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Abstract: This review paper describes briefly the cloud aqueous phase composition and deeply its
reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen
peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical,
which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through
photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail.
The formation rate of hydroxyl radical and its steady state concentration evaluated by different
authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity
of the HO• radical with the main compounds found in the cloud aqueous phase. This review presents
an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact
that this medium can have on the chemistry of the atmosphere and more generally on the climate.
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1. Introduction

The role of clouds in the chemical composition of the atmosphere is mostly unknown. It affects
the atmospheric oxidation capacity and global warming, which are critical in assessing air quality
and regional climate. Between the different oxidizing species in the atmosphere, radicals play a
central role in the cloud oxidation capacity, with a relevant impact on the chemical composition of the
atmosphere [1].

Earth atmosphere contains a huge number of compounds that come from many and varied
sources and whose concentrations are highly variable in space and time [2–4]. These compounds
have scientific interest for many reasons: (1) they represent a serious health risk [5,6] and the World
Health Organization (WHO) reports 90% of the population now breathe polluted air, which kills seven
million people every year [7]; (2) they modify atmosphere oxidation capacity by their chemical and
photochemical reactivity [4]; and (3) they modify aerosol properties and play a fundamental role in
climatic change, by the fact that aerosols interact directly (effective radiative forcing aerosol radiation
interaction (ERFari)) and indirectly (effective radiative forcing aerosol cloud interaction (ERFaci)) with
solar radiations [8].

Biogenic and anthropogenic sources release in the atmosphere organic compounds as gases,
vapors (volatile organic compounds (VOC)), or as aerosols. In the atmosphere, VOC oxidation leads
to the formation of compounds with lower volatility. The latter, by nucleation and new particle
formation [9–11], can form secondary organic aerosols (SOAs). SOAs represent a major concern in
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atmospheric chemistry research due to their abundance (over 50% of boundary layer aerosol particles
are born via this process) and impact on climate and human health [12,13].

The atmosphere is a complex multiphase medium where gases, the solid phase (particles and ice
crystals), and the liquid phase (cloud and fog droplets) coexist and interact. Solubility and Henry’s law
determine the dissolution of gases in the liquid phase and, in particular, in cloud droplets. Deviation
to this law could be because the droplets’ surface is not planar and hydrophobic organic matter or
surfactants can be present at the air/water interface. When the cloud forms, aerosol particles can be
englobed in cloud droplets and water-soluble organic carbon (WSOC) dissolves. Due to the numerous
sources and number of soluble compounds from the gaseous and particulate phases, the aqueous
phase of the cloud consists of a multitude of compounds. Currently, studies show that only 10%–30%
of the dissolved organic matter in cloud water is characterized [14–17]. The most studied classes
of compounds are short-chain carboxylic acids and carbonyl compounds (aldehydes and ketones).
The aqueous phase of clouds also contains more complex organic compounds of anthropogenic or
biogenic origin. These compounds are difficult to characterize but can influence the overall chemical
composition of cloud droplets with an effect on the reactivity and toxicity of the cloud environment.

During the cloud lifetime, microphysical processes (like evaporation, condensation, collision,
and coalescence) redistribute compounds between the phases and perturb chemical reactivity. This
means that each cloud is a dynamic and multiphasic medium where chemical and photochemical
reactions take place. Each cloud droplet is a small reactor and reactivity in the aqueous phase follows
different pathways or, at least, different rates, than reactivity in the gaseous phase [18,19]. Reactions in
cloud water are faster than in the gas phase and, consequently, chemical processes in cloud conditions
are more relevant than in clear sky. Moreover, these chemical processes involve ionic species or they
can happen at the air/water interface (heterogeneous reactivity), leading to produced compounds that
are different from the ones produced in the gas phase. Composition and reactivity make clouds a
specific environment, generally known as “cloud chemistry” [20–25].

2. Cloud Water Composition

Cloud water chemical composition depends on many variables and the reactivity is influenced by
physicochemical parameters such as pH, temperature, and solar radiations. As reported previously,
chemical compounds in cloud water come from the dissolution of aerosols [16,26–28]. Moreover,
the water-condensed phase (liquid or solid) can dissolve gases as it allows the occurrence of reactions
that would not otherwise happen or would be much slower in the gas phase.

Cloud water composition is directly related to its air mass origin, and it largely depends on the
availability of soluble ionic species. In Figure 1 are reported the concentration of main ions as a function
of the air mass origin. The fact that cloud droplets are formed on cloud condensation nuclei (CCN)
has immediate implications for cloud water composition. In general, the fractional uptake of soluble
aerosol species into cloud water is fairly high [29].

The main chemical species in cloud water are inorganic ions (such as Cl−, Na+, SO4
2−, NO3

−,
NH4

+, etc.) [14,24,30–38], transition metals (Fe, Cu, Mn, . . . ) [26,38–43], and organic compounds
(carboxylic acids, aldehydes, amino acids, . . . ) [17,21,32,44–47].

The study of the chemical composition of cloud water droplets assumes fundamental importance
in understanding its variability in the function of environmental conditions. Many campaigns of
measurements on different sites were organized and the inorganic composition of cloud water was
largely studied [14,24,26,27,32,36,37,48]. Figure 1 reports the median values of the concentration
of main inorganic ions and pH for different sampling sites and air mass origins. The chemical
compounds reactivity is then studied in the laboratory [49–53] and these data are useful for the
development of atmospheric cloud water models for the prediction of the behavior of chemicals in
such a complex medium.
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Figure 1. Concentration of the main ions in cloud water for different air mass origin (highly marine, 
marine, continental, and polluted) measured in nine different sites (Mt. Brocken, Germany; Vosges, 
France; Mt. Rax, Austria; Puy de Dôme, France; Szrenica, Poland; East Peak, Puerto Rico; Whiteface 
Mt., US; Mt. Tai, China; Mont Smücke, Germany). The full line represents the median values. The 
bottom and top lines correspond to the 25th and 75th percentiles, respectively. The ends of the 
whiskers are the 10th and 90th percentiles. Medians and percentiles are calculated on the average of 
the measurement reported in each work. 

