
Journal of High Energy Physics
     

Gauge theories from toric geometry and brane
tilings
To cite this article: Sebastián Franco et al JHEP01(2006)128

 

View the article online for updates and enhancements.

Related content
Brane dimers and quiver gauge theories
Sebastián Franco, Amihay Hanany, David
Vegh et al.

-

Dimer models and quiver gauge theories
Ramadevi Pichai

-

Quantum deformations from toric
geometry
Samuel Pinansky

-

Recent citations
Finite-N corrections to the superconformal
index of toric quiver gauge theories
Tatsuya Mori et al

-

Black hole entropy function for toric
theories via Bethe Ansatz
Assaf Lanir et al

-

Microstate counting via Bethe Ansätze in
the 4d N$$ \mathcal{N} $$ = 1
superconformal index
Alfredo González Lezcano and Leopoldo
A. Pando Zayas

-

This content was downloaded from IP address 80.117.120.127 on 26/05/2020 at 12:31

https://doi.org/10.1088/1126-6708/2006/01/128
http://iopscience.iop.org/article/10.1088/1126-6708/2006/01/096
http://iopscience.iop.org/article/10.1088/1742-6596/462/1/012042
http://iopscience.iop.org/article/10.1088/1126-6708/2006/03/055
http://iopscience.iop.org/article/10.1088/1126-6708/2006/03/055
http://dx.doi.org/10.1093/ptep/ptaa023
http://dx.doi.org/10.1093/ptep/ptaa023
http://dx.doi.org/10.1007/JHEP04(2020)091
http://dx.doi.org/10.1007/JHEP04(2020)091
http://dx.doi.org/10.1007/JHEP03(2020)088
http://dx.doi.org/10.1007/JHEP03(2020)088
http://dx.doi.org/10.1007/JHEP03(2020)088


J
H
E
P
0
1
(
2
0
0
6
)
1
2
8

Published by Institute of Physics Publishing for SISSA

Received: December 12, 2005

Accepted: January 6, 2006

Published: January 20, 2006

Gauge theories from toric geometry and brane tilings

Sebastián Franco,a Amihay Hanany,a Dario Martelli,b James Sparks,c David Vegha

and Brian Wechta

aCenter for Theoretical Physics, Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.
bDepartment of Physics, CERN Theory Division

1211 Geneva 23, Switzerland
cDepartment of Mathematics, Harvard University

One Oxford Street, Cambridge, MA 02318, U.S.A., and

Jefferson Physical Laboratory, Harvard University

Cambridge, MA 02138, U.S.A.

E-mail: sfranco@mit.edu, hanany@mit.edu, dario.martelli@cern.ch,

sparks@math.harvard.edu, dvegh@mit.edu, bwecht@mit.edu

Abstract: We provide a general set of rules for extracting the data defining a quiver

gauge theory from a given toric Calabi-Yau singularity. Our method combines information

from the geometry and topology of Sasaki-Einstein manifolds, AdS/CFT, dimers, and

brane tilings. We explain how the field content, quantum numbers, and superpotential of

a superconformal gauge theory on D3-branes probing a toric Calabi-Yau singularity can

be deduced. The infinite family of toric singularities with known horizon Sasaki-Einstein

manifolds La,b,c is used to illustrate these ideas. We construct the corresponding quiver

gauge theories, which may be fully specified by giving a tiling of the plane by hexagons

with certain gluing rules. As checks of this construction, we perform a-maximisation as

well as Z-minimisation to compute the exact R-charges of an arbitrary such quiver. We

also examine a number of examples in detail, including the infinite subfamily La,b,a, whose

smallest member is the Suspended Pinch Point.
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1. Introduction

Gauge theories arise within string theory in a variety of different ways. One possible

approach, which is particularly interesting due to its relationship with different branches of

geometry, is to use D-branes to probe a singularity. The geometry of the singularity then

determines the amount of supersymmetry, the gauge group structure, the matter content

and the superpotential interactions on the worldvolume of the D-branes. The richest of

such examples which are both tractable, using current techniques, and also non-trivial, are

given by the d = 4 N = 1 gauge theories that arise on a stack of D3-branes probing a

singular Calabi-Yau 3-fold. There has been quite remarkable progress over the last year in

understanding these theories, especially in the case where the Calabi-Yau singularity is also

toric. In this case one can use toric geometry, which by now is an extremely well-developed

subject, to study the gauge theories. In fact part of this paper is devoted to pushing this

further and we will show how one can use arguments in toric geometry and topology to

derive much of the field content of a D3-brane probing a toric Calabi-Yau singularity in a

very simple manner, using essentially only the toric diagram and associated gauged linear

sigma model.

At low energies the theory on the D3-brane is expected to flow to a superconformal

fixed point. The AdS/CFT correspondence [1 – 3] connects the strong coupling regime

of such gauge theories with supergravity in a mildly curved geometry. For the case of

D3-branes placed at the tips of Calabi-Yau cones over five-dimensional geometries Y5, the

gravity dual is of the form AdS5 ×Y5, where Y5 is a Sasaki-Einstein manifold [4 – 7]. There

has been considerable progress in this subject recently: for a long time, there was only

one non-trivial Sasaki-Einstein five-manifold, T 1,1, where the metric was known. Thanks

to recent progress, we now have an infinite family of explicit metrics which, when non-

singular and simply-connected, have topology S2 × S3. The most general such family

is specified by 3 positive integers a, b, c, with the metrics denoted La,b,c [8, 9].1 When

a = p − q, b = p + q, c = p these reduce to the Y p,q family of metrics, which have an

enhanced SU(2) isometry [10 – 12]. Aided by the toric description in [12], the entire infinite

family of gauge theories dual to these metrics was constructed in [13]. These theories

have subsequently been analysed in considerable detail [14 – 26]. There has also been

progress on the non-conformal extensions of these theories (and others) both from the

supergravity [14, 22] and gauge theory sides [20, 21, 23, 24, 26, 27]. These extensions

exhibit many interesting features, such as cascades [28] and dynamical supersymmetry

breaking. In addition to the Y p,q spaces, there are also several other interesting infinite

families of geometries which have been studied recently: the Xp,q spaces [29], deformations

of geometries with U(1) × U(1) isometry [18], and deformations of geometries with U(1)3

isometry [30, 31].

Another key ingredient in obtaining the gauge theories dual to singular Calabi-Yau

manifolds is the principle of a-maximisation [32], which permits the determination of exact

R-charges of superconformal field theories. Recall that all d = 4 N = 1 gauge theories

1We have changed the notation to La,b,c to avoid confusion with the p and q of Y p,q. In our notation,

Y p,q is Lp+q,p−q,p.
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possess a U(1)R symmetry which is part of the superconformal group SU(2, 2|1). If this

superconformal R-symmetry is correctly identified, many properties of the gauge theory

may be determined. a-maximisation [32] is a simple procedure — maximizing a cubic

function — that allows one to identify the R-symmetry from among the set of global

symmetries of any given gauge theory. Plugging the superconformal R-charges into this

cubic function gives exactly the central charge a of the SCFT [33 – 35]. Although here we

will focus on superconformal theories with known geometric duals, a-maximization is a

general procedure which applies to any N = 1 d = 4 superconformal field theory, and has

been studied in this context in a number of recent works, with much emphasis on its utility

for proving the a-theorem [38 – 44].

In the case that the gauge theory has a geometric dual, one can use the AdS/CFT

correspondence to compute the volume of the dual Sasaki-Einstein manifold, as well as the

volumes of certain supersymmetric 3-dimensional submanifolds, from the R-charges. For

example, remarkable agreement was found for these two computations in the case of the

Y p,q singularities [45, 13]. Moreover, a general geometric procedure that allows one to com-

pute the volume of any toric Sasaki-Einstein manifold, as well as its toric supersymmetric

submanifolds, was then given in [46]. In [46] it was shown that one can determine the Reeb

vector field, which is dual to the R-symmetry, of any toric Sasaki-Einstein manifold by

minimising a function Z that depends only on the toric data that defines the singularity.

For example, the volumes of the Y p,q manifolds are easily reproduced this way. Remark-

ably, one can also compute the volumes of manifolds for which the metric is not known

explicitly. In all cases agreement has been found between the geometric and field theoretic

calculations. This was therefore interpreted as a geometric dual of a-maximisation in [46],

although to date there is no general proof that the two extremal problems, within the

class of superconformal gauge theories dual to toric Sasaki-Einstein manifolds, are in fact

equivalent.

Another important step was achieved recently by the introduction of dimer technololgy

as a tool for studying N = 1 gauge theories. Although it has been known in principle how

to compute toric data dual to a given SCFT and vice versa [36, 37], these computations

are often very computationally expensive, even for fairly small quivers. Dimer technology

greatly simplifies this process, and turns previously intractable calculations into easily

solved problems. The initial connection between toric geometry and dimers was suggested

in [47]; the connection to N = 1 theories was proposed and explored in [48]. A crucial

realization that enables one to use this tool is that all the data for an N = 1 theory can be

simply represented as a periodic tiling (“brane tiling”) of the plane by polygons with an

even number of sides: the faces represent gauge groups, the edges represent bifundamentals,

and the vertices represent superpotential terms. This tiling has a physical meaning in Type

IIB string theory as an NS5-brane wrapping a holomorphic curve (the edges of the tiling)

with D5-branes (the faces) ending on the NS5-brane. The fact that the polygons have

an even number of sides is equivalent to the requirement that the theories be anomaly

free; by choosing an appropriate periodicity, one can color the vertices of such a graph

with two colours (say, black and white) so that a black vertex is adjacent only to white

vertices. Edges that stretch between black and white nodes are the dimers, and there is

– 3 –
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a simple prescription for computing a weighted adjacency matrix (the Kasteleyn matrix)

which gives the partition function for a given graph. This partition function encodes the

toric diagram for the dual geometry in a simple way, thus enabling one to have access to

many properties of both the gauge theory and the geometry. The tiling construction of

a gauge theory is a much more compact way of describing the theory than the process of

specifying both a quiver and the superpotential, and we will use this newfound simplicitly

rather extensively in this paper.

