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Abstract 

Discrimination of the samples into predefined groups is the issue at hand in many 

fields, such as medicine, environmental and forensic studies, etc. Its success strongly 

depends on the effectiveness of groups separation, which is optimal when the group 

means are much more distant than the data within the groups, i.e. the variation of the 

group means is greater than the variation of the data averaged over all groups. The 

task is particularly demanding for signals (e.g. spectra) as a lot of effort is required to 

prepare them in a way to uncover interesting features and turn them into more 

meaningful information that better fits for the purpose of data analysis. The solution 

can be adequately handled by using preprocessing strategies which should highlight 

the features relevant for further analysis (e.g. discrimination) by removing unwanted 

variation, deteriorating effects, such as noise or baseline drift, and standardising the 

signals. The aim of the research was to develop an automated procedure for 

optimising the choice of the preprocessing strategy to make it most suitable for 

discrimination purposes. The authors propose a novel concept to assess the goodness 

of the preprocessing strategy using the ratio of the between-groups to within-groups 

variance on the first latent variable derived from regularised MANOVA that is 

capable of exposing the groups differences for highly multidimensional data. The 

quest for the best preprocessing strategy was carried out using the grid search and 

much more efficient genetic algorithm. The adequacy of this novel concept, that 

remarkably supports the discrimination analysis, was verified through the assessment 

of the capability of solving two forensic comparison problems - discrimination 
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between differently-aged bloodstains and various car paints described by Raman 

spectra - using likelihood ratio framework, as a recommended tool for discriminating 

samples in the forensics. 
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1. Introduction 

Discrimination of the samples into predefined categories (groups, classes) is one of 

the leading issues in chemometric analysis in the field of food analysis, environmental 

studies, medical applications, forensics, etc. The aim is to develop the rules for 

assigning new samples for which the group membership is unknown, based on a few 

latent variables (e.g. linear combinations of original variables) summarising 

multivariate data structure. The latent variables are found to expose the groups 

separation, which is optimal when the group means are much more distant than the 

data within the groups, i.e. the variation of the group means is greater than the 

variation of the data in the groups, averaged over all groups. There are numerous 



methods routinely used for discrimination purposes such as linear discriminant 

analysis, partial least squares discriminant analysis, logistic regression, to name a few 

[1]. 

Effective data grouping attracts considerable interest also in the forensics if the task is 

to assess whether the two fragments of evidence materials collected during the 

criminal investigations, such as car paints, glass fragments, polymer materials etc., 

may be two pieces of the same object, called the source. Comparing the features of 

the recovered sample, coming from an unknown source, and control sample, from the 

known source, helps to establish the links between the suspect, victim and the crime 

place. Concluding on common, or uncommon, source of samples is actually similar to 

the concept of discrimination since the task is to judge if the recovered sample 

features resemble the features of a particular source so much that it can be considered 

as originating from this source. Conclusions are drawn in the light of features 

describing other available potential sources of the recovered material, e.g. collected in 

a database storing the characteristics of a variety of samples of this material. Reliable 

assessment of the samples similarity is successful only when the sources are uniquely 

defined, i.e. means of the features, characterising the sources, are sufficiently distinct 

(i.e. between-source variation is maximised, b2) and the variation of the data within 

each source (w2) is minimised. The task, however, differs from the classical 

discrimination in that it is only decided if the recovered sample may share the same 

origin with the indicated source and it does not assign the membership to any other 

remaining sources. Even though one may argue that this is rather a classification 

issue, it is not, as the other sources are also clearly defined. Moreover, the match 

between the compared materials is always judged on the basis of both the similarity 

and uniqueness of their features (section 2.5) in regard to similarity and uniqueness of 

features in other available sources. 

Evidence materials are typically analysed by spectroscopic or chromatographic 

methods and thus characterised by signals such as spectra or chromatograms. Despite 

the ease of visualisation, such data requires a lot of effort to uncover interesting 

features and turn them into more meaningful information that better fits for the 

purpose of data analysis. This applies above all to appropriately tailored preparation 

of the signals, called preprocessing [[2], [3], [4]], and then adequate data 

dimensionality reduction, since working with lower-dimensional data is advisable to 
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reveal interesting features. The aim of preprocessing is to highlight the features 

relevant for further analysis, e.g. discrimination, by removing unwanted variation, 

deteriorating effects, such as noise or baseline drift, and standardising the signals. It 

consists of denoising, smoothing, baseline correction and 

normalisation/scaling/standardisation. Adequate choice of the preprocessing strategy 

is a key to improve statistical models performance. However, there is no optimal 

preprocessing strategy as it is heavily dependent on the data and the purpose of the 

analysis. 

Engel et al. [2] aptly summarised the paths for optimisation of the preprocessing 

strategy. As mentioned, attempts for choosing the optimal preprocessing strategy are 

often limited to visual inspection of the signals graphical representation. The 

preprocessing strategy is then deemed satisfactory if the picture looks more legible 

(e.g. certain features unique for the groups are more noticeable) and unwanted 

artifacts are effectively eliminated. This tactics is subjective, user-dependent and does 

not guarantee that the most appealing results will also prove well for statistical 

models. The optimal strategy may also be the one producing the data for which best 

performing statistical models (regression, discrimination, classification, etc.) are 

constructed. This approach, however, is time-consuming and computationally 

demanding as it requires training, validating and testing of the statistical models. 

Therefore an objective criterium based on quality parameters may be proposed as an 

alternative. Quality parameters can be considered markers that quantify the 

preprocessing strategy effectiveness, i.e. evaluate the suitability of the data for the 

purpose of further analysis based on the experts experience. The optimal 

preprocessing solution is found when quality parameters take their extremes 

(maximum or minimum). 

A recent review of the literature on the area of preprocessing optimisation revealed 

that many researchers have undertaken this issue using either the grid search process, 

where a defined quality parameter is computed for each preprocessing strategy, or 

using less time-consuming heuristic alternative such as genetic algorithms 

[[5], [6], [7]] (section 2.3), which do not try out every strategy to find the most 

promising strategy for the purpose of their analyses [[8], [9], [10]]. In both concepts 

the optimal strategy is found as the one yielding the best quality parameter. There are 

numerous attempts to design the quality parameters to measure the effectiveness of 
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the preprocessing. Their main downside, however, is that they might not entirely be 

suitable for discrimination purposes. 

We offer a novel concept that remarkably supports the discrimination analysis of the 

signals owing to appropriately conducted optimisation of the preprocessing strategy. 

Our idea is to define the quality parameter as a ratio of the between-source and 

within-source variation (b2/w2) for the preprocessed data to select the preprocessing 

strategy that best exposes the differences between sources (i.e. groups) and minimises 

the casual variations within sources. b2/w2 will be estimated from regularised 

MANOVA (rMANOVA [11]) which defines a limited number of latent variables that 

maximise the ratio of between-source variance and the within-source variance. In this 

sense, rMANOVA reduces data dimensionality in a way that is beneficial for the data 

analysis goal, i.e. discrimination. Regularisation of the method makes it feasible for 

handling singularity problems of variance-covariance matrices for highly 

multidimensional data. The grid search process as well as the genetic algorithm are 

used to find the optimal strategy. The adequacy of the results found in both 

approaches is judged by evaluating the performance of the statistical likelihood ratio 

models (LR, section 2.5) [[12], [13], [14]] for concluding if the samples may share 

common origins. Fig. 1 briefly summarises this concept. 
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Fig. 1. The concept of the studies. 

