10�4). Through the application of specific denoising
strategies we sought to investigate to what degree this spurious
9

difference in functional strength between groups can be reduced. The
histograms depicted in panels B and C of Fig. 7 show that both pipelines
appear to significantly decrease the differences in edge-weight distribu-
tion at the group level across different motion conditions. Specifically,
the pipeline based on independent components classification (FIX) sub-
stantially reduces the right shift of the medium and high-motion groups
that was apparent with P0. Importantly, in this condition the edge-weight
distribution of the medium-motion group almost completely overlaps
with the low-motion curve. Yet, at the individual level the functional
connectivity strength, measured as the mean of all positive edges in the
graph, shows statistical difference (medium > low: p ¼ 0:007). In
contrast, the histogram representing the edge-weight distribution
extracted from the high-motion group still presents a highly significant
right shift reflecting higher functional strength (high>low: p < 10�3). A
different pattern is revealed in the strength distribution after the appli-
cation of GSR. In this case, all curves are highly overlapping, indicating
similar functional connectivity across the three groups. This is revealed
by the lack of significant differences at the individual level in edge
strength (high > low: p ¼ 0:8; medium > low: p ¼ 0:48). As a matter of
concern, all three distributions are centered around zero. Indeed, after
GSR the number of negative correlations dramatically increases,
involving almost half of the edges within the network. These observa-
tions are in line with previous reports and concerns related to the
controversial application of this denoising approach (Ciric et al., 2017).

In Fig. 8 we show the spectral entropy curves and relative entropies
for the three pipelines considered. In light of the previous findings, we
present here only the results related to the CWTERG, as the constraints
imposed by the CWTECM also affect larger scales, and may reduce
sensitivity to the effects of motion at a mesoscopic level. Panels A,B and C
show the von Neumann entropy curves of the differently pre-processed
resting-state networks across three degrees of motion. In this specific
case, we applied a single threshold, namely the lowest absolute threshold
that guarantees connectedness in all three motion groups within the same
pipeline (t ¼ 0:44, d ¼ 20% for P0; t ¼ 0:29, d ¼ 7% for GSR; t ¼ 0:25,
d ¼ 15% for FIX). We can observe that, when considered at the same
absolute threshold, the low-motion group always shows higher spectral
entropy across the entire β range. This is especially evident in the P0
pipeline. It appears, indeed, that movement artifacts significantly affect
the mesoscopic patterns within the empirical network. This trend is
confirmed by the smaller entropy values of the high-motion group
compared to the medium and low-motion groups, which is observed
across all analysis pipelines. In Fig. 8A, this point is further highlighted
by the lack of a clear-cut modular structure in both the medium and high-
motion groups, whereas a shoulder present at medium scales for the low-
motion group denotes a different degree of inter-modular density. A
similar trend suggests that head movements tend to make the network
closer to its null model, i.e. more random. Popular correction techniques



Fig. 7. Effects of motion and commonly applied motion-correction techniques over the distribution of functional connectivity strength. Panel A depicts effects of
motion as assessed by means of a pipeline where no motion correction strategies has been applied (P0). As a consequence of motion, we observe strong changes in the
functional connectivity strength across the three groups (medium > low: p < 10�4; high � low: p < 10�5). Panel B represents the effects of the application of FIX over
edge-weight distribution. Differences among groups are still present but attenuated (medium > low: p ¼ 0:007; high > low ¼ p < 10�3). Panel C shows the effects of
application of GSR. Differences among groups are not present (medium > low: p ¼ 0:48; high > low: p ¼ 0.8).
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mitigate this confounding effect, decoupling functional connectivity and
motion.

Panels B,C of Fig. 8 show spectral entropy curves for the pipelines FIX
and GSR, respectively. As already discussed, both pipelines importantly
reduce the difference in spectral entropy between the three groups. It is
noteworthy that the application of the FIX pipeline in Fig. 8B highlights
the manifest presence of more prominent shoulders in the entropy curve
in all groups, again a signature of mesoscopic organization. From this
view, the cleanup of resting-state data through independent component
analysis appears to emphasize the global structure of the network, in
presence of head movements. The same cannot be appreciated in the
groups preprocessed with a GSR pipeline: differences in spectral en-
tropies are reduced, but no clear large-scale structure seems to emerge
from these curves.

