TeMA

Journal of Land Use, Mobility and Environment

This special issue collects a selection of peer-review papers presented at the 8th International Conference INPUT 2014 titled "Smart City: planning for energy, transportation and sustainability of urban systems", held on 4-6 June in Naples, Italy. The issue includes recent developments on the theme of relationship between innovation and city management and planning.

Tema is the Journal of Land use, Mobility and Environment and offers papers with a unified approach to planning and mobility. TeMA Journal has also received the Sparc Europe Seal of Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ).

and sustainability of the urban system

SMART CITY

PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM Special Issue, June 2014

Published by

Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"

TeMA is realised by CAB - Center for Libraries at "Federico II" University of Naples using Open Journal System

Editor-in-chief: Rocco Papa print ISSN 1970-9889 | on line ISSN 1970-9870

Lycence: Cancelleria del Tribunale di Napoli, n° 6 of 29/01/2008

Editorial correspondence

Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"
Piazzale Tecchio, 80
80125 Naples

web: www.tema.unina.it

e-mail: redazione.tema@unina.it

TeMA. Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journals in the Areas 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists by their competences. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR-IN-CHIEF

Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORIAL ADVISORY BOARD

Luca Bertolini, Universiteit van Amsterdam, Netherlands Virgilio Bettini, Università luav di Venezia, Italy Dino Borri, Politecnico di Bari, Italy Enrique Calderon, Universidad Politécnica de Madrid, Spain Roberto Camagni, Politecnico di Milano, Italy Robert Leonardi, London School of Economics and Political Science, United Kingdom Raffaella Nanetti, College of Urban Planning and Public Affairs, United States Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORS

Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy Enrique Calderon, Universidad Politécnica de Madrid, Spain Luca Bertolini, Universiteit van Amsterdam, Netherlands Romano Fistola, Dept. of Engineering - University of Sannio - Italy, Italy Adriana Galderisi, Università degli Studi di Napoli Federico II, Italy Carmela Gargiulo, Università degli Studi di Napoli Federico II, Italy Giuseppe Mazzeo, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy

EDITORIAL SECRETARY

Rosaria Battarra, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy Andrea Ceudech, TeMALab, Università degli Studi di Napoli Federico II, Italy Rosa Anna La Rocca, TeMALab, Università degli Studi di Napoli Federico II, Italy Enrica Papa, University of Amsterdam, Netherlands

Journal of Land Use, Mobility and Environment

This special issue of TeMA collects the papers presented at the 8th International Conference INPUT 2014 which will take place in Naples from 4th to 6th June. The Conference focuses on one of the central topics within the urban studies debate and combines, in a new perspective, researches concerning the relationship between innovation and management of city changing.

CONFERENCE COMMITTEE

Dino Borri, Polytechnic University of Bari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Romano Fistola, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Giovanni Rabino, Polytechnic University of Milan, Italy
Maurizio Tira, University of Brescia, Italy
Corrado Zoppi, University of Cagliari, Italy

SCIENTIFIC COMMITTEE

Emanuela Abis, University of Cagliari, Italy
Nicola Bellini, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Mariolina Besio Dominici, University of Genoa, Italy
Ivan Blecic, University of Sassari, Italy
Dino Borri, Polytechnic University of Bari, Italy
Grazia Brunetta, Polytechnic University of Turin, Italy
Roberto Busi, University of Brescia, Italy
Domenico Camarda, Polytechnic University of Bari, Italy
Michele Campagna, University of Cagliari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Donatella Cialdea, University of Molise, Italy

Valerio Cutini, University of Pisa, Italy, Italy Luciano De Bonis, University of Molise, Italy Andrea De Montis, University of Sassari, Italy

Filippo de Rossi, University of Sannio (Dean of the University of Sannio), Italy

Lidia Diappi, Polytechnic University of Milan, Italy

Isidoro Fasolino, University of Salerno, Italy

Mariano Gallo, University of Sannio, Italy

Lilli Gargiulo, University of Naples Federico II, Italy

Roberto Gerundo, University of Salerno, Italy

Paolo La Greca, University of Catania, Italy

Giuseppe B. Las Casas, University of Basilicata, Italy

Robert Laurini, University of Lyon, France

Antonio Leone, Tuscia University, Italy

Anna Loffredo, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy

Silvana Lombardo, University of Pisa, Italy

Giovanni Maciocco, University of Sassari, Italy

Giulio Maternini, University of Brescia, Italy

Francesco Domenico Moccia, University of Naples Federico II, Italy Bruno Montella, University of Naples "Federico II" (Director of DICEA), Italy Beniamino Murgante, University of Basilicata, Italy Agostino Nuzzolo, University of Rome, Italy Sylvie Occelli, IRES Turin, Italy Rocco Papa, University of Naples Federico II, Italy Maria Paradiso, University of Sannio, Italy Domenico Patassini, IUAV, Venice, Italy Michele Pezzagno, University of Brescia, Italy Fulvia Pinto, Polytechnic University of Milan, Italy Giovanni Rabino, Polytechnic University of Milan, Italy Giuseppe Roccasalva, Polytechnic University of Turin, Italy Bernardino Romano, University of L'Aquila, Italy Francesco Russo, Mediterranean University Reggio Calabria, Italy Michelangelo Russo, University of Naples Federico II, Italy Ferdinando Semboloni, University of Firenze, Italy Agata Spaziante, Polytechnic University of Turin, Italy Michela Tiboni, University of Brescia, Italy Maurizio Tira, University of Brescia, Italy Simona Tondelli, University of Bologna, Italy Umberto Villano, University of Sannio (Director of DING), Italy Ignazio Vinci, University of Palermo, Italy Corrado Zoppi, University of Cagliari, Italy