The need to link signal preprocessing strategies with reducing their dimensionality in 

a way that maximises differences between groups and minimises differences within 

them has already been raised by the authors, e.g. in data analysis for the forensic aims 

[15,16]. In these studies the preprocessing strategies dealt mostly with fluorescence 

background in Raman spectra of car paints but no attention was paid to choose these 

which maximise b2 and minimise w2. This task was accomplished in a separate step. 

These aspects also apply to other research fields and thus the proposed framework 

may be found useful not only in the forensics but also medical, environmental and 

food analysis applications, where the grouping of signals is the issue at hand. 

2. Materials and methods 

2.1. Samples 

This study attempted to facilitate the solution of two distinct forensic problems - one 

of them involving the discrimination between differently-aged blood traces, and the 

other connected with differentiating car paint samples. Both data sets consisted of 

Raman spectra, which were often obscured by the strong fluorescence interference. 

Raman spectroscopy is a powerful technique providing an insight into the molecular 

structure and functional groups, which in contrast to infrared spectroscopy, is not 

limited by the presence of water in biological samples. For this reason Raman spectra 

are frequently registered for samples with the aim of their differentiation not only in 

the forensics but also medical, environmental and biological applications. 

2.1.1. Blood traces 

Estimation of bloodstains age is one of the most challenging (and hence still 

unsolved) forensic task. Once the bloodstain is created, a cascade of physicochemical 

processes takes place, which include hemoglobin as the dominant component of dried 

red blood cells [17,18], leading to changes of bloodstains’ properties. These changes 

can be tracked using e.g. Raman spectroscopy and subsequently used for 

distinguishing between differently-aged bloodstains [19]. 

Bloodstains used in this study were created by depositing 20 μl aliquots of capillary 

blood without preservatives originating from a single donor (to reduce the inter-
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personal blood composition variations) on aluminum sample pans, that do not give 

Raman signal. Bloodstains were left to dry for 2 h before first spectrum collection, in 

stable laboratory conditions (temperature: 23.6±2.0 ∘C, relative humidity: 30±4%) and 

stored for the next three weeks. Samples were analysed every 2 h (from two up to 8 h 

elapsed since bloodstain formation, when the degradation process is remarkably fast) 

and then almost daily for the period of three weeks. In each of 18 time points, 

assumed to constitute 18 different evidence time-related sources, the bloodstains were 

measured six times [19]. The task is to judge if the features of the recovered 

bloodstain are close enough to the features of a bloodstain of a known age (time-

related source) to conclude that their age is the same. 

The spectra were recorded in the range 300–1800 cm−1 using a Renishaw inVia Raman 

Microscope spectrometer with near infrared semiconductor laser (785 nm) as an 

excitation source and Peltier-cooled charge-coupled device (CCD). The laser beam 

was focused on the samples surface through 5x NIR optimized objective (N.A. = 0.1), 

the final power density at the sample being so 0.16 mW/μm2 (about 10% of the total 

emission and considering a spot with diameter of 9.57 μm). The Raman spectra were 

recorded using rotating mode to prevent sample damage due to excessive point laser 

irradiation [19]. 

2.1.2. Car paints 

The aim of comparing features of car paints is to establish a link between e.g. car and 

the victim in hit-and-run cases. The task is to judge if the paint features are close 

enough to the features of a particular source that it can be considered as originating 

from this source. 30 blue solid car paints, assumed to constitute 30 different evidence 

sources were subjected to Raman analysis. Each sample was measured in situ three 

times in three different locations [16]. Raman spectra were recorded in the range 200–

2500 cm−1 using Renishaw inVia Raman Microscope spectrometer with near infrared 

semiconductor laser (785 nm) as an excitation source and Peltier-cooled charge-

coupled device as a detector. The laser beam was focused on the samples surface 

through 50x N Plan objective (N.A. = 0.75), the final power density at the sample 

being so 0.52 or 0.26 mW/μm2 (about 1% or 0.5% of the total emission and 

considering a spot with diameter of 1.28 μm). 
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2.2. Preprocessing methods 

This sections provides a brief summary of the applied preprocessing methods. We did 

not intend to review the methods, but only introduce them and provide adequate 

bibliography positions for the readers who might not be familiar with them. 

Throughout this section the signals subjected to any of the preprocessing steps will be 

vectors s=(s1,s2,…,sJ). 

2.2.1. Denoising and smoothing 

Noise is an inherent component of any measured signal. Denoising and smoothing of 

the signals are widely applied to handle various noise types. Smoothing is used for 

removing high frequency components while denoising eliminates only the signal 

components with a limited amplitude. The aim of both is to make the signals more 

legible and visually pleasing. 

Savitzky-Golay filter. The method is well adapted both for smoothing and 

differentiation of the signals [20]. For a subset of signal points, called window, least 

squares procedure is applied for fitting a low degree polynomial to smooth the signal. 

A fitted polynomial value is kept for a central point of the window. The window is 

then shifted one point and the fitting is repeated until the window moves to the end of 

the signal. 

Discrete wavelet transform, DWT. Wavelet transform (WT), like Fourier transform 

(FT), assumes that noise, baseline and true signal components are well separated in 

the frequency domain. This is because usually baseline varies at the lowest rates, 

whilst the frequency of signal noise is the highest. Unlike FT, which represents the 

signal as a linear combination of sinusoids and cosinusoids only, WT engages a great 

variety of wavelet functions (e.g. Daubechies [21], Coiflet, Symmlet) localised in time 

and frequency. WT is therefore more efficient as it requires much less wavelets to 

reproduce the signal than FT. 

Wavelet transform projects the signal onto the basis of functions - wavelets. They are 

derived from one function called mother wavelet Ψ by its dilation or contraction in the 

frequency domain (controlled by scaling parameter a) and shifting in the time domain 
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(determined by localisation parameter b) to cover the whole frequency and time 

information:(1)Ψ(x)=a−1/2Ψ(x−ba),a,b∈R,a≠0. 

Restricting scaling parameter a to 2j and localisation parameter b to 2jk, with j being 

the resolution or decomposition level, is the core concept of the discrete wavelet 

transform, DWT. 

It is convenient to demonstrate DWT in the form of Mallat pyramid algorithm [22] as 

a series of low and high pass filters applied to the analysed signal. High pass filter, H, 

defined by mother wavelet, extracts the highest frequencies in the signal, usually 

associated with noise fraction. Low pass filter, L, fixed by scaling function, passes 

lower frequencies containing baseline and true signal. The output of H is a set of 

details coefficients (Wj) mostly representing the high frequency noise. L generates 

approximation coefficients (Vj) portraying the smoothed signal, deprived of noise. At 

each level j the details part is kept and the approximations are decomposed using the 

same pair of filters into the approximation and details part of twice lower resolution. 

DWT found a variety of applications in analytical chemistry [23] and until today it is 

widely applied for smoothing (removing high frequency coefficients) and denoising 

(removing only the coefficients with a limited amplitude) since the details coefficients 

attributed to highest frequencies may be easily suppressed [24,25]. For denoising the 

truncation of details coefficients is usually applied using hard or soft thresholding 

policies. Hard thresholding sets all the coefficients absolute values below a threshold 

value t to 0 and keeps the remaining:(2)Whardj={0,if |Wj|<tWj,if |Wj|≥t. 