From the relative entropies generated over several different absolute
thresholds, we can appreciate a strong effect related to the sparsification
procedure. In Panels D, E, F of Fig. 8, the relative entropies of the high-
motion groups for all pipelines and their respective null models are
presented. Here, we report the high-motion group, which is more
affected by head movements and shows more evidently the beneficial
effects of the application of different preprocessing pipelines and
thresholds. Additional analyses are reported in the supplementary
materials.
Fig. 8. Panels A,B,C show the spectral entropies of networks for the pipelines 0,FIX
dashed lines) over all motion groups. The relative entropies of networks from the hig
increasing absolute thresholds, while the orange lines correspond to percolation thr
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With the application of increasing thresholds, the distance of the
empirical network from its random counterpart with same density gets
larger, and it reaches maximum at percolation, despite the presence of
motion and independently of the pipeline applied. Specifically, we can
observe a higher relative entropy at percolation for the pipeline based on
GSR (Fig. 8F). This preprocessing technique notably benefits from the
thresholding procedure, considering the substantial difference between
the maximum relative entropy attained at percolation and its values for
denser networks. In line with previous studies (Ciric et al., 2017), the
main effect of GSR is an increase in network modularity, mirrored by
greater values of relative entropies at large scales, suggesting a well
organized high-order architecture. Yet, the lack of an “information
shoulder” in the spectral entropy curve suggests the presence of a more
uniform structure, with similar intra-modular density across different
communities, and similar size of the modules. Importantly, we note that
thresholding emphasizes meso- and large-scale structure in combination
with FIX (Fig. 8F), but also in the absence of any motion correction
(Fig. 8D). Indeed, network sparsification appears to have a large effect
per se, even for P0, in separating the empirical network form its null
model.

Interestingly, relative entropy between empirical network and null
model increases with the threshold, and reaches its maximum at perco-
lation. This last observation further supports the application of a
and GSR (solid lines), together with their randomized counterpart (CWTERG,
h-motion group are shown in panels D, E, F where the blue shades correspond to
eshold, which has the maximum relative entropy at large scales.
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thresholding procedure, in contrast with recent literature that suggests
that sparsification should be avoided (Schlesinger et al., 2017; Goulas
et al., 2015; Bassett et al., 2011; Rubinov and Sporns, 2011). Our results
demonstrate the importance of application of a threshold, irrespectively
of the pre-processing pipeline. While we do not draw any strong
conclusion on the relative efficacy of GSR and FIX, we note that network
sparsification is advantageous regardless of the choice of denoising
pipeline.

5. Conclusion

The nature of resting state functional MRI networks based on pairwise
association measures, like the Pearson correlation, is of a dense square
matrix. Several experimental factors are involved in shaping the prop-
erties of these matrices and no consensus exists in the literature on the
best practice for the definition and processing of these matrices and the
associated connectivity graphs. In the present work we have introduced a
novel theoretical framework that contributes to shed light on several
open issues in the analysis of brain functional connectivity networks.
Firstly, we define the CWTERG and CWTECM null models, which enable
extension of the maximum entropy random graph formalism to networks
with threshold and real positive weights, as those encountered in fMRI.
Secondly, we have shown that the spectral entropies framework can be
applied to the differences of networks with respect to their random
versions from local to global scales.

Leveraging this new approach, we studied the effects of thresholding
procedures and motion-correction pipelines. The application of a
threshold to resting-state networks is a contentious step debated in the
field.

Here, by means of advanced information theory tools, we found that
complete functional connectivity networks present a high degree of
randomness, due to the contribution of spurious correlations to weak
links, that conceals their large scale structure. Sparsification of the
network is an essential step to differentiate networks from their null
model and is highly beneficial to study the large scale architecture of
real-world networks.