LOCAL SCIENTIFIC COMMITTEE

Rosaria Battarra, ISSM, National Research Council, Italy Romano Fistola, DING, University of Sannio, Italy Lilli Gargiulo, DICEA, University of Naples Federico II, Italy Adriana Galderisi, DICEA, University of Naples Federico II, Italy Rosa Anna La Rocca, DICEA, University of Naples Federico II, Italy Giuseppe Mazzeo, ISSM, National Research Council, Italy Enrica Papa, University of Amsterdam, Netherlands

LOCAL ADMINISTRATIVE TEAM

Gennaro Angiello, TeMA Lab, University of Naples Federico II, Italy Gerardo Carpentieri, TeMA Lab, University of Naples Federico II, Italy Stefano Franco, TeMA Lab, University of Naples Federico II, Italy Laura Russo, TeMA Lab, University of Naples Federico II, Italy Floriana Zucaro, TeMA Lab, University of Naples Federico II, Italy

EIGHTH INTERNATIONAL CONFERENCE INPUT 2014

SMART CITY. PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

This special issue of TeMA collects the papers presented at the Eighth International Conference INPUT, 2014, titled "Smart City. Planning for energy, transportation and sustainability of the urban system" that takes place in Naples from 4 to 6 of June 2014.

INPUT (Innovation in Urban Planning and Territorial) consists of an informal group/network of academic researchers Italians and foreigners working in several areas related to urban and territorial planning. Starting from the first conference, held in Venice in 1999, INPUT has represented an opportunity to reflect on the use of Information and Communication Technologies (ICTs) as key planning support tools. The theme of the eighth conference focuses on one of the most topical debate of urban studies that combines , in a new perspective, researches concerning the relationship between innovation (technological, methodological, of process etc..) and the management of the changes of the city. The Smart City is also currently the most investigated subject by TeMA that with this number is intended to provide a broad overview of the research activities currently in place in Italy and a number of European countries. Naples, with its tradition of studies in this particular research field, represents the best place to review progress on what is being done and try to identify some structural elements of a planning approach.

Furthermore the conference has represented the ideal space of mind comparison and ideas exchanging about a number of topics like: planning support systems, models to geo-design, qualitative cognitive models and formal ontologies, smart mobility and urban transport, Visualization and spatial perception in urban planning innovative processes for urban regeneration, smart city and smart citizen, the Smart Energy Master project, urban entropy and evaluation in urban planning, etc..

The conference INPUT Naples 2014 were sent 84 papers, through a computerized procedure using the website www.input2014.it . The papers were subjected to a series of monitoring and control operations. The first fundamental phase saw the submission of the papers to reviewers. To enable a blind procedure the papers have been checked in advance, in order to eliminate any reference to the authors. The review was carried out on a form set up by the local scientific committee. The review forms received were sent to the authors who have adapted the papers, in a more or less extensive way, on the base of the received comments. At this point (third stage), the new version of the paper was subjected to control for to standardize the content to the layout required for the publication within TeMA. In parallel, the Local Scientific Committee, along with the Editorial Board of the magazine, has provided to the technical operation on the site TeMA (insertion of data for the indexing and insertion of pdf version of the papers). In the light of the time's shortness and of the high number of contributions the Local Scientific Committee decided to publish the papers by applying some simplifies compared with the normal procedures used by TeMA. Specifically:

- Each paper was equipped with cover, TeMA Editorial Advisory Board, INPUT Scientific Committee, introductory page of INPUT 2014 and summary;
- Summary and sorting of the papers are in alphabetical order, based on the surname of the first author;
- Each paper is indexed with own DOI codex which can be found in the electronic version on TeMA website (www.tema.unina.it). The codex is not present on the pdf version of the papers.

SMART CITY PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM Special Issue, June 2014

Contents

1.	The Plan in Addressing the Post Shock Conflicts 2009-2014. A First Balance Sheet of the Reconstruction of L'Aquila Fabio Andreassi, Pierluigi Properzi	1-13
2.	Assessment on the Expansion of Basic Sanitation Infrastructure. In the Metropolitan Area of Belo Horizonte - 2000/2010 Grazielle Anjos Carvalho	15-26
3.	Temporary Dwelling of Social Housing in Turin. New Responses to Housing Discomfort Giulia Baù, Luisa Ingaramo	27-37
4.	Smart Communities. Social Innovation at the Service of the Smart Cities Massimiliano Bencardino, Ilaria Greco	39-51
5.	Online Citizen Reporting on Urban Maintenance: A Collection, Evaluation and Decision Support System Ivan Blečić, Dario Canu, Arnaldo Cecchini, Giuseppe Andrea Trunfio	53-63
6.	Walkability Explorer. An Evaluation and Design Support Tool for Walkability Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello, Giuseppe Andrea Trunfio	65-76
7.	Diachronic Analysis of Parking Usage: The Case Study of Brescia Riccardo Bonotti, Silvia Rossetti, Michela Tiboni, Maurizio Tira	77-85
8.	Crowdsourcing. A Citizen Participation Challenge Júnia Borges, Camila Zyngier	87-96
9.	Spatial Perception and Cognition Review. Considering Geotechnologies as Urban Planning Strategy Júnia Borges, Camila Zyngier, Karen Lourenço, Jonatha Santos	97-108