In soft thresholding the coefficients absolute values below the threshold are set to 0 

and the remaining are suppressed by this value:(3)Wsoftj={0,if |Wj|<tsgn(Wj)(|Wj|−t),if 

|Wj|≥t. 

t may be computed using a variety of possibilities, briefly summarised e.g. in 

Ref. [24]. Universal threshold is one of the most commonly 

applied:(4)t=s2logN,where s is the measure of the N wavelet coefficients dispersion 

expressed as their standard deviation or more robustly with median absolute deviation 

(1.4826⋅MAD(W)). 

Once denoised, the signal is reconstructed using inverse DWT. 

2.2.2. Baseline correction 
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Raman spectra are often corrupted by broad and intense bands of fluorescence which 

is a competing process to relatively weak Raman scattering effect. If fluorescence is 

more intense than the true Raman signal and obscures the Raman peaks, some 

experimental techniques applied during signal collection (photobleaching process, 

fluorescence quenching, removal of fluorophores, changing the laser source or using 

time gated Raman spectroscopy and resonantly enhanced Raman scattering technique) 

should be applied [26]. Baseline effects arising, among others, due to fluorescence, 

that do not cover the true Raman signal totally, may be appropriately handled either 

during the signal collection or using computational methods after signal collection, 

concisely described in this section. 

Polynomial methods. The traditional polynomial methods for baseline correction fit 

the polynomial curve to the user defined baseline points using least squares method. 

As laborious, highly subjective and immensely time-consuming procedure, especially 

facing the ease of measuring vast amount of data that need fast and effective 

preprocessing, it was upgraded by the automated methods such as modified polyfit 

(ModPoly) [27] and improved modified polyfit (IModPoly) [28]. In ModPoly 

procedure the polynomial (w) of a fixed but adjustable degree is initially fit to the 

original signal in a least squares manner. This obviously involves both the baseline 

and signal peaks and requires a modification to eliminate the true signal (peaks) from 

the fit. For this purpose peaks are gradually eliminated in an iterative process, where 

in each turn polynomial fitting is applied to a new signal generated as the minimum 

between the polynomial fitted in the previous round and the original signal. The 

procedure is repeated until convergence, when further iterations (t) do not improve the 

fitting, i.e. |(wt−wt−1)/wt−1|<0.01, or maximum number of iterations is reached. 

For noisy signals the results of ModPoly may appear inadequate as noise regions may 

imitate the signal. Moreover, the method is prone to variations for signals with a few 

major peaks, which take the control over the entire polynomial fitting. To address 

these limitations IModPoly algorithm removes the major peaks in the first iteration 

and iteratively composes the baseline with a slight modification in regard to ModPoly. 

In each iteration it fits a polynomial to the signal being the minimum of the signal to 

which the polynomial was fitted in the previous round and this polynomial plus the 

standard deviation of the least squares model residuals as a measure of noise level 

(DEV). When the procedure converges the baseline is interpolated in the major peaks 
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regions and subtracted from the original signal. The convergence is reached when in 

two subsequent iterations (t) |(DEVt−DEVt−1)/DEVt|<0.01 or maximum number of 

iterations is reached. 

Asymmetric penalised least squares methods. The foundations for these methods are 

borrowed from Whittaker smoothing algorithm [29,30]. It is a procedure that smooths 

the signal by controlling the balance between two conflicting goals, the fidelity of the 

smoothed curve to the signal and its roughness [30]. The fidelity is a lack of fit 

measured as the sum of squared differences between the smoothed curve (z) and the 

signal (s):(5)F=∑i=1J(si−zi)2. 

The roughness of the curve is quantified by computing the squared sum of differences 

between neighbouring points:(6)R=∑i=1J−1(zi−zi+1)2=∑i=1J−1(Δzi)2. 

Most often, however, squared second differences are applied. In its most general form 

for m-th differences Equation (6) becomes R=∑i=1J−m(Δmzi)2. 

z is found with penalised least squares to minimise the 

expression(7)Q=F+λR,where λ is the penalty arbitrary assigned by the user. λ is a 

tuning parameter to control the contribution of the roughness term to Q and 

makes z smoother as λ grows at the expense of fidelity. 

To adapt this method for baseline estimation, z has to be found to fit the baseline 

regions only, excluding the signal peaks. For this purpose appropriate asymmetric 

weights wi are introduced that weigh the positive deviations from the baseline 

estimate (mostly peaks) much less than the negative deviations. The fidelity is then 

modified to(8)F=∑i=1Jwisi−zi2=s−zTWs−zin matrix notation, where W is a 

diagonal J×J matrix with w on the diagonal. Once the solution is found for the system 

of equations(9)W+λDTDz=Ws(where D is the difference matrix, Dz=Δz) using initial 

weights, the weights can be updated and the procedure continues until convergence, 

when the weights cease to change and the baseline estimate is no longer significantly 

improved. The final baseline is computed from(10)z=(W+λDTD)−1Wsand then 

subtracted from the signal. 

There are many asymmetric least squares methods differing in the way the weights are 

assigned. The most trivial assigns small p or large 1−p weights for peak regions 

(when si>zi) and baseline segments (when si≤zi), respectively:(11){wi=p,if 

si>ziwi=1−p,if si≤zi. 
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The method converges when weights do not change in two subsequent iterations or 

maximum number of iterations is reached. 

In [31] the authors propose an automatic weights assignment in an adaptive iteratively 

reweighted penalised least squares (airPLS) algorithm. Here the weights depend on 

the previous baseline approximation and are iteratively recomputed to eliminate peaks 

from baseline estimation. In t-th iteration the weights are given as:(12){wit=0,if 

si≥zit−1wit=exp(t|si−zit−1|/|dt|),if si<zit−1,where dt contains the negative s−zt−1 values. 

The idea is to assign 0 weight for peaks regions to totally eliminate them from the 

baseline estimation. The method converges when |dt|<0.001⋅|s| or maximum number of 

iterations is reached. 

Informative peak regions may also be identified using continuous wavelet transform 

(CWT) as suggested in Ref. [32]. CWT using the Haar wavelet proved to be 

successful in establishing an exact position and width of the peaks. The terminal 

points of the peaks are connected by a straight line and the PLS algorithm is applied 

for estimating the baseline in the remaining segments. 

The concept of stiffness of the estimated baseline in the peak regions is followed in 

Ref. [33] in the method referred to as doubly weighted spline. The method assumes 

that the roughness term should more contribute to the baseline estimation in peak 

regions than in baseline segments. Thus maximum stiffness γmax is assigned to peak 

regions and takes minimum γmin for baseline regions. Instead of Equation (7), the cost 

function to be minimised is then expressed 

as:(13)Q=∑i=1Jwisi−zi2+γmax∑i=1J−m1−ηwiΔmzi2,where η=(γmax−γmin)/γmax and the 

weights are expressed according to Equation (12). The method converges 

when |dt|<0.001⋅|s| or maximum number of iterations is reached. 

The asymmetric penalised least squares algorithm published in Ref. [34] for baseline 

estimation should receive special attention due to its ability to reduce the variations 

between replicate signals after the baseline correction. The core concept of this 

methodology is the clever introduction of an additional penalty to penalise remarkable 

differences between the corrected replicate signals, which should be obviously as 

similar as possible after correction of the baseline. 

Statistics-sensitive non-linear iterative peak-clipping, SNIP. Originally proposed for 

correcting baseline effects in PIXE spectra of geological samples [35], SNIP proved 
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to be an efficient method for handling baseline variations for other signals as well. 

