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Abstract 8 

Hormonal synchronization protocols can dramatically improve the reproductive 9 

efficiency of dairy herds, yet some farmers continue to question the economics of these 10 

programs based on the cost of hormonal treatments, and hormonal treatment costs vary 11 

dramatically among countries. Our objective was to compare the economic impact of 12 

reproductive management programs that incorporate varying degrees of detection of estrus and 13 

timed AI. A reproductive economic analysis simulation model (the UW-Cornell 14 

DairyRepro$ decision tool) was used to compare the economic impact of pairs of reproductive 15 

management programs. We simulated sets of scenarios for 2 analyses. In the first analysis, we 16 

calculated the economic impact of switching from a Presynch-Ovsynch program to a Double-17 

Ovsynch program that included a second PGF2α treatment during the Breeding-Ovsynch 18 

portion of the protocol (Double-Ovsynch+PGF). In the second analysis, we conducted a 19 

breakeven analysis in which we incrementally increased the cost of hormonal treatments within 20 

various reproductive management programs. Our analyses revealed that a Double-21 

Ovsynch+PGF protocol, the most intensive program evaluated, was more profitable than other 22 

programs including a Presynch-Ovsynch protocol with 100% timed AI or a Presynch-Ovsynch 23 
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protocol that incorporated detection of estrus, despite the higher up-front cost incurred by using 24 

more hormonal treatments. This advantage remained until the cost of hormones were 5 to 14 25 

times more than the current US market prices and 2 to 6 times greater than the current 26 

European market prices. The cost of GnRH had a greater impact on the net profit gain than the 27 

cost of PGF2α.  28 

Keywords: reproduction, intensive synchronization program, economic impact 29 

 Short Communication 30 

Advances in the understanding of the reproductive physiology of dairy cows have lead 31 

to the development of management strategies and technologies that improve reproductive 32 

performance. Commercial dairy farms are challenged with making the most profitable 33 

management decisions among many options and implementing them correctly. Methods for 34 

enhancing fertility and breeding efficiency include: detection of estrus (ED) (Xu et al., 1998; 35 

Rorie et al., 2002), synchronization of estrus (Folman et al., 1984; Momcilovic et al., 1998), 36 

and synchronization of ovulation and timed artificial insemination (TAI) (Pursley et al., 1995; 37 

Moreira et al., 2001; Souza et al., 2008). The newest TAI protocols for first AI (i.e., Double-38 

Ovsynch and G6G), not only increase the AI service rate, but also increase P/AI to TAI 39 

(Carvalho et al., 2018). Strategies that maximize ED, which is widely implemented on dairies, 40 

have made significant contributions to the profitability of dairy herds (Pecsok et al. 1994). A 41 

major limitation of ED, however, is the presence of anovular cows. The proportion of cows that 42 

have not re-initiated cyclicity by the end of the voluntary waiting period varies among herds 43 

and among parities within a herd and ranges from 5% to 40% (Walsh et al., 2007; Santos et al., 44 

2009; Bamber et al., 2009). The lack of estrous behavior in anovular cows precludes AI to a 45 

detected estrus, and many anovular cows are submitted to hormonal protocols for TAI.  46 
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Protocols for synchronization of ovulation use sequential treatments of GnRH and 47 

PGF2α to control follicular development, luteal regression, and time of ovulation. 48 

Synchronization of ovulation allows for more precise timing of AI than relying on detection of 49 

estrus alone for the timing of AI (Pursley et al., 1995, Souza et al. 2008; Valenza et al., 2012; 50 

Fricke et al., 2014). Furthermore, optimization of the hormonal milieu during the Ovsynch 51 

protocol increases P/AI for cows at first TAI (Souza et al., 2008; Carvalho et al., 2014) and for 52 

cows resynchronized to receive subsequent TAI (Giordano et al., 2012; Lopes et al., 2013; 53 

Carvalho et al., 2015). Many farms combine ED and TAI by observing and inseminating cows 54 

detected in estrus after the second PGF2α treatment of a Presynch-Ovsynch protocol 55 

(Stangaferro et al. 2018 and 2019), whereas cows not detected in estrus complete the protocol 56 

and receive TAI. Although incorporation of estrus into a Presynch-Ovsynch protocol increases 57 

AI service rate, it also decreases P/AI by 35% compared to 100% TAI after a Presynch-58 