10.	Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector Dino Borri, Laura Grassini	109-127
11.	Learning and Sharing Technology in Informal Contexts. A Multiagent-Based Ontological Approach Dino Borri, Domenico Camarda, Laura Grassini, Mauro Patano	129-140
12.	Smartness and Italian Cities. A Cluster Analysis Flavio Boscacci, Ila Maltese, Ilaria Mariotti	141-152
13.	Beyond Defining the Smart City. Meeting Top-Down and Bottom-Up Approaches in the Middle Jonas Breuer, Nils Walravens, Pieter Ballon	153-164
14.	Resilience Through Ecological Network Grazia Brunetta, Angioletta Voghera	165-173
15.	ITS System to Manage Parking Supply: Considerations on Application to the "Ring" in the City of Brescia Susanna Bulferetti, Francesca Ferrari, Stefano Riccardi	175-186
16.	Formal Ontologies and Uncertainty. In Geographical Knowledge Matteo Caglioni, Giovanni Fusco	187-198
17.	Geodesign From Theory to Practice: In the Search for Geodesign Principles in Italian Planning Regulations Michele Campagna, Elisabetta Anna Di Cesare	199-210
18.	Geodesign from Theory to Practice: From Metaplanning to 2nd Generation of Planning Support Systems Michele Campagna	211-221
19.	The Energy Networks Landscape. Impacts on Rural Land in the Molise Region Donatella Cialdea, Alessandra Maccarone	223-234
20.	Marginality Phenomena and New Uses on the Agricultural Land. Diachronic and Spatial Analyses of the Molise Coastal Area Donatella Cialdea, Luigi Mastronardi	235-245
21.	Spatial Analysis of Urban Squares. 'Siccome Umbellico al corpo dell'uomo' Valerio Cutini	247-258

22.	Co-Creative, Re-Generative Smart Cities. Smart Cities and Planning in a Living Lab Perspective 2 Luciano De Bonis, Grazia Concilio, Eugenio Leanza, Jesse Marsh, Ferdinando Trapani	259-270
23.	The Model of Voronoi's Polygons and Density: Diagnosis of Spatial Distribution of Education Services of EJA in Divinópolis, Minas Gerais, Brazil Diogo De Castro Guadalupe, Ana Clara Mourão Moura	271-283
24.	Rural Architectural Intensification: A Multidisciplinar Planning Tool Roberto De Lotto, Tiziano Cattaneo, Cecilia Morelli Di Popolo, Sara Morettini, Susanna Sturla, Elisabetta Venco	285-295
25.	Landscape Planning and Ecological Networks. Part A. A Rural System in Nuoro, Sardinia Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda, Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica, Luigi Laudari, Carmelo Riccardo Fichera	297-307
26.	Landscape Planning and Ecological Networks. Part B. A Rural System in Nuoro, Sardinia Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda, Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica, Luigi Laudari, Carmelo Riccardo Fichera	309-320
27.	Sea Guidelines. A Comparative Analysis: First Outcomes Andrea De Montis, Antonio Ledda, Simone Caschili, Amedeo Ganciu, Mario Barra, Gianluca Cocco, Agnese Marcus	321-330
28.	Energy And Environment in Urban Regeneration. Studies for a Method of Analysis of Urban Periphery Paolo De Pascali, Valentina Alberti, Daniela De Ioris, Michele Reginaldi	331-339
29.	Achieving Smart Energy Planning Objectives. The Approach of the Transform Project llaria Delponte	341-351
30.	From a Smart City to a Smart Up-Country. The New City-Territory of L'Aquila Donato Di Ludovico, Pierluigi Properzi, Fabio Graziosi	353-364
31.	Geovisualization Tool on Urban Quality. Interactive Tool for Urban Planning Enrico Eynard, Marco Santangelo, Matteo Tabasso	365-375

32.	Visual Impact in the Urban Environment. The Case of Out-of-Scale Buildings Enrico Fabrizio, Gabriele Garnero	377-388
33.	Smart Dialogue for Smart Citizens: Assertive Approaches for Strategic Planning Isidoro Fasolino, Maria Veronica Izzo	389-401
34.	Digital Social Networks and Urban Spaces Pablo Vieira Florentino, Maria Célia Furtado Rocha, Gilberto Corso Pereira	403-415
35.	Social Media Geographic Information in Tourism Planning Roberta Floris, Michele Campagna	417-430
36.	Re-Use/Re-Cycle Territories: A Retroactive Conceptualisation for East Naples Enrico Formato, Michelangelo Russo	431-440
37.	Urban Land Uses and Smart Mobility Mauro Francini, Annunziata Palermo, Maria Francesca Viapiana	441-452
38.	The Design of Signalised Intersections at Area Level. Models and Methods Mariano Gallo, Giuseppina De Luca, Luca D'acierno	453-464
39.	Piano dei Servizi. Proposal for Contents and Guidelines Roberto Gerundo, Gabriella Graziuso	465-476
40.	Social Housing in Urban Regeneration. Regeneration Heritage Existing Building: Methods and Strategies Maria Antonia Giannino, Ferdinando Orabona	477-486
41.	Using GIS to Record and Analyse Historical Urban Areas Maria Giannopoulou, Athanasios P. Vavatsikos, Konstantinos Lykostratis, Anastasia Roukouni	487-497
42.	Network Screening for Smarter Road Sites: A Regional Case Attila Grieco, Chiara Montaldo, Sylvie Occelli, Silvia Tarditi	499-509
43.	Li-Fi for a Digital Urban Infrastructure: A Novel Technology for the Smart City Corrado lannucci, Fabrizio Pini	511-522
44.	Open Spaces and Urban Ecosystem Services. Cooling Effect towards Urban Planning in South American Cities Luis Inostroza	523-534

45. From RLP to SLP: Two Different Approaches to Landscape Planning Federica Isola, Cheti Pira	535-543
46. Revitalization and its Impact on Public. Space Organization A Case Study of Manchester in UK, Lyon in France and Łódź in Poland Jarosław Kazimierczak	545-556
47. Geodesign for Urban Ecosystem Services Daniele La Rosa	557-565
48. An Ontology of Implementation Plans of Historic Centers: A Case Study Concerning Sardinia, Italy Sabrina Lai, Corrado Zoppi	567-579
49. Open Data for Territorial Specialization Assessment. Territorial Specialization in Attracting Local Development Funds: an Assessment. Procedure Based on Open Data and Open Tools Giuseppe Las Casas, Silvana Lombardo, Beniamino Murgante, Piergiuseppe Pontrandolfi, Francesco Scorza	581-595
50. Sustainability And Planning. Thinking and Acting According to Thermodinamics Laws Antonio Leone, Federica Gobattoni, Raffaele Pelorosso	597-606
51. Strategic Planning of Municipal Historic Centers. A Case Study Concerning Sardinia, Italy Federica Leone, Corrado Zoppi	607-619
52. A GIS Approach to Supporting Nightlife Impact Management: The Case of Milan Giorgio Limonta	621-632
53. Dealing with Resilience Conceptualisation. Formal Ontologies as a Tofor Implementation of Intelligent Geographic Information Systems Giampiero Lombardini	ool 633-644
54. Social Media Geographic Information: Recent Findings and Opportunities for Smart Spatial Planning Pierangelo Massa, Michele Campagna	645-658
55. Zero Emission Mobility Systems in Cities. Inductive Recharge System Planning in Urban Areas Giulio Maternini, Stefano Riccardi, Margherita Cadei	659-669

