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Abstract In 1925 the American experimentalist Dayton C. Miller [35] pub-
lished the results of a series of Michelson-Morely-type of experi-
ments that he conducted at the top of Mount Wilson, in Southern
California. Miller’s “scandalous” detection of an ether-drift sparked,
as one would expect, considerable debate, which went well beyond
the physics community, about a possible refutation of special rela-
tivity. An account of the role of Miller’s experiments in the history
of ether-drift experiments has been provided in the classical mono-
graph of Loyd S. Swenson [72]. Einstein’s attitude towards Miller’s
result has been investigated by Klaus Hentschel [21]. The debate
that ensued in the physics community, in particular in the American
one, has been recently reconstructed by Roberto Lalli [30]. However,
the reception of Miller’s ether-drift detection among “philosophers”
is still to be written. This paper attempts to make a first step
towards closing this gap in the literature.

1 Introduction
Reichenbach was the first to join the debate. Still in 1925, he published a pa-

per [48] in which he offered a first philosophical evaluation of Miller’s findings

with the intention to demonstrate the physical implications of his axiomatiza-

tion of special relativity [47]. The peculiarity of Reichenbach’s approach can

be inferred from some remarks that Moritz Schlick sent to Einstein at the end

of 1925 (Schlick to Einstein, Dec. 27, 1925; [9, 21-591]; cf. [20, 361f.]). To

his surprise, Schlick found conclusions in Reichenbach’s paper that could not

have been further from his own. Reichenbach did not believe that the Lorentz

contraction was an ad hoc hypothesis, which Einstein had dispelled [see 26,

on this issue]. On the contrary, he believed that the contraction needed a
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dynamical explanation based on a theory of matter in special relativity, just

like in Lorentz’s theory. Thus Schlick realized that for Reichenbach there

were no differences between Lorentz and Einstein’s theories, and therefore

no conventional choice between them. Moreover, the acceptance of Miller’s

results would not have implied a return to the old ether theory. By reading

Schlick’s letter, one is immediately disabused of the conviction that Reichen-

bach’s axiomatization was a mathematically sophisticated version of Schlick’s

conventionalist reading of special relativity.

Reichenbach’s line of argument was based on the distinction between to

type of contractions, the “Lorentz contraction” and the “Einstein contrac-

tion”, a distinction which would resurface in his major 1928 monograph on

the philosophy of space and time [52]. In a slightly updated parlance, one

can say that the Lorentz contraction compares the proper length of a mov-

ing rod in special relativity with the length that the rod would have had in

the classical theory; the Einstein contraction compares the proper length of

a relativistic rod with its coordinate length in a moving frame. The first

contraction implies a real difference and requires a molecular-atomistic ex-

planation in both Einstein and Lorentz’s theories. The second contraction

is a perspectival difference that depends on the definition of simultaneity.

Reichenbach held the controversial opinion that only the first contraction is

necessary to explain the Michelson experiment. The present paper intends to

show that Reichenbach’s distinction between two types of rod contractions,

even if it is seldom mentioned in the literature, is possibly more characteris-

tic of Reichenbach’s interpretation of special relativity than than his thesis

of the conventionality of simultaneity�the freedom to choose which events

are simultaneous in a given inertial frame depending on the value of the pa-

rameter ✏�which, on the contrary, has been subject of a long-standing and

sometimes heated debate [cf. 24, sec. 4 for an overview].

Section 2 of this paper presents a sketch of Reichenbach’s axiomatiza-

tion of special relativity, which is indispensable to understanding his line of

argument. Section 3 introduces the distinction between Lorentz and Ein-

stein contractions. Section 4 shows how Reichenbach uses the distinction to

provide a philosophical account of Miller’s experiment and section 5 analyzes

Schlick’s reaction to Reichenbach’s approach. Section 6 follows Reichenbach’s

“geometrization” of the opposition between Lorentz/Einstein-contraction in

terms of Minkowski diagrams, as presented in his 1928 book. The paper

concluded by showing how Reichenbach’s distinction was resurrected in the

1950s by Adolf Grünbaum [17], who used it to “defend” the Lorentz contrac-

tion from Karl Popper’s ad-hocness charge [18].

In this sense, it was Reichenbach the first who attempted to move the

debate over the relationship between Einstein and Lorentz’s theories out of

the arena of the ad hoc/non-ad hoc distinction [26], and to frame it in the

now familiar terms of the “arrow of explanation”. According to Reichenbach,

both theories attempt to account for an odd coincidence, that matter and

fields “contract” in the same way (that is in Reichenbach’s parlance the light

geometry and matter geometry agree). Lorentz explained this odd coinci-

dence as a deviation of rods and clocks from their natural, non-relativistic
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behavior. Einstein, on the contrary, refused to give an explanation and sim-

ply declared that the relativistic behavior of rods and clocks to be the natural

one. According to Reichenbach, however, an explanation is needed in Ein-

stein theory, just like in Lorentz theory. Surprisingly, in Reichenbach’s view

the explanation is not to be searched in the geometrical structure of space-

time [28], but in a theory of the material structure of rods and clocks. In

this sense, Reichenbach’s approach can be regarded as a curious anticipation

of what we would call a neo-Lorentzian approach to special relativity Brown

[1].

2 Reichenbach’s Axiomatization and the Role
of the Michelson Experiment

On September 17, 1921 Reichenbach wrote to Moritz Schlick that in a few

days he was going to present his project of an axiomatization of special rel-

ativity in Jena, at the meeting of the Gesellschaft Deutscher Naturforscher
und Ärzte (Reichenbach to Schlick, Sep. 17, 1921; [64]). As he went on to

explain to Einstein immediately thereafter, the main ambition of the project

was to show that in special relativity “one can get along without rigid rods

and material clocks” by using only light rays (Einstein to Reichenbach, Oct.

12, 1921; [14, Vol. 12, Doc. 266]). Reichenbach’s first sketch of his axiomati-

zation project was published in the same year [45]. Reichenbach sent it to on

at the beginning of 1922, warning that, although the paper was inspired by

conventionalism, its results “reveals those facts that also conventionalism can-

not interpret” (Reichenbach to Schlick, Jan. 18, 1922; [64]); however Schlick

was initially impressed that in Reichenbach’s approach one could avoid the

use not just of rods, but also clocks (Schlick to Reichenbach, Jan. 27, 1922;

[64]).

Reichenbach was moved by the conviction that complicated structures

such as rods and clocks should be introduced at “the end of a physical theory,

not at its beginning”, since a “knowledge of their mechanisms presupposes

a knowledge of the physical laws” ([46, 365]; tr. [56, 41]). Einstein also

appreciated Reichenbach’s efforts in this area (Einstein to Reichenbach, Mar.

27, 1922; [14, Vol. 13, Doc. 119]). However, on May 10, 1922, Hermann Weyl

alerted Reichenbach of major shortcomings in his approach: the class of

inertial frames could not be singled out by using light rays alone [44, 015-

68-02]. Reichenbach only papered over the cracks of Weyl’s objection [59] in

the final version of his axiomatization, which was finished in March of 1923.

After some difficulties finding a publisher, Reichenbach’s monograph came

out the following year [47].

However, the book received a lukewarm, if even hostile reception. Schlick’s

student Edgar Zilsel reviewed the book positively for the Die Naturwis-
senschaften (Schlick to Reichenbach, May 7, 25; [64]). However, he seemed to

have considered Reichenbach’s work simply a mathematically refined version

of Schlick’s conventionalism [81]. However, it was in particular, a dismissive

review by Weyl [79], with whom Reichenbach had been on good terms, which
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clearly struck a hard blow. Reichenbach would still remember the episode

with bitterness a decade later (Reichenbach to Einstein, Apr. 12, 1936; [9,

10-107]). Thus it is unsurprising that Reichenbach rushed to defend his

work. On July 28, 1925 the Zeitschrift für Physik received a paper from him,

which was meant to clarify some technical issues with his project, and more

importantly to plea for its philosophical relevance, to “expand upon those

consequences which are especially important for physics” ([48, 32]; tr. [57,

171]). The paper is relatively self-contained and provides a simplified pre-

sentation of Reichenbach’s axiomatization, which we can roughly follow here

[see 58, sec. 4.4.2].