Physicochemical Parameters 

The liquid water content (LWC) of clouds is one of the main controls of chemical concentrations 
in cloud water. The concentration of a cloud water solute is proportional to its concentration in the 
air and inversely proportional to LWC [54]. However, the cloud environment is very complex and 
other factors tend to distort this relationship—these factors and their impact on chemical 
concentration in cloud water are still under discussion [55]. 

Ionic species in cloud water are responsible for the conductivity of this medium and the total 
conductivity of the solution is expressed as the sum of the partial conductivity of each ion. This 
measurement allows estimating the ionic concentration of cloud water: the range of values measured 
by Cini et al. is 47–485 µS cm−1 in Vallombrosa (Tuscan Appennins, Italy) [39], the one from 
Kawamura et al. is 6–190 µS cm−1 in Los Angeles basin (US) [56], and Deguillaume et al. measured 2–
348 µS cm−1 at Puy de Dôme summit (France) [14]. Higher values, up to 850 µS cm−1, were found in 
Taiwan during polluted cloud events [57]. Ionic species that mainly influence conductivity are H3O+, 
HO− and then SO42−, Ca2+, and other inorganic ions.  

One of the main factors influencing mass transfer from gas to droplets and cloud water reactivity 
is pH. The equilibrium value, considering CO2 concentration in air, is 5.65, but fluctuations are due 
to the solubilization of other species coming from gaseous (SO2, H2SO3, HNO3, NH3, carboxylic acids) 
or particulate phases (CaCO3). The simultaneous presence of many acid and basic compounds, such 
as nitrates, sulfate, ammonium, carbonates, and many organic acids, such as acetate and formate, 
leads to a buffer effect. Generally, the pH value is lower for air masses influenced by anthropic 
emissions caused by the solubilization of SO2, HNO3 and, carboxylic acids from the gas or the 
particulate phase [58,59]. Measured pH values are between 2.5 and 7.6 [14,37,60] and in most cases, a 
correlation between measured pH and air mass origin is observed, even if Budhavant et al. found pH 
values up to 7.4 for polluted air masses [61] probably due to the buffer activity of soil-derived calcium 
carbonate. 

Figure 1. Concentration of the main ions in cloud water for different air mass origin (highly marine,
marine, continental, and polluted) measured in nine different sites (Mt. Brocken, Germany; Vosges,
France; Mt. Rax, Austria; Puy de Dôme, France; Szrenica, Poland; East Peak, Puerto Rico; Whiteface Mt.,
US; Mt. Tai, China; Mont Smücke, Germany). The full line represents the median values. The bottom
and top lines correspond to the 25th and 75th percentiles, respectively. The ends of the whiskers are the
10th and 90th percentiles. Medians and percentiles are calculated on the average of the measurement
reported in each work.

Physicochemical Parameters

The liquid water content (LWC) of clouds is one of the main controls of chemical concentrations
in cloud water. The concentration of a cloud water solute is proportional to its concentration in the air
and inversely proportional to LWC [54]. However, the cloud environment is very complex and other
factors tend to distort this relationship—these factors and their impact on chemical concentration in
cloud water are still under discussion [55].

Ionic species in cloud water are responsible for the conductivity of this medium and the
total conductivity of the solution is expressed as the sum of the partial conductivity of each ion.
This measurement allows estimating the ionic concentration of cloud water: the range of values
measured by Cini et al. is 47–485 µS cm−1 in Vallombrosa (Tuscan Appennins, Italy) [39], the one from
Kawamura et al. is 6–190 µS cm−1 in Los Angeles basin (US) [56], and Deguillaume et al. measured
2–348 µS cm−1 at Puy de Dôme summit (France) [14]. Higher values, up to 850 µS cm−1, were found in
Taiwan during polluted cloud events [57]. Ionic species that mainly influence conductivity are H3O+,
HO− and then SO4

2−, Ca2+, and other inorganic ions.
One of the main factors influencing mass transfer from gas to droplets and cloud water reactivity

is pH. The equilibrium value, considering CO2 concentration in air, is 5.65, but fluctuations are due to
the solubilization of other species coming from gaseous (SO2, H2SO3, HNO3, NH3, carboxylic acids) or
particulate phases (CaCO3). The simultaneous presence of many acid and basic compounds, such as
nitrates, sulfate, ammonium, carbonates, and many organic acids, such as acetate and formate, leads to
a buffer effect. Generally, the pH value is lower for air masses influenced by anthropic emissions caused
by the solubilization of SO2, HNO3 and, carboxylic acids from the gas or the particulate phase [58,59].
Measured pH values are between 2.5 and 7.6 [14,37,60] and in most cases, a correlation between
measured pH and air mass origin is observed, even if Budhavant et al. found pH values up to 7.4 for
polluted air masses [61] probably due to the buffer activity of soil-derived calcium carbonate.
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3. Cloud Aqueous Phase Reactivity

Chemical reactions of cloud droplets can take place at the interface and in the bulk and both
should be taken into account. The main chemical transformations are initiated by free radicals or
oxidant species, which can be generated in the presence of light or dark conditions. These reactions are
difficult to study and model due to the extreme complexity of the matrix. Laboratory experiments
are often limited to studies in the liquid phase, without considering the role of droplets’ surface and
the equilibrium with the gas phase. Moreover, the complexity of the matrix is strongly simplified to
allow the measurements in controlled laboratory conditions. However, the complexity of the matrix is
particularly important for modeling and two kinds of models are currently developed:

a. Implicit models, with simplified reactivity and empirical relationships, to give a quick and direct
glance of dissolved organic matter or aerosol transformations;

b. Explicit models, with a detailed description of the reactivity. These models are able to give
precise degradation and formation pathways of organic compounds and radicals but they are
only available for some compounds.

