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Abstract

We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski–Demianski metrics one o
family of local toric Kähler–Einstein metrics. These can be used to construct local Sasaki–Einstein metrics in five dim
which are generalisations of theYp,q manifolds. In fact, we find that these metrics are diffeomorphic to those recently f
by Cvetic, Lu, Page and Pope. We argue that the corresponding family of smooth Sasaki–Einstein manifolds all have
S2 × S3. We conclude by setting up the equations describing the warped version of the Calabi–Yau cones, supporti(2,1)

three-form flux.
 2005 Elsevier B.V.Open access under CC BY license.
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Recently Sasaki–Einstein geometry has been
focus of much attention. The interest in this subject
arisen due to the discovery in[1,2] of an infinite family
Yp,q of explicit Sasaki–Einstein metrics onS2 × S3,
and the subsequent identification of the correspond
family of AdS/CFT dual quiver gauge theories in[3,4].

The construction of[2] was immediately gener
alised to higher dimension in Ref.[5] and a further
generalisation subsequently appeared in[6,7]. How-
ever, dimension five is the most interesting dimens
physically and the purpose of this work was to inv
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tigate if there exist other local Kähler–Einstein m
rics in dimension four from which one can constru
complete Sasaki–Einstein manifolds in one dimens
higher.

As we show, one can obtain a family of loc
toric Kähler–Einstein metrics by taking a certain sc
ing limit of a Euclideanised form of the Plebansk
Demianski metrics[8]. Here toric refers to the fact tha
the metric has two commuting holomorphic Killin
vector fields. In fact the resulting metrics were fou
independently by Apostolov and collaborators in[9]
using rather different methods. In the latter refere
it is shown that this family of metrics constitute th
most general local Kähler–Einstein metric which isor-
thotoric, a term that we define later. We also show t
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these Kähler–Einstein metrics are precisely those u
in the recent construction of Sasaki–Einstein ma
folds generalisingYp,q [10]. Higher-dimensional or
thotoric Kähler–Einstein metrics are given in expli
form in Ref.[11].

Our starting point will be the following family o
local Einstein metrics in dimension four

ds2
4 = (

p2 − q2)[dp2

P
+ dq2

Q

]

+ 1

p2 − q2

(1)× [
P

(
dτ + q2 dσ

)2 + Q
(
dτ + p2 dσ

)2]
,

whereP andQ are the fourth order polynomials

P(p) = −κ(p − r1)(p − r2)(p − r3)(p − r4)

(2)Q(q) = κ(q − r1)(q − r2)(q − r3)(q − r4) + cq,

(3)0= r1 + r2 + r3 + r4.

As shown in [12], these metrics arise by taking
scaling limit of the well-known Plebanski–Demians
metrics [8]. The Weyl tensor is anti-self-dual if an
only if c = 0.

The natural almost Kähler two-form associated
the metric(1) is

(4)J = dp ∧ (
dτ + q2 dσ

) + dq ∧ (
dτ + p2 dσ

)
.

Our strategy will be to obtain a scaling limit fo
which (4) becomes closed. Thus, consider the follo
ing change of coordinates

p = 1− εξ, q = 1− εη,

(5)Φ = ε(τ + σ), Ψ = −2ε2σ

and redefinition of the metric constants

ri = 1− εαi, i = 1,2,3,

r4 = −3+ (α1 + α2 + α3)ε,

(6)c = 4ε3γ.

The latter ensures that the constraint(3) is satisfied.
Defining

F(ξ) = −κ(α1 − ξ)(α2 − ξ)(α3 − ξ),

(7)G(η) = κ(α1 − η)(α2 − η)(α3 − η) + γ

it is straightforward to see that, upon sendingε → 0,
the metric(1) becomes
ds2
4 = (η − ξ)

2F(ξ)
dξ2 + 2F(ξ)

(η − ξ)
(dΦ + η dΨ )2

(8)+ (η − ξ)

2G(η)
dη2 + 2G(η)

(η − ξ)
(dΦ + ξ dΨ )2.

In fact it is also immediate to see thatJ = 2 dA where

(9)−A = 1

2
(ξ + η)dΦ + 1

2
ξη dΨ.

One can verify that this metric is Kähler–Einstein w
curvature

(10)Ric = 3κg.

In particular, settingκ = 2 the metric

(11)ds2
5 = ds2

4 + (dψ ′ + A)2

is then locally Sasaki–Einstein with curvature 4. (S
e.g.,[5] for curvature conventions.)