As is well known, Reichenbach’s axiomatization differs from the typical

“deductive axiomatization” championed by, e.g., David Hilbert [3]. In the lat-

ter, one sets an abstract general principle as an axiom, such as a variational

principle (see [47, 2]). Reichenbach, in contrast, put forward a “constructive

axiomatization”. As axioms he set empirical assertions capable of experimen-

tal verification. Reichenbach then derived the entire theory from them by

integrating some additional conceptual elements, i.e., definitions. The defi-

nitions, a type he called “coordinative definitions”, are arbitrary, thus neither

true nor false. Einstein’s famous definition of simultaneity is, in Reichen-

bach’s view, a definition of this type. It amounts to the stipulation that

when light signals are sent from a source to a mirror at relative rest and

back again, the one-way time is ✏ =

1/2 of the round-trip time. In principle,

however, every value 0 < ✏ < 1 can be chosen.

Reichenbach’s “constructive axiomatization” consisted of ten axioms, five

concerning the behavior of light (Lichtaxiome or light axioms, I-IV), and five

concerning rods and clocks (Körperaxiome or matter axioms, VI-X).

– The light axioms define the equality of spatial and temporal distances for

individual frames (Lichtgeometrie or light-geometry) using light rays alone.

In Reichenbach’s view the light axioms in special relativity do not differ

from those in classical theory except for the assertion that the velocity of

light is the velocity’s upper limit. The relativistic light-geometry claims

that light propagates in spherical waves in any uniformly moving system,

whereas in the the classical light-geometry light propagates in spherical

waves only in the ether system. The difference depends on the choice of ✏,
which is in principle arbitrary.

– The matter axioms postulate that material systems used as rods and clocks

behave in accordance with the light geometry (Körpergeometrie or matter-

geometry). Space distances and time intervals that are light-geometrically

equal will also turn out to be equal if measured, respectively, with rigid

rods and ideal clocks. Thus the content of special relativity can be ex-

pressed by saying that rods and clocks behave according to the relativistic

light-geometry and not according to the classical one. In other terms, the

Lorentz transformation, which leaves the spherical propagation of light in-

variant, turns out to be the transformation for measuring rods and clocks.

If rods transformed according to the Galileian transformations, distances

traveled by light in equal times would in general not be equal if measured
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by rods.

Thus, in Reichenbach’s axiomatization, the matter axioms contained the

part of relativity theory that can be tested empirically. The only relativistic

axiom that was actually put to experimental verification, according to Re-

ichenbach, was Axiom VIII: “Two intervals which are equal when measured

by rigid rods, are also light-geometrically equal” ([47, 69]; tr. [54, 89]). This

amounts to nothing but an abstract formulation of the Michelson-Morley

experiment. In an article published some months later [49], Reichenbach

provided a good schematic description of Michelson’s experimental setting

(fig. 1), which we can roughly follow here.

Figure 1: Reichenbach’s stylized

Michelson-Morley apparatus [from 50, labels

have been changed]

As is well known, the essential

idea of the experiment was to split

a beam of light at O, allow the

two resultant beams to travel along

two rigid rods placed at a right an-

gle, with two mirrors M1 and M2

at the end points of the arm where

the beams will be reflected back.

The light beams are recombined at

O to produce a series of interfer-

ence fringes. What has to be ex-

perimentally tested is whether the

travel time of a light signal going

back and forth between two mirrors

depends on whether the arms are

parallel or perpendicular to the di-

rection of motion. If the travel time

along the two paths should change when the instrument is rotated, one should

observe a shift of the interference fringes ([50, 325]; tr. [57, 195f.]).

According to the ether theory, the two light beams would return at the

same time only if the apparatus is at rest with respect to the ether; but

since the apparatus moves along with the Earth through space, the theory

demands a deviation: the ray reaching M2 must return slightly later, pro-

ducing a change in the interference pattern. Thus, by measuring interference

patterns, one could determine the state of motion of the Earth relative to

the ether. In the 1880s Albert A. Michelson [32], later with the assistance of

Edward W. Morley ([33]), showed that “in spite of the extreme precision of

the measurement, there is no difference in the time to traverse either arm of

the apparatus” ([50, 326]; tr. [57, 195]). At the turn of the century, “Morley

and Miller [[38, 39]] replicated this negative result in spite of the renewed

increase in precision” ([50, 326]; tr. [57, 195; translation modified]).

How does one explain this negative result? Reichenbach told the fol-

lowing well-known story: “Lorentz in Leyden presented his explanation that

assumed that all rigid bodies moving in opposition to the ether undergo a

contraction” ([50, 325]; tr. [57, 197]). Lorentz justified the contraction hy-

pothesis on the grounds that the molecular forces that hold material bodies
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together are of electromagnetic nature and are affected by translational mo-

tion. On the contrary, “in 1905, a more basic explanation was proposed

by A. Einstein in which these contractions occur as a result of a universal

principle, the principle of relativity” ([50, 326]; tr. [57, 197]). Thus Einstein

could remain agnostic about the ultimate constitution of matter and only

require the Lorentz covariance of all physical laws, including the unknown

ones governing the material constitution of rods and clocks.

This, of course, can be cast in Reichenbach’s own axiomatization, but as

we shall see, this leads to some non-mainstream philosophical conclusions.

Axiom VIII claims that two intervals OM1 and OM2 (fig. 1) are equal when

measured in terms of the equality of the time intervals of the round trip of

the light signals (OM1O = OM2O); then they are also equal when measured

by rigid rods (M1 = M2). The Michelson experiment put to the test this

correspondence postulated by axiom VIII, and the result was usually accepted

as correct. In particular, it received further confirmation in the work of

Rudolf Tomaschek [74], an anti-relativist, who, inspired by Philipp Lenard,

had repeated the experiment interferometer experiment using the light of

fixed stars ([48, 39]; tr. [57, 180]).

However, Reichenbach pointed out that “[r]ecently, doubts have been

raised by Dayton C. Miller, who obtained a positive result on Mount Wil-

son” ([48, 39]; tr. [57, 180]). If Miller’s experiment were to be confirmed, then

the round-trip times of the light signals along the two arms would become

unequal (OM1O 6= OM2O). Therefore the matter-geometrical equality of

distances would no longer coincide with the light-geometrical equality, and

Axiom VIII would be disproved.

There was no agreement at the time on the reliability of Miller’s results.

Reichenbach, however, was quick to take advantage of the debate following

the publication of Miller’s paper, in order to convince the numerous skep-

tics of the physical implications of his axiomatization: “In this context, the

axiomatization is proved to be extremely useful because it shows what par-

ticular role the Michelson experiment plays in the theory, what follows from

it, and what is independent of it” ([48, 39]; tr. [57, 180]).

3 Einstein Contraction vs. Lorentz Contrac-
tion: The First Appearance of Reichenbach’s
Distinction

Before entering into an analysis of Miller’s experiment, Reichenbach made

some remarks about the philosophical interpretation of special relativity,

which, I think, are quite puzzling at first glance. Reichenbach warned his

readers not to subscribe uncritically to a common interpretation of special

relativity:

[W]e should examine a particular error that has crept into the under-
standing of the theory of relativity. It concerns the problem of Lorentz
contraction and thereby leads us to the Michelson experiment. One
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frequently hears the opinion expressed that in the Lorentzian expla-
nation of the Michelson experiment the contraction of the arms of the
apparatus is an “ad hoc hypothesis”, whereas Einstein explains it in a
most natural way, namely, as a result of the relativization of the con-
cept of simultaneity. But this is false. The relativity of simultaneity

has nothing to do with length contraction in the Michelson experiment.
That this opinion is false already follows from the fact that the contrac-
tion of one of the arms of the apparatus occurs precisely in the system
in which the apparatus is at rest ([48, 43]; tr. [57, 187; my emphasis]).