Both approaches are valid and the specific model is chosen based on the scientific question.
To study the reactivity of cloud waters, current models and experimental studies apply simplification
to overcome the complexity of cloud droplets.

In this work, the attention is focused on the photoinduced formation of radicals and oxidant species
from different precursors: these processes, due to solar radiations, represent the main production
pathway of oxidant species. Their importance decreases during the night, when dark reactions become
more important.

Although dark reactions are not the main focus of this work, they are briefly introduced in the next
paragraph to better understand their importance in the real environment and their possible occurrence
also during the day.

3.1. Reactivity in the Dark

In the absence of light, the main reaction pathways in cloud water are Fenton reaction and
oxidation by ozone (O3). Fenton reaction leads to the oxidation of organic compounds by the formation
of HO• through the reaction R1.

(R1) Fe2+ + H2O2 → Fe3+ + HO• + HO−

The Fenton reaction can contribute, significantly, to the production of HO•, although the reactivity
constant is relatively low (about 60 M−1 s−1 at 25 ◦C). However, the importance of the Fenton reaction
regarding the production of HO• in solution is still subject to controversy. The HO• radical production
by the Fenton reaction has been questioned by several studies that suggest that the reaction between
H2O2 and Fe2+ produces the ferryl ion (Fe4+), which is then the active intermediate species in Fenton
chemistry [62,63].

Ozone plays a central role in tropospheric chemistry: it is a highly reactive and toxic substance
and it absorbs both ultraviolet and infrared light. Even in dark conditions, O3 can oxidize, as reported
for the atmospheric oxidation of polycyclic aromatic hydrocarbons (PAH) [64,65]. O3 does not diffuse
in cloud water and reactivity occurs mainly on the surface of the droplet. Furthermore, because O3

molecules are not formed in the aqueous phase, their chemical destruction rate per surface unit is equal
to the net transfer flux of O3 from the gas phase. As a result, the washout of O3 is irreversible [66,67].
Concerning the surface chemistry of cloud droplets, only a little information is available [68].

3.2. Photochemical Reactivity

Organic and inorganic compounds can be transformed following two kind of photochemical
processes. The first one is the direct absorption of solar radiation (photolysis) and second due
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to the oxidation mediated by photochemical generated species such as triplet states and radicals
(photosensitized reactions).

3.2.1. Photolysis

Photolysis is observed when molecules, after absorbing light, undergo a chemical structure change.
In order to induce direct photolysis, the energy absorbed by the molecule should be higher than the
energy of a covalent bond (usually in the range from 210 to 630 kJ/mol); therefore, the energy has to be
generally higher than 210 kJ mol−1. The radiations containing this amount of energy are essentially the
UV radiations, which are almost completely absorbed by O3 in the stratosphere. The quantity of UV
radiation reaching the lower troposphere and the surface of the Earth is very small compared to the
incoming radiation at the top of the atmosphere, but this small amount of UV radiation is the driving
force for most of the photochemical reactions in the troposphere [69].

Photolysis has been studied in detail for pyruvate [70] and tryptophan [47] in synthetic cloud
water, using different analytical techniques. The results showed that these compounds, that are able to
absorb the UV portion of sunlight, are oxidized to smaller molecules, like lactate, acetate, and formate,
or can form higher weigh molecular compounds, also at low concentrations, as showed for tryptophan.
To our knowledge, direct photolysis for many compounds is negligible in comparison to reaction
with oxidants.

3.2.2. Photosensitized Reactions

Absorption of sun radiation can leads to the formation of excited state molecules that are able
to start new photosensitized reactions [71]. Different kind of reaction can be initiated from the
electronically excited state such as energy and electron transfer reactions. Despite a well knowledge of
such reactions in surface water only limited work are reported in cloud waters [71].

Excited state organic compounds can react with molecular oxygen (3O2) leading to the formation
of singlet oxygen (1O2). However, reactivity of 1O2 with cloud water relevant compounds is
far to be assessed. In the condensed phase, electron transfer or H-transfer often follows the
photochemical excitation of a chromophore: this kind of indirect photolysis is theoretically different
from photosensitization and energy transfer, even if it could be a simultaneous process, and can lead to
the production of neutral and charged radicals. For example, in the case of oxygen, it can form the
superoxide radical anion (O2

•−).

3.3. Photochemistry in Cloud Water

The fate of numerous organic and inorganic compounds in the atmosphere is controlled by
photochemically produced oxidants or photooxidants. Historically, the field of atmospheric chemistry
has focused on gas phase oxidations as the primary fate-determining processes of chemical substances.
However, aqueous phase photochemical transformations in atmospheric water droplets can significantly
affect the chemical composition of the troposphere [72]. Cloud droplets can undergo chemical changes
through photochemical reactions because they receive a considerable amount of sunlight. Oxidation of
chemical compounds in the aqueous phase is induced by radicals or other oxidant species, like O3

or H2O2 [73]. Ionic radicals (Cl2•−, Br2
•−, SO3

•−, SO4
•−, SO5

•−, and O2
•−) are produced only in the

aqueous phase, while neutral radicals, like HO•, NO2
• (nitrite radical), NO3

• (nitrate radical) and
HO2

•, can diffuse from the gas phase (gas to liquid transfer) or can be produced directly in the aqueous
phase. Cited radicals do not have equal oxidation power: the redox potential increases following the
order Br2

•− < Cl2•− < NO3
•
≈ SO4

•− < HO• [74]. Huie et al. reported a redox potential of 2.7 V for
HO•, and 2.3 and 2.4 V for NO3

• and SO4
•−, respectively [75]. Br2

•− has a negligible impact due to its
low redox potential (1.69 V [75]) and low concentration, while SO4

•− and Cl2•− recently gained more
attention [76–78].