Further, we demonstrated from first principles the existence of an
optimal thresholding point, where the empirical network is maximally
distant from random. Specifically, we found that application of a
percolation threshold strikes the optimal balance between the removal of
11
spurious connections and genuine information, thus maximizing the in-
formation that can be extracted from the system. The importance of
sparsification can also be appreciated through the evaluation of the ef-
fects of motion and different preprocessing pipelines.

Motion increases randomness and reduces spectral entropies across
the whole β domain, bringing the network closer to its random coun-
terpart. The effects of motion are mitigated by popular motion-correction
approaches. However, we found that network sparsification has a bene-
ficial effect irrespectively of the specific denoising strategy applied, and
that the percolation threshold maximizes the distance of the empirical
network from its randomized counterpart.

Hence, as an important and practical remark, we suggest that the
application of a percolation threshold is critical for the extraction of the
large-scale structure from the network.

Finally, the novel framework of spectral maximum entropy networks
provides a new and powerful approach that significantly extends the
repertoire of tools for the study of functional connectivity networks at
multiple scales.
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Appendix A. Theoretical framework

In this theoretical section we introduce the notation and describe the formalism of maximum entropy random graph models that is central to this
manuscript. We summarize here a few definitions that are necessary to make this paper self-contained.

We consider undirected weighted graphs G ¼ ðV ;EÞwith jV j ¼ N number of nodes, jEj ¼ L number of links andW total edge weight. We denote the
weighted adjacency matrix as W ¼ fwijg, the binary adjacency matrix A ¼ aij and the weighted graph Laplacian as L ¼ D� W, where D is a diagonal
matrix of the node strengths. We indicate the degree and strength as ki ¼

P
i 6¼jaij and si ¼

P
i6¼jwij, respectively. The Heaviside step function is indicated

as ΘðxÞ.

A.1. Exponential Random Graph Models

We letG denote a network in a random graph ensemble G , andG⋆ an observed empirical network. The ensemble G consists of all networks with the
same number of nodes N and of the same type (undirected, weighted etc.) as G⋆, including G⋆ itself. Our goal is to find an analytical description of the
random graphs G that share the same network descriptors of G⋆, and to eventually be able to sample networks from the ensemble. In other words, we
look for the functional form of the probability distribution PðGÞ over the ensemble G , for which the values of descriptors are on average as close as
possible to those of the empirical network.

We denote the chosen descriptors by an array C⋆ ¼ CðG⋆Þ with c elements. The array contains network-related quantities, like the number of links,
the total weight, or the node and strength sequences, and is instrumental in shaping the analytic form of the ensemble described by PðGÞ. Depending on
the constraints set byC⋆ one gives rise to different random graphmodels. By standard probability arguments, the expected value of the descriptorsCðGÞ

https://doi.org/10.1016/j.neuroimage.2020.116603
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over the ensemble G are found as:

〈CðGÞ〉¼
Z
G2G

CðGÞPðGÞ: (A.1)

The functional form of PðGÞ can be obtained by Shannon entropy maximization subjected to the constraints represented by C, where Shannon
entropy is defined as

SðPÞ¼ �
Z
G2G

PðGÞlogPðGÞ (A.2)

as we are integrating over a continuous probability distribution function, rather than on a discrete one. The procedure to obtain PðGÞ is rooted in
Jaynes’s Maximum Entropy formalism (Jaynes, 1957), a very general statistical mechanics principle that here leads to exact expressions for the
probability of occurrence of a vast majority of graph models. The general idea is that, in order to maximize Eq. (A.2) with a series of constraints, which
read C⋆ ¼ 〈C〉, one has to build a Lagrangian functional L of the type that follows:

LðPÞ¼ SðPÞ�α
�
1�

Z
G2G

PðGÞ
�
� θ 	ðC⋆ � 〈C〉Þ (A.3)

where the term multiplied by α is the probability normalization condition, and the remaining terms measure the deviation of the imposed ensemble
properties 〈C〉 from the desidered ones C⋆, each weighted by the lagrange multiplier θi for i ¼ 1;…; c. A standard derivation based on finding the
stationary point of the Lagrangian functional of Eq. (A.3) (see Squartini and Garlaschelli (2017); Park and Newman (2004)), shows that the solution of
constrained entropy maximization problem is found is the resulting conditional probability:

PðGjθÞ¼ e�HðG; θÞ

ZðθÞ (A.4)

where HðG; θÞ is the graph Hamiltonian, defined as a linear combination of constraints:

HðG; θÞ¼
Xc
i¼1

θiCiðGÞ¼ θ 	CðGÞ (A.5)

and the denominator ZðθÞ is a normalizing quantity called partition function, defined by marginalization over all networks G in the ensemble G :

ZðθÞ¼
Z
G2G

e�HðG;θÞ: (A.6)

The above results show that the graph probability PðGjθÞ depends on the Lagrange multipliers θ, and that it is a function of the constraints
considered.

For model fitting purpose, it can be shown (Squartini and Garlaschelli, 2017) that the log-likelihood, obtained as the logarithm of PðGÞ, that reads

L ðθÞ¼ logPðG⋆jθÞ¼ �HðG⋆jθÞ � logZðθÞ (A.7)

is maximized by the particular value bθ such that the ensemble average 〈C〉θ⋆ of each constraint equals the empirical value CðG⋆Þmeasured on the real
network:

〈C〉⋆ ¼
Z
G2G

CðGÞPðGjθ⋆Þ¼CðG⋆Þ (A.8)

and the gradients of L ðθÞ are proportional to the difference between C⋆ and 〈C〉. For maximum-entropy ensembles, the maximum likelihood principle
indicates the choice of parameters that meet the constraints, and defines a procedure for model fitting: either by maximizing the log-likelihood from Eq.
(A.7) by means of gradient based numerical optimization methods (Nocedal and Wright, 2006), or alternatively by solving the system of nonlinear
equations defined by Eq. (A.8).

Importantly, the average value of the constraints at the optimal parameters estimate bθ can be obtained by taking the gradient with respect of the
associated Lagrange multiplier, of the negative logarithm of the partition function. In other words, one has:

〈C〉¼ �rθlogZðθÞj (A.9)

In the following, we show a practical application of this approach to the null models in the main text and used for the description of resting-state
brain connectivity networks.
12
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Appendix A.2 Fixing average number of links and total weight: CWTERG

Here we build the ensemble of networks with the same average number of links, the same average total weight, and a threshold parameter t, which,
differently from other methods, considers positive real link weights.

Following Eq. (A.5), we commence by the definition of the constraints defining the Hamiltonian relevant to this model. The number of links of an
undirected network, with an external control parameter t, is obtained by summing all elements of the upper-diagonal part of the binary adjacency matrix
Θðwij � tÞ, as follows:

L¼
XN
i<j

Θ
�
wij � t

�
; (A.10)

and similarly we obtain to the total weight:

W ¼
XN
i<j

wijΘ
�
wij � t

�
: (A.11)

The two network metrics that we want to constrain on the ensemble PðGÞ are specified by the two above equations. Additionally, the factorΘðwij �tÞ
makes it possible to incorporate the threshold into the network metrics, ignoring all weights below t. By looking at Eq. (A.5), it is easy to write the graph
Hamiltonian as the scalar product of the lagrangian multipliers θ ¼ ðu; vÞ with the associated properties ðL;WÞ. This reads:

HCWTERG ¼ uLðGÞþ vWðGÞ¼
X
i<j

uΘ
�
wij � t

�þ vwijΘ
�
wij � t

�
: (A.12)

In order to compute the partition function, we plug the Hamiltonian HCWTERG in the exponential and integrate, as in Eq. (A.6), over all weights w’ij
from 0 to þ ∞:

ZCWTERG ¼
Z
G2G

e�HCWTERGðG;θÞ (A.13)

¼
Z∞
0

e
�
hP

i<j

uΘðwij’�tÞþvwij ’Θðwij ’�tÞ
i
dw’ij

¼
Z ∞

0

Y
i<j

e�uΘðw’ij�tÞ�vw’ijΘðw’ij�tÞdw’ij;
(A.14)

¼
Y
i<j

Z ∞

0
e�uΘðw’�tÞ�vw’Θðw’�tÞdw’

¼
�
t þ e�u

Z ∞

0
e�vw’Θðw’�tÞdw’

� n

2

!