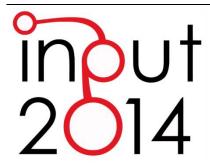
56.	Urban Labelling: Resilience and Vulnerability as Key Concepts for a Sustainable Planning Giuseppe Mazzeo	671-682
57.	Defining Smart City. A Conceptual Framework Based on Keyword Analysis Farnaz Mosannenzadeh, Daniele Vettorato	683-694
58.	Parametric Modeling of Urban Landscape: Decoding the Brasilia of Lucio Costa from Modernism to Present Days Ana Clara Moura, Suellen Ribeiro, Isadora Correa, Bruno Braga	695-708
59.	Smart Mediterranean Logics. Old-New Dimensions and Transformations of Territories and Cites-Ports in Mediterranean Emanuela Nan	709-718
60.	Mapping Smart Regions. An Exploratory Approach Sylvie Occelli, Alessandro Sciullo	719-728
61.	Planning Un-Sustainable Development of Mezzogiorno. Methods and Strategies for Planning Human Sustainable Development Ferdinando Orabona, Maria Antonia Giannino	729-736
62.	The Factors Influencing Transport Energy Consumption in Urban Areas: a Review Rocco Papa, Carmela Gargiulo, Gennaro Angiello	737-747
63.	Integrated Urban System and Energy Consumption Model: Residential Buildings Rocco Papa, Carmela Gargiulo, Gerardo Carpentieri	749-758
64.	Integrated Urban System and Energy Consumption Model: Public and Singular Buildings Rocco Papa, Carmela Gargiulo, Mario Cristiano	759-770
65.	Urban Smartness Vs Urban Competitiveness: A Comparison of Italian Cities Rankings Rocco Papa, Carmela Gargiulo, Stefano Franco, Laura Russo	771-782
66.	Urban Systems and Energy Consumptions: A Critical Approach Rocco Papa, Carmela Gargiulo, Floriana Zucaro	783-792
67.	Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans Rocco Papa, Carmela Gargiulo, Floriana Zucaro	793-804

68.	Bio-Energy Connectivity And Ecosystem Services. An Assessment by Pandora 3.0 Model for Land Use Decision Making Raffaele Pelorosso, Federica Gobattoni, Francesco Geri, Roberto Monaco, Antonio Leone	805-816
69.	Entropy and the City. GHG Emissions Inventory: a Common Baseline for the Design of Urban and Industrial Ecologies Michele Pezzagno, Marco Rosini	817-828
70.	Urban Planning and Climate Change: Adaptation and Mitigation Strategies Fulvia Pinto	829-840
71.	Urban Gaming Simulation for Enhancing Disaster Resilience. A Social Learning Tool for Modern Disaster Risk Management Sarunwit Promsaka Na Sakonnakron, Pongpisit Huyakorn, Paola Rizzi	841-851
72.	Visualisation as a Model. Overview on Communication Techniques in Transport and Urban Planning Giovanni Rabino, Elena Masala	853-862
73.	Ontologies and Methods of Qualitative Research in Urban Planning Giovanni Rabino	863-869
74.	City/Sea Searching for a New Connection. Regeneration Proposal for Naples Waterfront Like an Harbourscape: Comparing Three Case Studies Michelangelo Russo, Enrico Formato	871-882
75.	Sensitivity Assessment. Localization of Road Transport Infrastructures in the Province of Lucca Luisa Santini, Serena Pecori	883-895
76.	Creating Smart Urban Landscapes. A Multimedia Platform for Placemaking Marichela Sepe	897-907
77.	Virtual Power Plant. Environmental Technology Management Tools of The Settlement Processes Maurizio Sibilla	909-920
78.	Ecosystem Services and Border Regions. Case Study from Czech – Polish Borderland Marcin Spyra	921-932
79.	The Creative Side of the Reflective Planner. Updating the Schön's Findings Maria Rosaria Stufano Melone, Giovanni Rabino	933-940

80.	Achieving People Friendly Accessibility. Key Concepts and a Case Study Overview Michela Tiboni, Silvia Rossetti	941-951
81.	Planning Pharmacies: An Operational Method to Find the Best Location Simona Tondelli, Stefano Fatone	953-963
82.	Transportation Infrastructure Impacts Evaluation: The Case of Egnatia Motorway in Greece Athanasios P. Vavatsikos, Maria Giannopoulou	965-975
83.	Designing Mobility in a City in Transition. Challenges from the Case of Palermo Ignazio Vinci, Salvatore Di Dio	977-988
84.	Considerations on the Use of Visual Tools in Planning Processes: A Brazilian Experience Camila Zyngier, Stefano Pensa, Elena Masala	989-998

Journal of Land Use, Mobility and Environment

TeMA INPUT 2014 Print ISSN 1970-9889, e- ISSN 1970-9870


DOI available on the online version

Licensed under the Creative Commons Attribution Non Commercial License 3.0 www.tema.unina.it

SPECIAL ISSUE

Eighth International Conference INPUT Smart City - Planning for Energy, Transportation and Sustainability of the Urban System

Naples, 4-6 June 2014

MAPPING SMART REGIONS

AN EXPLORATORY APPROACH

SYLVIE OCCELLI, ALESSANDRO SCIULLO

IRES- Istituto di Ricerche Economico Sociali del Piemonte, Via Nizza 18, 10125 Turin, Italy e-mail: occelli@ires.piemonte.it, sciullo@ires.piemonte.it

ABSTRACT

The paper presents the results of an exploratory approach aimed at extending the ranking procedures normally used in studying the socioeconomics determinants of smart growth at the regional level.