HO• is the main oxidant in the atmosphere, especially during the day, and it is mostly responsible
for transforming organic compounds in cloud water [79].
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3.4. Main Oxidants in Cloud Water

The main oxidant species driving the cloud water oxidation capacity are H2O2, NO3
•, and HO•.

Between these species, HO• is the most important oxidant during the day [80] and its formation and
reactivity will be described in a separate chapter.

3.4.1. Hydrogen Peroxide

Sources

H2O2 is produced in the gas phase and, in the presence of cloud droplets, rapidly dissolved in the
liquid phase due to its high solubility. Modeling studies consider the mass transfer from the gas to the
aqueous phase as the main source of H2O2 in cloud water [81,82]. Besides, several mechanisms have
been proposed for the H2O2 photoproduction in atmospheric water droplets but only are based on
laboratory experiments (R2–6). For example, the oxidation of transition metals ions (TMI) by radical
species leads to the formation of H2O2 (R7–9): this is the case of the iron–oxalate complex, which
is usually used as a model to describe the reaction of organic iron complexes in the cloud aqueous
phase [83]. Even if the role of this complex is the subject of debate, the irradiation of cloud water leads
to an increase in the concentration of H2O2 and Fe(II) [84]. The photolysis of phenolic compounds [85]
and biacetyl compounds [86] was also proposed as a source of H2O2. Zuo and Deng observed that
substantial amounts of H2O2 were produced by lightning activities during thunderstorms [87]. Another
production pathway is the photolysis of organic peroxides, in particular of the methyl hydroperoxide,
normally present in water droplets [53,88–90]. This photolysis in the aqueous phase is a source of HO•,
which leads to the formation of formaldehyde and HO2

•, which are sources of H2O2 (R10–11).

(R2) HO2
• + HO2

•
→ H2O2 + O2 k11 = 8.3 × 105 M−1s−1 *

(R3) HO2
• + H2O→ (HO2

•
−H2O) k12 = 9.7 × 107 M−1s−1 *

(R4) HO2
• + (HO2

•
−H2O)→ H2O2 + O2 + H2O k13 = 9.6 × 107 M−1s−1 *

(R5) (HO2
•
−H2O) + (HO2

•
−H2O)→ H2O2 + O2 + 2H2O k14 = 9.6 × 107 M−1s−1 *

(R6) HO2
• � O2

•− + H+ pka = 4.88
(R7) Fe(II) + O2

•− + 2H+
→ Fe(III) + H2O2 k16 = 1.2 ÷ 2.1×106 M−1s−1 *

(R8) Fe(II) + O2 → Fe(III) + O2
•− pH dependent

(R9) O2
•− + HO2

•+ H2O→ H2O2 + O2 + HO− k18 = 9.7 × 107 M−1s−1 *
(R10) CH3OOH + hν→ CH3O• + HO•

(R11) CH3O• + O2 → H2CO + HO2
•

* Constants from the National Institute of Standard and Technology (NIST) Solution Kinetics Database.

Steady State Concentration

H2O2 concentration in cloud water depends on many factors such as air mass origin, season,
and location of sample site. Previous measurements at the Puy de Dôme station show that H2O2

concentrations in the cloud aqueous phase range from 0.3 to 58 µM [14,91], while a study on cloud
water sampled in Los Angeles shows concentrations up to 88 µM [92]. The concentration of H2O2

in cloud water collected at Mount Tai (China) was found to be up to 97 µM [38]. Table 1 reports the
concentration of H2O2 measured on altitude sites.
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Table 1. Average for H2O2 in cloud water sampled at different sites.

H2O2 Average
Concentration (µM)

Location Altitude (m) AMO Min Moy Max Reference

Puy de Dôme, France 1465 P 1.9 4.9 7.3 [14]
Puy de Dôme, France 1465 C 1 9.9 57.7 [14]
Puy de Dôme, France 1465 M 0.1 6.2 20.8 [14]
Puy de Dôme, France 1465 HM 0.8 11.2 19 [14]

Mont Smücke, Germany 937 C 0.4 5.6 17 [37]
Puy de Dôme, France 1465 M 2.1 12.1 52.3 [93]

Mont Tai, China 1534 P 0 23.5 97.1 [38]

AMO, air mass origin; HM, highly marine; M, marine; C, continental; P, polluted.

Sinks in the Liquid Phase

The main removal mechanisms for H2O2 in the liquid phase are the photolysis (λ < 370 nm)
(R12) [94] and reaction with HO• (R13) [95].

(R12) H2O2 + hν→ 2HO•

(R13) H2O2 + HO• → HO2
• + H2O k22 = 3.2 × 107 M−1s−1 *

* Constants from NIST (National Institute of Standard and Technology) Solution Kinetics Database.

In the gas phase, photolysis leads to a significant loss of H2O2 in the troposphere (R12), although
the absorption drops rapidly at a wavelength above the actinic cutoff of 290 nm. The quantum yield is
of two HO• for each H2O2, corresponding to a photodissociation quantum yield of 2 at wavelengths
>222 nm [94]. In the condensed phase, the quantum yield is lower because the formed radicals have a
higher probability of recombining due to the cage solvent effect. Moreover, in the cloud aqueous phase,
H2O2 can be consumed by Fenton processes. Many other inorganic compounds have an impact on
H2O2 degradation. Zuo and Deng found an inverse correlation between H2O2 and NO3

− and SO4
2−

concentrations in rainwater and cloud waters [87]. This phenomenon is explained by the oxidation of
sulfites (S(IV)) to sulfates (S(VI)) and of ammonium (NH4

+) to nitrates, where the role of H2O2 (directly
or as an HO• source) is important at typical hydrometeor pH values [92,96–98].