In this paper, we will use this recent progress in geometry, field theory, and dimer

models to obtain a lot of information about gauge theories dual to general toric Calabi-

Yau cones. Our geometrical knowledge will specify many requirements of the gauge theory,

and we describe how one can read off gauge theory quantities rather straightforwardly from

the geometry. As a particular example of our methods, we construct the gauge theories

dual to the recently discovered La,b,c geometries. We will realize the geometrically derived

requirements by using the brane tiling approach. Since the La,b,c spaces are substantially

more complicated than the Y p,q’s, we will not give a closed form expression for the gauge

theory. We will, however, specify all the necessary building blocks for the brane tiling, and

discuss how these building blocks are related to quantities derived from the geometry.

The plan of the paper is as follows: In section 2, we discuss how to read gauge theory

data from a given toric geometry. In particular, we give a detailed prescription for com-

puting the quantum numbers (e.g. baryon charges, flavour charges, and R-charges) and

multiplicities for the different fields in the gauge theory. Section 3 applies these results to

the La,b,c spaces. We derive the toric diagram for a general La,b,c geometry, and briefly

review the metrics [8, 9] for these theories. We compute the volumes of the supersymmet-

ric 3-cycles in these Sasaki-Einstein spaces, and discuss the constraints these put on the

gauge theories. In section 4 we discuss how our geometrical computations constrain the

superpotential, and describe how one may always find a phase of the gauge theory with at

most only three different types of interactions. In section 5, we prove that a-maximisation

reduces to the same equations required by the geometry for computing R-charges and cen-

tral charges. Thus we show that a-maximisation and the geometric computation agree. In

section 6, we construct the gauge theories dual to the La,b,c spaces by using the brane tiling

perspective, and give several examples of interesting theories. In particular, we describe a

particularly simple infinite subclass of theories, the La,b,a theories, for which we can simply

specify the toric data and brane tiling. We check via Z-minimisation and a-maximisation

that all volumes and dimensions reproduce the results expected from AdS/CFT. Finally,

in the appendix, we give some more interesting examples which use our construction.

Note: While this paper was being finalised, we were made aware of other work in [49],

which has some overlap with our results. Similar conclusions have been reached in [50].

2. Quiver content from toric geometry

In this section we explain how one can extract a considerable amount of information about

the gauge theories on D3-branes probing toric Calabi-Yau singularities using simple geomet-

ric methods. In particular, we show that there is always a distinguished set of fields whose

– 4 –
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Figure 1: A four-faceted polyhedral cone in R3.

multiplicities, baryon charges, and flavour charges can be computed straightforwardly using

the toric data.

2.1 General geometrical set-up

Let us first review the basic geometrical set-up. For more details, the reader is referred

to [46]. Let (X,ω) be a toric Calabi-Yau cone of complex dimension n, where ω is the

Kähler form on X. In particular X = C(Y ) ∼= R
+ × Y has an isometry group containing

an n-torus, T n. A conical metric on X which is both Ricci-flat and Kähler then gives a

Sasaki-Einstein metric on the base of the cone, Y . The moment map for the torus action

exhibits X as a Lagrangian T n fibration over a strictly convex rational polyhedral cone

C ⊂ R
n. This is a subset of R

n of the form

C = {y ∈ R
n | (y, vA) ≥ 0, A = 1, . . . ,D} . (2.1)

Thus C is made by intersecting D hyperplanes through the origin in order to make a convex

polyhedral cone. Here y ∈ R
n are coordinates on R

n and vA are the inward pointing normal

vectors to the D hyperplanes, or facets, that define the polyhedral cone. The normals are

rational and hence one can normalise them to be primitive2 elements of the lattice Z
n. We

also assume this set of vectors is minimal in the sense that removing any vector vA in the

definition (2.1) changes C. The condition that C be strictly convex is simply the condition

that it is a cone over a convex polytope.

The condition that X is Calabi-Yau, c1(X) = 0, implies that the vectors vA may, by

an appropriate SL(n; Z) transformation of the torus, be all written as vA = (1, wA). In

particular, in complex dimension n = 3 we may therefore represent any toric Calabi-Yau

cone by a convex lattice polytope in Z
2, where the vertices are simply the vectors wA. This

is usually called the toric diagram.

From the vectors vA one can reconstruct X as a Kähler quotient or, more physically,

as the classical vacuum moduli space of a gauged linear sigma model (GLSM). To explain

this, denote by Λ ⊂ Z
n the span of the normals {vA} over Z. This is a lattice of maximal

rank since C is strictly convex. Consider the linear map

A : R
D → R

n

2A vector v ∈ Z
n is primitive if it cannot be written as mv′ with v′

∈ Z
n and Z 3 m > 1.

– 5 –
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eA 7→ vA (2.2)

which maps each standard orthonormal basis vector eA of R
D to the vector vA. This

induces a map of tori

TD ∼= R
D/Z

D → R
n/Λ . (2.3)

In general the kernel of this map is A ∼= TD−n ×Γ where Γ is a finite abelian group. Then

X is given by the Kähler quotient

X = C
D//A . (2.4)

Recall we may write this more explicitly as follows. The torus TD−n ⊂ TD is specified by

a charge matrix QA
I with integer coefficients, I = 1, . . . ,D − n, and we define

K ≡

{

(Z1, . . . , ZD) ∈ C
D |

∑

A

QA
I |ZA|

2 = 0

}

⊂ C
D (2.5)

where ZA denote complex coordinates on CD. In GLSM language, K is simply the space

of solutions to the D-term equations. Dividing out by gauge transformations gives the

quotient

X = K/TD−n × Γ . (2.6)

We also denote by L the link of K with the sphere S2D−1 ⊂ C
D. We then have a fibration

A ↪→ L → Y (2.7)

where Y is the Sasakian manifold which is the base of the cone X = C(Y ). For a general

set of vectors vA, the space Y will not be smooth. In fact typically one has orbifold

singularities. Y is smooth if and only if the polyhedral cone is good [51], although we will

not enter into the general details of this here — see, for example, [46].

Finally in this subsection we note some topological properties of Y , in the case that Y

is a smooth manifold. In [52] it is shown that L has trivial homotopy groups in dimensions

0, 1 and 2. From the long exact homotopy sequence for the fibration (2.7) one concludes

that [52]

π1(Y ) ∼= π0(A) ∼= Γ ∼= Z
n/Λ (2.8)

π2(Y ) ∼= π1(A) ∼= Z
D−n .

In particular, Y is simply-connected if and only if the {vA} span Z
n over Z. In fact we

will assume this throughout this paper — any finite quotient of a toric singularity will

correspond to an orbifold of the corresponding gauge theory, and this process is well-

understood by now.

From now on we also restrict to the physical case of complex dimension n = 3. More-

over, throughout this section we assume that the Sasaki-Einstein manifold Y is smooth.

The reason for this assumption is firstly to simplify the geometrical and topological anal-

ysis, and secondly because the physics in the case that Y is an orbifold which is not a

global quotient of a smooth manifold is not well-understood. However, as we shall see

later, one can apparently relax this assumption with the results essentially going through

without modification. The various cohomology groups that we introduce would then need

replacing by their appropriate orbifold versions.

– 6 –
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2.2 Quantum numbers of fields

In this subsection we explain how one can deduce the quantum numbers for a certain

distinguished set of fields in any toric quiver gauge theory. Recall that, quite generally, N

D3-branes placed at a toric Calabi-Yau singularity have an AdS/CFT dual that may be

described by a toric quiver gauge theory. In particular, the matter content is specified by

giving the number of gauge groups, Ng, and number of fields Nf , together with the charge

assignments of the fields. In fact these fields are always bifundamentals (or adjoints). This

means that the matter content may be neatly summarised by a quiver diagram.

We may describe the toric singularity as a convex lattice polytope in Z
2 or by giving the

GLSM charges, as described in the previous section. By setting each complex coordinate

ZA = 0, A = 1, . . . ,D, one obtains a toric divisor DA in the Calabi-Yau cone. This is also

a cone, with DA = C(ΣA) where ΣA is a 3-dimensional supersymmetric submanifold of Y .

Thus in particular wrapping a D3-brane over ΣA gives rise to a BPS state, which via the

AdS/CFT correspondence is conjectured to be dual to a dibaryonic operator in the dual

gauge theory. We claim that there is always a distinguished subset of the fields, for any

toric quiver gauge theory, which are associated to these dibaryonic states. To explain this,

recall that given any bifundamental field X, one can construct the dibaryonic operator

B[X] = εα1...αN Xβ1

α1
. . . XβN

αN
εβ1...βN

(2.9)

using the epsilon tensors of the corresponding two SU(N) gauge groups. This is dual to a

D3-brane wrapped on a supersymmetric submanifold, for example one of the ΣA. In fact

to each toric divisor ΣA let us associate a bifundamental field XA whose corresponding

dibaryonic operator (2.9) is dual to a D3-brane wrapped on ΣA. These fields in fact have

multiplicities, as we explain momentarily. In particular each field in such a multiplet has

the same baryon charge, flavour charge, and R-charge.

2.2.1 Multiplicities

Recall that DA = {ZA = 0} = C(ΣA) where ΣA is a 3-submanifold of Y . To each such

submanifold we associated a bifundamental field XA. As we now explain, these fields have

multiplicities given by the simple formula

mA = |(vA−1, vA, vA+1)| (2.10)

where we have defined the cyclic identification vD+1 = v1, and we list the normal vectors

vA in order around the polyhedral cone, or equivalently, the toric diagram. Here (·, ·, ·)

denotes a 3 × 3 determinant, as in [46].