As we have mentioned, in order to explain the negative result of the

Michelson experiment, Lorentz made the assumption that one arm of the

apparatus is contracted by the amount

p
1 � v2/c2 when it moves relative

to the ether. The theoretical asymmetry between the ether frame and those

moving with respect to it is hidden from observation by a sort of universal

conspiracy of nature. Einstein, on the contrary, considered both arms equally
long, if measured at relative rest in the rest system, but one arm would ap-

pear contracted by the factor

p
1 � v2/c2 if measured from a moving system.

In this way, the theoretical symmetry between the rest and moving system

is reestablished. This of course was the consequence of the fact that the

definition of the simultaneity of distant clocks using light signals is frame de-

pendent. As any length measurement requires that both ends of the rod be

measured at the same time, two observers in relative motion refer to some-

thing different when they talk about the length of the arm of the apparatus.

Reichenbach, however, explicitly rejected this standard interpretation,

which he himself had defended not much earlier [46]. Let’s take a look at

Reichenbach’s own explanation:

That this opinion is false already follows from the fact that the con-
traction of one of the arms of the apparatus occurs precisely in the
system in which the apparatus is at rest. The “Einstein contraction”
only explains that the arm is shortened if it is measured from a different

system. But that does not explain the Michelson experiment. [The lat-
ter] proves that the rod lying in the direction of motion is shorter when

measured in the rest system than it should be according to the classical

theory. [. . .] [T]he Einsteinian theory, as well as Lorentz’s, differs from
the classical theory in asserting a measurably different effect on rigid
rods that has nothing to do with the definition of simultaneity ([48,
43–44]; tr. [57, 187–188; translation modified; my emphasis]).

Let’s assume that there is a special ether system at absolute rest in which

there are two equally long rigid rods, one of which behaves according to clas-

sical theory and the other to Einstein’s theory; if we set the system in motion,

then the two rods would cease to be equally long provided that they lie along

the direction of the motion. The Lorentz-Einstein rod would be shorter than

the classical rod. The difference could in principle be measured in the moving

system itself as the difference between the rest-lengths of the classical and

Lorentz-Einstein rods. Thus a comparison with length in another system is

not at stake.
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To avoid confusion, Reichenbach suggested that it is necessary to distin-

guish between: (a) the Einstein contraction, which results from the relativity

of simultaneity and compares the length of the moving rod with the length

of the rod at rest in the same Lorentz-Einstein theory; and (b) the Lorentz
contraction, which compares the length of the same rod lying in the direction

of motion in different theories�classical mechanics and the Lorentz-Einstein

theory. In the classical theory the coordinate length of the moving rod is ex-

pected to be just as the coordinate length of the rod at rest. In the Lorentz-

Einstein theory, by contrast, the coordinate length of a moving rod is always

shorter than its proper length which is the same in all inertial frames. Nev-

ertheless, Reichenbach claims, the proper length of a rod in motion can still

be said to be shorter than the length that a classical rod would have if both

were measured at relative rest in the moving frame [15].

Reichenbach uses the following notation. Let’s call l a rod that behaves

according to the Lorentz-Einstein theory and L a rod that behaves according

to the classical theory. Let’s label K the rest system and K 0
the moving

system. The rest lengths of l and L in K are equal, or, as Reichenbach put

it, lKK = LK
K . In his notation the upper index refers to the system in which

the rod is measured and the lower refers to the one in which the rod is at rest.

Thus the rest-length of a moving rod from the perspective of a co-moving

frame, in other terms its proper length, is lK
0

K0 ; the length of a rest-rod from

the perspective of the moving frame lK
0

K is its coordinate length.

Now let’s consider what happens in the system K 0
that is in uniform

motion with respect to K. The Lorentz contraction is concerned with the

ratio lK
0

K0 : LK0

K0 , whereas the Einstein contraction is concerned with the ratio

lKK0 : lKK . That is, the Lorentz contraction compares the behavior of the

same rod in the Lorentz-Einstein and classical theories in the same inertial

system K 0
. The Einstein contraction compares the behavior of two rods in

the Lorentz-Einstein theory in different inertial systems, K and K 0
. The

Einstein contraction depends on the relativity simultaneity and “is related

to the comparison of different magnitudes within the same theory” ([48, 44];

tr. [57, 188]) (coordinate and proper length). An analogous example would be

the annual parallax, the difference in the position of a star as seen from two

different extremes of the Earth’s orbit. The Lorentz contraction is related to

“the behavior of the same magnitudes according to different theories” ([48,

45]; tr. [57, 188]) (the classical and relativistic proper length). An analogy to

this would be the difference between the gravitational light deflection, which

in general relativity is twice the Newtonian value.

According to Reichenbach, only the Lorentz contraction is at stake in the

Michelson experiment, not the Einstein contraction: “It just happens that

both contractions depend upon the same measurement factor

p
1 � v2/c2,

and this is probably the reason why they are always confused with one an-

other” ([48, 46]; tr. [57, 189]). Reichenbach shows that the equality lK
0

K0 :

LK0

K0 = lKK0 : lKK is simply a consequence of the linearity of transformation.

However, one should not miss the deep conceptual difference between the two

contractions, which is hidden behind the coincidental numerical equality of
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the two factors ([48, 45f.]; tr. [57, 189f.]). Thus in Reichenbach’s view, it is

not advisable to use the same expression “contraction” in both cases.

It is this very expression “contraction” that Reichenbach finds misleading.

It implies that physical objects satisfy the classical theory without a cause,

so that one must search for a cause for deviations from the correct behavior.

However, there is no reason to see the classical theory as natural, and the

Lorentz-Einstein theory as a distortion. The problem of causality should

be posed in a different form; one must explain why measuring rods and

clocks conform to a certain set of transformations defined in terms of the

light-geometry and not to a different one. This causal problem is the same

whether the rods and clocks behave according to the relativistic or classical

transformation. In his 1924 monograph ([47, 70–71]; tr. [54, 90-91]), we

already find Reichenbach using Weyl’s expression “adjustment” as a good

way to express this peculiar form of causality.

As Reichenbach explains, Weyl [78] had introduced the expression “ad-

justment” to account for the surprising behavior of the physical systems, such

as atoms, that we use as rods and clocks. It cannot be a coincidence that

atoms of the same type always have the same Bohr radius, independent of

what happened to them in the past; this fact suggests that each time, they

“adjust” anew to a certain equilibrium value, rather then “preserve” it. The

analogy with special relativity seems to be the following: “Einstein’s idea

can be formulated as meaning that light geometry and matter geometry are
identical ” ([47, 11]; tr. [54, 14]). It is an odd coincidence that any physical

system we use as a rod�whether it is made of steel, wood, etc.�always mea-

sures at equal lengths that are light-geometrically equal. “Light is a much

simpler physical object than a material rod, and, when searching for a re-

lation between the two, it should be initially supposed that it would not

correspond to so ideal a scheme as the posited matter axioms” ([48, 47-48];

tr. [57, 95]). This coincidence cries out for an explanation. However, the

explanation should not account for the divergence from an alleged correct

behavior, but a for the convergence toward a non-trivial one:

The word adjustment, first used in this way by Weyl, is a very good
characterization of the problem. [. . .] [A]ll metrical relations between
material objects, including the observed fact of the Michelson exper-
iment, must therefore be explained in terms of the particular way in
which rigid rods adjust to the movement of light. Of course, the answer
can only arise from a detailed theory of matter about which we have not
the least idea [. . .] [.] The word “adjustment” here thus only means
a problem without providing an answer; the relevant fact is strictly
formulated in the matter axioms without using the word “adjustment”.
Once we have this theory of matter, we can explain the metrical behav-
ior of material objects; but at present the explanation from Einstein’s
theory is as poor as Lorentz’s or the classical terminology ([48, 46–47];
tr. [57, 191]).