3.4.2. Nitrate Radical

Sources

The photolysis of nitrate ions leads to the formation of NO2
• and NO• radicals (R14–15), however

there is no evidence that nitrate radicals (NO3
•) are formed by NO3

− irradiation [99,100]. NO3
• can be

generated by the electron transfer between nitrate ions and aqueous radical anions, however the main
source of nitrate radical in cloud water is due to mass transfer from the gas to the aqueous phase [101].

(R14) NO3
− + hν→ NO2

• + O•−

(R15) NO2
− + hν→ NO• + O•−

Steady State Concentration and Sinks

NO3
• absorbs strongly in the red region (620−670 nm) of the visible spectrum, unlike most

atmospherically important species that absorb in the UV region. Due to this absorption, during the
day, it gives photodissociation producing NO2

• or NO• (R16–17).
The spectroscopic proprieties of NO3

• allow a good estimation of its concentration in the dry
troposphere during the day (104 molecules cm−3) and during the night (109 molecules cm−3) [69].
In the case of wet air, NO3

• reacts with NO• to give N2O5 that, in the presence of water, forms HNO3,
responsible for acid fog and rain (sink of nitrate radical by wet deposition) [102]. The exchange of
NO3

• with the aqueous phase was investigated by Thomas et al., [103] at room temperature (293 K).
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From these experiments, the uptake coefficient of NO3
• (γ(NO3

•)) was found to be ≥2 × 10−3 while the
Henry coefficient was estimated to be KH(NO3•) = (3.8 ± 3) × 10−2 M atm−1 [104]. Because of its low
solubility, the heterogeneous removal of NO3

• is only important when the dissolved NO3
• is removed

quickly from the equilibrium, for example by reactions with Cl− or HSO3
− ions (R18–19) in the liquid

phase. Otherwise, heterogeneous removal should mainly proceed via N2O5 [103], with the production
of HNO3 and consequent inactivation of this radical in the condensed phase.

(R16) NO3
• + hν < 635 nm→ NO2

• + O(1D)
(R17) NO3

• + hν < 586 nm→ NO• + O2
(R18) NO3

• + Cl− → Cl• + NO3
− k30 = 1.0 ×107

÷ 1.0×108 M−1s−1 *
(R19) NO3

• + HSO3
−
→ SO3

•− + NO3
− + H+ k31 = 1.4 ÷ 2.0 × 109 M−1s−1 *

* Constants from the National Institute of Standard and Technology (NIST) Solution Kinetics Database.

4. Hydroxyl Radical

The main generation and destruction pathways of HxOy species are resumed in Figure 2 and
described below.
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HO• drives the daytime chemistry of both polluted and clean atmosphere [80]. The HO•-mediated
oxidation of organic compounds in the aqueous phase can lead to the formation of shorter but
often multifunctional organic species and, ultimately, to complete mineralization. Complex chemical
reactions triggered by HO• can also occur in the aqueous phase forming accretion products such
as oligomers [105]. These alternative chemical pathways are efficient processes to convert organic
compounds into SOAs [106].

HO•, HO2
•, and H2O2 are interconnected and grouped as HxOy. They have a central role in cloud

water oxidation capacity [107]. As reported previously, they have high solubility [104] and the mass
transfer from the gas to the aqueous phase can readily perturb gas phase reactivity [66,108,109]. HO•

can be produced in the gas phase and then diffuse to the liquid phase or it can be directly produced in
the aqueous phase. On the contrary of what was previously described for the nitrate radical, HO• can
diffuse to the aqueous phase after its production in the gas phase (KH(HO•) = 30 ± 0.2 M atm−1) [110].
In the following paragraph, the main sources are described.
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4.1. Sources in the Aqueous Phase

The sources of HO• in the aqueous phase strongly differ from those in the gas phase because of
the presence of ionic species and metal ions. To our knowledge, little information is available in the
literature concerning measurements of Rf

HO
• (HO• formation rate) in real cloud water samples. Faust

and Allen [111] measured the Rf
HO
• of six continental cloud water samples under monochromatic

irradiation at 313 nm and they found values ranging from 1.3 to 8.3 × 10−10 M s−1. Anastasio and
McGregor [112] investigated the photoreactivity of two cloud waters from the Tenerife Islands. The
authors found Rf

HO
• ranging between 3.0 and 6.9 × 10−10 M s−1 and suggested that long-range

terrestrial aerosol and gas transport in continental clouds could provide an additional source of HO•

compared with other marine or remote clouds. Bianco et al. [93] measured Rf
HO
• for 36 samples of

marine and continental origin collected at the Puy de Dôme station and found values ranging between
0.2 and 4.2 × 10−10 M s−1. Similar results were found previously by Arakaki and Faust [84], which
measured Rf

HO
• ranging between 0.3 and 5.9 × 10−10 M s−1.

Some work also focuses on the determination of the main precursor of HO•: Kaur and
Anastasio [113] determined that the main source of HO• in fog water is due to nitrate photolysis,
while Bianco et al. [93] showed that 70% to 90% of HO• in cloud water is due to H2O2. These results
could seem to be in contrast but it should be considered that fog water samples collected by Kaur
and Anastasio [113] in California and Louisiana (USA) were frozen before analysis and negative
temperatures affect the concentration of H2O2. Moreover, the concentrations of nitrates were up to
1830 µM, one order of magnitude higher than the ones measured in cloud samples by Bianco et al. [93].
Furthermore, the emission spectrum of the lamp used to determine Rf

HO
• may affect the results because

H2O2, nitrates, nitrites, and iron absorb light in different ranges. The following paragraphs report the
main sources of HO• in the aqueous phase.

4.1.1. Hydrogen Peroxide

An important source is the photolysis of H2O2 (R12). Many authors measured the H2O2 quantum
yield for the irradiation of solution at 254 nm, as reported by Herrmann et al. [79], while little
and discordant information is reported for irradiation wavelengths higher than 300 nm and more
representative of environmental conditions (Table 2).