In fact, when Y is smooth, each ΣA is a Lens space L(n1, n2) for appropriate n1 and

n2. To see this, note that each ΣA is a principle T 2 fibration over an interval, say [0, 1]. By

an SL(2; Z) transformation one can always arrange that at 0 the (1, 0)-cycle collapses, and

at 1 the (n1, n2)-cycle collapses. It is well-known that this can be equivalently described

as the quotient of S3 ⊂ C
2 by the Zn1

action

(z1, z2) → (z1ωn1
, z2ω

n2

n1
) (2.11)

– 7 –
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where hcf(n1, n2) = 1 and ωn1
denotes an n1th root of unity. These spaces have a rich

history, and even the classification of homeomorphism types is rather involved. We shall

only need to know that π1(L(n1, n2)) ∼= Zn1
, which is immediate from the second definition

above.

Consider now wrapping a D3-brane over some smooth Σ, where π1(Σ) = Zm. As

we just explained, when Σ is toric, it is necessarily some Lens space L(m,n2). In fact,

when the order of the fundamental group is greater than one, there is not a single such

D3-brane, but in fact m D3-branes. The reason is that, for each m, we can turn on a flat

line bundle for the U(1) gauge field on the D3-brane worldvolume. Indeed, recall that line

bundles on Σ are classified topologically by H2(Σ; Z) ∼= H1(Σ; Z) ∼= π1(Σ), where the last

relation follows for abelian fundamental group. A torsion line bundle always admits a flat

connection, which has zero energy. Since these D3-brane states have different charge —

namely torsion D1-brane charge — they must correspond to different operators in the gauge

theory. However, as will become clear, these operators all have the same baryon charge,

flavour charge and R-charge. We thus learn that the multiplicity of the bifundamental field

XA associated with DA is given by m.

It remains then to relate m to the formula (2.10). Without loss of generality, pick a

facet A, and suppose that the normal vector is vA = (1, 0, 0). The facet is itself a polyhedral

cone in the R
2 plane transverse to this vector. To obtain the normals that define this cone

we simply project vA−1, vA+1 onto the plane. Again, by a special linear transformation we

may take these 2-vectors to be (0, 1), (n1,−n2), respectively, for some integers n1 and n2.

One can then verify that this toric diagram indeed corresponds to the cone over L(n1, n2),

as defined above. By direct calculation we now see that

|(vA−1, vA, vA+1)| = |(0, 1) × (n1,−n2)| = n1 (2.12)

which is the order of π1(ΣA). The determinant is independent of the choice of basis we

have made, and thus this relation is true in general, thus proving the formula (2.10). One

can verify this formula in a large number of examples where the gauge theories are already

known.

2.2.2 Baryon charges

In this subsection we explain how one can deduce the baryonic charges of the fields XA.

Recall that, in general, the toric Sasaki-Einstein manifold Y arises from a quotient by a

torus

TD−3 ↪→ L → Y . (2.13)

This fibration can be thought of as D − 3 circle fibrations over Y with total space L.

Equivalently we can think of these as complex line bundles MI . Let CI , I = 1, . . . ,D − 3,

denote the Poincaré duals of the first Chern classes of these bundles. Thus they are classes

in H3(Y ; Z). Recall from (2.8) that π2(Y ) ∼= Z
D−3 when Y is smooth. Provided Y is

also simply-connected3 one can use the Hurewicz isomorphism, Poincaré duality and the

3Recall this is also one of our assumptions in this section.
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universal coefficients theorem to deduce that

H3(Y ; Z) ∼= Z
D−3 . (2.14)

In particular note that the number of independent 3-cycles is just D− 3. A fairly straight-

forward calculation4 in algebraic topology shows that the classes CI above actually generate

the homology group H3(Y ; Z) ∼= Z
D−3. Thus {CI} form a basis of 3-cycles on Y .

In Type IIB supergravity one can Kaluza-Klein reduce the Ramond-Ramond four-form

potential C4 to obtain D − 3 gauge fields AI in the AdS5 space:

C4 =
D−3
∑

I=1

AI ∧HI . (2.15)

Here HI is a harmonic 3-form on Y that is Poincaré dual to the 3-cycle CI . In the

superconformal gauge theory, which recall may be thought of as living on the conformal

boundary of AdS5, these become D − 3 global U(1) symmetries

U(1)D−3
B . (2.16)

These are baryonic symmetries precisely because the D3-brane is charged under C4 and a

D3-brane wrapped over a supersymmetric submanifold of Y is interpreted as a dibaryonic

state in the gauge theory. Indeed, the ΣA are precisely such a set of submanifolds.

Again, a fairly standard calculation in toric geometry then shows that topologically

[ΣA] =
D−3
∑

I=1

QA
I CI ∈ H3(Y ; Z) . (2.17)

This perhaps requires a little explanation. Each GLSM field ZA, A = 1, . . . ,D, can be

viewed as a section of a complex line bundle LA over Y . They are necessarily sections

of line bundles, rather than functions, because the fields ZA are charged under the torus

TD−3. Now ZA = 0 is the zero section of the line bundle associated to ZA, and by definition

this cuts out the submanifold ΣA on Y . Moreover, the first Chern class of this line bundle

is then Poincaré dual to [ΣA]. Recall that the charge matrix Q specifies the embedding

of the torus TD−3 in TD, which then acts on the fields/coordinates ZA; the element QA
I

specifies the charge of ZA, which is a section of LA, under the circle MI . This means that

the two sets of line bundles are related by

LA =

D−3
⊗

I=1

M
QA

I

I . (2.18)

Taking the first Chern class of this relation and applying Poincaré duality then proves (2.17).

It follows that the baryon charges of the fields XA are given precisely by the matrix Q

that enters in defining the GLSM. Thus if BI [XA] denotes the baryon charge of XA under

the Ith copy of U(1) in (2.16) we have

BI [XA] = QA
I . (2.19)

4For example, one can use the Gysin sequence for each circle in turn.
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Note that from the Calabi-Yau condition the charges of the linear sigma model sum to zero

∑

A

BI [XA] =
∑

A

QA
I = 0 I = 1, . . . ,D − 3 . (2.20)

Moreover, the statement that
∑

A

vi
A[ΣA] = 0 (2.21)

may then be interpreted as saying that, for each i, one can construct a state in the gauge

theory of zero baryon charge by using vi
A copies of the field XA, for each A.

2.2.3 Flavour charges

In this subsection we explain how one can compute the flavour charges of the XA. Recall

that the horizon Sasaki-Einstein manifolds have at least a U(1)3 isometry since they are

toric. By definition a flavour symmetry in the gauge theory is a non-R–symmetry — that

is, the supercharges are left invariant under such a symmetry. The geometric dual of this

statement is that the Killing spinor ψ on the Sasaki-Einstein manifold Y is left invariant by

the corresponding isometry. Thus a Killing vector field VF is dual to a flavour symmetry

in the gauge theory if and only if

LVF
ψ = 0 (2.22)

where ψ is a Killing spinor on Y . In fact there is always precisely a U(1)2 subgroup of

U(1)3 that satisfies this condition. This can be shown by considering the holomorphic (3, 0)

form of the corresponding Calabi-Yau cone [46]. It is well known that this is constructed

from the Killing spinors as a bilinear

Ω = ψc Γ(3) ψ , (2.23)

where Γ(3) is the totally antisymmetrised product of 3 gamma matrices in Cliff(6, 0). In

particular, in the basis in which the normal vectors of the polyhedral cone C are of the

form vA = (1, wA), the Lie algebra elements (0, 1, 0), (0, 0, 1) generate the group U(1)2F of

flavour isometries. Note that, for Y p,q, one of these U(1)F symmetries is enhanced to an

SU(2) flavour symmetry. However, U(1)2F is the generic case.

We would like to determine the charges of the fields XA under U(1)2F . In fact in

the gauge theory this symmetry group is far from unique — one is always free to mix

any flavour symmetry with part of the baryonic symmetry group U(1)D−3
B . The baryonic

symmetries are distinguished by the fact that mesons in the gauge theory, for example

constructed from closed loops in a quiver gauge theory, should have zero baryonic charge.

Thus the flavour symmetry group is unique only up to mixing with baryonic symmetries,

and of course mixing with each other.

This mixing ambiguity has a beautiful geometric interpretation. Recall that the Calabi-

Yau cone X is constructed as a symplectic quotient

X = C
D//TD−3 (2.24)
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where the torus TD−3 ⊂ TD is defined by the kernel of the map

A : R
D → R

3 (2.25)

eA 7→ vA . (2.26)

More precisely the kernel of A is generated by the matrix QA
I , which in turn defines a

sublattice Υ of Z
D of rank D − 3. The torus is then TD−3 = R

D−3/Υ. We may also

consider the quotient Z
D/Υ. The map induced from A then maps this quotient space

isomorphically onto Z
3 and the corresponding torus T 3 = TD/TD−3 is then precisely the

torus isometry of X.

Let us pick two elements α1, α2 of Z
D that map to the basis vectors (0, 1, 0), (0, 0, 1)

under A. From the last paragraph these are defined only up to elements of the lattice

Υ, and thus may be considered as elements of the quotient Z
D/Υ. Geometrically, α1, α2

define circle subgroups of TD that descend to the two U(1) flavour isometries generated by

(0, 1, 0) and (0, 0, 1). The charges of the complex coordinates ZA on C
D are then simply αA

1 ,

αA
2 for each A = 1, . . . ,D. However, as discussed in the last subsection, the ZA descend to

complex line bundles on Y whose Poincaré duals are precisely the submanifolds ΣA. Thus

the flavour charges of XA may be identified with αA
1 , αA

2 . Moreover, by construction, each

α was unique only up to addition by some element in the lattice Υ generated by QA
I . But

as we just saw in the previous subsection, this is precisely the set of baryon charges in the

gauge theory. We thus see that the ambiguity in the choice of flavour symmetries in the

gauge theory is in 1-1 correspondence with the ambiguity in choosing α1, α2.