Having found these metrics we subsequently d
covered that the same solutions had been obtaine
dependently, and in a completely different manner
reference[9]. In fact the metric, as presented, is ess
tially already in the form given in[9] and moreover
is the most general orthotoric Kähler–Einstein met
Here orthotoric means that the Hamiltonian functio
ξ + η, ξη for the Killing vector fields∂/∂Φ, ∂/∂Ψ ,
respectively, have the property that the one-formsξ ,
dη are orthogonal. The metric is self-dual if and only
γ = 0. Moreover these metrics have been general
to arbitrary dimension in[11] which thus gives a mor
general construction of local Sasaki–Einstein metr

One should now proceed to analyse when the lo
Sasaki–Einstein metrics extend to complete metric
a smooth manifold. As the metrics generically poss
three commuting Killing vectors∂/∂Φ,∂/∂Ψ, ∂/∂ψ ′,
the resulting five-dimensional manifolds should
toric, as was the case in[2]. In particular, real codi-
mension two fixed point sets correspond to toric d
sors[3] in the Calabi–Yau cone, and it is a very simp
matter to find such vector fields for the metric(11).

A generic Killing vector can be written as

(12)V = S
∂

∂Φ
+ T

∂

∂Ψ
+ U

∂

∂ψ ′ ,

whereS,T andU are constants. A short calculatio
then shows that its norm is given by
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‖V ‖2 = 2

(η − ξ)

[
F(ξ)(S + T η)2 + G(η)(S + T ξ)2]

(13)+ 1

4

[
S(ξ + η) + T ξη − 2U

]2
.

Now, crucially, sinceF(ξ)/(η − ξ) > 0,G(η)/(η −
ξ) > 0 for a positive definite metric, this is a sum
positive functions. Therefore it can vanish in codime
sion two if and only ifξ = ξi (or η = ηi ) are at the
roots of F (or G) and at the same time the rema
ing terms manage to vanish for generic values oη

(or ξ ). In fact, it is easy to see that this is true. W
therefore see that there arefour codimension two fixed
point sets, so that if the metrics extend onto comp
smooth toric manifolds, the Calabi–Yau cones mus
a T

3 fibration over a four faceted polyhedral cone
R

3.
However, we will not complete the details of th

argument because it turns out that these metrics
diffeomorphic to those found by Cvetic, Lu, Page, a
Pope in[10]. These authors have performed the glo
analysis in detail. Therefore, we instead exhibit an
plicit change of coordinates, demonstrating the eq
alence of the two metrics.

The Kähler–Einstein metrics in Ref.[10] were
given in the form

ds2
4 = ρ2 dx2

4∆x

+ ρ2 dθ2

∆θ

+ ∆x

ρ2

(
sin2 θ

α
dφ + cos2 θ

β
dψ

)2

(14)

+ ∆θ sin2 θ cos2 θ

ρ2

(
α − x

α
dφ − β − x

β
dψ

)2

,

where

∆x = x(α − x)(β − x) − µ, ρ2 = ∆θ − x,

(15)∆θ = α cos2 θ + β sin2 θ.

Consider the coordinate transformation1

η = α − x, ξ = (α − β)sin2 θ,

(16)Φ = 1

2β
ψ, Ψ = φ

2(α − β)α
− ψ

2(α − β)β
.

1 Note that this is degenerate whenα = β , which corresponds to
theYp,q limit [10].
It is a simple exercise to show that, in these coo
nates, the metric(14) takes the form(8) whereα,β

andµ parametrise the cubic function. Explicitly, w
have

F(ξ) = 2ξ(α − ξ)(α − β − ξ),

(17)G(η) = −2η(α − η)(α − β − η) − 2µ.

As shown in [10], the complete metricsLa,b,c

with local form (11) are specified by three intege
a, b, c. One recovers theYp,q metrics in the limit
a = p − q, b = p + q, c = p. Moreover, as explained
there are precisely four Killing vector fieldsVi , i =
1,2,3,4, that vanish on codimension 2 submanifol
This means that the image of the Calabi–Yau cone
der the moment map for theT3 action is a four faceted
polyhedral cone inR3—see[3] for a review. Indeed
using the linear relation among the vectors in[10] one
can show that the normal vectors to this polyhed
cone satisfy the relation

(18)av1 + bv2 − cv3 − (a + b − c)v4 = 0,

wherevi , i = 1,2,3,4, are the primitive vectors in
R

3 that define the cone. From the Delzant theor
in [13] it follows that, fora, b, c relatively prime, the
Sasaki–Einstein metricsLa,b,c are equivariantly con
tactomorphic to the link of the symplectic quotient

(19)C
4//(a, b,−c,−a − b + c).

Note that indeed in theYp,q limit we obtain charges
(p − q,p + q,−p,−p) which is the result of[3]. The
baseY of the cone is non-singular ifa andb are pair-
wise prime to each ofc anda + b − c, and these inte
gers are strictly positive. By the results of[14] we then
haveπ2(Y ) ∼= Z. SinceY is simply-connected, spi
and has no torsion inH2(Y ) it follows from Smale’s
theorem thatY is diffeomorphic toS2 × S3.