The algorithm is initialised with a low statistics digital filter to account for possible 

large differences in signal magnitude and transforms each signal intensity according 

to the equation yi=log(log(si+1)+1). The baseline is estimated then in an iterative 

process from 1 to W iterations, where W is the size of the clipping window. In w-th 

iteration each intensity point, yi, becomes a central 2w+1-length interval point, which 

is replaced by a minimum of the mean of intensities at the both interval ends and the 

point intensity itself: gi=min(yi,1/2⋅(yi+w+yi−w)). The final baseline is estimated using 

inverse transform zi=exp(exp(gi−1)−1) and subtracted from the signal. 

Quantile regression based methods. Polynomial or spline quantile regression (QR) 

methods fit the baseline when small quantiles are assumed (e.g. 0.01) [36]. The 

methods may also be upgraded in weighted quantile regression models with weights 

automatically and iteratively assigned according to Equation (12). 

Robust baseline estimation, RBE. RBE [37], that is closely related to LOWESS 

procedure (locally weighted scatter plot smoother [38]), assumes that (i) the signal 

points in peak regions are outliers in regard to the ordinary points that belong to 

baseline segments and (ii) that with an undefined functional shape, the baseline can 

only be estimated locally, in adequately small fragments using e.g. linear models. To 

meet the above assumptions robust local regression methods are most suitable that 

will robustly approximate the baseline only in small signal fractions ignoring the 

points in peak regions. These signal fractions are specified by kernel functions. The 

residuals of the local regression models are then used for establishing small weights 

(Equation (14)) for signal points with large residuals (peaks) and unit weights for 

baseline region points.(14){wi=max1−si−zi/σb2,02,if si−zi/σ≥0wi=1,if si−zi/σ<0,where b is 

the robustness parameter that controls the influence outliers and ordinary points have 

on baseline estimation, σ is the scale parameter estimated as median absolute 

deviation, σ=1.4826⋅median(|si−zi|). The baseline is then iteratively recomputed using 

weighted least squares regression models with kernels until convergence. 

2.2.3. Normalisation 

The compulsion for normalisation arises from registering signals under unstable 

conditions, such as fluctuating laser power in Raman spectroscopy. Thus in most 

cases normalisation relies on multiplying the signal by a scaling value to make the 
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corresponding intensities comparable across spectra which should not theoretically 

pose any differences. Normalisation techniques are either model-based or dedicated to 

individual signals. 

Probabilistic quotient normalisation, PQN. PQN was originally proposed to correct 

for the dilution of urine samples measured by NMR [39]. It assumes that the 

differences in the intensity of the majority of signal peaks result from the dilution of 

the samples rather than alterations of the single constituents concentrations. The 

normalisation factor for each signal, is then the most probable quotient of this signal 

and the reference, usually selected to be the median quotient as a robust summarising 

value. Median, mean signal or a golden standard is usually adopted as a reference. 

For normalisation each i-th signal intensity is divided by the defined quotient, q, as a 

normalisation factor, si,norm=si/q. 

Vector normalisation. The normalisation factor is computed as a square root of the 

sum of squared signal intensities, q=∑i=1Jsi2. Then, each of J signal intensities is 

divided by q, si,norm=si/q. 

Standard normal variate, SNV. Each signal intensity is reduced by mean signal 

intensity and then divided by its standard deviation, si,norm=si−mean(s)sd(s). It 

effectively eliminates the constant offset and multiplicative differences between 

spectra. 

Multiplicative signal correction methods, MSC. The family of model-based MSC 

methods aims at getting the largest possible similarity between the spectrum and the 

reference by accounting for various physical and chemical sources of variation in 

vibrational spectra, using ordinary or weighted least squares procedure 

[[40], [41], [42]]. MSC methods serve as a perfect tool for normalisation of signals by 

correcting the additive, multiplicative, wavenumber-dependent variations between 

spectra and the reference as well as physical effects related to temperature, samples 

thickness, etc. [[42], [43], [44], [45]]. 

The concept of basic MSC is founded in the Lambert-Beer law and models the 

spectrum with respect to a reference (usually mean spectrum) according to the 

equation(15)sν˜=a+bmν˜+Eν˜,where a is the constant offset between the 

spectrum s(ν˜) and reference m(ν˜), b represents the multiplicative effect 

between s(ν˜) and m(ν˜), arising mostly from variations in laser intensity in Raman 

https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib39
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib40
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib41
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib42
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib42
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib43
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib44
https://www.sciencedirect.com/science/article/pii/S0169743920301519#bib45


spectroscopy, and E(ν˜) are model residuals reflecting the unmodeled differences 

between spectra. After the model parameters are estimated in ordinary or weighted 

least squares procedure, the corrected spectrum is given as(16)scorrν˜=sν˜−a/b. 

As shown above, MSC only eliminates constant baseline and scaling effects between 

spectra. However, typically in Raman spectra the baseline effects cannot be portrayed 

with a straight line but are much more complex. Thus extended MSC (EMSC) is 

intended to include the wavenumber-dependent variations of fluctuating baseline 

using the polynomials with increasing degree [40,41]. EMSC approximates the 

spectrum as(17)sν˜=a+bmν˜+d1ν˜+d2ν˜2+…+dnν˜n+Eν˜,where d1ν˜, d2ν˜2 and dnν˜n are 

linear, quadratic and higher polynomial degree baseline effects. The corrected 

spectrum is then found from(18)scorrν˜=sν˜−a−d1ν˜−d2ν˜2−…−dnν˜n/b. 

Basic version of EMSC applies only linear and quadratic terms. 

EMSC may be further improved to account for the variations between replicate 

spectra of the same sample [41,42,45]. Inter-replicate variations are summarised using 

only a small number of PCA components and subsequently removed through 

incorporation of the orthogonal subspace model in EMSC model in the following 

procedure: 

(1) 

build an EMSC model for each set of replicate spectra, correct the replicate 

spectra with these local EMSC models and mean-center them within the 

replicate sets; 

(2) 

concatenate all replicate sets in one data matrix and summarise the between-

replicate variance using a few orthogonal PCA components. 

In EMSC with replicates correction each spectrum is represented 

as(19)sν˜=a+bmν˜+d1ν˜+d2ν˜2+…+dnν˜n+Σk=1Kgkpkν˜+Eν˜,where pk is the k-th 

from K most significant loading vectors and gk are the corresponding fitted 

parameters. 

2.3. Genetic algorithm 
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Genetic algorithm (GA) [[5], [6], [7]] is embedded in the Darwin’s evolution theory, 

where the nature determines the survivability of individuals based on their adaptation 

to life. In this sense it can be considered an optimisation process, in which the best 

solution is found, that in nature setting is an equivalent of an individual with best 

accommodation to living in a specified environment. Only a limited number of 

individuals with better fitness to the environment are more likely to survive and 

procreate to transmit their profitable genetic material to the next generations. 

When moving the concept of the algorithm from nature settings to applications in the 

field of optimisation, the following relations hold: 

• 

adaptation to the environment acts as a response function; 

• 

genetic material that is responsible for good or bad fitness to the environment 

becomes a particular solution from a set of them under optimisation; 

• 

genes building the chromosomes are the variables in each solution; 

• 

nitrogen bases, as the basic element of the genetic material, are known as bits to 

encode the variable value. 

GA is initialised with a formation of the original population by random selection of a 

specified number of individuals described by their genetic material (one of the 

solutions for optimisation). The individuals that are best fit to the environment mate 

and their genes are shuffled in the crossover process. In this way good genetic 

material is propagated, while the bad one disappears and the fitness is improving 

through the generations. In optimisation framework this means that the profitable 

solutions are selected based on the response function and their variables are mixed 

and spread to set up better solutions and eliminate the worst. 