Table 2. Summary of HO• quantum yields (ΦOH) for H2O2 photolysis in aqueous solution at different
photolysis wavelengths.

λ (nm) Φ(HO•) Reference

300 0.96 ± 0.09 [114]
308 0.98 ± 0.03 [79]
308 0.8 ± 0.2 [115]
313 0.98 ± 0.07 [116]
313 0.59 ± 0.01 [76]
334 0.98 ± 0.008 [116]
351 0.96 ± 0.04 [79]
360 0.017 [117]
365 0.96 ± 0.09 [114]
365 0.009 ± 0.001 [76]
400 0.96 ± 0.09 [114]

Some values are discordant but an average value close to 1 seems to reflect the reality of this very effective reaction.

4.1.2. Iron Photochemistry

Iron plays a central role for evaluation of cloud water oxidant capacity because it is either a source
or a sink of HxOy. In particular, it produces HO• radicals by the Fenton reaction or iron photolysis.
From an atmospheric point of view, iron is probably the most significant transition metal because of
its concentration, which is, in general, much higher than that of other metals. Its concentration is



Molecules 2020, 25, 423 10 of 23

~10−6 M, but many field experiments indicate that it can vary from 10−9 to 10−6 M in raindrops and
cloud droplets [28,39,40,43,118,119]. The concentration of iron drives the concentration of radicals
in cloud droplets, but also partly in the gaseous phase (due to the rate of the mass transfer). In the
cloud aqueous phase, the redox cycle between Fe(II) and Fe(III) depends on many factors such as
pH, the concentration of oxidant, reducing and complexing agents, and the intensity of the actinic
irradiation. The main chemical pathways driving the reactivity of the HxOy/iron system in cloud
water are presented in Figure 3a. Iron(III) is present in three monomeric forms: Fe3+, Fe(OH)2+, and
Fe(OH)2

+. In cloud droplets, the speciation of iron between its two oxidation states (II and III) is a
key parameter of its reactivity in solution and is a function of pH and redox potential, as shown in
Figure 3b. Fe(II) is oxidized by H2O2 via the Fenton reaction (R21) to form Fe(III) and HO•. Under
irradiation, this reaction is in competition with the photolysis of H2O2 (R12) and the photoreduction of
Fe(III) (R20) [120]. Furthermore, as shown in Figure 3a, HO• can oxidize iron (reaction D′) and react
with H2O2 to form HO2

•/ O2
•−. These radicals can trigger the oxido-reduction of iron (reactions E

and E′) and generate H2O2. Iron complexes, like the iron–oxalate complex, can also undergo Fenton
reaction, as shown in reaction R22. The relevance of iron photochemistry in HO• production is high, in
particular for air masses of continental origin, but it still needs to be quantified.

(R20) Fe(III)(OH)2+ + hν→ Fe2+ + HO•

(R21) Fe(II)(OH)+ + H2O2 → Fe(OH)2+ + HO• + HO−

(R22) Fe(II)(C2O4) + H2O2 → Fe(C2O4)+ + HO• + HO−
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The Fenton reaction may significantly contribute to Rf
HO
•, especially in the presence of Cu+,

which can reduce Fe3+ to Fe2+, as reported in reaction R23.

(R23) Cu+ + Fe3+
→ Cu2+ + Fe2+ k = 1.3 × 107 M−1s−1 [121]

TMI interactions modify their oxidation state and impact HxOy redox cycle. Tilgner et al., report
that conversions between Fe2+/Fe3+, Cu+/Cu2+, and Mn2+/Mn3+ are efficient and represent sources
and sinks for HO• [122].

Another factor that influences iron chemistry is the formation of a complex with organic
ligands [123,124], like oxalate, malonate, and tartronate [125]. Reactivity and photoreactivity of
the Fe–oxalate complex (complexation constant log K = 9.4 [126]) have been deeply investigated in the
past considering various complexation degrees (i.e., various Fe/oxalate ratios) [83,118], as well as the
influence of pH [120]. Nowadays, the Fe–oxalate complex represents the main form considered in the
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cloud chemistry model [81,108,122], even if some other organic ligands start to be considered. Organic
ligands produced by biological sources, like exopolymeric substances and siderophores, as well as
humic-like substances (HULIS), show complexation constant with orders of magnitude higher than
oxalate [4,15]. Notably, siderophores are proteins synthesized within the microbial cell and expelled
to bind iron and make it bioavailable, since it is necessary as an active site in many enzymes [127].
Recently a screening work on 450 microbial strains isolated from cloud water evidenced that 43%
are able to produce siderophores like pyoverdine [128] and the complexation constant is higher than
1020 [129]. A complementary work on the photoreactivity of the iron–pyoverdine complex reported
that siderophores bind efficiently iron and reduce its HO• quantum yield to one order in magnitude
lower than values measured for Fe–oxalate complexes [130]. Since the complexation constant of
Fe–oxalate is lower than the one for Fe-siderophores, these compounds may compete with oxalate in
iron complexation and reduce its role in cloud photochemistry.

4.1.3. Nitrate and Nitrite Photolysis

As discussed in Section 2, many studies report the concentration of nitrate in cloud water. Nitrate
photolysis was firstly investigated in seawater [131]. Nitrate can absorb sunlight and their photolysis
gives NO2

• and O•− or O(3P) (ground state oxygen atom) (R14 and R24−26), which is responsible for
the formation of HO•. NO2

• reacts following many pathways (R27−34) and produces nitrite anions.