Ovsynch protocol (Borchardt et al., 2016). By contrast, submission of lactating Holstein cows 59 

to a Double-Ovsynch+PGF protocol and TAI for first insemination increases the percentage of 60 

cows inseminated within 7 d after the end of the voluntary waiting period and increases P/AI at 61 

33 and 63 d after first insemination resulting in 64 and 58% more pregnant cows, respectively, 62 

than submission of cows for first AI after detection of estrus at a similar day in milk range 63 

(Santos et al., 2017).  64 

The assessment of the overall economic value of different reproductive management 65 

programs (Cabrera and Giordano, 2013; Cabrera, 2014) can be achieved by simulating 66 

reproductive performance along with its costs and benefits on a farm-by-farm basis (Giordano 67 

et al., 2011; 2012; Kalantari and Cabrera, 2012), and calculating the expected net return (De 68 

Vries et al., 2010; Fricke et al., 2010; Cabrera, 2011). In this study, we used a simulation model 69 
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to compare the economic impact of current and alternative reproductive programs (the UW-70 

Cornell DairyRepro$ decision tool; Giordano et al., 2012). This study had three major 71 

objectives: 1) to analyze the economic profitability of a more intensive reproductive protocol 72 

involving more hormonal treatments; 2) to determine if increased hormonal treatment costs 73 

would be compensated for by increased production of calves and increased P/AI; and 3) to 74 

estimate how high the cost of hormones would have to be to render intensive synchronization 75 

protocols that require more hormonal treatments non-profitable. To answer to these questions, 76 

a 1,000-cow commercial dairy herd was simulated using the UW-Cornell 77 

DairyRepro$ decision tool. For comparison consistency and to avoid analysis bias, non-studied 78 

variables such as mortality rate, body weight, involuntary culling rate, lactation curves, milk 79 

price, among others, were kept constant among scenarios at default levels described by 80 

Giordano et al. (2012). 81 

Six reproductive management programs for first TAI were simulated. The first program 82 

simulated was a PreSynch-Ovsynch protocol with ED incorporated after the second PGF2α 83 

treatment (PreSynch-Ovsynch+ED). The second program simulated was a PreSynch-Ovsynch 84 

protocol for 100% TAI with ED incorporated after first TAI (PreSynch-Ovsynch+EDpost). In 85 

these first two protocols, CR for PreSynch-Ovsynch was set at 35% (Caraviello et al., 2006), 86 

Service Rate (SR) for ED was set at 60%, and CR for ED was set at 30% (Giordano et al., 2012; 87 

Fricke et al., 2014). Programs 3 through 5 were Presynch-Ovsynch protocols for 100% TAI 88 

which were simulated with varying CR to TAI (35%, 40%, 45%; Caraviello et al., 2006; Sousa 89 

et al., 2008; Stangaferro et al., 2018). The sixth protocol simulated was a Double-90 

Ovsynch+PGF protocol (Carvalho et al., 2015; Wiltbank et al., 2015) in which CR was set at 91 

50% (Souza et al., 2008; 2013; Santos et al., 2017). In all simulations, Ovsynch was used as the 92 
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resynch protocol, with a 30% CR to TAI (Lopes et al., 2013). These protocols were chosen to 93 

reveal the difference in profitability between the most intensive program (i.e., a Double-94 

Ovsynch+PGF protocol) compared to a PreSych-Ovsynch protocol. The protocols that 95 

incorporated ED were selected to understand if incorporation of AI to a detected estrus during 96 

these programs would be profitable if performed with PreSych-Ovsynch, and this profitability 97 

difference was calculated compared to a Double-Ovsynch+PGF protocol.   98 

Because our objective was to compare the difference in hormonal costs among the 99 

programs, all non-hormonal reproduction costs were set at $0 in the UW-Cornell 100 

DairyRepro$ decision tool. The cost of each GnRH treatment was set at $2.6, and the cost of 101 

each PGF2α treatment was set to $2.3 to reflect cost of hormones in the US market (Giordano et 102 

al., 2012). In addition, the cost of each GnRH treatment was set at $6.7 and the cost of each 103 

PGF2α treatment was set to $5.1 to reflect cost of hormones in the European market. Cost of 104 

hormonal treatments for the European market were based on 11 values for the most common 105 

commercial PGF2α products (Cloprostenol 500 μg) and 5 values of the most common GnRH 106 