Most of these studies adopt a methodological procedure which essentially consists of the following steps: a) identification of the pertinent elementary indicators according to the study objectives; b) data selection and processing; c) combination of the elementary indicators by multivariate statistical techniques aimed at obtaining a robust synthetic index to rank the observation units

In the procedure a relational dimension is mainly subsumed in the system oriented perspective adopted in selecting the indicators which would best represent the system determinants depending on the goals of the analysis (step a).

In order to get deeper insights into the smartness profile of the European regions, this study makes an effort to account of the relational dimension also in steps b and c of the procedure. The novelties of the proposed approach are twofold. First, by computing region-to-region distances associated with the selected indicators it extends the conventional ranking procedure (step c). Second, it uses a relational database (step b), dealing with the regional participation to the FP7-ICT project, to modify the distances and investigate its impact on the interpretation of the regional positioning.

The main results of this exercise seem to suggest that regional collaborations would have a positive role in regional convergence process. By providing an opportunity to get contacts with the areas endowed with a comparatively more robust smartness profile, regions may have a chance to enhance their own smartness profile.

KEYWORDS

Regional smart growth, region-to-region distances, regional collaboration, regional performance indices.

1 INTRODUCTION: CONCEPTUAL REMARKS AND AIMS OF THE STUDY

Smartness has become the latest fix in urban and regional studies. In Europe, its popularity owes a lot to the EU 2020 strategy which gave a shake to usual ways to view cities and regions. Eventually, it spurred stimuli to revise conventional thinking about how well behaved notions such as built places, living conditions, information flows, ICT networks and sustainable path of growth stick together and make sense in the everyday life of ordinary people as well as in stakeholders' decision-making.

Broadly speaking, smartness is perceived as a necessary attribute of almost every components and processes meant to set up, by means of modern ICT devices, pro-active and open innovation territorial systems, allowing for greater involvement of more educated and ICT connected people. This notion basically underpins the working definition for smart city lately proposed by the European Union (2014): 'A Smart City is a city seeking to address public issues via ICT-based solutions on the basis of a multi-stakeholder, municipally based partnership' (p.9)

When viewed in the light of the most recent arguments about the evolution of spatial systems, such as cities and regions (Batty, 2013, Portugali, 2000), however, smartness is but an "emergent" property, which results from the complex intertwine of many different cognizant agents, operating in a situated context.

Not unexpectedly, therefore, statements about smart territory require to discuss both the its conceptual understanding and descriptive account, as well as the observer's goal in leveraging that very notion. Making explicit the last aspect, in fact, seems to be what fundamentally distinguishes the current conceptualization efforts from earlier ones which had to deal with different although equally relevant urban and spatial issues. This undertaking mobilizes an additional and so far largely overlooked perspective, which has to do with the

ability of an urban/regional system to develop, thanks to the dramatic progress of ICTs, a so called reflective perspective (see Occelli, 2012) and whose underlying dimension is intrinsically relational. Such a dimension in fact relies on the joint consideration of: a) the ways agents, both as observers and as active participants in the community life interact with and perceive the different components of territorial smartness; b) the acknowledgement of the systemic (networked) nature of the bundle of elementary components which concur to qualify a certain level of smartness..

The former aspect has been recently addressed in a study which argues how by engaging in a learning process which leverages different observation windows, a regional system could acquire new capability and therefore achieve higher smartness levels (Occelli, Poggio and Sciullo, 2013).

The latter topic is at the core of many studies conducted by the Directorates of the European Commission to provide a global (European) perspective for assessing, at the regional level, the various socioeconomics determinants of smart growth (see for example Annoni and Dijkstra, 2013, Charron, Dijkstra and Lapuente, 2014, Hollanders, Rivera and Roman, 2012, Soete, 2011). In this respect, the progress made by some of these institutions for making easier the online access of comparative indicators as well as of the original data (as, for example, in the case of the Digital Agenda dash board, www.digital.agenda.eu) is certainly to be appreciated.

The core approach of most of these studies relies on a methodological procedure which essentially consists of the following steps: a) identification of the pertinent elementary indicators according to the study objectives; b) data selection and processing to implement the selected indicators for the observation units (e.g. regions, cities); c) combination of the elementary indicators by multivariate statistical techniques aimed at obtaining a robust synthetic index to rank the observation units.

It is worth noting that in such a procedure the relational dimension is mainly subsumed in the system oriented perspective adopted in selecting the indicators which would best represent the system determinants depending on the goals of the analysis (step a).

In order to get deeper insights into the smartness profile of the European regions, this study makes an effort to account of the relational dimension also in steps b and c of the procedure. In the following, section 2 describes the methodological approach which has been developed. Its novelties are twofold. First, by computing region-to-region distances associated with the selected indicators it extends the conventional ranking procedure (step c). Second, it uses a relational database (step b), dealing with the regional participation to the FP7-ICT project, to modify the distances and investigate its impact on the interpretation of the regional positioning. Section 3 presents the main results of the exploratory analysis and section 4 makes some conclusive remarks.

2 METHODOLOGICAL APPROACH

The main goal of the approach is to enrich the traditional ranking approach typically used to position European regions. More specifically it aims at extending the utilization of a synthetic index of regional performances by considering region-to-region distances, which in this application are derived from processing a set of indicators representing the regional smartness profile.