We conclude with some technical computatio
that may be of use in future developments. In par
ular, following [3], we first introduce complex coo
dinates on the Calabi–Yau cone. We then write do
the equations for a warped version of the Calabi–Y
cone, thus generalising the solution of[15]. Note that
the form of the metric that we have presented her
more symmetric than in the coordinate system of[10].

The holomorphic(3,0) form on the cone can b
written in the standard fashion

(20)Ω = eiψ ′
r2Ω ∧ [

dr + ir(dψ ′ + A)
]

4
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with appropriateΩ4 [3]. Introducing the one-forms

η̂1 = 1

2F
dξ + i

η − ξ
(dΦ + η dΨ ),

η̂2 = 1

2G
dη + i

η − ξ
(dΦ + ξ dΨ ),

(21)η̂3 = dr

r
+ i(dψ ′ + A)

this may be written as

(22)Ω = 2(η − ξ)
√

FGr3eiψ ′
η̂1 ∧ η̂2 ∧ η̂3.

By construction thêηi are such that̂ηi ∧ Ω = 0, i.e.,
they are(1,0) forms. However, one must take com
binations of these to obtain integrable (closed) form
These are given by

η1 = η̂1 − η̂2 = 1

2F
dξ − 1

2G
dη + i dΨ,

η2 = ξ η̂1 − η η̂2 = ξ

2F
dξ − η

2G
dη − i dΦ,

(23)

η3 = ξ2η̂1 − η2η̂2 − 2η̂3

= ξ2

2F
dξ − η2

2G
dη − 2

dr

r
− 2i dψ ′.

The effect of this change of basis is to simplify(22)
slightly

(24)Ω = √
FGr3eiψ ′

η1 ∧ η2 ∧ η3.

Integrating these one-forms, thus introducingηi =
dzi/zi , we obtain the following set of complex coord
nates:

z1 =
3∏

i=1

(ξ − ξi)
1

4
∏

j �=i (ξi−ξj ) (η − ηi)
1

4
∏

j �=i (ηi−ηj ) eiΨ ,

z2 =
3∏

i=1

(ξ − ξi)

ξi
4
∏

j �=i (ξi−ξj ) (η − ηi)

ηi
4
∏

j �=i (ηi−ηj ) e−iΦ,

(25)

z2 =
3∏

i=1

(ξ − ξi)

ξ2
i

4
∏

j �=i (ξi−ξj )

× (η − ηi)

η2
i

4
∏

j �=i (ηi−ηj ) r−2e−2iψ ′
.

For convenience we have written the cubic polyno
als as

F(ξ) = 2(ξ − ξ1)(ξ − ξ2)(ξ − ξ3),

(26)G(η) = −2(η − η1)(η − η2)(η − η3).
These coordinates generalise those introduced in[3]
for the metric cone over theYp,q manifolds.

Next we turn to the problem of finding warped s
lutions which arise after placing fractional branes
the apex of the cone. These solutions are expecte
be relevant for the study of cascades in the dual ga
theories. In the following we follow the logic of refe
ence[15]. Recall that in type IIB supergravity it is pos
sible to turn on a complex three-form flux preservi
supersymmetry, provided this is of Hodge type(2,1)

with respect to the complex structure of the Cala
Yau cone. Such a three-form is easily constructed
terms of a local closed primitive(1,1) form on the
Kähler–Einstein space. It is straightforward to see t
such a two-form is

(27)

ω = 1

(ξ − η)2

[
d(ξ − η) ∧ dΦ + (η dξ − ξ dη) ∧ dΨ

]
.

Then, by construction

(28)Ω2,1 =
[

dr

r
+ i(dψ ′ + A)

]
∧ ω

is (2,1) and closed. Next, let us give the scalar Lap
cian operator on the Calabi–Yau cone, acting onT

3-
invariant functions. Again, this is highly symmetric
ξ, η due to the particularly simple form of the metric

∆CY = 1

r5(η − ξ)

[
(η − ξ)∂r

(
r5∂r

)

(29)+ 2r3(∂η(G∂η) + ∂ξ (F∂ξ )
)]

.

One is then interested in finding solutions of the typ

ds2 = h−1/2 ds2 (
R

4) + h1/2(dr2 + r2 ds2
5

)
,

(30)F3 + iH3 ∝ Ω2,1,

where F3 and H3 are the RR and NS three-form
respectively,[15], for which the only non-trivial equa
tion reduces to

(31)∆CYh = −1

6
|H3|2.

After the substitutions[15]

(32)h(r, ξ, η) = r−4
[
A

2
t + s(ξ, η)

]
, t = logr
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we are left with the following PDE

(33)

∂

∂η

(
G(η)

∂

∂η
s(ξ, η)

)
+ ∂

∂ξ

(
F(ξ)

∂

∂ξ
s(ξ, η)

)

= − C2

(ξ − η)3
+ A(ξ − η),

whereC is a proportionality constant. Of course th
is still dependent on two variables, but it seems t
solutions generalising those of[15] should exist.
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