(Gonadorelin 100 μg) products in the Italian market in November, 2018. Based on these costs, 107 

the economic simulations were run to calculate the total net profit ($/cow per yr) and the 108 

aggregated hormonal cost of each program. The UW-Cornell DairyRepro$ decision tool was 109 

also used to calculate the number of hormonal treatments required per cow per yr for the 110 

various protocols.  111 

Using the PreSynch-Ovsynch protocol with a 35% P/AI as the baseline, the number of 112 

hormonal treatments and net profit gain of the various reproductive management protocols was 113 

compared (Table 1). Although PreSynch-Ovsynch protocols use fewer hormonal treatments 114 

than a Double-Ovsynch+PGF protocol (1.4 to 3.0 fewer treatments per cow per yr); the 115 
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Double-Ovsynch+PGF protocol was more profitable. The Double-Ovsynch+PGF protocol 116 

attained $40.4 greater profit per cow per yr than the PreSynch-Ovsynch + ED protocol and 117 

$28.9 more than PreSynch-Ovsynch + EDpost protocol based on hormonal costs in the US 118 

market. Also, the Double-Ovsynch+PGF protocol was more profitable than the 100% TAI after 119 

a Presynch-Ovsynch protocol ($21.2 to $46.2 more per cow per yr, depending on CR; Table 1). 120 

These results are directly related to the increased reproductive performance of a Double-121 

Ovsynch+PGF protocol (higher CR to first AI) compared to the other protocols. Furthermore, 122 

inclusion of ED after the first TAI (i.e., the PreSych-Ovsynch + EDpost protocol) was a more 123 

profitable strategy than using ED either before the first TAI (i.e., the PreSynch-Ovsynch + ED 124 

protocol) or not incorporating ED at all based on 35% and 40% CR, respectively. This outcome 125 

might result because fewer cows are submitted to a resynch protocol at a lower CR when 126 

applying more intensive protocols for first TAI that have an increased conception rate. The 127 

PreSynch-Ovsynch protocol with a 45% CR had the second greatest net profit among the 128 

programs compared because of its higher CR counteracting the resynch cost. The gain in 129 

profitability when switching to a Double-Ovsynch+PGF protocol based on US market prices 130 

was greater (Table 1) because of the ratio of the costs between GnRH and PGF2α, which was 131 

113% in the US market compared to131% in the European market. 132 

The second comparison we made addressed the concern of whether a more intensive 133 

synchronization protocol will still result in higher profitability than the less intensive 134 

reproductive management protocols based on higher costs of hormones. We therefore 135 

conducted sensitivity analyses by incrementally increasing the cost of hormonal treatments to 136 

determine the breakeven point at which hormonal costs offset the net profit of 1) having the 137 

costs of GnRH and PGF2α at US and European market costs and raising both costs by multiples; 138 
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2) setting the cost of GnRH at European market average cost of $6.7 and increasing the cost of 139 

PGF2α; and 3) setting the cost of PGF2α  at European market average cost of $5.1 and increasing 140 

the cost of GnRH. The ability to vary hormonal treatment costs in the UW-Cornell 141 

DairyRepro$ decision tool made it possible to simulate these scenarios. For this analysis, all 142 

general costs such as labor for administering hormonal treatments, labor for transrectal 143 

palpation for pregnancy diagnosis and insemination, and the non-studied variables like 144 

lactation curve and other herd parameters, were kept as default in the UW-Cornell 145 

DairyRepro$ decision tool (Giordano et al., 2012). Briefly, labor cost for administering 146 

hormonal treatments was set at $15/hr, and labor for transrectal palpation for pregnancy 147 

diagnosis was set at $105/hr. The cost of insemination included semen cost of $5/AI and a 148 

labor cost of insemination at $5/AI. Groups of simulations were run to compare the most 149 

intensive Double-Ovsynch+PGF protocol with each of the other defined protocols compared in 150 

this simulation. In each pair-group comparison, the cost of GnRH and/or PGF2α treatments was 151 

increased until the net profit became negative, then the breakeven point was identified as the 152 

intercept of the trend line with the x-axis (Figure 1). These x-axis intercepts define the 153 

hormonal treatment costs at which a Double-Ovsynch+PGF protocol would have an equal net 154 

profit to the protocol it was compared against.  155 

Based on our analysis hormonal treatment costs would need to be 5 to 14 times greater 156 

in the US market and 2 to 6 times greater in the European market for any of the Presynch-157 