While reproduction leads just to a combination of the genetic material of the parents, 

mutations remarkably change the genetic material content by introducing minor 
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changes at the nitrogen bases level. This is equivalent to changing the variables 

values. The process of reproduction and mutation is repeated to create new 

generations that always have better average adaptation to the environment than their 

ancestors. This corresponds to mixing the variables and eventually changing their 

values slightly to receive better solutions than previously. To increase the GA 

effectiveness, a number of best individuals is kept and preserved to the next 

generation according to the elitism rule to prevent from losing their most profitable 

genetic material if they die. This immortality rule is a consequence of the fact that in 

some cases new best solutions are not necessarily better than the best in the previous 

set, even though the average response of the new set is improved. For this reason a 

specified number of best solutions from each set is kept and propagated to appear 

finally as the most optimal solutions that were ever found. 

2.4. Regularised MANOVA 

Regularised MANOVA [11] is a modification of classical MANOVA (an extension of 

ANOVA for multivariate sets). Similar to LDA, MANOVA works with the matrices 

of between-groups variability (B) and within-groups variability (W), so it accounts for 

the covariance structure of the data. However, both LDA and MANOVA fail for 

highly multidimensional data when the number of variables extends the number of 

samples. This is due to the inability to compute the inverse of the variance-covariance 

matrices that do not have full rank or their instability when the number of variables is 

comparable to the number of samples. Regularisation of the method, achieved by 

introducing suitable parameters, is the effective solution for handling singularity 

issues of variance-covariance matrices. Its objective is to find the eigenvectors of the 

matrix ((1−δ)W+δT)−1B. These are the directions along which the between-groups 

variance is the highest and the within-groups variance the lowest. T is the target 

matrix which is either T=1ptr(W) when the variances of p variables for each group are 

equal or T=diag(W) when the variances for each group are unique. δ is dependent on 

the chosen target and expresses the variance of the W matrix components according to 

the Ledoit-Wolf theorem [11]. 

2.5. Likelihood ratio 
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In the forensics verifying which of the two contrasting hypotheses stating that samples 

have the same source (also time-related source as in bloodstains age determination) 

(H1), or two different sources (H2), is more likely, is actually a discrimination task 

that apart from the similarity of the samples takes into account the uniqueness of their 

measured features with respect to other available sources. Thus establishing the 

potential (un)common samples origins is something more than only likeness of the 

data but should also include their frequency. When the data of both samples are 

typical they may match just by chance. The conclusions are therefore more persuasive 

if the similarity is observed between rare data than when it is detected between typical 

features. The risk of coincidental match between typical features escalates with 

increasing data frequency. Thus the evidential value of the match between samples 

increases with uniqueness of the features. Even though many chemometric tools 

designed for discrimination purposes attempt to expose the most unique features for 

each source in a few latent variables, they tend to ignore the features typicality when 

assigning samples membership. The likelihood ratio (LR) framework [[12], [13], [14]] 

quantifies the strength of samples similarity which escalates with their increasing 

typicality and indicates how strongly they are alike to establish whether the samples 

share common origins. Basically, the LR is computed as the probability of recording 

the physicochemical data for the samples (E), given the propositions 

(H1 and H2):(20)LR=Pr(E|H1)Pr(E|H2). 

H1 is supported by the LR values larger than 1 and the support is strengthening with 

increasing LR. Conversely, the H2 is more likely when LR is below 1 and the support 

for this hypothesis reinforces with the LR values approaching 0. Both hypotheses are 

equally likely when LR=1. 

Current solutions attempt to construct (train) LR models on databases with J variables 

for I measurements from M sources, each measured N times (I=MN) and use them to 

compare two samples, each described by a mean vector of J variables. When I<J, the 

LR models fail due to singularity of the variance-covariance matrices and adequate 

data dimensionality reduction is requisite. The obvious concept is to apply hybrid LR 

models [15,16,46] where conventional LR models are constructed for a limited 

number of latent variables derived from chemometric tools (e.g. rMANOVA) with 

least variability within each source and maximal variability between sources to 

enhance the LR models performance. In hybrid LR models the likeness of the samples 
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is studied by the LR framework for appropriately compressed data by chemometric 

tools that are believed to best describe the individual sources and preserve their most 

unique features. 

According to Equation (20), the LR numerator evaluates the support towards the H1. It 

accounts for the similarity of the samples means, y¯1 and y¯2 with k1 and k2 replicate 

measurements, as well as the similarity of their weighted 

average, y¯∗=k1y¯1+k2y¯2k1+k2, to means of each of M sources x¯m of training data. 

The denominator of the LR formula corresponds with H2. Then both contributions 

from the samples y¯1 and y¯2 are assumed independent [[12], [13], [14]]. 

When the between-source distribution is assumed normal, then LR expression is given 

as in Ref. [[12], [13], [14]]. When the data cannot be assumed normally distributed, 

the kernel density estimation (KDE) procedure estimates the underlying distributions 

by averaging over all sources means instead of the general mean as adopted in 

Gaussian distribution. The smoothing parameter is set as h=(4M(2p+1))1p+4, where p is 

the number of considered variables. Then LR is given as a product of the following 

multivariate normal distributions (MVN) 

[[12], [13], [14]]:[21]LR=MVN(y¯1−y¯2|0,Wk1+Wk2)⋅1M∑m=1MMVN(y¯∗|x¯m,Wk1+k2

+h2B)1M∑m=1MMVN(y¯1|x¯m,Wk1+h2B)⋅1M∑m=1MMVN(y¯2|x¯m,Wk2+h2B) 

For univariate data matrices or vectors (e.g. W, x¯) become scalars (w2, x¯). 

LR models quality diagnostics primarily include the levels of false positive 

(LR>1 when H2 is true) and false negative responses (LR<1 when H1 is true). Even 

though these rates only indicate which of the hypotheses is supported, but disregard 

the magnitude of this support, this paper is limited only to this form of reporting LR 

models performance. 

3. Experimental 

The original signals were subjected to preprocessing starting with 

denoising/smoothing, then baseline correction followed by normalisation. 

Denoised/smoothed signals, a, were additionally transformed with log-centered 

transform to compensate heteroscedastic noise [47] that grows with signal 

intensity:(22)s=log10a−1/J∑i=1Jlogai=log10a(J∏i=1Jai). 
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This was the only reasonable sequence since many baseline correction methods are 

successful only for at least partially denoised/smoothed signals with homoscedastic 

noise and normalisation must be preceded by the removal of baseline. The MSC 

methods were an exception as they provide both baseline correction and normalisation 

if the mean centered signals are then subjected to statistical models. Therefore, these 

methods were the last link in some preprocessing strategies, preceded only by 

denoising/smoothing. The space of available parameters for each preprocessing 

method was limited in visual inspection by looking at the data after preprocessing and 

controlling if the unwanted artifacts were eliminated. The groups of parameters for 

which the graphical visualisation was pleasing were then selected for optimisation. 