The approach builds upon earlier studies which were carried at Ires Piemonte also as a part of the activities of the Piedmont ICT Observatory (IRES, 2013, PICTO, 2013). In those studies, a lot of works has been done to identify and implement measurement indicators allowing for a meaningful account of the Piedmont smart growth profile, at both national and European level. The present analysis takes advantage of the experience gained in those studies and focuses on a set of indicators, selected according to a twofold criterion of regional coverage and temporal updating.

2.1 INDICATOR SELECTIONS

The 266 NUTS2 regions belonging to the EU28 member states are investigated. The indicator set consists of 9 elementary indicators, shown Tab.1, organized by three main descriptive profiles of regional smartness: absorptive capacity, innovation system and digital agenda (see, PICTO, 2013).

It is worth noting that the indicator set is rather heterogeneous, both as type of variables included and temporal reference, i.e. the digital agenda profile being the only one recently updated.

To provide comparable measures, the elementary indicators have been normalized between 0 and 1000, by using a MIN-MAX formula. Regional synthetic indices have then been computed by applying two different techniques:

- Simple Averages of the set of normalized elementary indicators. The resulting Synthetic Index is used for ranking the regions;
- Principal Component Analysis, carried out with the STATA software package. Representative indices for the analytic profiles are derived, which are used for computing region-to-region distances among regions (this operation mainly refers to step c of the core approach mentioned in the introduction)¹.

.

The PCs for the Absorptive Capacity and Innovation System profiles accounts for 94 % of the variance of the original indicators. The PCA for the Digital Agenda profile accounts for about 78%.

PROFILE		INDICATORS AND MEASUREMENT UNITS	PIEDMONT	ITALY	EU28	YEAR
	Α.	First and second stage of tertiary education attainment (ISCED 5 and 6) - % of total	15,1	15,7	27,6	2012
Absorptive capacity	В.	Human Resources in Science and Technology (HRST total) ² - % of total population 15-74 y	21,9	21,2	30,3	2012
	C.	Human Resources in Science and Technology (HRST core) - % of total population 15-74 y	7,3	7,0	12,1	2012
	D.	Total R&D personnel and researchers - % of active population	1,13	0,91	1,08	2011
Innovation System	E.	Total intramural R&D Expenditure - % of GDP	1,88	1,25	2,04	2011
	F.	Patents application to the European Patent Office – per million of inhabitants	105,3	72,4	111,4	2009
	G.	Household with broadband access - % of households	65	68	79	2013
Digital Agenda	Н.	Individuals regularly using the Internet (at least once a week) - % of individuals	57	56	72	2013
	I.	Individuals who ordered goods or services for private use - % of individuals	19	20	47	2013

Tab.1 List of indicators by analytic profile

2.2 CALCULATING THE REGIONAL DISTANCES

The notion of distance is here understood as a two by two measure of regional dissimilarities for a set of selected indicators. In this case, the regional distances are based on the PCA values associated with the three analytic profiles. Let Xij be the indicator matrix, where i indicates the region (i=1, I,... N, where N=266) and j represents the PC value for an analytic profile (j= 1,....K, with K= 3). Each element, dil of the Dil regional distance matrix is calculated as:

$$d_{i,l} = \sqrt{\frac{\sum_{j=1}^{k} (Xij - Xlj)^2}{k}}$$
 (1).

To visualize the Dii matrix in a 2-dimensional space a Multidimensional Scaling metric iterative algorithm has been applied using the UCINET software package. This technique permits to map the NxN distance values in a 2-dimensional space in such a way that the original distances among regions are preserved as well as possible. Besides making it possible to visualize the original data, the mapping allows us to have a more effective representation of the positioning of regions within the overall European regional space.

_

HRST is defined according to the Canberra Manual as a person fulfilling at least one of the following conditions: Qualified (successfully completed education at the third level in a S&T field of study; Employed (not formally qualified as above, but employed in a S&T occupation where the above qualifications are normally required). The conditions of the above educational or occupational requirements are considered according to internationally harmonized standards (ISCED and ISCO). The HRST TOTAL indicator measures the percentage of persons qualified OR employed in S&T; the HRST CORE indicator measures the percentage of persons qualified AND employed in S&T.

2.3 UPDATING REGIONAL DISTANCE BY RELATIONAL DATA

A strong assumption made in this study is that collaborations or partnerships among regions, whereby these are relational entities by definition, may reduce the regional distances, which in this application, are based on regional structural determinants.

To explore the impact of such an assumption, we made reference to the network of regional collaboration, obtained from the database which records the participations to the FP7-ICT projects (European Commission, 2013)³.

Operationally, each cell of the D_{il} matrix (1) has been multiplied by a coefficient, c_{il} , calculated from the matrix of regional partnerships in FP7-ICT projects as follows:

$$c_{ii} = \frac{1}{1 + \ln{(1 + Pil)}}$$
 (2)

where p_{ii} is the number of regional collaborations established in the FP7-ICT projects. From (2) a new distance matrix, ED_{ii} is obtained which can be processed to provide and a new visualization of the European regional space.

Making reference to the approach mentioned in the introduction, it is worth underlining that this operation can be viewed as a refinement step b of the procedure.

3 MAIN RESULTS

Table 1 lists the best and worst performing regions according to the Synthetic Index. It also displays the values of both the elementary indicators and the regional mean distances as well as the distances to Piedmont from each region.