According to Reichenbach, the difference between Lorentz and Einstein’s

theories is not in their empirical content, but in the types of explanation they

provide. Both assert the facts encoded in axiom VIII, whereas the classical
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theory denies them. However, Lorentz’s theory assumes the classical behavior

of rods as “self-evident”, so that any deviation from these relations must

have a cause. Einstein’s theory renounces the explanation and axiomatically

defines two rods as equal if they behave in accordance with the Michelson

experiment. “The superiority of Einstein’s theory lies in the recognition of

the epistemological legitimacy of this procedure” ([52, 233]; tr. [53, 202]).

However, according to Reichenbach, Einstein’s agnosticism is unsatisfying.

Without a suitable theory of matter describing those physical systems we

happen to use as rods and clocks, Einstein’s account of the metrical behavior

of material objects is “just as poor as Lorentz’s” ([48, 43]; tr. [57, 187]).

4 Reichenbach on Miller’s Experiment
After Reichenbach clarified the distinction between Lorentz and Einstein con-

traction, he could proceed further to show what would happen if a Michelson-

Morley-type experiment gave a positive result. As we have mentioned, in

those years, raising this issue was more than just a mental exercise. A few

months before the publication of Reichenbach’s paper, Miller had published

the result of his Mount Wilson experiments [35].

Miller had begun working with Morley on the detection of the ether drift

twenty years before, and they had published a null result [38, 39, 40]. The

observations were made on slightly elevated locations and had indicated the

occurrence of a small displacement. Miller conjectured it was significant. He

remounted the Morley-Miller apparatus at a higher elevation at the Mount

Wilson Observatory in 1921, moved it to Cleveland in 1922 [34], then back

to Mount Wilson at 1734 metres above sea level in 1924. There Miller found

a positive displacement of the interference fringes, approximately 10km/s,

such as would be produced by a relative motion of the Earth and the ether

(instead of the nearly 30 km/s expected). This suggested a partial drag of

the ether by the Earth, which decreases with altitude [35].

Miller’s result immediately sparked considerable debate in the physics

community. On May 23, 1926 the polish-born physicist Ludwik Silberstein

(author of one the first special-relativistic textbooks) published an announce

in Nature claiming that Miller’s result refute special relativity and support

Stokes-Planck theory based on the idea on a compressible ether [67]. Arthur

Stanley Eddington the major relativist in the English speaking world, replied

on June 6, 1925 attacking Miller’s result: if the ether drag depended on

altitude, then also astronomical observations should be different on Mount

Wilson respect to that on sea level [8].

A few week later, at the end of July, Reichenbach was the first “philoso-

pher” to attempt to participate to the debate, that he clearly saw as a good

opportunity to convince the numerous skeptics of the validity of his axiomatic.

Reichenbach’s reaction reveals that the implications of Einstein’s experiment

were clearly non-mainstream:

Now we can also address the question what would change in the theory
of relativity if Miller’s experiment were held to prove that the hith-
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erto negative result of the Michelson experiment is in principle wrong.
Nothing would change in Einstein’s theory of time as it has nothing to
do with the Michelson experiment. Also nothing would change with
the light geometry; it remains in any case a possible definition for the
spacetime metric and probably a much better and more accurate one
than the geometry of rigid rods and natural clocks. But what would

change is our knowledge about the adjustments of material things to the

light geometry. With respect to the matter axioms, as far as they dif-
fer from the classical theory, the Michelson experiment is the only one
that has been confirmed. If this should be refuted, one has to develop
a more complex view of the relationship between material objects and
the light geometry ([48, 47]; tr. [57, 192; my emphasis]).

In Reichenbach’s axiomatization, the Michelson result is summarized in

Axiom VIII. Thus, in the event that Miller’s experimental results were not

spurious, only this axiom would change. The principle of the constancy of

the speed of light could be maintained, since it depends on a definition; thus

one could construct a “light geometry” using light signals but employing no

rigid rods. “From this perspective, the Michelson experiment serves only as

a bridge [Verbindungsgliedes] between the light geometry and the geometry

of rigid rods” ([48, 327-328]; tr. [57, 203]). If the experiment were rejected,

this would only mean that “rigid rods do not after all possess the preferred

properties that Einstein still attributes to them” ([48, 328]; tr. [57, 203]).

However, this would not imply a return to the old ether theory, but only

a change in the matter axioms. Whereas the light axioms are completely

certain, the matter axioms make statements about very complicated material

structures. In Reichenbach’s view they might have the “the validity of a

first-order approximation in the same way that the ideal gas law cannot be

maintained if the accuracy is increased” ([48, 48]; tr. [57, 192]).

5 Schlick’s Reaction to Reichenbach’s Paper
Einstein drew very different consequences from Miller’s experiment. On

June 26, 1925, two days before Reichenbach’s paper was submitted to the

Zeitschrift für Physik, Edwin E. Slosson, the executive editor and director

of the Science Service asked Einstein for a comment. Einstein’s stance to-

wards the issue at that time was clearly expressed in a letter that he sent a

few days later to Robert A. Millikan, Caltech’s “chairman of the executive

council”: if the Miller’s result turned out to be correct, Einstein wrote, then

“the whole theory of relativity would go down like a house of cards” (Einstein

to Millikan, July 13, 1925; [9, 17-357]). A few days later, Einstein sent a

very similar statement to Slosson which was published on Science on July

31, 1925. Against Ludwik Silberstein’s [67] claim the Miller’s results support

the Planck-Stoke theory, Einstein argued that they would mean a return to

Lorentz’s theory: “No theory exists outside of the theory of relativity and the

similar Lorentz theory which, except for the Miller experiment, explains all

the known phenomena up to date” [68].
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In general, however, physicists expressed serious doubts, including Mil-

likan and his group at Caltech (Epstein to Einstein, July 25, 1925; [9, 10-

565]). Einstein himself was not convinced that Miller’s experiment was reli-

able. As he wrote to Paul Ehrenfest in August 1925: “In the deep of my soul,

I take no stock in Miller-experiment at all, but I cannot say it loudly” (Ein-

stein to Ehrenfest, Aug. 18, 1925; [9, 10-108]). Einstein’s skepticism, just like

Eddington’s, was motivated by the fact that a difference in height between

Cleveland und Mount Wilson was not enough to explain Miller’s results. In

September 1925, Einstein suggested that a temperature difference (Einstein

to Ehrenfest, Sep. 18, 1925; [9, 10-111]; Einstein to Piccard, Sep. 21, 1925;

[9, 19-211]) could be the source of Miller’s findings. He communicated his

guess to Miller, (cf. (Miller to Einstein, May 20, 1926; [9, 17-274])), who

by the end of the year, published a more detailed account of the experiment

[36].

In this context, it is not surprising that Reichenbach’s entirely different

attitude towards Miller’s results could appear puzzling. At the end of 1925,

Schlick expressed disconcert in his correspondence with Einstein (Schlick to

Einstein, Dec. 26, 1925; [9, 21-591]). “Mr. Reichenbach” he wrote “has

recently published a paper ‘

¨

Uber die physikalischen Konsequenzen der rela-

tivistischen Axiomatik’ in the Zeitschrift für Physik ”. Schlick was eager to

know Einstein’s opinion, since the paper “quite clearly shows the limit of the

axiomatic method” (Schlick to Einstein, Dec. 26, 1925; [9, 21-591]).