They are listed in Table 1, Table 2, Table 3, which also provide useful details such as 

the R packages for implementing the methods and source literature positions 

introducing them. 16 denoising/smoothing strategies were tested based on discrete 

wavelet transform and Savitzky-Golay filter. 64 baseline correction strategies 

involved asymmetric penalised least squares (5 methods), robust baseline estimation, 

statistics-sensitive not-linear iterative peak-clipping, multiplicative signal correction 

(3 methods), polynomials (2 methods) and quantile regression (3 methods). Due to 

unsatisfying visual results, IModPoly was skipped for preprocessing bloodstains 

Raman spectra and SNIP was ignored for car paints Raman spectra. 16 normalisation 

strategies were based on standard normal variate, probabilistic quotient normalisation, 

vector normalisation and multiplicative signal correction (3 methods). 

Table 1. Details of denoising and smoothing strategies. BS stands for the database of 

Raman spectra of bloodstains and CP for car paints. 

group of 

methods 

abbrev. parameters parameter values R package literature 

Savitzky-Golay SG p-polynomial degree p=3,4,5,6 signal [20] 
  

w-window size w=17 for BS 

and w=7 for CP 

  

discrete wavelet 

transform 

DWT W-wavelet type W = Daubechies 

Least 

wavethresh [[21], [22], [23], [24], [25]] 

   
Asymmetric 4,8, 

Coiflets 1,5 

  

  
d-decomposition level 

for denoising 

d=10 
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group of 

methods 

abbrev. parameters parameter values R package literature 

  
t-threshold estimation t = universal, 

SURE 

  

  
c-thresholding policy c = hard, soft 

  

  
sd-dispersion estimate sd = MAD 

  

Table 2. Details of baseline correction strategies. BS stands for the database of Raman 

spectra of bloodstains and CP for car paints. 

group of methods abbrev. parameters parameter values R package literature 

asymmetric penalised least squares 
 

pAsWPLS m-order of 

differences 

m=2 – 
 

  
λ-penalty λ=6⋅105,8⋅105,106 

  

  
w-weights w=0.0005,0.005,0.001 

  

 
CWTAsWPLS m-order of 

differences 

m=2 baselineWavelet [32] 

  
λ-penalty λ=7⋅107,8⋅107,9⋅107,108 for 

BS 

  

   
λ=3⋅107,5⋅107,7⋅107,108 for 

CP 

  

 
airPLS m-order of 

differences 

m=2 airPLS [31] 

  
λ-penalty λ=6⋅104,7⋅104,8⋅104,9⋅104 

  

 
2WAsPLS m-order of 

differences 

m=2 – [33] 

  
γmax-penalty γmax=6⋅104,9⋅104 

  

  
r=γmin/γmax– r=0.7,0.9 

  

  
penalties ratio 

   

 
multiWAsPLS m-order of 

differences 

m=2 – [34] 

  
λ-penalty term λ=10,100 for BS 

  

   
λ=1000,10000 for CP 

  

  
μ-penalty term μ=107,108 for BS 

  

   
μ=108 for CP 

  

robust baseline 

estimation 

RBE b-robustness 

parameter 

b=2,2.5 for BS baseline [37] 
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group of methods abbrev. parameters parameter values R package literature 
   

b=2.5,3 for CP 
  

  
h-proportion of 

signal points 

h=0.3,0.4 
  

  
for local 

regression 

   

statistics-sensitive SNIP w-clipping 

window 

w=25,30 only for BS MALDIquant [35] 

non-linear iterative 

peak-clipping 

     

multiplicative 

signal correction 

methods 

     

-multiplicative 

signal correction 

MSP – – pls [40] 

-extended 

multiplicative 

signal correction 

EMSC p-polynomial 

degree 

p=3,4,5,6 EMSC [40] 

-extended 

multiplicative 

signal correction 

repEMSC p-polynomial 

degree 

p=3,4,5,6 EMSC [40] 

with replicates 

correction 

 
pc-proportion of 

the explained 

pc=0.9,0.95 
  

  
replicates 

variance 

   

polynomial 

methods 

     

-modified 

polynomial 

ModPoly p-polynomial 

degree 

p=3,4,5,6 baseline [27] 

-improved modified 

polynomial 

IModPoly p-polynomial 

degree 

p=3,4,5,6 only for CP – [28] 

quantile regression methods 

-polynomial 

quantile regression 

polyQR p-polynomial 

degree 

p=5,6 for BS quantreg [36] 

   
p=6,7 for CP 

  

  
q-quantile q=0.05,0.01,0.001 for BS 

  

   
q=0.05,0.01,0.1 for CP 

  

-spline quantile 

regression 

splineQR q-quantile q=0.1,0.05,0.01,0.001 for BS cobs [36] 
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group of methods abbrev. parameters parameter values R package literature 
   

q=0.1,0.01 for CP 
  

  
λ-penalty λ=0 for BS 

  

   
λ=1,−1 for CP 

  

-reweighted 

quantile regression 

reweightedQR p-polynomial 

degree 

p=5,6 for BS quantreg [36] 

   
p=6,7 for CP 

  

  
q-quantile q=0.05,0.01,0.1 

  

Table 3. Details of normalisation strategies. 

group of methods abbrev. parameters parameter 

values 

R 

package 

literature 

standard normal variate SNV – – – 
 

probabilistic quotient 

normalisation 

PQN – – – [39] 

vector normalisation VN – – – 
 

multiplicative signal correction 

methods 

     

-multiplicative signal correction MSC – – pls [40] 

-extended multiplicative signal 

correction 

EMSC p-polynomial degree p=3,4,5,6 EMSC [40] 

-extended multiplicative signal 

correction 

repEMSC p-polynomial degree p=3,4,5,6 EMSC [40] 

with replicates correction 
 

pc-proportion of the 

explained 

   

  
replicates variance pc=0.9,0.95 

  

Within each of the preprocessing methods all parameter values combinations listed 

in Table 1, Table 2, Table 3 were tested giving in total 13264 possible preprocessing 

strategies. DWT was the only exception as SURE thresholding may be applied in R 

only with soft policy. All 13264 preprocessing strategies were subjected to 

optimisation in the grid search process and using the genetic algorithm. It should be 

emphasised that the entire preprocessing strategies consisting of denoising/smoothing, 

baseline correction and normalisation were the subject of optimisation, rather than 

individual preprocessing steps. This is a consequence of the fact that the suitability of 

the preprocessing steps strongly depends of their coupling and the effect is not a 

simple resultant sum of the contributing components. The quality parameter in the 
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grid search and response function in genetic algorithm was the ratio of the between-

source to within-source variance (b2/w2) on the first rMANOVA latent variable, LV1. 

The chromosome in the genetic algorithm consisted of three genes corresponding with 

denoising/smoothing, baseline correction and normalisation methods. The initial 

generation consisted of 50 randomly selected preprocessing strategies, the chance of 

mutations was 0.1, elitism level was set at 5% and the algorithm converged if 5 

subsequent solutions were identical. The target matrix in rMANOVA expressed equal 

variances for each source to remain in line with the statistical LR models assumption. 

The relevance of the proposed methodology was verified through the development of 

LR models (in order to meet forensic interpretation requirements) for concluding if 

the samples may share common origins (as in car paints example) or have the same 

age (as in bloodstains example). LR models were trained and tested according to 

Equation 21 for a single variable being the first latent variable from rMANOVA, 

LV1. Their performance was reported with the false positive and false negative rates 

(section 2.5). The LR values for estimating the false positive rates were computed for 

test samples from two different sources (car paints) or of different age (bloodstains). 

Any value above 1 was a false positive indication. The LR values for computing false 

negative rates were yielded for test samples from the same source (car paints) or with 

the same age (bloodstains). Any value below 1 was a false negative indication. 

The calculations were carried out in R software [48] using home-written scripts and 

available R packages listed in Table 1, Table 2, Table 3. 