			Ranking								Distances			
			Absor	Absorptive Capacity Innovation System Digital Agenda Synthetic							Mean	to		
Rank	NUTS	Name	Α	В	С	D	Ε	F	G			Index	value	Piedmont
1	DK01	Hovedstaden	46,2	47,1	24,0	3,68	5,08	293,8	87	94	83	784,1	4,13	5,02
2	FI1B	Helsinki	48,9	50,9	23,6	2,88	4,35	414,4	92	93	73	779,2	4,05	5,01
3	UKI1	Inner London	63,0	59,4	28,4	2,04	1,21	89,74	94	93	82	747,6	4,33	5,60
4	SE11	Stockholm	44,4	50	22,6	2,18	3,77	425,4	93	95	77	747,5	3,62	4,65
5	BE31	Prov. Wallon	51,2	47,9	19,6	3,13	8,92	230,0	82	85	52	725,6	4,34	4,94
262	EL24	Sterea Ellada	17,2	15,5	5,8	0,32	0,44	6,61	40	42	15	58,4	2,85	4,37
263	RO22	Sud-Est	12,2	13,4	5,1	0,07	0,11	0,30	56	45	4	49,8	2,86	4,04
264	RO21	Nord-Est	13,1	14,1	6,5	0,1	0,3	0,53	47	43	7	45,2	2,90	4,09
265	EL22	Ionia Nisia	14,7	13,5	5,6	0,13	0,09	3,91	40	42	15	36,6	3,00	4,15
266	RO31	Sud-Muntenia	11,5	12,7	5,3	0,11	0,38	0,39	50	39	6	31,1	3,03	3,58
203	ITC1	Piedmont	15,1	21,9	7,3	1,13	1,88	105,3	65 57 19		221,85	2,05	0	
	ΙΤ	Italy	15,7	21,2	7,0	0,91	1,25	72,5	68	68 56 20				
	EU28	Eu. Union	27,6	30,3	12,1	1,08	2,04	111,4	79	79 72 47				

Tab.1 Elementary indicators, synthetic indices and distances for the 5 top and bottom regions in the regional ranking (*) Make reference to Table 1 for the alphabetic encoding of the elementary indicators

.

³ A technical note describing this collaborative network for Piedmont is available from the authors upon request.

An examination of the table shows that Piedmont is in lower part of the ranking (it ranks 203 out of 266 regions). Weaknesses are more significant for the Absorptive and Digital Agenda profiles.

It is worth noting that, overall the best performing regions hare higher mean distance values than the regions at the bottom of the ranking. This suggests that the best performing regions are relatively more isolated, as clearly shown in the MDS visualization of Fig. 1⁴.

Distances from the best performing regions to Piedmont are also greater those from the worst performing ones.

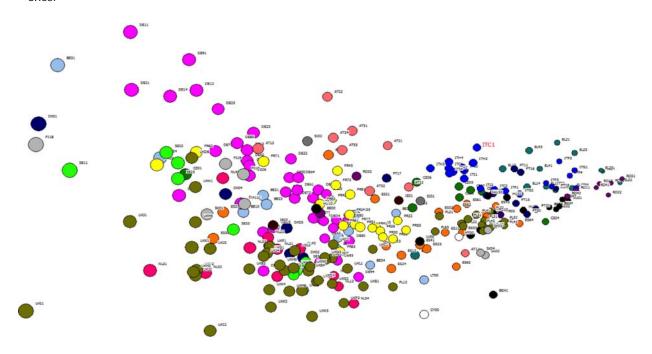


Fig.1 MDS visualization of the distribution of the European regions according to the D distance matrix (*) (*) The size of dots is proportional to the value of the Synthetic Index. Blue dots: Italy; pink dots: Germany; yellow dots: France, Green dots: UK;

The map of Fig.1 makes it straightforward to appreciate the regional proximity space, thus providing a richer interpretative lens of the regional smartness profiles. As for Piedmont, for example, it shows that: a) the region is situated in right part of the map, where the less performing regions are grouped; b) the region is far away from the best performing regions many of which stand alone in the left part of the map; c) its surrounding regions are mostly Italian.

When considering the impact of the updated regional distances ED (see eq.2), a quite different layout appears, Fig.2. Not unexpectedly, regions appear more evenly scattered and the regions surrounding Piedmont are also different.

orange dots: Spain.

⁴ A map for each main descriptive profile of regional smartness (absorptive capacity, innovation system and digital agenda) has also been produced and is available from the authors upon request.



Fig.2 MDS visualization of the distribution of the European regions according to the ED distance matrix (*)

(*) The size of dots is proportional to the value of the Synthetic Index. Blue dots: Italy; pink dots: Germany; yellow dots: France, Green dots: UK; orange dots: Spain.

Changes in the pattern of Fig.2 can be more easily appreciated by comparing the distributions of the D and ED distance values for Piedmont and for the all regions, whereby the values are ranked from the highest to the lowest value of the regional Synthetic Index, Fig.3. Their examination shows that the ED distance matrix does make the regions get closer to each other and that the effect seems relatively more accentuated positive for the Piedmont region, Fig.3a.

If, therefore, we maintain the original argument that regional collaborations would have a positive role in regional convergence processes, it is not unlikely that the FP7-ICT partnerships might have given Piedmont an opportunity to get contacts with the European regions endowed with a comparatively more robust smartness profile, thus giving the region a chance to enhance its own profile.

We expect in fact that as a result of the ED matrix application a shuffling in the regions surrounding Piedmont will occur and tend to bring closer those regions with a more robust smartness profile.

To explore the hypothesis we computed the means of the normalized elementary indicators for the group of regions (those included in the first distribution quartile) closest to Piedmont according to the D and ED distance matrices and compared them with the Piedmont profile.

The results of the investigation are displayed in Fig.4. They show that the Piedmont Innovation System profile is relatively robust and performs better also after the shuffling. The latter seems to be more successful in bringing Piedmont closer to regions with relatively stronger Absorptive Capacity and Digital Agenda profiles.

CONCLUDING REMARKS

This study is a contribution to refine current approaches to the assessment of regional smartness. It contends that sound methodological approaches have an encompassing role in making more sense-able territorial evidence. Methodological refinements in fact can have a positive impact on the recognition of regional smartness profiles and on how to inform smartness policy oriented initiatives in practice.