Ovsynch protocols to be more profitable than the Double-Ovsynch+PGF protocol. The greater 158 

P/AI at first insemination after a Double-Ovsynch+PGF protocol compensates for the 159 

additional hormonal treatment costs so that the cost of hormonal treatments would need to 160 

increase substantially before it becomes less profitable than any of the other programs. When 161 
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the CR of Presynch-Ovsynch protocols increased, the breakeven point was reached earlier 162 

because the advantage of the increased CR of Double-Ovsynch+PGFis was decreased. 163 

To investigate the cost of one of the hormonal treatments to reach the breakeven point, 164 

we ran hypothetical scenarios in which the cost of one hormone was constant but the cost for 165 

the other hormone was incrementally increased. In this simulation, the cost of PGF2α was set at 166 

$5.1/dose, and the cost of GnRH was set at $6.7/dose (i.e., the average European market price). 167 

Breakeven hormonal costs from this analysis are reported in Table 2.  168 

Overall, the breakeven cost was more sensitive to the cost of GnRH than to the cost of 169 

the PGF2α (Table 2). When the cost of GnRH was fixed, the cost of PGF2α could increase 170 

considerably before the breakeven point was reached or no breakeven point could be reached 171 

by the model. A complete Presynch-Ovsynch protocol uses 2 GnRH and 3 PGF2α treatments, 172 

whereas the Double-Ovsynch+PGF protocol uses 4 GnRH and 3 PGF2α treatments with a 173 

higher proportion of GnRH treatments (57% vs. 40%) and a lower proportion of PGF2α 174 

treatments (43% vs. 60%). If ED was not incorporated into the reproductive program and the 175 

cost of GnRH was fixed, profit increased even when the cost of PGF2α increased. Thus, the 176 

breakeven points are not reached by the model when increasing the cost of PGF2α. For example, 177 

when compared with PreSyncOv 40 with the cost of PGF2α fixed at $5.1/dose, the cost of a 178 

GnRH treatment was $22.4/dose at the break-even point (Table 2). By contrast, in the first 179 

study, one breakeven point was reached when the price was $20.7/dose for PGF2α and 180 

$23.4/dose for GnRH (Figure 1(a), 9 times the US market prices), indicating that a greater 181 

PGF2α cost determines an even higher cost of GnRH to reach the breakeven point. This can be 182 

explained by the higher CR of the Double-Ovsynch+PGF protocol that leads to fewer cows 183 

submitted to a resynch protocol. Consequently, fewer GnRH treatments per pregnancy are used 184 
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on average (Table 1). For protocols that incorporate ED, fewer cows are submitted to hormonal 185 

treatments which decreases total hormone costs of the protocol; thus, a breakeven point was 186 

reached even when the GnRH cost was fixed, but when the cost of PGF2α was unusually high 187 

(Table 2).  188 

In conclusion, our economic evaluation found that more intensive reproductive 189 

programs that use more hormonal treatments but result in substantially increased reproductive 190 

performance are more profitable than less intensive programs and remain superior even if 191 

hormonal prices are unusually high. Results from these analyses could be reproduced or 192 

adjusted by applying the UW-Cornell DairyRepro$ decision support tool that is openly 193 

available at UW-Madison and Cornell University websites. 194 

  195 



  10 

References 196 

Bamber R. L., G. E. Shook, M. C. Wiltbank, J. E. P. Santos, and P. M. Fricke. 2009. Genetic 197 

parameters for anovulation and pregnancy loss in dairy cattle. J. Dairy Sci. 92:5739-198 

5753.  199 

Borchardt, S., P. Haimerl, and W. Heiwieser. 2016. Effect of insemination after estrous detection 200 

on pregnancy per artificial insemination and pregnancy loss in a Presynch-Ovsynch 201 

protocol: A meta-analysis. J. Dairy Sci. 99:2248-2256.  202 

Cabrera, V. E., 2011. The economic value of changes in 21-day pregnancy rate and what controls 203 

this value. 21st American Dairy Science Association Discover Conference: Improving 204 