(R24) NO3
− + hν→ NO2

− + O(3P) Φ(NO2−)305nm = 0.72 ÷ 1.22 × 10−3 [132]
Φ(NO2−)313nm = 1.1 ± 0.2 × 10−2 [133]

(R25) O•− + H2O→ HO− + HO•

(R26) O(3P) + H2O→ 2HO•

(R27) NO2
• + HO• → HNO3

(R28) HNO3 + hν→ NO3
− + H+

(R29) HNO3 + hν→ NO2
• + HO•

(R30) NO2
• + O2

•−
→ NO2

− + O2
(R31) 2NO2

•
→ N2O4

(R32) 2NO2
• + H2O→ NO2

− + NO3
− + 2H+

(R33) N2O4 + H2O→ NO2
− + NO3

− + 2H+

(R34) NO2
− + HO• → NO2

• + HO−

Nitrous acid (HNO2) is a compound normally studied in the gaseous phase because it is strictly
connected to the NOx cycle. Cloud and fog droplets could be sinks of HNO2 from the gaseous phase
because of its high value of Henry’s law constant (KH(HNO2) = 50 M atm−1). Nitrous acid in droplets
can undergo photolysis (R35) but, more probably, it follows another reaction pathway: at water droplet
pH values, nitrous acid is present in the deprotonated form, nitrite. Even if the concentration is
very low (of the order of 0.1 µM), nitrites can absorb sunlight more efficiently than nitrates and they
photogenerate HO• following the reactions R36, R15, and R37.

(R35) HNO2 + hν→ NO• + HO•

(R36) HNO2 � H+ + NO2
− pka = 3.35

(R37) O•− + H2O→ HO− + HO•

4.2. Reactivity

The reaction of HO• with ions is often described as a simple electron transfer (R38), but such
a simple process is unlikely because of the large solvent reorganization energy involved in forming
the hydrated hydroxide ion. Instead, it is suggested that an intermediate adduct is formed. Such an
adduct is observed in the oxidation of halide and pseudo-halide ions (R39). Although there are several
examples of HO• reacting with inorganic ions at the diffusion-controlled rate, rate constants for the
oxidation of many metal cations seem to be no more than ~3 × 108 M−1s−1. A suggested reason for this
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is that HO• abstracts H from a coordinated water molecule and this is followed by an electron transfer
from the metal to the oxidized ligand (R40).

In a strongly alkaline solution, HO• is rapidly converted into its conjugate base O•−, with a pKa
value of 11.9. In its reactions with organic molecules, HO• behaves as an electrophile whereas O•− is a
nucleophile and it is generally less reactive. This species is important at pH values higher than 12 and
it will not be considered in this work.

(R38) HO• + Fe2+
→ Fe3+ + HO−

(R39) HO• + Cl− � HClO•−

(R40) HO• + Fe2+
→ Fe2+HO• → Fe3+ + OH−

HO• reacts by different pathways (double bond addition, hydrogen abstraction, electron transfer,
and aromatic ring addition) with organic molecules, as schematized in Figure 4.
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HO•-mediated oxidation of organic compounds can lead to the fragmentation or to the formation of
oxidized organic species, introducing different functional group, to result in the complete mineralization
to CO2. However, another pathway is possible: when water evaporates and solutes become more
concentrated, the recombination of organic radicals becomes possible. The result is the formation of
dimers, oligomers or, in general, large molecular compounds (LMC), as shown in Figure 4 (right).
This phenomenon is still uncertain and can lead to the formation of oligomers up to 10 monomeric
units [106]. The polymerization could also take place at the interface of the water droplets where
the hydrophobic compounds can accumulate [134]. The competition between fragmentation and
formation of high weight molecular compounds is well known for oxalic acid that, by reacting with
HO•, can mineralize to carbon dioxide or dimerize [52].

HO• reacts with organic compounds mainly by hydrogen abstraction or electron transfer,
forming an alkyl radical R•. In the presence of dissolved oxygen, this latter reacts to form peroxyl
radical RO2

• [135]. If peroxyl radical contains an alcoholic function (–OH) on α carbon, RO2
•

rapidly decomposes producing HO2
•/O2

•− [136,137]. RO2
• can also react by “self-reaction” with

another peroxyl radical, R’O2
•, with the formation of a link between the two oxygen atoms, giving

a tetroxide ROOOOR’, highly unstable, which decompose quickly by different ways [138,139].
Tetroxide decomposition can lead to the formation of stable products, like aldehydes, ketones
and alcohols [137,138], or radicals, as acylperoxides and alkoxylates. The latter reacts quickly by
decarboxylation, electron transfer, or breaking of the C–C bond [140,141].

Phototransformation of carbonylic and carboxylic compounds has been largely investigated by
laboratory studies by irradiation of natural or synthetic cloud water containing radical sources. The
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behavior of glyoxal [142], methylglyoxal [143], methacrolein, and methyl vinyl ketone [144,145], but
also of carboxylic acids like formic, oxalic, acetic, glyoxylic, glycolic, pyruvic, and others [52], was
investigated in synthetic cloud water to evaluate photodegradation pathways.

Recently, amino acids reactivity was investigated in cloud water: irradiation of tryptophan in the
presence of H2O2 in synthetic cloud water evidences the production of acetic and formic acids and the
degradation mechanism was investigated by mass spectrometry [47]. The photochemical reactivity of
Fe(III)–amino acid complex in atmospheric waters was studied by Marion et al. [146]. The photolysis
of Fe(III)–aspartate complex under sun-simulated conditions leads to the formation of ammonia as the
main product and, as for tryptophan, to short-chain carboxylic acids. The authors demonstrated that
the formation of iron–amino acid complexes could represent a degradation pathway for amino acids
oxidation as well as new photochemical sources of carboxylic acids and ammonia in the cloud aqueous
phase. The reactivity of hydroxyl radical with phenol, nitrophenols, and brown carbon has been
studied in model cloud water and several studies pointed out the enhanced reactivity in the aqueous
phase compared to the liquid phase. Moreover, Zhang et al. show an important result: the reaction
between HO• and brown carbon leads to an initial increase of the UV visible absorption followed by a
rapid decrease (bleaching), with a potential impact on aerosol radiation interaction [147–150].