2.2.4 R-charges

The R-charges were treated in reference [46], so we will be brief here. Let us begin by

emphasising that all the quantities computed so far can be extracted in a simple way from

the toric data, or equivalently from the charges of the gauged linear sigma model, without

the need of an explicit metric. In [46], it was shown that the total volume of any toric

Sasaki-Einstein manifold, as well as the volumes of its supersymmetric toric submanifolds,

can be computed by solving a simple extremal problem which is defined in terms of the

polyhedral cone C. This toric data is encoded in a function Z, which depends on a “trial”

Reeb vector living in R
3. Minimising Z determines the Reeb vector for the Sasaki-Einstein

metric on Y uniquely, and as a result one can compute the volumes of the ΣA. This is a

geometric analogue of a-maximisation [32]. Indeed, recall that the volumes are related to

the R-charges of the corresponding fields XA by the simple formula

R[XA] =
π

3

vol(ΣA)

vol(Y )
. (2.27)

This formula has been used in many AdS/CFT calculations to compare the R-charges of

dibaryons with their corresponding 3-manifolds [53 – 56].

Moreover, in [46] a general formula relating the volume of supersymmetric submanifolds

to the total volume of the toric Sasaki-Einstein manifold was given. This reads

π

D
∑

A=1

vol(ΣA) = 6vol(Y ) . (2.28)
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Then the physical interpretation of (2.28) is that the R-charges of the bifundamental fields

XA sum to 2:

∑

A

R[XA] = 2 . (2.29)

This is related to the fact that each term in the superpotential is necessarily the sum

D
∑

A=1

ΣA (2.30)

and the superpotential has R-charge 2 by definition. We shall discuss this further in

section 4.

3. The L
a,b,c toric singularities

In the remainder of this paper we will be interested in the specific GLSM with charges

Q = (a,−c, b,−d) (3.1)

where of course d = a + b − c in order to satisfy the Calabi-Yau condition. We will define

this singularity to be La,b,c. The reason we choose this family is two-fold: firstly, the

Sasaki-Einstein metrics are known explicitly in this case [8, 9] and, secondly, this family is

sufficiently simple that we will be able to give a general prescription for constructing the

gauge theories.

Let us begin by noting that this is essentially the most general GLSM with four charges,

and hence the most general toric quiver gauge theories with a single U(1)B symmetry, up

to orbifolding. Indeed, provided all the charges are non-zero, either two have the same sign

or else three have the same sign. The latter are in fact just orbifolds of S5, and this case

where all but one of the charges have the same sign is slightly degenerate. Specifically,

the charges (e, f, g,−e − f − g) describe the orbifold of S5 ⊂ C
3 by Ze+f+g with weights

(e, f, g). The polyhedral cones therefore have three facets, and not four, or equivalently the

(p, q) web has 3 external legs. By our general analysis there is therefore no U(1) baryonic

symmetry, as expected. Indeed, note that setting Z4 = 0 does not give a divisor in this

case, since the remaining charges are all positive and there is no solultion to the remaining

D-terms. The Sasaki-Einstein metrics are just the quotients of the round metric on S5 and

these theories are therefore not particularly interesting. In the case that one of the charges

is zero, we instead obtain N = 2 orbifolds of S5, which are also well-studied.

We are therefore left with the case that two charges have the same sign. In (3.1) we

therefore take all integers to be positive. Without loss of generality we may of course take

0 < a ≤ b. Also, by swapping c and d if necessary, we can always arrange that c ≤ b. By

definition hcf(a, b, c, d) = 1 in order that the U(1) action specified by (3.1) is effective, and

it then follows that any three integers are coprime. The explicit Sasaki-Einstein metrics on

the horizons of these singularities were constructed in [8]. The toric description above was

then given in [9]. The manifolds were named Lp,q,r in reference [8] but, following [9], we

– 12 –



J
H
E
P
0
1
(
2
0
0
6
)
1
2
8

(1,0)(0,0)

(ak,b)

(−al,c)

Figure 2: Toric diagram for the La,b,c geometries.

have renamed these La,b,c in order to avoid confusion with Y p,q. Indeed, notice that these

spaces reduce to Y p,q when c = d = p, and then a = p− q, b = p + q. In particular there is

an enhanced SU(2) symmetry in the metric in this limit. It is straightforward to determine

when the space Y = La,b,c is non-singular: each of the pair a, b must be coprime to each of

c, d. This condition is necessary to avoid codimension four orbifold singularities on Y . To

see this, consider setting Z1 = Z4 = 0. If b and c had a common factor h, then the circle

action specified by (3.1) would factor through a cyclic group Zh of order h, and this would

descend to a local orbifold group on the quotient space. In fact it is simple to see that this

subspace is just an S1 family of Zh orbifold singularities. All such singularities arise in

this way. When Y = La,b,c is non-singular it follows from the last section that π2(Y ) ∼= Z

and hence H2(Y ; Z) ∼= Z. By Smale’s theorem Y is therefore diffeomorphic to S2 × S3. In

particular there is one 3-cycle and hence one U(1)B for these theories.

The toric diagram can be described by an appropriate set of four vectors vA = (1, wA).

We take the following set

w1 = [1, 0] w2 = [ak, b] w3 = [−al, c] w4 = [0, 0] (3.2)

where k and l are two integers satisfying

c k + b l = 1 (3.3)

and we have assumed for simplicity of exposition that hcf(b, c) = 1. This toric diagram is

depicted in figure 2.

The solution to the above equation always exists by Euclid’s algorithm. Moreover,

there is a countable infinity of solutions to this equation, where one shifts k and l by −tb

and tc, respectively, for any integer t. However, it is simple to check that different solutions

are related by the SL(2; Z) transformation

(

1 −ta

0 1

)

(3.4)

acting on the wA, as must be the case of course. The kernel of the linear map (2.2) is then

generated by the charge vector Q in (3.1).
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(−c,−al)

(0,−1)

(c−b,ak+al)

(b,−ak+1)

Figure 3: (p,q)-web for the La,b,c theories.

It is now simple to see that the toric diagram for La,b,c always admits a triangulation

with a + b triangles. It is well known that this gives the number of gauge groups Ng in

the gauge theory. To see this one uses the fact that the area of the toric diagram is the

Euler number of the (any) completely resolved Calabi-Yau X̃ obtained by toric crepant

resolution, and then for toric manifolds this is the dimension of the even cohomology of

X̃ . Now on 0, 2 and 4-cycles in X̃ one can wrap space-filling D3, D5 and D7-branes,

respectively, and these then form a basis of fractional branes. The gauge groups may

then be viewed as the gauge groups on these fractional branes. By varying the Kähler

moduli of X̃ one can blow down to the conical singularity X. The holomorphic part of the

gauge theory is independent of the Kähler moduli, which is why the matter content of the

superconformal gauge theory can be computed at large volume in this way. To summarise,

we have

Ng = a + b . (3.5)

Note that, different from Y p,q, the number of gauge groups for La,b,c can be odd.

We may now draw the (p, q) web [57 – 59]. Recall that this is simply the graph-theoreric

dual to the toric diagram, or, completely equivalently, is the projection of the polyhedral

cone C onto the plane with normal vector (1, 0, 0). The external legs of the (p, q) web are

easily computed to be
(p1, q1) = (−c,−al)

(p2, q2) = (c − b, a(k + l))

(p3, q3) = (b,−ak + 1)

(p4, q4) = (0,−1)

. (3.6)

This (p,q)-web is pictured in figure 3. Using this information we can compute the total

number of fields in the gauge theory. Specifically we have

Nf =
1

2

4
∑

i,j∈legs

∣

∣

∣

∣

∣

det

(

pi qi

pj qj

)∣

∣

∣

∣

∣

. (3.7)

This formula comes from computing intersection numbers of 3-cycles in the mirror geom-

etry [60]. In fact the four adjacent legs each contribute a, b, c, d fields, which are simply
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(a)

(1,0)(0,0)

(0,a)

(1,b)

(b)

(a−b,1)

(0,−1)

(1,0)

(1,0)
(1,0)
(1,0)

(−1,0)

(−1,0)
a

b

Figure 4: a) Toric diagram and b) (p, q) web for the La,b,a sub-family.

the GLSM charges, up to sign. The two cross terms then contribute c− a and b− c fields,

giving

Nf = a + 3b . (3.8)

To summarise this section so far, the gauge theory for La,b,c has Ng = a + b gauge groups,

and Nf = a + 3b fields in total. In section 3.2 we will determine the multiplicities of the

fields, as well as their baryon and flavour charges, using the results of the previous section.

3.1 The sub-family La,b,a

The observant reader will have noticed that the charges in (3.6) are not always primitive.

In fact this is a consequence of orbifold singularities in the Sasaki-Einstein space. In such

singular cases one can have some number of lattice points, say m − 1, on the edges of the

toric diagram, and then the corresponding leg of the (p, q) web in (3.6) is not a primitive

vector. One should then really write the primitive vector, and associate to that leg the

label, or multiplicity, m. Each leg of the (p, q) web corresponds to a circle on Y which

is a locus of singular points if m > 1, where m gives the order of the orbifold group.

Nevertheless, the charges (3.6) as written above give the correct numbers of fields. In fact

this discussion is rather similar to the classification of compact toric orbifolds in [61], where

each facet is assigned a positive integer label that describes the order of an orbifold group.

Moreover, the non-primitive vectors are then used in the symplectic quotient.

Rather than explain this point in generality, it is easier to give an example. Here we

consider the family La,b,a, which are always singular if one of a or b is greater than 1. In

fact by the SL(2; Z) transformation

(

1 l

0 1

)

(3.9)

one maps the toric diagram to an isosceles trapezoid as shown in figure 4a.