Reproductive Efficiency of Lactating Dairy Cows. Itasca, IL. 10 May 2011.  205 

Cabrera, V. E. 2014. Economics of fertility in high-yielding dairy cows on confined TMR 206 

systems. Animal 8:211-221.  207 

Cabrera, V. E., and J. O. Giordano. 2013. Evaluating the economic value of changing the 208 

reproductive management program for a specific dairy farm. DAIReXNET eXtension. 209 

23 Oct. 2013. 210 

Caraviello, D. Z., K. A. Weigel, P. M. Fricke, M. C. Wiltbank, M. J. Florent, N. B. Cook, K. V. 211 

Nordlund, N. R. Zwald, and C. L. Rawson. 2006. Survey of management practices on 212 

reproductive performance of dairy cattle on large US commercial farms. J. Dairy Sci. 213 

89:4723–4735. 214 

Carvalho, P. D., J. N. Guenther, M. J. Fuenzalida, M. C., Amundson, M. C. Wiltbank, P. M. 215 

Fricke. 2014. Presynchronization using a modified Ovsynch protocol or a single 216 

gonadotropin-releasing hormone injection 7 d before an Ovsynch-56 protocol for 217 



  11 

submission of lactating dairy cows to first timed artificial insemination. J. Dairy Sci. 218 

97(10):6305-15. 219 

Carvalho P. D., M. J. Fuenzalida, A. Ricci, A. H. Souza, R. V. Barletta, M. C., Wiltbank, P. M. 220 

Fricke. 2015. Modifications to Ovsynch improve fertility during resynchronization: 221 

Evaluation of presynchronization with gonadotropin-releasing hormone 6 d before 222 

initiation of Ovsynch and addition of a second prostaglandin F2α treatment. J Dairy Sci. 223 

98(12):8741-52. 224 

Carvalho, P. D., V. G. Santos, J. O. Giordano, M. C. Wiltbank, and P. M. Fricke. 2018. 225 

Development of fertility programs to achieve high 21-day pregnancy rates in high-226 

producing dairy cows. Theriogenology 114:165-172. 227 

De Vries, A., J. Van Leeuwen, and W. W. Thatcher, 2010. Economics of improved reproductive 228 

performance in dairy cattle. University of Florida IFAS Extension.  229 

Folman, Y., M. Kaim, Z. Herz, and M. Rosenberg. 1984. Reproductive management of dairy 230 

cattle based on synchronization of estrous cycles. J. Dairy Sci. 67:153–160.  231 

Fricke, P.M., S. Stewart, P. Rapnicki, S. Eicker, and M. Overton. 2010. Pregnant vs. open: 232 

Getting cows pregnant and the money it makes. eXtension, DAIReXNET Reproduction 233 

Resources.  234 

Fricke P.M., J.O. Giordano, A. Valenza, G. Lopes Jr., M.C. Amundson, P.D. 2014. Reproductive 235 

performance of lactating dairy cows managed for first service using timed artificial 236 

insemination with or without detection of estrus using an activity-monitoring system J. 237 

Dairy Sci., 97:2771-2781. 238 



  12 

Giordano, J. O., P. M. Fricke, M. C. Wiltbank, and V. E. Cabrera. 2011. An economic decision-239 

making support system for selection of reproductive management programs on dairy 240 

farms. J. Dairy Sci 94:6216-6232. 241 

Giordano, J. O., A. Kalantari, P. M. Fricke, M. C. Wiltbank, and V. E. Cabrera. 2012. A daily 242 

herd Markov-chain model to study the reproductive and economic impact of 243 

reproductive programs combining timed artificial insemination and estrus detection. J. 244 

Dairy Sci 95:5442-5460. 245 

Kalantari, A. S., and V. E. Cabrera. 2012. The effect of reproductive performance on the dairy 246 

cattle herd value assessed by integrating a daily dynamic programming with a daily 247 

Markov chain model. J. Dairy Sci. 95:6160-6170. 248 

Lopes, G. Jr., J. O. Giordano, A. Valenza, M. M. Herlihy, J. N. Guenther, M. C. Wiltbank, P. M. 249 

Fricke. 2013. Effect of timing of initiation of resynchronization and presynchronization 250 

with gonadotropin-releasing hormone on fertility of resynchronized inseminations in 251 

lactating dairy cows J. Dairy Sci., 96:3788-3798. 252 

Momcilovic, D., L. F. Archbald, A. Walters, T. Tran, D. Kelbert, C. Risco, and W. W. Thatcher. 253 