Although several studies investigated the fate of organic compounds in cloud water, the reactivity
of a huge amount of organic species is still not considered in cloud water chemistry and photochemistry,
mainly due to their low concentration and complex determination of degradation pathway.

4.3. Hydroxyl Radical Sinks

The HO• is an important oxidant in the atmospheric aqueous phase, where it reacts with both
organic and inorganic species. HO• is scavenged in the aqueous phase, primarily by dissolved organic
compounds: for example, the HO•-mediated oxidation of aqueous glyoxal, glyoxylic acid, and other
small, multifunctional organic compounds produces low-volatile SOAs species, such as oxalic acid
and oligomers. The lifetime of an aqueous species “S” considering the reactivity with HO• is inversely
proportional to the [HO•]ss (HO• steady state concentration), generally expressed by Equation (1):

τ =
1

kS,HO• × [HO•]ss
(1)

where kS,HO• is the bimolecular rate constant between S and HO•. Thus, [HO•]ss is a crucial quantity
for understanding the fates of atmospheric pollutants. This concentration is determined by the balance
of the HO• sources and sinks, reported in Equation (2):

[HO•]ss =
PHO•

k′HO•
(2)

where PHO• is the rate of production of HO• and k’HO• is the apparent first-order rate constant for loss
of HO• (s−1). Since there are many scavengers for HO•, the rate constant for HO• loss is the sum of the
individual scavenger contributions and can be calculated, as reported in Equation (3), as the product of
the bimolecular rate constant and the scavenger concentration for each species

k′HO• =
∑

(kS,HO• × [S]) (3)

Determining the rate constant for HO• loss in this manner is a herculean task since atmospheric
drops and particles can contain on the order of 104 individual organic compounds, as well as
significant concentrations of poorly characterized, large molecular weight species such as humic-like
substances [15]. In contrast, the most sophisticated numerical models of atmospheric waters track
the reactions of fewer than 100 individual organic compounds, with none larger than four carbon
atoms [81,122].
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Arakaki et al. found that the HO• sink can be simply estimated by a general carbon rate constant
that is applicable both for atmospheric waters as well as surface waters, which allows k’HO• to be
estimated by using organic carbon concentrations [151]. Their results show that the scavenging rate
constant of HO• by organic species in atmospheric waters can be simply estimated as the product of a
robust general rate constant (kDOC,HO•) multiplied by the dissolved organic carbon concentration of
the sample, as reported in Equation (4).

k′HO• = kDOC,HO• × [DOC] (4)

Equation (4): first-order rate constant for HO• loss as a function of the general second order rate
constant between HO• and DOC.

In the work of Arakaki et al., kDOC,HO•is estimated to be of the order of 3.8± 1.9× 108 L molC−1 s−1 [151].
This value is useful for a direct estimation of the contribution of DOC as a scavenger of HO•.

4.4. Steady State Concentration

Uncertainties in HO• sinks and sources make its concentrations in atmospheric water highly
difficult to determine. To the best of our knowledge, only two works report the measurement of
[HO•]ss, which is a crucial quantity to understand the fate of atmospheric pollutants [151] for cloud
water samples: McGregor and Anastasio [112], who reported values ranging from 1.7 to 7.7 × 10−16 M,
and Lallement et al., who measured [HO•]ss of 7.2 ± 5.0 × 10−16 M.

[HO•]ss has been also estimated using cloud chemistry models. Contrarily to what happened for
experimental measurements, cloud chemistry models are able to describe multiphase chemistry and
mass transfer from the gaseous to the aqueous phase. [120,152,153]. The range of HO• concentration
varies from 10−16 to 10−12 M, depending on the “chemical scenario” (i.e., emission/deposition and the
initial chemical conditions) used in the modelling study, as shown in Table 3, where the estimation
of the [HO•]ss for different air mass origins is reported. The amounts of organic matter and iron are
key parameters controlling the [HO•]ss. These models are expected to underestimate the radical sinks
because organic scavengers cannot be exhaustively described in the aqueous chemical mechanism [151].
Besides, they are able to consider the mass transfer of HO• from the gaseous to the aqueous phase,
which represent an additional source for [HO•]ss. For this reason, the measured value reported by
Lallement et al. [154] and McGregor and Anastasio [112] is in the lower range of the evaluations
reported by Tilgner et al. [122] using the CAPRAM 3.0 model.

Table 3. Calculated HO• radical concentrations in clouds and deliquescent particles using the CAPRAM
3.0 multiphase mechanism. Mean concentrations are averaged values over three simulation days. Data
adapted from Tilgner et al. [122].

Polluted Origin Cloud Water
[HO•] (M)

Remote Origin Cloud Water
[HO•] (M)

Marine Origin Cloud Water
[HO•] (M)

Mean Max Min Mean Max Min Mean Max Min

3.5 ×
10−15

1.6 ×
10−14

2.9 ×
10−16

2.2 ×
10−14

6.9 ×
10−14

4.8 ×
10−15

2.0 ×
10−12

5.3 ×
10−12

3.8 ×
10−14

5. Conclusions

This review highlights the complexity of the atmospheric aqueous phase in terms of a variety
of chemical compounds present but also in terms of chemical processes taking place in this medium.
The obtained results on the different studies demonstrate that photochemistry and more particularly
the photogenerated hydroxyl radical drive the oxidation capacity during the day. Moreover, it is also
clear that the atmospheric aqueous phase has a non-negligible impact on atmospheric chemistry and
so on the climate. To evaluate more clearly the role and the significance of the atmospheric aqueous
phase, more in-depth knowledge is needed both for the characterization of this aqueous phase and for
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the various processes that govern its composition. Its new data are also essential to establish more
accurate atmospheric chemistry models to predict climate change, the level of atmospheric pollution,
and so the atmospheric composition.
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