Notice that there are a−1 lattice points on one external edge, and b−1 lattice points on

the opposite edge. This is indicative of the singular nature of these spaces. Correspondingly,
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the (p, q) web has non-primitive charges (or else one can assign positive labels b and a to

primitive charges). Indeed, the leg with label a is just the submanifold obtained by setting

Z3 = Z4 = 0. On Y the D-terms, modulo the U(1) gauge transformation, just give a circle

S1. However, the U(1) group factors through a times, due to the charges of Z1 and Z2 being

both equal to a. This means that the S1 is a locus of Za orbifold singularities. Obviously,

similar remarks apply to Z1 = Z2 = 0. The singular nature of these spaces will also show

up in the gauge theory: certain types of fields will be absent, and there will be adjoints,

as well as bifundamentals. The La,b,a family will be revisited in section 6.2.3, where we

will construct their associated brane tilings, gauge theories and compare the computations

performed in the field theories with those in the dual supergravity backgrounds.

3.2 Quantum numbers of fields

Let us denote the distinguished fields as

X1 = Y X2 = U1 X3 = Z X4 = U2 . (3.10)

In the limit c = d = p we have that La,b,c reduces to a Y p,q. Specifically, b = p + q

and a = p − q. Then this notation for the fields coincides with that of reference [13]. In

particular, the Ui become a doublet under the SU(2) isometry/flavour symmetry in this

limit.

The multiplicities of the fields can be read off from the results of the last section:

mult[Y ] = b mult[U1] = d mult[Z] = a mult[U2] = c . (3.11)

This accounts for 2(a+ b) fields, which means that there are b−a fields missing. The (p, q)

web suggests that there are two more fields V1 and V2 with multiplicities

mult[V1] = c − a mult[V2] = b − c . (3.12)

Indeed, this also reproduces a Y p,q theory in the limit c = d, where the fields Vi again

become an SU(2) doublet.

It is now simple to work out which toric divisors these additional fields are associated

to. As will be explained later, each divisor must appear precisely b times in the list of fields.

Roughly, this is because there are necessarily a+3b−(a+b) = 2b terms in the superpotential,

and every field must appear precisely twice by the quiver toric condition [62]. From this

we deduce that we may view the remaining fields V1, V2 as “composites” — more precisely,

we identify them with unions of adjacent toric divisors Di ∪ Dj in the Calabi-Yau, or

equivalently in terms of supersymmetric 3-submanifolds in the Sasaki-Einstein space:

V1 : Σ3 ∪ Σ4

V2 : Σ2 ∪ Σ3 . (3.13)

We may now compute the baryon and flavour charges of all the fields. The charges for

the fields V1, V2 can be read off from their relation to the divisors ΣA above. We summarise

the various quantum numbers in table 1.
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Field SUSY submanifold number U(1)B U(1)F1
U(1)F2

Y Σ1 b a 1 0

U1 Σ2 d −c 0 l

Z Σ3 a b 0 k

U2 Σ4 c −d −1 −k − l

V1 Σ3 ∪ Σ4 b − c c − a −1 −l

V2 Σ2 ∪ Σ3 c − a b − c 0 k + l

Table 1: Charge assignments for the six different types of fields present in the general quiver

diagram for La,b,c.

Notice that the SL(2; Z) transformation (3.4) that shifts k and l is equivalent to re-

defining the flavour symmetry

U(1)F2
→ U(1)F2

− t U(1)B + taU(1)F1
. (3.14)

Note also that each toric divisor appears precisely b times in the table. This fact automat-

ically ensures that the linear traces vanish

TrU(1)B = 0 and Tr U(1)F1
= Tr U(1)F2

= 0 , (3.15)

as must be the case. As a non-trivial check of these assignments, one can compute that

the cubic baryonic trace vanishes as well

Tr U(1)3B = ba3 − dc3 + ab3 − cd3 + (b − c)(c − a)3 + (c − a)(b − c)3 = 0 . (3.16)

3.3 The geometry

In this subsection we summarise some aspects of the geometry of the toric Sasaki-Einstein

manifolds La,b,c. First, we recall the metrics [8], and how these are associated to the toric

singularities discussed earlier [9]. We also discuss supersymmetric submanifolds, compute

their volumes, and use these results to extract the R-charges of the dual field theory.

The local metrics were given in [8] in the form

ds2 =
ρ2dx2

4∆x
+

ρ2dθ2

∆θ
+

∆x

ρ2

(

sin2 θ

α
dφ +

cos2 θ

β
dψ

)2

+
∆θ sin2 θ cos2 θ

ρ2

(

α − x

α
dφ −

β − x

β
dψ

)2

+ (dτ + σ)2 (3.17)

where

σ =
α − x

α
sin2 θdφ +

β − x

β
cos2 θdψ

∆x = x(α − x)(β − x) − µ, ρ2 = ∆θ − x

∆θ = α cos2 θ + β sin2 θ . (3.18)

Here α, β, µ are a priori arbitrary constants. These local metrics are Sasaki-Einstein which
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can be equivalently stated by saying that the metric cone dr2 + r2ds2 is Ricci-flat and

Kähler, or that the four-dimensional part of the metric (suppressing the τ direction) is

a local Kähler-Einstein metric of positive curvature. These local metrics were also found

in [9]. The coordinates in (3.17) have the following ranges: 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π,

0 ≤ ψ ≤ 2π, and x1 ≤ x ≤ x2, where x1, x2 are the smallest two roots of the cubic

polynomial ∆x. The coordinate τ , which parameterises the orbits of the Reeb Killing vector

∂/∂τ is generically non-periodic. In particular, generically the orbits of the Reeb vector

field do not close, implying that the Sasaki-Einstein manifolds are in general irregular.

The metrics are clearly toric, meaning that there is a U(1)3 contained in the isometry

group. Three commuting Killing vectors are simply given by ∂/∂ψ, ∂/∂ψ, ∂/∂τ . The

global properties of the spaces are then conveniently described in terms of those linear

combinations of the vector fields that vanish over real codimension two fixed point sets.

This will correspond to toric divisors in the Calabi-Yau cone — see e.g. [12]. It is shown

in [8] that there are precisely four such vector fields, and in particular these are ∂/∂φ and

∂/∂ψ, vanishing on θ = 0 and θ = π/2 respectively, and two additional vectors

`i = ai
∂

∂φ
+ bi

∂

∂ψ
+ ci

∂

∂τ
i = 1, 2 (3.19)

which vanish over x = x1 and x = x2, respectively. The constants are given by [8]

ai =
αci

xi − α
, bi =

βci

xi − β
,

ci =
(α − xi)(β − xi)

2(α + β)xi − αβ − 3x2
i

. (3.20)

In order that the corresponding space is globally well-defined, there must be a linear relation

between the four Killing vector fields

a `1 + b `2 + c
∂

∂φ
+ d

∂

∂ψ
= 0 (3.21)

where (a, b, c, d) are relatively prime integers. It is shown in [8] that for appropriately chosen

coefficients ai, bi, ci there are then countably infinite families of complete Sasaki-Einstein

manifolds.

The fact that there are four Killing vector fields that vanish on codimension 2 sub-

manifolds implies that the image of the Calabi-Yau cone under the moment map for the

T 3 action is a four faceted polyhedral cone in R
3 [12]. Using the linear relation among

the vectors (3.21) one can show that the normal vectors to this polyhedral cone satisfy the

relation

a v1 − c v2 + b v3 − (a + b − c) v4 = 0 (3.22)

where vA, A = 1, 2, 3, 4 are the primitive vectors in R
3 that define the cone. Note that

we have listed the vectors according to the order of the facets of the polyhedral cone. As

explained in [9], it follows that, for a, b, c relatively prime, the Sasaki-Einstein manifolds

arise from the symplectic quotient

C
4//(a,−c, b,−a − b + c) (3.23)

which is precisely the gauged linear sigma model considered in the previous subsection.
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The volume of the Sasaki-Einstein manifolds/orbifolds is given by [8]

vol(Y ) =
π2

2kαβ
(x2 − x1)(α + β − x1 − x2)∆τ (3.24)

where here k =gcd(a, b) and

∆τ =
2πk|c1|

b
. (3.25)

This can also be written as

vol(Y ) =
π3(a + b)3

8abcd
W (3.26)

where W is a root of certain quartic polynomial given in [8]. This shows that the central

charges of the dual conformal field theory will be generically quartic irrational.

In order to compute the R-charges from the metric, we need to know the volumes of

the four supersymmetric 3-submanifolds ΣA. These volumes were not given in [8] but it is

straightforward to compute them. We obtain

vol(Σ1) =
π

k

∣

∣

∣

∣

c1

a1b1

∣

∣

∣

∣

∆τ vol(Σ2) =
π

kβ
(x2 − x1)∆τ

vol(Σ3) =
π

k

∣

∣

∣

∣

c2

a2b2

∣

∣

∣

∣

∆τ vol(Σ4) =
π

kα
(x2 − x1)∆τ . (3.27)

We can now complete the charge assignments of all the fields in the quiver by giving their

R-charges purely from the geometry. The charges of the distinguished fields Y,U1, Z, U2

are obtained from the geometry using the formula

R[XA] =
π

3

vol(ΣA)

vol(Y )
, (3.28)

while those of the V1, V2 fields are simply deduced from (3.13). In particular

R[V1] = R[Z] + R[U2] R[V2] = R[Z] + R[U1] . (3.29)

It will be convenient to note that the constants α, β, µ appearing in ∆x are related to

its roots as follows

µ = x1x2x3

α + β = x1 + x2 + x3

αβ = x1x2 + x1x3 + x2x3 , (3.30)

where x3 is the third root of the cubic, and x3 ≥ x2 ≥ x1 ≥ 0. Using the volumes in (3.27),

we then obtain the following set of R-charges

R[Y ] =
2

3x3
(x3 − x1) R[U1] =

2α

3x3

R[Z] =
2

3x3
(x3 − x2) R[U2] =

2β

3x3
. (3.31)
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To obtain explicit expressions, one should now write the constants xi, α, β in terms of the

integers a, b, c. This can be done, using the equations (9) in [8]. We have

x1(x3 − x1)

x2(x3 − x2)
=

a

b
(3.32)

α(x3 − α)

β(x3 − β)
=

c

d
. (3.33)

Notice that α = β implies c = d, as claimed in [8]. Combining these two equations

with (3.30), one obtains a complicated system of quartic polynomials, which in principle

can be solved. However, we will proceed differently. Our aim is simply to show that the

resulting R-charges will match with the a-maximisation computation in the field theory.