Schlick was understandably confused by Reichenbach’s claim that the

Lorentz contraction is not ad hoc; after all, this had been Schlick’s reading of

special relativity for at least a decade [60]. Reichenbach’s paper, by attacking

a not further identified mainstream interpretation of special relativity, seems

to have attacked more or less explicitly Schlick’s interpretation. Schlick had

still recently defended it at the 1922 Leipzig meeting Gesellschaft Deutscher
Naturforscher und Ärzte [61]. As is well known, Schlick considered Lorentz

and Einstein’s theory as empirically equivalent, that is equally consistent with

all experiential data. However, whereas Lorentz theory introduces compen-

satory contractions and retardations, Einstein’s theory avoid the introduction

of redundant theoretical structure, and it is thus preferable. Lorentz’s theory,

in Schlick’s view, is analogous to the attempt of saving Euclidean geometry,

by adding a force field deforming all measuring instruments. The difference

is not a matter of truth, but a matter of simplicity. As we as seen, within the

Schlick’s circle, Reichenbach’s axiomatic was initially received as a more so-

phisticated presentation of this point of view. However, Schlick now realized

that Reichenbach had something very different in mind:

The considerations on p. 43 [. . .] show in my opinion that his ax-
iomatic cannot distinguish between special relativity and Lorentz’s
theory (with the contraction hypothesis). This seems to me trivial
since the equations are the same. The real difference between the two
theories is a philosophical one and cannot be grasped in the logical
way of the axiomatic. This difference can be aptly expressed through
the parlance that Reichenbach rejects: Lorentz had introduced an ad

hoc hypothesis. Even if, from a logical point of view, spec. rel. theory
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must introduce as many assumptions as Lorentz’s theory. In the first
case they naturally fit in the framework of the relativity thought and
the contraction hypothesis is psychologically not ad hoc. On the con-
trary, in the case of Lorentz-Fitzgerald [the contraction] appears as an
element added ad hoc (Schlick to Einstein, Dec. 27, 1925; [9, 21-591]).

The limits of Reichenbach’s approach, according to Schlick, emerge even

more clearly from Reichenbach’s reaction to Miller’s experiment. If the ex-

periment were to be confirmed, Schlick argued, the universal conspiracy of

nature that hides the ether from detection would be broken, and we had to

return to the ether theory. By contrast, Reichenbach’s Axiomatic method is

incapable of grasping the difference between the two cases:

Also the paper’s remark�about the possible interpretation of Miller’s
experiments�does not seem to be to grasp the philosophical key point.
If the experiments would really prove (and this is surely not the case),
that a particular direction (that of the “aether wind”) were privileged,
one would certainly abandon the relativistic physics; even if it were
possible to keep relativity through the assumption of certain “matter
axioms”, one would certainly not take this path. Against this, the
axiomatic consideration remains indifferent. In the strict sense, one
cannot speak of physical consequences of the axiomatic. The question
seems to me philosophically relevant. I would be deeply grateful if you
could tell me in a few lines if I’m right (Schlick to Einstein, Dec. 27,
1925; [9, 21-591]).

Unfortunately, Einstein did not comply Schlick’s request and he probably

never read Reichenbach’s paper. However, as we have seen, there is no doubt

that Einstein’s position was closer to that of Schlick.

Einstein had defined the Lorentz contraction hypothesis as ad hoc in the

past [10, 11], provoking Lorentz’s reaction (Lorentz to Einstein, Jan. 23,

1915; [14, Vol. 8, Doc. 43]). Also concerning Miller’s experiment, Einstein

clearly agreed with Schlick [20, 361f.]). On January 19, 1926 a brief, but

unequivocal statement of Einstein was published in the at that time most

influential German newspaper, the Vossiche Zeitung : “If the results of Miller’s

experiments should indeed be confirmed, the relativity theory could not be

upheld” [12]. Einstein was clearly convinced the Miller’s result were probably

spurious, and he was ready to put money where its mouth was, as he explicitly

phrases it [12]. However, he had no doubt that, if Miller’s experiments turned

out to be correct, the relativity principle would have to be abandoned entirely

[21]. This hardly surprising. In Einstein’s view, the construction of a device

detecting the ether-drift would have been comparable to the construction of a

perpetuum mobile of the second kind thermodynamics. The systematic failure

of the ether drift experiments provided the empirical support the relativity

postulate, with which the entire theory stands or falls.

A few months later, Reichenbach submitted a popular paper on Miller’s

experiment entitled ‘Ist die Relativitätstheorie widerlegt?’ which appeared

in the weekly magazine Die Umschau on April 24, 1926. By that time,

Reichenbach was fully aware of what “Einstein himself has recently said in
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the newspapers,”; however, he saw no reason to abandon his “less radical

opinion” ([50, 327]; tr. [57, 202]), namely that “Miller’s result in no way
affects the philosophical consequences of the theory of relativity” ([50, 328];

tr. [57, 203; my emphasis]). It would only imply a change in our knowledge

of the physical mechanism governing rods and clocks [19, 308].

Reichenbach too expressed some doubts about the correctness of Miller’s

experiment. The curve determined by Miller deviates from the expected

symmetry with respect to the horizontal axis (fig. 2). J. Weber [77] showed

that Miller’s figure omits some quite problematic measurement data with-

out explanation. It was unlikely that on Mount Wilson, which after all is

merely 0.03% of the Earth’s radius, one would detect an ether wind 1/3 less

than expected [73]. Moreover, Rudolf Tomaschek [75, 76], an anti-relativist,

performed the so-called Röntgen-Eichenwald and Trouton-Noble experiments

and obtained negative results on the Jungfraujoch in the Bernese Alps. Thus,

it would have been interesting to replicate a Michelson-type experiment on

the Jungfraujoch before drawing further conclusions.

Figure 2: The Results of Miller’s Experiment

[from 50]

However, the philosophical point

of course lied elsewhere: “What
then does the theory of relativity
have to infer from Miller’s experi-
ment? ” ([50, 327]; tr. [57, 202]).

Concerning this point, Reichenbach

was not afraid to express an opin-

ion that radically differed from that

of Einstein. Somehow anticipating

his later famous distinction between

the context of discovery and the

context of justification, Reichenbach

claimed that “[t]he Michelson exper-

iment, of course, played a crucial

role in the historical development of

the theory” ([50, 327]; tr. [57, 202;

my emphasis])

1

; however, according

to Reichenbach, “it does not occupy this same significant place in the rela-

tivistic theory’s logical structure” ([50, 327]; tr. [57, 202; my emphasis]).

The logical structure of the theory was of course expressed by Reichen-

bach’s own axiomatization:

Under the ten axioms of the theory of relativity as I have laid them
out, i.e., its ten most basic empirical propositions, there is only one
that entails the Michelson result; it is only this axiom then that is
thereby threatened. The principle of the constancy of the speed of
light could be maintained in a more limited form even if the Michelson
experiment’s negative result were overturned. One could construct
a “light geometry” using light signals but employing no rigid rods to
maintain a metrical understanding of the world and allow the previous

1This claim is actually problematic [cf., e.g., 70, 5].
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formulation of all physical laws. From this perspective, the Michelson
experiment serves only as a bridge between the light geometry and the
geometry of rigid rods. Should this connection be lost, this would only
mean that rigid rods do not after all possess the preferred properties
that Einstein still attributes to them. This would not mean a return
to the old aether theory, but rather a step towards the renunciation of
a preferred system of measurement in nature ([50, 327]; tr. [57, 203]).

Even after a positive result of the aether-drift experiments, one could still

maintain the light postulate, the claim that the motion of light is a spherical

wave for any uniformly moving system, by adopting a non-standard definition

of simultaneity. However equal lengths measured by rods and clocks would

not be equal to equal lengths measured by light rays. Thus rods and clocks

would adjust to the classical light geometry, and not to relativistic one.

Reichenbach, in his role of the defender of Einstein’s theory, seems to

have become more royal than the king. What Reichenbach probably meant,

is that the real philosophical achievement of the theory is to have revealed the

logical structure which was ultimately encoded in his axiomatization. Special

relativity has disentangled conceptual elements, which in the classical theory

appeared to be confused. There are empirical statements that serve as axioms

(which can be true or false independently of it) and definitions (which are

neither true nor false). Light axioms can be true or false, but simultaneity

is a definition. In this sense, the Galilei and Lorentz transformations are

neither true nor false, since both agree on the light axioms and are different

because of the definition of simultaneity [50]. The matter axiom can be

true or false since it is a matter of fact whether they adapt to Lorentz or

the Galilei transformations. This entire axiomatic structure, however, “is

independent of specific, physical observations” ([50, 203]; tr. [57, 328]). In

other terms, Miller’s experiment, if confirmed, would disprove axiom VIII,

but would not engender the logical structure of Reichenbach’s axiomatization.