1998. Reproductive performance of lactating dairy cows treated with gonadotropin-254 

releasing hormone (GnRH) and/or prostaglandin F2a (PGF2α ) for synchronization of 255 

estrus and ovulation. Theriogenology 50:1131–1139. 256 

Moreira, F., C. Orlandi, C. A. Risco, R. Mattos, F. Lopes, and W. W. Thatcher. 2001. Effects of 257 

presynchronization and bovine somatotropin on pregnancy rates to a timed artificial 258 

insemination protocol in lactating dairy cows. J. Dairy Sci. 84:1646–1659. 259 

Pecsok, S.  R., McGillard, M.  L.  and Nebel, R.  L.  1994. P/AIs 1. Derivation and estimates for 260 

effects of estrus detection on cow profitability. J. Dairy Sci. 77:3008-3015. 261 



  13 

Pursley, J. R., M. O. Mee, and M. C. Wiltbank. 1995. Synchronization of ovulation in dairy cows 262 

using PGF2α and GnRH. Theriogenology. 44:915–923. 263 

Rorie, R. W., T. R. Bilby, and T. D. Lester. 2002. Application of electronic estrus detection 264 

technologies to reproductive management of cattle. Theriogenology 57:137–148. 265 

Santos, V. G., P. D. Carvalho, C. Maia, B. Carneiro, A. Valenza, Fricke P.M. 2017. Fertility of 266 

lactating Holstein cows submitted to a Double-Ovsynch protocol and timed artificial 267 

insemination versus artificial insemination after synchronization of estrus at a similar 268 

day in milk range. J. Dairy Sci. 100:8507–8517. 269 

Santos, J. E. P., H. M. Rutigliano, M. F. Sa Filho. 2009. Risk factors for resumption of 270 

postpartum estrous cycles and embryonic survival in lactating dairy cows. Anim. 271 

Reprod. Sci. 110:207-221.  272 

Souza, A. H., H. Ayres, R. M. Ferreira, and M. C. Wiltbank. 2008. A new presynchronization 273 

system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating 274 

dairy cows. Theriogenology 70:208–215. 275 

Souza, A. H., P. D. Carvalho, R. D. Shaver, M. C. Wiltbank, and V. Cabrera. 2013. 276 

Epidemiology of synchronization programs for breeding management in US dairy 277 

herds. J. Dairy Sci. 96(Suppl. 1):288.  278 

Stangaferro, M. L., R. Wijma, M. Masello, and J. O. Giordano. 2018. Reproductive performance 279 

and herd exit dynamics of lactating dairy cows managed for first service with the 280 

Presynch-Ovsynch or Double- Ovsynch protocol and different duration of the voluntary 281 

waiting period. J. Dairy Sci. 101:1673–1686. 282 



  14 

Stangaferro, M. L., R. Wijma, and J. O. Giordano. 2019. Profitability of dairy cows submitted to 283 

the first service with the Presynch-Ovsynch or Double-Ovsynch protocol and different 284 

duration of the voluntary waiting period. J. Dairy Sci. 102(5):4546–4562 285 

Valenza, A., J. Giordano, G. Lopes Jr., L. Vincenti, M. C. Amundson, and P. Fricke. 2012. 286 

Assessment of an accelerometer system for detection of estrus and treatment with 287 

gonadotropin-releasing hormone at the time of insemination in lactating dairy cows. J. 288 

Dairy Sci. 95:7115–7127. 289 

Walsh, R. B., D. F. Kelton, T. F. Duffield, K. E. Leslie, J. S. Walton, and S. J. LeBlanc. 2007. 290 

Prevalence and risk factors for postpartum anovulatory condition in dairy cows. J. Dairy 291 

Sci. 90:315-324. 292 

Wiltbank M. C., G. M. Baez, F. Cochrane, R. V. Barletta, C. R. Trayford, R. T. Joseph. 2015. 293 

Effect of a second treatment with prostaglandin F2α during the Ovsynch protocol on 294 

luteolysis and pregnancy in dairy cows. J Dairy Sci. 98(12):8644-54. 295 

Xu, Z. Z., D. J. McKnight, R. Vishwanath, C. J. Pitt, and L. J. Burton. 1998. Estrus detection 296 

using radiotelemetry or visual observation and tail painting for dairy cows on pasture. J. 297 