Therefore, using the relations above, we can write down a system of equations involving

the R-charges and the integers a, b, c, d. We obtain the following:

R[Y ](2 − 3R[Y ])

R[Z](2 − 3R[Z])
=

a

b

R[U1](2 − 3R[U1])

R[U2](2 − 3R[U2])
=

c

d

3

4
(R[U1]R[U2] − R[Y ]R[Z]) + R[Z] + R[Y ] = 1

R[Y ] + R[U1] + R[Z] + R[U2] = 2 . (3.34)

With the aid of a computer program, one can check that the solutions to this system are

given in terms of roots of various quartic polynomials involving a, b, c. For the case of La,b,a

the polynomials reduce to quadratics and the R-charges can be given in closed form. These

in fact match precisely with the values that we will compute later using a-maximisation,

as well as Z-minimisation. Therefore we won’t record them here.

In the general case, instead of giving the charges in terms of unwieldy quartic roots,

we can more elegantly show that the system (3.34) can be recast into an equivalent form

which is obtained from a-maximisation. In order to do so, we can use the last equation to

solve for R[U1]. Expressing the first three equations in terms of R[U2] = x, R[Y ] = y and

R[z] = z, we have

b(2 − 3y) + az(3z − 2) = 0

c(x + y − 2)(3x + 3y − 4) − (a + b − c)(x − z)(3x − 3z − 2) = 0

3x2 − 4y + 2(z + 2) + x(3y − 3z − 6) = 0 .

(3.35)

Interestingly, the third equation does not involve any of the parameters. For later compar-

ison with the results coming from a-maximisation, it is important to find a way to reduce

this system of three coupled quadratic equations in three variables to a standard form.

The simplest way of doing so is to ‘solve’ for one of the variables x, y or z and two of the

parameters. A particularly simple choice is to solve for y, a and b. The simplicity follows

from the fact that it is possible to use the third equation to solve for y and the parameters

then appear linearly in all the equations. Doing this, we obtain

a =
c(3x − 2) (3x(x − z − 2) + 2(2 + z))

(3x − 4)2(x − z)
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b =
cz(3z − 2)

(3x − 3z − 2)(x − z)

y =
−2(2 + z) − 3x(x − z − 2)

(3x − 4)
. (3.36)

This system of equations is equivalent to the original one, and is the one we will compare

with the results of a-maximisation.

Of course, one could also compute these R-charges using Z-minimisation [46]. The

algebra encountered in tackling the minimisation problem is rather involved, but it is

straightforward to check agreement of explicit results on a case by case basis.

4. Superpotential and gauge groups

In the previous sections we have already described how rather generally one can obtain

the number of gauge groups, and the field content of a quiver whose vacuum moduli space

should reproduce the given toric variety. In particular, we have listed the multiplicities

of every field and their complete charge assignments, namely their baryonic, flavour, and

R-charges. In the following we go further and predict the form of the superpotential as

well as the nature of the gauge groups, that is, the types of nodes appearing in the quivers.

4.1 The superpotential

First, we recall that in [48] a general formula was derived relating the number of gauge

groups Ng, the number of fields Nf , and the number of terms in the superpotential NW .

This follows from applying Euler’s formula to a brane tiling that lives on the surface of a

2-torus, and reads

NW = Nf − Ng . (4.1)

Using this we find that the number of superpotential terms for La,b,c is NW = 2b. Now we

use the fact each term in the superpotential W must be

∪4
A=1 ΣA . (4.2)

In fact this is just the canonical class of X — a standard result in toric geometry. One

can justify the above form as follows. Each term in W is a product of fields, and each

field is associated to a union of toric divisors. The superpotential has R-charge 2, and is

uncharged under the baryonic and flavour symmetries. This is true, using the results of

section 2 and (4.2).

A quick inspection of table 1 then allows us to identify three types of monomials that

may appear in the superpotential

Wq = Tr Y U1ZU2 Wc1 = Tr Y U1V1 Wc2 = Tr Y U2V2 . (4.3)

Furthermore, their number is uniquely fixed by the mutiplicities of the fields, and the fact

that NW = 2b. The schematic form of the superpotential for a general La,b,c quiver theory

is then

W = 2 [aWq + (b − c)Wc1 + (c − a)Wc2 ] . (4.4)

– 21 –



J
H
E
P
0
1
(
2
0
0
6
)
1
2
8

In the language of dimer models, this is telling us the types of vertices in the brane

tilings [48]. In particular, in each fundamental domain of the tiling we must have 2a four-

valent vertices, 2(b− c) three-valent vertices of type 1, and 2(c− a) three-valent vertices of

type 2.

4.2 The gauge groups

Finally, we discuss the nature of the Ng = a + b gauge groups of the gauge theory, i.e. we

determine the types of nodes in the quiver. This information, together with the above, will

be used to construct the brane tilings. First, we will identify the allowed types of nodes,

and then we will determine the number of times each node appears in the quiver.

The allowed types of nodes can be deduced by requiring that at any given node

1. the total baryonic and flavour charge is zero:
∑

i∈node U(1)i = 0

2. the beta function vanishes:
∑

i∈node(Ri − 1) + 2 = 0

3. there are an even number of legs.

These requirements are physically rather obvious. The first property is satisfied if we

construct a node out of products (and powers) of the building blocks of the superpoten-

tial (4.3). Moreover, using (2.29), this also guarantees that the total R-charge at the node

is even.

Imposing these three requirements turns out to be rather restrictive, and we obtain

four different types of nodes that we list below:

A : U1Y V1 · U1Y V1 B : V2Y V1 · U1Y U2 D : U2Y V2 · U2Y V2 C : U1Y U2Z (4.5)

Next, we determine the number of times each node appears in the quiver. Denote

these numbers nA, nB , nD, 2nC respectively. Taking into account the multiplicities of all

the fields imposes six linear relations. However, it turns out that these do not uniquely fix

the number of different nodes. We have

nC = a

nB + 2nA = 2(b − c)

nB + 2nD = 2(c − a) . (4.6)

Although the number of fields and schematic form of superpotential terms are fixed by

the geometry, the number of A, B and D nodes are not. We can then have different types

of quivers that are nevertheless described by the same toric singularity. This suggests that

the theories with different types of nodes are related by Seiberg dualities. We will show

that this is the case in section 6.

It is interesting to see what happens for the La,b,a geometries discussed in section 3.1.

In this case c − a = 0 (the case that b − c = 0 is symmetric with this) and the theory has

some peculiar properties. Recall that this corresponds to a linear sigma model with charges

(a,−a, b,−b). These theories have no V2 fields, while the b− a V1 fields have zero baryonic
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charge, and must therefore be adjoints. Moreover, from (4.6), we see that nB = nD = 0,

so that there aren’t any B and D type nodes, while there are b−a A-type nodes. In terms

of tilings, these theories are then just constructed out of C-type quadrilaterals and A-type

hexagons. We will consider in detail these models in section 6.2.3.

Finally, we note that the general conclusions derived for La,b,c quivers in sections 4.1

and 4.2 are based on the underlying assumption that we are dealing with a generic theory

(i.e. one in which the R-charges of different types of fields are not degenerate). It is always

possible to find at least one generic phase for a given La,b,c, and thus the results discussed

so far apply. Non-generic phases can be generated by Seiberg duality transformations.

In these cases, new types of superpotential interactions and quiver nodes may emerge, as

well as new types of fields. This was for instance the case for the toric phases of the Y p,q

theories [15].

5. R-charges from a-maximisation

A remarkable check of the AdS/CFT correspondence consists of matching the gauge theory

computation of R-charges and central charge with the corresponding calculations of volumes

of the dual Sasaki-Einstein manifold and supersymmetric submanifolds on the gravity side.

This is perhaps the most convincing evidence that the dual field theory is the correct

one. Since explicit expressions for the Sasaki-Einstein metrics are available, it is natural

to attempt such a check. Actually, the volumes of toric manifolds and supersymmetric

submanifolds thereof can also be computed from the toric data [46], without using a metric.

This gives a third independent check that everything is indeed consistent.

Here we will calculate the R-charges and central charge a for an arbitrary La,b,c quiver

gauge theory using a-maximisation. From the field theory point of view, initially, there are

six different R-charges, corresponding to the six types of bifundamental fields U1, U2, V1,

V2, Y and Z. Since the field theories are superconformal, these R-charges are such that the

beta functions for the gauge and superpotential couplings vanish. Using the constraints

(4.3) and (4.5) it is possible to see that these conditions always leave us with a three-

dimensional space of possible R-charges. This is in precise agreement with the fact that

the non-R abelian global symmetry is U(1)3 ' U(1)2F × U(1)B . It is convenient to adopt

the parametrization of R-charges of section 3.3:

R[U1] = x − z R[U2] = 2 − x − y

R[V1] = 2 − x − y + z R[V2] = x

R[Y ] = y R[Z] = z .