It is true that such logical structure has been derived “from a particular

physical theory”, namely special relativity, but the latter has “given rise to

philosophical insights which no longer belong to the realm of physics but

rather to the philosophy of nature” ([50, 204]; tr. [57, 328]).

In the meantime, Reichenbach thanks Max Planck’s and and Max von

Laue’s support, had obtained the chair for natural philosophy in Berlin (Re-

ichenbach to Schlick, July 2, 1926; [64]; Schlick to Reichenbach, July 5, 1926;

[64]). Reichenbach clearly continued to consider the difference of this two

types of contractions important. An entry in Rudolf Carnap diaries, who met

Reichenbach in the Berlin region in September 1926, reads: “He explained

me the difference between Lorentz and Einstein contraction” [2, 025-72-05].

Carnap had just joined the Schlick circle in Vienna. The philosophical dis-

agreement between the Schlick-Circle and Reichenbach was deepening and

went beyond the specific issue of the philosophical interpretation of special

relativity. Reichenbach was convinced that the philosophy of nature should

tackle metaphysical questions, such as that of the reality of the external world

or the human freedom [51]. By contrast, Schlick, influenced by the young

Carnap and Ludwig Wittgenstein deemed all such metaphysical questions as
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non-sensical [62].

We do not know whether Reichenbach ever became aware of Schlick’s neg-

ative opinion of his interpretation of special relativity. However he clearly

did not made any conciliatory steps: Reichenbach’s line of argument can be

found again in the Deutsche Literaturzeitung [52], which, as a letter from

Reichenbach to Schlick reveals, was already finished at the end of 1926 (Re-

ichenbach to Schlick, Dec. 6, 1926; [64]), though Reichenbach was only able

to find a publisher months later. When the book was finally published that

the beginning of 1928 the importance of Miller’s experiment was fading away

especially in Germany. According to Reichenbach, “Michelson experiment has

been confirmed to a very high degree” and he considered “this matter closed”

([52, 225]; tr. [53, 195]). A similar opinion was expressed by Einstein in 1927

[13]. However Reichenbach still considered important to address “erroneous

interpretations in the usual discussions on relativity” ([52, 225]; tr. [53, 195])

that the discussion of Miller’s experiment had revealed. In § 31 Reichenbach

almost literally repeats the content of the 1925 paper we started with, as if

the discussion of Miller’s experiment would force him to clarify an central

issue of his interpretation of special relativity. However, he also made some

important clarifications. In particular he introduced his distinction between

Lorentz and Einstein contraction in terms of Minkowski diagrams.

6 Lorentz Contraction vs. Einstein Contrac-
tion in Terms of Minkowski Diagrams

6.1 Minkowski Spacetime as a Graphical Representa-
tion

Reichenbach had a somewhat deflationary attitude towards Minkowski space-

time. He viewed it as nothing but a “graphical representation”, an expres-

sion he probably borrowed from Arthur Stanley Eddington [7]. Reichenbach

defines “graphical representations” as structural analogies between different

physical systems (e.g., compressed gases, electrical phenomena, mechani-

cal forces, rigid bodies and light rays, etc.), which are realizations of the

same conceptual system (e.g., the axioms of Euclidean geometry) ([52, 123ff];

tr. [53, 101ff]).

In the case of Minkowski spacetime, if “we speak of a geometrization of

physical events, this phrase should not be understood in some mysterious

sense; it refers to the identity of types of structure and not to the identity
of the coordinated physical elements” ([52, 220]; tr. [53, 190]). By asserting

that measuring rods, clocks, and light rays behave according to the relations

of congruence of the indefinite metric, Minkowski spacetime provides the

geometrical representation of the light and matter axioms. When in fig. 3

we “symbolize”, say, the motion of rod OS with its rotation of the segment

around O, “we only g[ive] a graphical representation, which means that the

logical structure [Beziehungsgefüge] exhibited by the rods [. . .] [c]an also be

realized by the spacetime manifold” ([52, 220]; tr. [53, 190]).
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Figure 3: Realization of the indefinite metric by means of light rays, clocks and measuring

rods; from [52, 215]; the label S2 has been added

As Reichenbach put it, in Minkowski spacetime a number �s is coordi-

nated to the coordinate differences �x1, . . . , �x4 by means of the fundamen-

tal metrical formula �s2 = �x2
1 + �x2

2 + �x2
3 � �x2

4. The minus sign in the

rule for computing real distances from coordinate distances is responsible for

all the differences between the Minkowski and Euclidean geometry. The lines

which are at a constant distance from the origin at �s satisfy the equation

�x2
= �x2

1 � �x2
4 rather than �x2

= �x2
1 + �x2

4. The contour lines are

hyperbolae, and not circles like in Euclidean geometry. The four-hyperbolae

in fig. 3, like the unit circle in Euclidean geometry, are the set of all points at

�s = 1 distance from O. The hyperbola �x2
= 0 degenerates into the two

asymptotes, which group all other events in spacetime into three different

classes of intervals characterized by the sign of the quantity �s2. As one

might expect, Reichenbach’s next step is to find measuring instruments that

behave like the indefinite type of metric, just like the behavior of the rods

correspond to the definite one.

The physical realization of the negative �s2 is a physical object that

satisfies the relations of congruence defined by the hyperbolas of quadrants I

and II. The realization of the positive �s2 is a physical object that satisfies

the relations of congruence defined by the hyperbolas of quadrants III and

IV. The first is called a time-like interval �s2 = �1 and is realized by the

proper time of a clock. The rotation of the interval OQ into the position OQ0

represents a moving clock. �s2 = 1 is the space-like interval and is realized

by the proper length of a rod. The rotation of interval OS into OS0
sets
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the rod into motion. Light rays realize �s2 = 0, the limiting velocity, which

cannot be reached but only approached arbitrarily closely. Otherwise rods

and clocks behave by following the hyperbolic contour lines.

As Reichenbach rightly notices, there is a deep disanalogy between clocks

and rods. Clocks are intrinsically four-dimensional measuring instruments,

since they measure distances between two events. Measuring rods, on the

other hand, are three-dimensional measuring instruments; they can be treated

as four-dimensional instruments, if events are produced at their endpoints ac-

cording to the appropriate definition of simultaneity ([52, 217]; tr. [53, 187]).

It is from this difference that all difficulties arise concerning the behavior of

rods.

6.2 Lorentz vs. Einstein Contraction in Minkowski
Spacetime

According to Reichenbach, resorting to the geometrical representation in

fig. 3, one can easily recognize the difference between Lorentz and Einstein

contraction. In Minkowski spacetime the history of a uniformly moving unit

rod is represented by a world-strip bounded by the parallel world-lines of the

rod’s endpoints. In the Lorentz-Einstein theory�keeping in mind that the

points on the hyperbolas are at distance 1 from O�the moving rod is repre-

sented by the narrower strip between the world-lines OQ0
and S1S0

; according

to the classical theory it is represented by the wider strip between OQ0
and

SS0
2. The Einstein contraction maintains that the moving rod OS0

= 1 looks

shorter from the perspective of the rest frame (OS1) than the proper length

of the rod OS = 1 (lKK0<lKK ). The Lorentz contraction refers to the fact that

the classical length OS0
2 would be longer than the relativistic proper length

OS0
= 1, if both were measured in the same moving frame (lK

0

K0<LK0

K0) ([52,

225]; tr. [53, 195]).