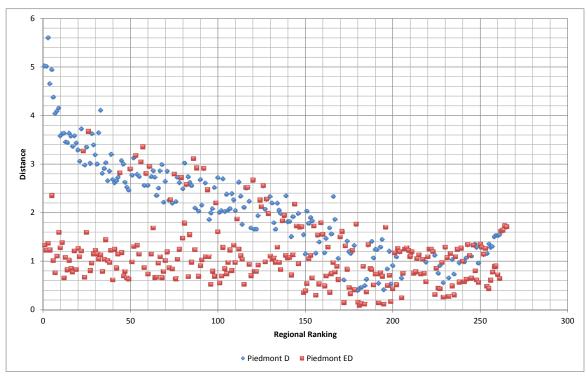


Fig.3a Region to Piedmont distances

Fig.3b Mean regional distances

Fig.3 Region to Piedmont (D and ED) distances (3a) and of the mean regional (D and ED) distances (3b), by regions ranked by the Synthetic Index value

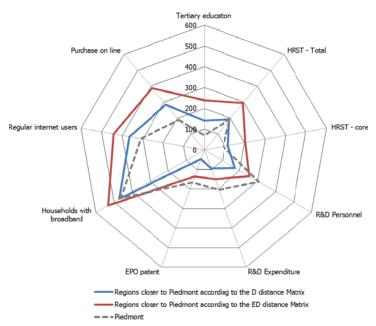


Fig.4 Indicators' profiles for Piedmont and the group of regions closer to Piedmont according to the D and ED distances

This contention ultimately underlies the Europe 2020 strategy and inform several of the key recommendation made by Espon for more effective place-based 2020 policy actions (Espon, 2014). In this respect further work is needed to sharpen the approach, improving the methodological side, i.e. by developing a network centric multi-layered analysis, and gathering a wider set of pertinent relational data. On a broader ground, this paper is, to some extent, a challenge to the current fix about smartness. It suggests a more modest view, one which builds on the contention that, after all, smartness is in the eye of the beholder. Training the ability to see smartness and create the conditions for stakeholders to progressively build it, is therefore, is a major endeavor to be undertaken.

REFERENCES

Annoni, P., Dijkstra, L. (2013) EU Regional Competitiveness Index, RCI 2013, European Commission, Joint Research Centre, Institute for Security and Protection of the Citizens, Luxembourg.

Batty, M. (2013) The New Science of Cities, MIT, Cambridge, US.

Charron, N., Dijkstra L., Lapuente, V. (2014) Regional Governance Matters: Quality of Government within European Union Member States, *Regional Studies*, 48:1, 68-90, http://dx.doi.org/10.1080/00343404.2013.770141.

 $ESPON~(2014)~ESPON~2020~Cooperation~Programme~(draft).~Retrieved~from~http://www.espon.eu/~main/Menu_Programme/~Menu_ESPON2020Programme/index.html. \\$

 $\label{lem:commission} \begin{tabular}{l} European Commission (2013) ICT research projects under the EU's Seventh Framework Programme (FP7), 2007-2012. \\ Rertieved from http://ec.europa.eu/digital-agenda/en/download-data. \\ \end{tabular}$

European Commission (2014) *Mapping smart cities in the EU*, Directorate-General for Internal Policy, IP/A/ITRE/ST/201. Retrieved from http://www.europarl.europa.eu/RegData/etudes/etudes/join/2014/507480/IPOL-ITRE_ET(2014)507480_EN.pdf.

Hollanders, H., Rivera L., Roman L. (2012) Regional Innovation Scoreboard, European Union. Retrieved from http://ec.europa.eu/enterprise/policies/ innovation/files/ris-2012_en.pdf.

IRES (2013) Relazione annuale sulla situazione economica sociale e territoriale del Piemonte. Le ICT nei percorsi di trasformaizione del sistema regionale: da fattori abilitanti a generatori del cambiamento,, cap. 3.1. Retrieved from http://www.regiotrend.piemonte.it/site/images/stories/relazioni/2012/RelazioneIres2012_navigabile.pdf.

Occelli S. (2012). Socio Technical Systems and Policy Activity: Some Evidence From the Piedmont Region. International, *Journal of E-Planning Research*, 4, 59-72. Retrieved from www.igi-global.com/journal/international-journal-planning-research-ijepr/44994.

PICTO. (2013). Le ICT nei percorsi di innovazione del sistema regionale. Rapporto 2012. Torino, IT: Ires Piemonte. Retrieved from www.osservatorioict.regione.piemonte.it.

Occelli S. Poggio E., Sciullo A. (2013), "Investigating regional diversity and integrative patterns in ESPON collaboration networks" in *Science in Support of European Territorial Development and Cohesion - 2nd ESPON Scientific Report*, Luxembourg

Portugali, J. (2000) Self-organization and the city, Springer, New York.

Soete. L. (2011) Regions and innovation policy: the way forward, in OECD *Reviews of Regional Innovation: Regions and Innovation Policy*, pp 16-18. Retrieved from http://www.oecd.org/innovation/oecdreviewsofregionalinnovationregions and innovation policy.htm.

OVERVIEW OF RESEARCH PROJECTS IN THE ICT DOMAIN 2012

ICT statistical report for annual monitoring (StReAM).

IMAGES SOURCES

Insert here images sources

Fig.1 : Eurostat

Figg. 2, 3, 4: Eurostat , Digital Agenda Scoreboard.

AUTHORS' PROFILE

Sylvie Occelli

She holds a degree in Architecture and Regional Planning. In 1987 she joined the Piedmont Institute of the Socio-Economic Research Institute where she currently leads a research unit aimed at fostering innovation in public administrations. She has published in various fields of regional science, ranging from housing, transportation, mobility urban modeling and spatial analysis. Current research interests include: road safety policy, socio-technical systems, ICT and regional development and the role of model-based activity as a way to support modernization in policy practices.

Alessandro Sciullo

After graduating in Political Science, in 2003 he obtained a master's degree in Public Policy Analysis. Since then he has worked part in several research projects aimed to support organizational improvement in different Italian governmental bodies. His main research interests are in the field of public administration, ICT diffusion and use among social actors, innovation networks and the relationships between university and enterprises.