(5.1)

This guarantees that all beta functions vanish. Using the multiplicities in table 1, we can

check that trR(x, y, z) = 0. This is expected, since this trace is proportional to the sum of

all the beta functions. In addition, the trial a central charge can be written as

trR3(x, y, z) =
1

3
[a (9(2 − x)(x − z)z − 2) + b (9 x y (2 − x − y) − 2)

+ 9(b − c) y z (2x + y − z − 2)] . (5.2)
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The R-charges are determined by maximising (5.2) with respect to x, y and z. This

corresponds to the following equations

∂x trR3(x, y, z) = 0 = −3 b y (2x + y − 2z − 2) + 3 z (a(2 − 2x + z − 2cy))

∂y trR3(x, y, z) = 0 = −3 b (x − z)(x + 2y − z − 2) − 3 c z(2x + 2y − z − 2)

∂z trR3(x, y, z) = 0 = −3 a (x − 2)(x − 2z) + 3(b − c) y (2x + y − 2z − 2)

. (5.3)

It is straightforward to show that this system of equations is equivalent to (3.36). In fact,

proceeding as in section 3.3, we reduce (5.3) to an equivalent system by ‘solving’ for y, a

and b. In this case, there are three solutions, although only one of them does not produce

zero R-charges for some of the fields, and indeed corresponds to the local maximum of

(5.2). This solution corresponds to the following system of equations

a =
c(3x − 2) (3x(x − z − 2) + 2(2 + z))

(3x − 4)2(x − z)

b =
cz(3z − 2)

(3x − 3z − 2)(x − z)

y =
−2(2 + z) − 3x(x − z − 2)

(3x − 4)
(5.4)

which is identical to (3.36). We conclude that, for the entire La,b,c family, the gauge

theory computation of R-charges and central charge using a-maximisation agrees precisely

with the values determined using geometric methods on the gravity side of the AdS/CFT

correspondence.

6. Constructing the gauge theories using brane tilings

In sections 3 and 4 we derived detailed information regarding the gauge theory on D3-

branes transverse to the cone over an arbitrary La,b,c space. Table 1 gives the types of

fields along with their multiplicities and global U(1) charges, (4.3) presents the possible

superpotential interactions and (4.5) and (4.6) give the types of nodes in the quiver along

with some constraints on their multiplicities.

This information is sufficient for constructing the corresponding gauge theories. We

have used it in section 5 to prove perfect agreement between the geometric and gauge theory

computations of R-charges and central charges. Nevertheless, it is usually a formidable task

to combine all these pieces of information to generate the gauge theory. In this section

we introduce a simple set of rules for the construction of the gauge theories for the La,b,c

geometries. In particular, our goal is to find a simple procedure in the spirit of the ‘impurity

idea’ of [13, 15].

Our approach uses the concept of a brane tiling, which was introduced in [48], fol-

lowing the discovery of the connection between toric geometry and dimer models of [47].

Brane tilings encode both the quiver diagram and the superpotential of gauge theories on

D-branes probing toric singularities. Because of this simplicity, they provide the most suit-

able language for describing complicated gauge theories associated with toric geometries.
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Figure 5: The four building blocks for the construction of brane tilings for La,b,c.

We refer the reader to [48] for a detailed explanation of brane tilings and their relation to

dimer models.

All the conditions of sections 3 and 4 can be encoded in the properties of four elemen-

tary building blocks. These blocks are shown in figure 5. We denote them A, B, C and D,

following the corresponding labeling of gauge groups in (4.5). It is important to note that

a C hexagon contains two nodes of type C.

Every edge in the elementary hexagons is associated with a particular type of field.

These edge labels fully determine the way in which hexagons can be glued together along

their edges to form a periodic tiling. The quiver diagram and superpotential can then

be read off from the resulting tiling using the results of [48]. The elementary hexagons

automatically incorporate the three superpotential interactions of (4.3). The number of A,

B, C and D hexagons is nA, nB, nC and nD, respectively. Taking their values as given by

(4.6), the multiplicities in table 1 are reproduced.

Following the discussion in section 4, the number of A, B, C and D hexagons is not

fixed for a given La,b,c geometry. There is a one parameter space of solutions to (4.6),

which we can take to be indexed by nD. It is possible to go from one solution of (4.6) to

another one by decreasing the number of B hexagons by two and introducing one A and

one D, i.e. (nA, nB, nC , nD) → (nA + 1, nB − 2, nC , nD + 1). We show in the next section

that this freedom in the number of each type of hexagon is associated with Seiberg duality.

6.1 Seiberg duality and transformations of the tiling

We now study Seiberg duality [63] transformations that produce ‘toric quivers’.5 We can go

from one toric quiver to another one by applying Seiberg duality to the so-called self-dual

nodes. These are nodes for which the number of flavours is twice the number of colours,

thus ensuring that the rank of the dual gauge group does not change after Seiberg duality.

Such nodes are represented by squares in the brane tiling [48]. Hence, for La,b,c theories, we

only have to consider dualizing C nodes. Seiberg duality on a self-dual node corresponds

to a local transformation of the brane tiling [48]. This is important, since it means that

we can focus on the sub-tilings surrounding the nodes of interest in order to analyse the

possible behavior of the tiling.

We will focus on cases in which the tiling that results from dualizing a self-dual node can

also be described in terms of A, B, C and D hexagons. There are some cases in which Seiberg

5This term was introduced in [36] and refers to quivers in which the ranks of all the gauge groups are

equal. Toric quivers are a subset of the infinite set of Seiberg dual theories associated to a given toric

singularity, i.e. it is possible to obtain quivers that are not toric on D-branes probing toric singularities.
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Figure 6: Seiberg duality on a self-dual node that does not change the hexagon content.
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Figure 7: Seiberg duality on a self-dual node under which (nA, nB, nC , nD) → (nA + 1, nB −

2, nC , nD + 1).

duality generates tilings that are not constructed using the elementary building blocks of

figure 5. In these cases, the assumption of the six types of fields being non-degenerate does

not hold. We present an example of this non-generic case below, corresponding to L2,6,3.

Leaving aside non-generic cases, we see that we only need to consider two possibilities.

They are presented in figures 6 and 7. Figure 6 shows the case in which dualization of

the central square does not change the number of hexagons of each type in the tiling. The

new tiling is identical to the original one up to a shift. Figure 7 shows a situation in which

dualization of the central square removes two type B hexagons and adds an A and a D.

The operations discussed above leave the labels of the edges on the boundary of the

sub-tiling invariant.6 Hence, the types of hexagons outside the sub-tilings are not modified.

The above discussion answers the question of how to interpret the different solutions of

(4.6): they just describe Seiberg dual theories.

6.2 Explicit examples

Having presented the rules for constructing tilings for a given La,b,c, we now illustrate their

application with several examples. We first consider L2,6,3, which is interesting since it

has eight gauge groups and involves A, B and C elementary hexagons. We also discuss

how its tiling is transformed under the action of Seiberg duality. We then present tilings

for L2,6,4, showing how D hexagons are generated by Seiberg duality. Finally, we classify

all sub-families whose brane tilings can be constructed using only two types of elemen-

tary hexagons. These theories are particularly simple and it is straightforward to match

the geometric and gauge theory computations of R-charges and central charges explicitly.

We analyse the La,b,a sub-family in detail, and present other interesting examples in the

appendix.

6There is a small subtlety in this argument: in some cases, identifications of faces due to the periodicity

of the tiling can be such that the boundary of the sub-tiling is actually modified when performing Seiberg

duality.
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Figure 8: Brane tiling for L2,6,3.
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Figure 9: Quiver diagram for L2,6,3.

6.2.1 Gauge theory for L2,6,3

Let us construct the brane tiling for L2,6,3. We consider the (nA, nB, nC , nD) = (2, 2, 2, 0)

solution to (4.6). Hence, we have two A, two B and two C hexagons. Using the gluing

rules given by the edge labeling in figure 5, it is straightforward to construct the brane

tiling shown in figure 8.

From the tiling we determine the quiver diagram shown in figure 9. The multiplicities

of each type of field are in agreement with the values in table 2. In addition, we can also

read off the corresponding superpotential
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(0,2)

(2,3)

(2,0)(1,0)

Figure 10: Toric diagram for L2,6,3 determined using the characteristic polynomial of the Kasteleyn

matrix for the tiling in figure 8.

W = Y31U
(1)
12 V

(1)
23 − Y42V

(1)
23 U

(1)
34 + Y42V

(2)
21 U

(2)
12 + Y85U

(1)
53 V

(1)
38

+ Y17U
(1)
78 V

(1)
81 − Y63V

(1)
38 U

(1)
86 − Y28V

(1)
81 U

(1)
12 − Y17U

(2)
72 V

(2)
21

+ Z45U
(2)
56 Y63U

(1)
34 − Z45U

(1)
53 Y31U

(2)
14 − Z67U

(1)
78 Y85U

(2)
56 + Z67U

(2)
72 Y28U

(1)
86

(6.1)

where for simplicity we have indicated the type of U and V fields with a superscript and

have used subscripts for the gauge groups under which the bifundamental fields are charged.

Having the brane tiling for a gauge theory at hand makes the derivation of its moduli

space straightforward. The corresponding toric diagram is determined from the character-

istic polynomial of the Kasteleyn matrix of the tiling [47, 48]. In this case, we obtain the

toric diagram shown in figure 10. This is an additional check of our construction.

Let us now consider how Seiberg duality on self-dual nodes acts on this tiling. Du-

alization of nodes 4 or 7 corresponds to the situation in figure 6. The resulting tiling is

identical to the original one up to an upward or downward shift, respectively. The situa-

tion is different when we dualize node 5 or 6. In these cases, Seiberg duality ‘splits apart’

the two squares corresponding to the C nodes forming C hexagons. Figure 11 shows the

tiling after dualizing node 5. This tiling seems to violate the classification of possible gauge

groups given in section 4.3. In particular, some of the hexagons would have at least one

edge corresponding to a Z field. As we discussed in section 4.2, this is not a contradiction,

but just indicates that we are in a non-generic situation in which some of the six types of

fields are degenerate.

6.2.2 Generating D hexagons by Seiberg duality: L2,6,4

We now construct brane tilings for L2,6,4. This geometry is actually a Z2 orbifold of L1,3,2.

This example illustrates how D hexagons are generated by Seiberg duality. We start with

the (nA, nB, nC , nD) = (0, 4, 2, 0) solution to (4.6), whose corresponding tiling is shown in

figure 12.

We see that all self-dual nodes are of the form presented in figure 7. Seiberg duality

on node 4 leads to a tiling with (nA, nB , nC , nD) = (1, 2, 2, 1), which we show in figure 13.