“This assertion of the theory of relativity is based mainly on the Michel-

son experiment” ([52, 226]; tr. [53, 195]). The Michelson experiment proves

that material rods satisfy the light-geometrical definition of congruence in all

inertial systems. The matter-geometrical equality of distances happens to co-

incide with the light-geometrical equality. In other terms, rods set in motion

behave according to the hyperbolic contour lines in quadrant IV. Consider

again fig. 1. OM1 and OM2 are regarded as equally long if light rays need

equal time when they are sent back and forth along OM1O and OM2O. The

negative result of the Michelson-Morley experiment establishes that if OM1

and OM2 are equally long if measured through light signals (in terms of the

absence of interference fringes), then small measuring rods that are placed

along the arms also mark off an equal number of segments on both arms:

(OM1O = OM2O) ! (OM1 = OM2) (i)

According to the classical theory, the implication (i) is satisfied only in

the ether frame. In all other frames moving through the ether, the rest-

length of the rod oriented in the direction of motion will no longer satisfy
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the implication (i). If OM1 and OM2 are the arms of the Michelson-Morley

interferometer, then the fact that the matter-geometrical equality of distances

does not coincide with the light-geometrical equality is revealed empirically

by the shift in the patterns of light and darkness detected by the apparatus.

The Lorentz-Einstein theory claims that the implication (i) is satisfied in

all frames; the light-geometrical distance always coincides with the matter-

geometrical distance in all inertial systems. Light geometry is the same in

both cases.

Thus, both Einstein and Lorentz’s theories assume that the proper length

of the arm of the Michelson apparatus lying in the direction of motion is

shorter than it would be according to the classical theory. An objection that

immediately comes to mind is that it is impossible to compare two mag-

nitudes belonging to different theories, since there is no common standard

of comparison. However, according to Reichenbach, his axiomatization pro-

vides the common standard: “In this case, the tertium comparationis is light,

which in terms of light-geometrical definitions supplies a standard to which

the rods of the different theories can be compared” ([52, 197]; tr. [53, 228]).

The hyperbola in quadrant IV (fig. 3) defines the distance 1 from O. Rods

in motion, that is, rotated around O, follow the hyperbolas in the Lorentz-

Einstein theory, but they do not do so in the classical theory. In this way, in

Reichenbach’s view, it is possible to compare rods I and L, though only one

of them has an actual physical existence.

Thus, the Lorentz contraction is a real difference, just as the pressure

of gas is really lower according to van der Waals equation than it would

be according to the ideal gas equation. This does not mean that Einstein

contraction is “apparent”. Reichenbach prefers to speak of a metrogenic or

(since motion is implied) metrokinematic difference: it depends on the fact

that two observers in relative motion measure two different three-dimensional

cross-sections of the world-strip of the rod; thus it is a “perspectival differ-

ence” ([52, 228–229]; tr. [53, 197]). The Michelson experiment implies a real

difference between the classical theory and Einstein’s theory, as well as be-

tween the classical theory and Lorentz’s theory. But there is no difference
between Einstein’s and Lorentz’s theories: “The concept of simultaneity does

not enter into this problem at all” ([52, 229]; tr. [53, 198]).

In geometrical terms, the Einstein contraction compares the width of

different three-dimensional simultaneity cross-sections of the same relativistic

world-strip (it is a perspectival difference); the Lorentz contraction compares

the width of same three-dimensional cross-section of different world-strips

(it is a real difference). fig. 3 reflects the fact that in the classical theory

there is neither a Einstein nor a Lorentz contraction (OS = OS2 = OS0
2). In

the Lorentz-Einstein theory the Einstein contraction is Lorentz contraction

(OS0
1 < OS0

2 ! OS1 < OS). However, the two contractions are not identical.

This is essential to understand “[w]hat is the difference between Einstein’s

and Lorentz’s theories” ([52, 229]; tr. [53, 198]). In order to answer this ques-

tion Reichenbach distinguishes between the following two statements ([52,

229]; tr. [53, 198]):
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1. the length of the moving rod lKK0 measured from the rest frame is dif-

ferent from its proper length lKK . As is well known, the proper length is

greater than any coordinate length; the difference disappears only for

the co-moving observer.

2. the rest-length of the moving rod lK
0

K0 is different from the rest-length of

another rod LK0

K0 which moves with it but satisfies the classical theory.

The relativistic proper length in the moving frame is shorter than the

classical length would be as judged from the same frame.

In Reichenbach’s view, (b) can either be “true” or “false” in both Lorentz

and Einstein’s theories, depending on whether one accepts, say, Michelson

or Miller’s experimental results. In the geometrical representation, it is in-

dicated by the difference between the distances lK
0

K0 = OS0
and LK0

K0 = OS02

(fig. 3). On the contrary, (a) is neither “true” nor “false”; it depends on the

definition of simultaneity adopted (one can choose the standard Einsteinian

definition or an alternative one). In the geometrical representation, state-

ment (a) is equivalent to the comparison of lKK = OS and lKK0 = OS0
. Lorentz

believed that lengths mentioned in (a) are different because the lengths men-

tioned in (b) are: the lengths of the arms of the interferometer are equally

long only in the ether frame. On the contrary, Einstein declared the lengths

mentioned in (a) are equal if measured at relative rest: the proper lengths of

the arms of the interferometer are the same in all inertial frames ([52, 229–

230]; tr. [53, 198–199]). Reichenbach, however, made a further statement

embodying the peculiarity of his approach: “It is sometimes overlooked by
proponents of the theory of relativity that statement (b) is nevertheless true”
([52, 230]; tr. [53, 198]) in Einstein’s theory as well.

Thus Einstein’s theory, just like Lorentz’s, implies a contraction that is

independent of the relativity of simultaneity, namely, the Lorentz contraction

that implies a comparison of lengths lK
0

K0 < LK0

K0 , i.e., OS0 < OS02
in the same

moving frame but in different theories. In addition, however, it contains the

Einstein contraction, which compares lengths in the same theory: the proper

length and the coordinate length lKK0 < lKK , i.e., OS < OS1. As we have seen,

Reichenbach maintained the opinion that the two contractions only happen

to amount to the same Lorentz factor as a consequence of the linearity of the

Lorentz transformations. The numerical identity OS1 : OS = OS0
: OS02

is

coincidental and it conceals a deeper conceptual difference.
Reichenbach repeats the proof of this statement, as it appeared in his

1925 article ([52, 230f.]; tr. [53, 199f.]); however, in order to emphasize the

difference between the two contractions, he constructs a counterexample in

which an “Einstein contraction” appears but there is no “Lorentz contraction”.

The example is based on the possibility of using Einstein’s definition of si-

multaneity or an alternative one (✏ 6= 1/2) in the classical theory ([52, 231];

tr. [53, 200]). Reichenbach’s conclusion can be understood without entering

into too much detail:

The example [. . .] [m]akes it particularly clear that the Einstein con-
traction is a metrogenic phenomenon. In the geometrical representa-
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tion this means that we may choose as the length of the rod differently
directed sections through the world-strip of the rod. On the other
hand, the geometrical representation of [fig. 3] shows very clearly that
through the difference in the width of the strip, the Lorentz contrac-
tion indicates a difference in the actual behavior of the rod. These
considerations also explain how it is possible to compare rods I and
L, although only one of them is physically realized. OS is the same in
both theories; the classical theory claims that the right-hand boundary
of the strip parallel to OQ0 must be drawn through S, whereas the new
theory places the boundary along the tangent to the hyperbola which
passes through S0 ([52, 232]; tr. [53, 200]).

Thus it is correct to claim that the Einstein contraction does not require

any physical explanation; it is a metrogenic difference between proper and

coordinate length. However, Lorentz’s contraction does cry out for such an

explanation. The negative result of the Michelson experiment implies that

rods of all materials invariably behave in agreement with distances measured

by light rays. How can such a coincidence be explained?

As we have seen, for Reichenbach, Weyl’s expression “adjustment” aptly

expresses the need for an explanation, but it provides no details as to what

it would look like. “The answer can of course be given only by a detailed

theory of matter, of which we have not the least idea” ([52, 233]; tr. [53,

201; translation modified]). It is important to emphasize that this is not

a marginal aspect of Reichenbach’s philosophy. According to Reichenbach

the very same problem emerges in general relativity when the non-Euclidean

nature of the continuum is taken into account. In this case, too, he resorts

to the expression “adjustment” and he refers his readers to the very same §31

of the book.