4. Results and discussion 

All 13264 preprocessing strategies are summarised and ordered by 

increasing b2/w2 on the rMANOVA first latent variable LV1 as demonstrated 

in Fig. 2. The colours in the plots correspond to results observed when various 

preprocessing methods within denoising, baseline correction and normalisation steps 

were applied, regardless of their parameters. For instance in Fig. 2b black points 

show b2/w2 for all the preprocessing strategies including pAsWPLS method. From the 

graphs we can easily note that the range of b2/w2 obtained for different preprocessing 

strategies reaches two or three orders of magnitude for the databases of Raman spectra 

for bloodstains (BS) and car paints (CP) respectively. Moreover, for the BS ca. 13% 
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of the preprocessing strategies result in lower variance between sources than within 

them, which is completely useless for developing well performing discrimination 

models. These findings emphasise the fact that preprocessing has an influential effect 

on variance components and considerable insight into this area is essential and may 

become a noteworthy clue in improving discrimination models. The diagrams 

referring to denoising and baseline correction methods (Fig. 2a and b) practically do 

not present any trend which may point out that any of the applied methods is clearly 

better than the others. Due to the poverty of their informativeness, they are presented 

only for Raman spectra of bloodstains. Some tendency is observable only for 

normalisation methods (Fig. 2c and d), from which EMSC with replicates correction 

(repEMSC) appears to be indisputably the worst. When using other 

methods b2/w2 rises drastically, which is visible as a steep slope starting in the middle 

of Fig. 2c and d. These findings should not come as a surprise as only normalised 

signals are fully able to reveal the proper within- and between-groups variance 

structure. Poor performance of repEMSC method may, however, seem surprising at 

first glance. The method is known to be successful in increasing b2/w2 thanks to 

reduction of the variations between replicate signals (i.e. marked as belonging to 

particular groups we try to discriminate the samples between) after the correction by 

modeling and removal of the differences between them. The reason for 

lower b2/w2 observed in the studies should be seen, however, as a consequence of 

applying proper validation schemes for forensic investigations that force to treat any 

two samples as two different sources a priori to follow the principle of the 

presumption of innocence. According to this validation scheme, each source is always 

composed of two smaller sets that are individually preprocessed. If the preprocessing 

strategies are applied individually for each signal, this division has no meaning. It 

matters, however, for supervised preprocessing strategies that use the information 

about all signals in a group to correct the baseline or normalise them. repEMSC may 

serve as an example. If we use repEMSC for each set separately, the replicates are 

made maximally close within each set and naturally more diversed between sets. Then 

the variation within sources (each composed of two sets) rises, 

making b2/w2 automatically lower in regard to other methods that do not intend to 

reduce w2 unduly. Nevertheless, for BS there are a few preprocessing strategies 

involving repEMSC that yield very high b2/w2. This in turn is the result of a random 
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selection of the signals for the validation sets that is beneficial for achieving 

high b2/w2. By coincidence, the preprocessing strategies involving repEMSC may 

make the LR models overfitted, with poor performance (high false positive and false 

negative rates), as will be shown later. 

 
Fig. 2. b2/w2 values computed for all 13264 preprocessing strategies. Colours refer to 

strategies using various (a) denoising techniques for Raman spectra of bloodstains, (b) 

baseline correction techniques for Raman spectra of bloodstains, normalisation 

techniques for (c) Raman spectra of bloodstains, (d) Raman spectra of car paints. 

The blue X signs in the pictures in Fig. 2 show the preprocessing strategies found best 

using the genetic algorithm. The solution found using the GA is the 68th solution in 

descending order per 13264 in total for Raman spectra of blood traces and 

4766/13264 for Raman spectra of car paints. The optimal solutions found in genetic 

algorithm were obtained in several dozen times shorter time than using the grid 

search. The algorithm converged in 6th and 14th generation for both databases 

respectively, after having found the same optimal solution in five subsequent 

https://www.sciencedirect.com/science/article/pii/S0169743920301519#fig2


generations. Table 4 records the best, the worst preprocessing strategies observed in 

the grid search process as well as the winning solutions found using the genetic 

algorithm. 

Table 4. The best, the worst preprocessing strategies observed in the grid search process as 

well as the best solutions found using genetic algorithm (GA). 

 
best worst GA 

Raman spectra of bloodstains 

b2/w2 395 nearly 0 244 

denoising SG polynomial degree p=6 SG polynomial degree p=4 DWT 

Coiflets 1 decomposition level for 

denoising d=10 

threshold estimation t = universal 

thresholding policy c = hard 

dispersion estimate sd = MAD 

baseline 

correction 

ModPoly polynomial 

degree p=4 

pAsWPLS 

order of differences m=2 

penalty term λ=106 

weights w=0.005 

reweightedQR 

polynomial degree p=6 

quantile q=0.05 

normalisation repEMSC 

polynomial degree p=3 

prop. of the explained 

replicates variance 
pc=0.9 

repEMSC 

polynomial degree p=3 

prop. of the explained 

replicates variance 
pc=0.95 

EMSC polynomial degree p=5 

Raman spectra of car paints 

b2/w2 3922 4 2633 

denoising SG polynomial degree p=6 SG polynomial degree p=5 DWT 

Daubechies Least Asymmetric 8 

decomposition level for denoising d=10 

threshold estimation t = SURE 

thresholding policy c = soft 

dispersion estimate sd = MAD 

baseline 

correction 

multiWAsPLS repEMSC pAsWPLS 

order of differences m=2 polynomial degree p=3 order of differences m=2 

penalty term λ=104 prop. of the explained 

replicates variance 

penalty λ=6⋅105 

penalty term μ=108 pc=0.9 weights p=0.005 

Normalisation SNV – EMSC 

polynomial degree p=4 
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Table 4 clearly shows that Savitzky-Golay filter with the polynomial of 6th degree 

delivers the most satisfying b2/w2 for both databases. SG filters with lower 

polynomial degrees were found as the least preferable. According to Fig. 2a the 

usefulness of SG or DWT is not that clear and must always be judged in view of the 

baseline correction and normalisation methods applied afterwards. 

For Raman spectra of car paints asymmetric penalised least squares methods that 

introduce an additional penalty to penalise remarkable differences between the 

corrected replicate signals, which should be obviously as similar as possible after 

correction of the baseline (multiWAsPLS), deliver the most promising results. This is 

not surprising on the one hand, as the method helps in reducing the variations between 

replicate signals after the baseline correction and thus, it reduces diversity of the 

samples within the groups, making b2/w2 automatically higher. But on the other hand, 

the multiWAsPLS method is similar to repEMSC in that it also takes care of removing 

the differences between the replicates. As explained above, the method should rather 

produce overfitted LR models, but it does not. Thus we suspect that it presumably is 

not as successful as repEMSC in reducing b2/w2 and acts more like a method applied 

to single signals than to a group of them. However, this method does not guarantee the 

best results for Raman spectra of bloodstains, for which modified polynomial method 

(ModPoly) scores the highest. repEMSC is for both databases producing the worst 

results, as presumed. Surprisingly, it is also a normalisation method of the best 

preprocessing strategy for BS. This is rather a coincidence producing overfitted LR 

models wrongly stating that samples of the same age pose different age in even 60% 

of cases. The solutions found using genetic algorithm include EMSC method for both 

databases as a normalisation strategy. 