¼
�
t þ e�u�vt

v

� n

2

!
(A.15)

Following Equation (A.9) we then obtain two analytical formulae that describe, in terms of the lagrangian multipliers u and v, the expected number
of links and total weights as:

ð〈L〉; 〈W〉Þ¼ � rðu;vÞlogZCWTERG (A.16)

with the following result:

∂F
∂u ¼ 〈L〉¼

�
n
2

�
1

vteuþvt þ 1
(A.17)

∂F
∂v ¼ 〈W〉¼

�
n
2

�
vt þ 1

vðvteuþvt þ 1Þ (A.18)

where we have defined F ¼ � logZCWTERG, as in Eq. (A.9). Based on these two results, we indicate the link density and the expected link weights of the
CWTERG model respectively as:

pCWTERG ¼ 1
vteuþvt þ 1

(A.19)
13
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〈w〉CWTERG ¼
vt þ 1

vðvteuþvt þ 1Þ: (A.20)

Finally, the probability density function of the CWTERG model is obtained as:

PðGju; vÞ¼ e�uLðGÞ�vWðGÞ

�
t þ e�u�vt

v

�� n
2

�: (A.21)

This probability distribution function completely defines the model.

Appendix A.3 Fixing degree and strength sequence: CWTECM

Here we look for the ensemble of random networks with the same degree sequence and strength sequence. The degree of node i is obtained from the
adjacency matrix with an external threshold parameter t as:

ki ¼
X
j 6¼i

Θ
�
wij � t

�
(A.22)

and similarly for the strenght of node i:

si ¼
X
j6¼i

wijΘ
�
wij � t

�
: (A.23)

The appropriate Hamiltonian for this problem is then:

HCWTECM ¼
X
i¼1

uiki þ visi

¼
X
i;j

uiΘ
�
wij � t

�þ viwijΘ
�
wij � t

�
¼
X
i<j

�
ui þ uj

�
Θ
�
wij � t

�þ �vi þ vj
�
wijΘ

�
wij � t

�
:

(A.24)

With this Hamiltonian, the CWTECM is completely described by the following probability density function PðGju;vÞ:

PðGju; vÞ¼
Y
i<j

e�½ðuiþujÞþwijðviþvjÞ�θðwij�tÞ
ZCWTECM

(A.25)

The partition function is calculated similarly to the one of the CWTERG: every occurrence of u and v is replaced by ðui þujÞ and ðvi þ vjÞ, respectively,
and the product is done over all the undirected pairs i < j:

ZCWTECM ¼
Y
i<j

�
tþ e�ðuiþujÞ�ðviþvjÞt

vi þ vj

�
: (A.26)

Following the same line as for the CWTERGmodel, we also compute the expected degrees and strengths by taking the derivatives with respect to the
corresponding lagrange multipliers ðui; viÞ of the negative log-partition function. We find:

∂FCWTECM

∂ui
¼ 〈ki〉¼

X
j 6¼i

pij (A.27)

∂FCWTECM

∂vi
¼ 〈si〉¼

X
j6¼i

〈wij〉: (A.28)

where the link-probability matrix pij and the expected link weight matrix 〈wij〉 are defined as:

pij ¼ 1

1þ �vi þ vj
�
teðuiþujÞþðviþvjÞt (A.29)

〈wij〉¼
�
vi þ vj

�
t þ 1�

vi þ vj
���

vi þ vj
�
teðuiþujÞþðviþvjÞt þ 1

� (A.30)

Finally, the log-likelihood of the model is simply obtained by the logarithm of the probability density function PðGju; vÞ as:

logL ðGju; vÞ¼ �
hX

i

uikiðGÞþ visiðGÞ
i
�
X
i<j

log
�
tþ e�ðuiþujÞ�ðviþvjÞt

vi þ vj

�
(A.31)
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