6.2.3 The La,b,a sub-family

It is possible to use brane tilings to identify infinite sub-families of the La,b,c theories whose

study is considerably simpler than the generic case. In particular, classifying the geometries
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Figure 11: Brane tiling for a Seiberg dual phase of L2,6,3.
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Figure 13: Brane tiling for L2,6,4.

whose corresponding tilings can be constructed using only two different types of hexagons

is straightforward. We now proceed with such a classification.

Let us first consider those models that do not involve C type hexagons. These tilings

consist entirely of ‘pure’ hexagons and thus correspond to orbifolds [47, 48]. We have

already discussed them in section 3, where we mentioned the case in which a, and thus
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nC , is equal to zero. The orbifold action is determined by the choice of a fundamental cell

(equivalently, by the choice of labeling of faces in the tiling).

We now focus on theories for which one of the two types of hexagons is of type C.

There are only three possibilities of this form:

Hexagon types Sub-family

nB = nD = 0 A and C La,b,a

nA = nD = 0 B and C La,b, a+b
2 = Y

a+b
2

, a−b
2

nA = nB = 0 C and D La,b,b

(6.2)

It is interesting to see that the Y p,q theories emerge naturally from this classification of

simple models. In addition to orbifolds and Y p,q’s, the only new family is that of La,b,a.

The La,b,b family is equivalent to the latter by a trivial reordering of the GLSM charges,

which in the gauge theory exchanges U1 ↔ U2 and V1 ↔ V2.

Let us study the gauge theories for the La,b,a manifolds. These theories were first

studied in [64] using Type IIA configurations of relatively rotated NS5-branes and D4-

branes (see also [65 – 67] for early work on these models). The simplest example of this

family is the SPP theory [7], which in our notation is L1,2,1, and has GLSM charges

(1,−1, 2,−2). The brane tiling for this theory was constructed in [48] and indeed uses one

A and one C building block. We will see that it is possible to construct the entire family of

gauge theories. We have already shown in section 5 that the computation of R-charges and

central charge using a-maximisation agrees with the geometric calculation for an arbitrary

La,b,c. We now compute these values explicitly for this sub-family and show agreement

with the results derived using the metric [8] and the toric diagram [46]. These types of

checks have already been performed for another infinite sub-family of the La,b,c geometries,

namely the Y p,q manifolds, in [13] and [46].

Let us first compute the volume of La,b,a from the metric. The quartic equation in [8]

from which the value of W entering (3.26) is determined becomes

W 2

(

1024 a2(a − b)2b2

(a + b)6
+

64 (2a − b)(2b − a)W

(a + b)2
− 27 W 2

)

= 0 . (6.3)

Taking the positive solution to this equation, we obtain

vol(La,b,a) =
4π3

27 a2b2

[

(2b − a)(2a − b)(a + b) + 2 (a2 − ab + b2)3/2
]

. (6.4)

There is an alternative geometric approach to computing the volume of La,b,a which uses

the toric diagram instead of the metric: Z-minimisation. This method for calculating the

volume of the base of a toric cone from its toric diagram was introduced in [46]. For 3-

complex dimensional cones, it corresponds to the minimisation of a two variable function

Z[y, t]. The toric diagram for La,b,a, as we presented in section 3.1, has vertices

[0, 0] [1, 0] [1, b] [0, a] . (6.5)

We then have

Z[y, t] = 3
y(b − a) + 3a

t(y − 3)y(t − y(b − a) − 3a)
. (6.6)
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Figure 14: Brane tiling for La,b,a.

(b−a)2a

Figure 15: Quiver diagram for La,b,a. It consists of 2a C nodes and (b − a) A nodes. The last

node is connected to the first one by a bidirectional arrow.

The values of t and y that minimize Z[y, t] are

tmin =
1

2
(a + b + w) ymin =

2a − b − w

a − b
(6.7)

where

w =
√

a2 − ab + b2 . (6.8)

Computing vol(Y ) = π3Zmin/3, we recover (6.4), which was determined using the metric.

We now show how this result is reproduced by a gauge theory computation. The unique

solution to (4.6) for the case of La,b,a is (nA, nB, nC , nD) = (b − a, 0, a, 0), so the brane

tiling consists of (b − a) A and a C hexagons. This tiling is shown in figure 14. First, we

note that these theories are non-chiral. Figure 15 shows their quiver diagram.

Their superpotential can be easily read from the tiling in figure 14. These models

do not have V2 fields. Nevertheless, the parametrization of R-charges given in (5.1) is

applicable to this case. Using it, we have

trR3(x, y, z) =
1

3
[b (9y(z − x)(x + y − z − 2) − 2) + a (9(2 − x − y)(x + y − z)z − 2)] .

(6.9)
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Maximising (6.9), we obtain the R-charges

R[U1] = 1
3

b−2a+w
b−a R[U2] = 1

3
2b−a−w

b−a

R[V1] = 2
3

2b−a−w
b−a R[Y ] = 1

3
b−2a+w

b−a

R[Z] = 1
3

2b−a−w
b−a

. (6.10)

The central charge a is then

a(Laba) =
27 a2b2

16

[

(2b − a)(2a − b)(a + b) + 2 (a2 − ab + b2)3/2
]−1

(6.11)

which reproduces (6.4) on using a = π3/4 vol(Y ).

7. Conclusions

The main result of this paper is the development of a combination of techniques which

allow one to extract the data defining a (superconformal) quiver gauge theory purely from

toric and Sasaki-Einstein geometry. We have shown that the brane tiling method provides a

rather powerful organizing principle for these theories, which generically have very intricate

quivers. We emphasise that, in the spirit of [46], our results do not rely on knowledge of

explicit metrics, and are therefore applicable in principle to an arbitrary toric singularity.

It is nevertheless interesting, for a variety of reasons, to know the corresponding Sasaki-

Einstein metrics in explicit form.

For illustrating these general principles, we have discussed an infinite family of toric

singularities denoted La,b,c. These generalise the Y p,q family, which have been the subject

of much attention; the corresponding La,b,c Sasaki-Einstein metrics have been recently

constructed in [8] (see also [9]). The main input into constructing these theories came from

the geometrical data, which strongly restricts the allowed gauge theories. Subsequently,

the brane tiling technique provides a very elegant way of organizing the data of the gauge

theory. In constrast to the quivers and superpotentials, which are very complicated to write

down in general, it is comparatively easy to describe the building blocks of the brane tiling

associated to any given La,b,c. We have computed the exact R-charges of the entire family

using three different methods and found perfect agreement of the results, thus confirming

the validity of our construction.

There are several possible directions for future research suggested by this work. One

obvious question is how to extend these results to more general toric geometries. The

smooth La,b,c spaces are always described by toric diagrams with four external legs, imply-

ing that the Sasaki-Einstein spaces (when smooth) have topology S2 × S3. In fact, they

are the most general such metrics. This is reflected in the field theory by the existence of

only one global baryonic U(1) symmetry, giving a total of U(1)3 non-R global symmetries

for these theories. But of course this is not the most general toric geometry one might

consider. One class of examples which do not fit into the La,b,c family are the Xp,q [29]
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spaces, whose toric diagrams have five external legs. These include for instance the com-

plex cone over dP2, and the Sasaki-Einstein metrics are not known explicitly. It would

be very interesting (and probably a very difficult feat) to write down the gauge theories

dual to any toric diagram. However, this may be possible: Thanks to such advances as

Z-minimisation [46], and from the results of this paper, we now know that it is possible

to read off a large amount of information from the toric data alone. In principle one could

use this, along with the brane tilings, to obtain non-trivial information about the gauge

theory dual to any toric geometry.

One could also proceed by analogy to the progress made on the Y p,q spaces. Since

we know the La,b,c metrics, it is possible to seek deformations of these theories on both

the supergravity and gauge theory sides. Indeed there have been many exciting new de-

velopments thanks to the study of the Y p,q theories and their cascading solutions. For the

La,b,c family, the study of the supergravity side of the cascades has been initiated in [9].

Here we have not attempted to elaborate on these deformations, but doing so would be

very interesting. Additionally, the recent progress in Sasaki-Einstein spaces opens up the

question of what other metrics we can derive for other infinite families of spaces.

Although the toric data specifies much information, it is still important in many cases

to know the metric. This is true for example if one wishes to compute the Kaluza-Klein

spectrum of a given background. Another example is given by the problem of constructing

non-conformal deformations, or cascading solutions. It will be interesting to see whether

the program initiated in [46] can be developed further, so that for instance one can extract

information on the spectrum of the Laplacian operator purely from the toric data.

Another interesting question that arises in the context of our work is how to prove the

equivalence of a-maximisation and Z-minimisation. Although both procedures yield the

same numbers in all known examples (of which there are infinitely many), it is nevertheless

not a priori obvious that this should be the case. In particular, the function one extremizes

during a-maximisation is simply a cubic, whereas the function used in Z-minimisation is

a rational function. Furthermore, Z-minimisation is a statement about Sasaki-Einstein

spaces in any dimension, while a-maximisation appears to be unique to four dimensions.

Intuitively, we suspect (thanks to AdS/CFT) that these two procedures are equivalent,

but this statement is far from obvious. It would be wonderful to have a general proof that

Z-minimisation is the same as a-maximisation.
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A. More examples

In this appendix, we include additional examples that illustrate the simplicity of our ap-

proach to the construction of brane tilings and gauge theories.

A.1 Brane tiling and quiver for L1,5,2

Figure 16 shows a brane tiling for L1,5,2 with (nA, nB , nC , nD) = (2, 2, 1, 0).

The corresponding quiver diagram is shown figure 17.

The toric diagram computed from the tiling according to the prescription in [47, 48]

is presented in figure 18.
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A.2 Brane tiling and quiver for L1,7,3

The brane tiling for L1,7,3 corresponding to (nA, nB , nC , nD) = (2, 4, 1, 0) is presented in

figure 19.

Figure 20 shows the quiver diagram for this phase.

The toric diagram is given in figure 21.
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Figure 21: Toric diagram for L1,7,3.
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