Fig. 3, Fig. 4 portray the capability of the preprocessing strategies in exposing the 

differences between groups and hiding the diversity within the groups of spectra. It is 

clear that the worst preprocessing strategies fail to correct baseline properly by cutting 

off some important parts as evidently visible in Fig. 3c. The picture definitely 

improves when preprocessing strategies selected using the genetic algorithm were 

applied (Fig. 3, Fig. 4d,e). Despite less efficient denoising strategy and thus lower 

legibility of the images in Fig. 3, Fig. 4e, using the strategy from GA instead of the 

best preprocessing strategy translates in a much shorter period of time into a well 
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preprocessed spectra where group differences are only referring to Raman bands and 

do not arise from baseline artifacts. 

 
Fig. 3. (a) Denoised (using SG from the best preprocessing strategy), (b) log transformed 

and mean centered, (c) baseline corrected (example, with pAsWPLS as in the worst 

preprocessing strategy), (d) normalised with repEMSC (worst preprocessing strategy) and 

mean centered, (e) baseline corrected (example, with reweightedQR as in a preprocessing 



strategy found using genetic algorithm), (f) normalised with EMSC (preprocessing 

strategy found using genetic algorithm) and mean centered Raman spectra of bloodstains. 

 
Fig. 4. (a) Denoised (using SG from the best preprocessing strategy), (b) log transformed 

and mean centered, (c) normalised with repMSC (worst preprocessing strategy) and mean 

centered, (d) baseline corrected (example, with pAsWPLS as in a preprocessing strategy 



found using genetic algorithm) and (e) normalised with EMSC (preprocessing strategy 

found using genetic algorithm) and mean centered Raman spectra of car paints. 

Fig. 5, Fig. 6 illustrate the capability of rMANOVA to maximise b2/w2. The loadings 

of the first latent variable (LV1; Fig. 5, Fig. 6a) follow the shape of the original 

Raman spectrum in the sense that the extreme loadings correspond with most crucial 

Raman peaks. This proves that rMANOVA successfully describes the differences 

between samples arising from the changes in their chemical structure. The effect is 

less pronounced for the next latent variable for Raman spectra of bloodstains as 

shown in Fig. 5b since subsequent latent variables take care a lot less 

about b2/w2 (note the differences in the scale). Diagrams in Fig. 5c and d are the 

confirmation of these observations as the mean centered spectra reconstructed using 

only LV1 much better illustrate the differences between groups of spectra in the 

Raman peaks position than for subsequent latent variables. LV2 is, however, quite 

significant and explains much of b2/w2 for Raman spectra of car paints as Fig. 6b 

portrays. However, as Fig. 5d displays rather chaotic reconstruction of the signals 

using LV2, it was decided to use only LV1 in both databases as the variables for LR 

models. Finally, Fig. 5, Fig. 6e,f plainly show that the abilities of rMANOVA to 

maximise b2/w2 are strongly dependent on the preprocessing strategy that prepares the 

data before rMANOVA is applied. The projections of single spectra within each of the 

groups in the LV1-LV2 space that were prepared using preprocessing strategies 

chosen in the genetic algorithm are very close and form separate groups (indicated by 

the same colours and shapes of the points), while these prepared using the worst 

preprocessing strategies demonstrate much greater variability. 
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Fig. 5. rMANOVA loadings of the (a) first latent variable (LV1), (b) second latent 

variable (LV2), mean centered 2 groups of Raman spectra of bloodstains prepared using 

the preprocessing strategy found in genetic algorithm and reconstructed using (c) LV1, 

(d) LV2, (e) their projections in the LV1-LV2 space and (f) projections in the LV1-LV2 

space of the spectra prepared using the worst preprocessing strategy (data for each time-

related source are indicated by the same colours or signs). An example of the original 

spectrum (mean centered in (c) and (d)) is plotted in gray. (For interpretation of the 



references to colour in this figure legend, the reader is referred to the Web version of this 

article.) 

 
Fig. 6. rMANOVA loadings of the (a) first latent variable (LV1), (b) second latent 

variable (LV2), mean centered 2 groups of Raman spectra of car paints prepared using 

the preprocessing strategy found in genetic algorithm and reconstructed using (c) LV1, 



(d) LV2, (e) their projections in the LV1-LV2 space and (f) projections in the LV1-LV2 

space of the spectra prepared using the worst preprocessing strategy (data for each source 

are indicated by the same colours or signs). An example of the original spectrum (mean 

centered in (c) and (d)) is plotted in gray. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the Web version of this article.) 

The suitability of the proposed methodology for discrimination tasks was tested using 

the LR approach in three cases, i.e. when the data were prepared using the best 

preprocessing strategy (denoted as LRbest), the worst one (LRworst) and the one selected 

using the genetic algorithm (LRGA). The levels of false positive and false negative 

responses (Fig. 7) were the highest for the LRworst, as expected. The lowest false rates 

were observed for LRGA models. False positive answers oscillated around 24% and 

false negative answers for Raman spectra of bloodstains were 3%. 13% of false 

positive and no false negative answers for Raman spectra of car paints were observed. 

The results for the LRGA models were thus not inferior to the best ones, especially 

that LRbest for Raman spectra of bloodstains were overfitted due to preprocessing with 

repEMSC method. 

 
Fig. 7. The levels of false positive (FP) and false negative (FN) responses of LR models 

constructed for (a) Raman spectra of bloodstains and (b) Raman spectra of car paints 

prepared using the best, the worst preprocessing strategies and the one selected in genetic 

algorithm (GA). 

5. Conclusions 

In this paper we have outlined a novel concept that remarkably supports the 

discrimination analysis of the Raman signals owing to appropriately conducted 

preprocessing steps. The idea is based on using the genetic algorithm to find the 
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optimal preprocessing strategy yielding the highest ratio of the between-source and 

within-source variation (b2/w2) for the first latent variable computed from 

rMANOVA, as a quality parameter. Assessing the preprocessing strategy with this 

quality parameter computed on the rMANOVA first latent variable, as the most 

discriminating variable, ensures that the selected preprocessing strategy exposes best 

the differences between sources (i.e. groups) and minimises the casual variations 

within sources. Thus this research investigates the applicability of the rMANOVA as 

a mean for development of the criterium for fast and automatic selection of the most 

appropriate signal preprocessing tool when the discrimination of the highly 

multidimensional data is the problem at hand. Using the GA instead of the grid search 

substantially saves the time without prejudice to the final statistical models 

performance compared to the results produced for the data prepared using the best 

preprocessing strategies found in the grid search process. 

Our findings emphasise the fact that preprocessing has an influential effect on 

variance components and considerable insight into this area is essential and may 

become a noteworthy clue in improving discrimination models. The preprocessing 

strategies best suited for our forensic applications should definitely skip the methods 

that overfit the statistical models, such as repEMSC. We have succeeded in showing 

that EMSC models deliver most pleasing results, however, they should work as a 

normalisation technique rather than both baseline correction and normalisation tool. 

They seem to be more successful when preceded by appropriate baseline correction 

methods. The selection of optimal preprocessing strategy is thus a matter of 

establishing the sequence of the methods for denosing/smoothing, baseline correction 

and normalisation and fixing of their most appropriate parameters. 

Finally, it is also worth noting that the presented framework may be found useful not 

only in the forensics but also medical, environmental and food analysis applications, 

where the grouping of samples is the issue at hand. And even though our findings may 

not always be transferable to any datasets, we have developed a framework for 

enhancing the discrimination models performance for signals affected by fluorescence 

or any other distortions (such as for instance Mie scattering). 
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