Dairy Sci. 81:2890–2896. 298 

  299 



  15 

Table 1. Comparison in the number of hormonal treatments and net profit between different 300 

reproductive synchronization programs. 301 

1Approximated number of treatments for hormones. GnRH proportion in protocols: Presynch-302 

Ovsynch protocols: 40%; Double-Ovsynch+PGFprotocol: 57%. 303 

2Net profit gain over the baseline is the value of the net profit difference when alternating the 304 

baseline protocol to the listed one. 305 

3PreSynch-Ovsynch (Presynch-Ovsynch protocol with 35%, 40%, 45% CR), ED (Estrus 306 

detection performed before first AI service with 60% SR and 30% CR), EDpost (Estrus 307 

detection performed after first AI protocol with 60% SR and 30% CR), Double-Ovsynch 308 

PG2x (Double Ovsynch with a repeated injection at second prostaglandin with 50% CR).  309 

4PGF2α at $2.3/dose and GnRH at $2.6/dose representing the US market and PGF2α at $5.1/dose 310 

and GnRH at $6.7/dose representing the European market.  311 

 312 

Reproductive Program3 P/AI (%) 

Approximated number of 

treatments1 

(#/cow per yr) 

Net Profit gain over the 

baseline2 

($/cow per yr) 

Total GnRH PGF2α  

PGF2α at $2.3 

and GnRH at 

$2.64 

PGF2α at $5.1 

and GnRH at 

$6.74 

PreSynch-Ovsynch 

(baseline) 
35 7.8 3.12 4.68 - - 

PreSynch-Ovsynch 40 7.6 3.04 4.56 12.7 13.7 

PreSynch-Ovsynch 45 7.4 2.96 4.44 25 26.7 

PreSynch-Ovsynch + 

ED 
35 + 30 6.2 2.48 3.72 5.8 8.2 

PreSynch-Ovsynch + 

EDpost 
35 + 30 6.3 2.52 3.78 17.3 22.8 

Double-Ovsynch+PGF 50 9.2 5.24 3.96 46.2 32.1 
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Table 2. The cost ($/dose) of GnRH or PGF2α at breakeven profit points (bold numbers), when 314 

the other hormonal cost was set constant at European market price, comparing Presynch-315 

Ovsynch programs against the most intensive synchronization program, the Double-316 

Ovsynch+PGF. 317 

 Cost ($/dose) at the breakeven point compared with Double-Ovsynch+PGF1 

Hormones Presynch-Ovsynch2 

Presynch-Ovsynch (35% CR) 

+ ED 

 35% CR 40% CR 45% CR ED3  EDpost4  

GnRH 32.8 6.7 22.4 6.7 14.2 6.7 19.0 6.7 13.7 6.7 

PGF2α  5.1 --5 5.1 --5 5.1 --5 5.1 97.0 5.1 63.0 

1Double-Ovsynch PG2x (Double-Ovsynch+PGF with 50% CR). 318 

2PreSynch-Ovsynch (Presynch-Ovsynch protocol with 35%, 40%, 45% CR). 319 

3ED (Estrus detection performed before first AI service with 60% SR and 30% CR).  320 

4EDpost (Estrus detection performed after first AI protocol with 60% SR and 30% CR). 321 

5The breakeven point could not be reached. 322 
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Figure 1. Sensitive analysis by identifying the breakeven points when the net profit gain by 325 

switching the Presynch-Ovsynch protocols to Double-Ovsynch+PGF protocol become negative 326 

with multiples of GnRH and PGF2α for US market price (a) and European market price (b). 327 

PreSynchOv 35 (Presync-Ovsynch protocol with 35% CR)  328 

PreSynchOv 40 (Presync-Ovsynch protocol with 40% CR)  329 

PreSynchOv 45 (Presync-Ovsynch protocol with 45% CR)  330 

PreSynchOv + ED (Presync-Ovsynch protocol with 35% CR + estrus detection before first AI 331 

service with 60% SR and 30% CR) 332 

PreSynchOv + EDpost (Presync-Ovsynch protocol with 35% CR + estrus detection after first AI 333 

service with 60% SR and 30% CR) 334 

Double-Ovsynch PG2x (Double Ovsynch with a repeated injection at second prostaglandin with 335 

50% CR) 336 
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