In general relativity measuring instruments in a gravitational field should

also be considered “free from deforming forces”, and not deviating from the

Euclidean expected behavior; nevertheless one may still seek an explanation

for why all measuring instruments happen to agree on the same, generally

non-Euclidean, geometry. According to Reichenbach, in general relativity,

too, only a theory of matter can explain this peculiar behavior of the space-

time measuring instruments. In the presence of a real gravitational field it

is impossible to arrange rods and clocks in a rectangular grid, just like it is

impossible to “develop” a flat piece of paper around a sphere. “We know that

a more detailed investigation would reveal the presence of molecular force-

fields, which affect the molecules on the surface of the sphere and thus force

it into a definite” ([52, 295]; tr. [53, 258]) congruence relationship.

Conclusion
The interest in Miller’s results faded away in the 1930s. The two great

American experimentalists of their time, Miller and Charles Edward St. John

[69], discussed the issue at the April 1930 meeting of the National Academy

of Sciences [30, 4.3]. St. John seemed to have won the debate, but Miller
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continued to defend his position in a long paper published just thereafter

[37]. However, the Kennedy-Thorndike experiment [29] brought further grist

to special relativity’s mill, and so did the Ives-Stilwell experiment [22, 23] a

few years later in spite of Charles Ives’ intentions [31]. Miller results were

considered inexplicable until in 1954, when Robert Shankland et al. [66], who

also discussed the matter with Einstein [65], put forward an explanation of

Miller’s data which is usually accepted, even if not universally [30].

From the point of view of the history of philosophy of science, Miller’s

experiments played the role of a litmus test. Even like-minded philosophers,

like Schlick and Reichenbach, turned out to have a quite different stance

towards Miller’s results. Schlick reacted as expected, rehearsing his conven-

tionalist position. The difference between Lorentz and Einstein theory is not

a matter of truth, but a matter of choice. The superiority of Einstein’s the-

ory depends on the fact that the theory involves less redundant elements, in

particular, no ad hoc molecular dynamical contraction of the rods. On the

contrary, Reichenbach was forced to reveal some more striking consequences

of his axiomatization program. Reichenbach considered the contraction of

rods as a physically “real” contraction, in the sense that in both theories rods

behaves differently than in the classical theory. Einstein’s and Lorentz’s the-

ories do not differ in this respect. In both cases a “molecular” explanation of

the contraction is needed. If Lorentz erroneously conceived the explanation

as a deviation caused by a force, Einstein proved negligent by avoiding any

explanation. According to Reichenbach, this point had been misunderstood,

since the explanandum had not been properly identified. What has to be

explained is not the metrogenic and perspectival “Einstein contraction”, but

the physical and real “Lorentz contraction”, that is the odd coincidence that

measurements made by material structures always agree with measurement

made by electromagnetic signals.

Reichenbach’s distinction between two type of contractions is seldom men-

tioned in recent scholarship. However, it enjoyed renewed success in the

1950s, just after Reichenbach’s death in 1953. In a 1955 paper, Adolf Grünbaum

[17], warned from a “widespread error” to consider the “the Lorentz-Fitzgerald

contraction hypothesis was an ad hoc explanation” as opposed to the Einstein

contraction which is a consequence of the relativity of simultaneity [17, 460].

According to Grünbaum this “error is inspired by the numerical equality of

the contraction factors of these two kinds of contraction” [17, 460]. Both

special relativity and Lorentz theory presupposes the Lorentz contraction:

“using light as the standard for effecting the comparison, this hypothesis af-

firms that in the same system and under the same conditions of measurement,

the metrical properties of the arm are different from the ones predicted by

classical ether theory” [17, 460]. This has nothing to do with a comparison

of the length of the two arms in two different frames. Grünbaum mentions

only at the end of the paper that his “treatment of several of the issues is

greatly indebted to two outstanding works on the philosophy of relativity by

Hans Reichenbach, which are not available in English” [17, 460].

The translation of Reichenbach’s book was published in 1958 [53]. A

year later, the English translation [43] of Popper’s Logik der Forschung [42]



also appeared in print. Just thereafter, Grünbaum made implicit use of

Reichenbach’s account against Popper’s claim that the Lorentz contraction

is ad hoc [18]. In response to Popper, Grünbaum [18] drew attention to the

1932 Kennedy-Thorndike experiment, which would disprove Lorentz contrac-

tion, if the theory is not supplemented with a clock retardation hypothesis.

Grünbaum shows that this “doubly-amended theory” can account for all opti-

cal experiments that support special relativity, the Michelson-Morley experi-

ment, the Kennedy-Thorndike experiment, and the Ives-Stillwell experiment.

Further modifications can be introduced to account for electromagnetic kind

of ether-drift experiments [25]. A few years later, Grünbaum implemented

this line of reasoning in his classical monograph, Philosophical Problems of
Space and Time. The distinction was later adopted in a modified version by

Carlo Giannoni [15, 16] and with a different nomenclature by Dennis Dieks

[4].

In Reichenbach’s view, both Lorentz’s and Einstein’s theories start with

the recognition of a coincidence, that “field geometry” and “matter geome-

try” always agree, that is that the laws of nature governing field and matter

happen to be Lorentz invariant. This non-trivial coincidence requires an ex-

planation. Lorentz’s theory, according to Reichenbach, provided the wrong

kind of explanation, however, Einstein’s theory did not provide any explana-

tion at all. According to the mainstream interpretation [41], it was Minkowski

that, so to say, provided the missing explanatory element, i.e. the geometrical

structure spacetime [28]. On the contrary, Reichenbach surprisingly adopted

a sort of neo-Lorentzian approach [1], claiming that the explanation should

have been sought in a future theory of matter. Reichenbach’s reaction to

Miller’s experiments unwittingly shows which is the key difference between

these two types of explanations. The “geometrical” explanation is rigid: a

positive result of Miller’s experiments would have made the entire theory col-

lapse since the geometrical structure of spacetime enters in the formulation

of all laws of nature. The “material” explanation is, on the contrary, flexible:

the laws governing matter happen to agree with laws governing the fields, but

they do not need to do so. The positive result of an ether-drift experiment

would have simply implied a readjustment in their reciprocal relationships.

Reichenbach regarded this flexibility as an advantage of his axiomatization,

whereas it was probably its major shortcomings. Reichenbach’s axiomati-

zation seems to miss the the key feature of Einstein-Minkowski approach,

which lies in its giving a single explanation for what is otherwise an odd co-

incidence [27]. The Reichenbach’s neo-Lorentzian approach, on the contrary,

simply accepts this coincidence as a “brute fact”, thus, ultimately, does not

provide any explanation at all.
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und Ärzte, pages 58–69. Voge, 1923. Repr. in [63, Vol. 1.5, 529–547].

[62] Moritz Schlick. Erleben, Erkennen, Metaphysik. Kant-Studien, 31(2/3):

146– 158, 1926.

29



[63] Moritz Schlick. Gesamtausgabe. Springer, 2006.

[64] Mortitz Schlick. Schlick Nachlass. Noord-Hollands Archief, Haarlem.

[65] Robert S. Shankland. Conversations with Albert Einstein. American
Journal of Physics, 31(1):47–57, 1963-01.

[66] Robert S. Shankland, Sidney W. McCuskey, Fred C. Leone, and Gustav

Kuerti. New Analysis of the Interferometer Observations of Dayton C.

Miller. Reviews of Modern Physics, 27(2):167–178, 1955-04.

[67] Ludwik Silberstein. D. C. Miller’s Recent Experiments, and the Rela-

tivity Theory. Nature, 115:798–799, May 1925.

[68] Edwin E. Slosson. The Relativity Theory and the Ether Drift. Science,
62(Supplement):viii, 1925.

[69] Charles Edward St. John. Observational Basis of General Relativity.

Publications of the Astronomical Society of the Pacific, 44:277, 1932.

[70] John Stachel. Einstein and Michelson. The Context of Discovery and the

Context of Justification. Astronomische Nachrichten, 303:47–53, 1982.

Repr. in [71, 177–190].

[71] John Stachel. Einstein from ‘B’ to ‘Z’. Birkhäuser, 2002.
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