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Abstract: Despite significant improvements in surgical and medical management, high grade serous
ovarian cancer (HGSOC) still represents the deadliest gynecologic malignancy and the fifth most
frequent cause of cancer-related mortality in women in the USA. Since DNA repair alterations are
regarded as the “the Achille’s heel” of HGSOC, both DNA homologous recombination and DNA
mismatch repair deficiencies have been explored and targeted in epithelial ovarian cancers in the
latest years. In this review, we aim at focusing on the therapeutic issues deriving from a faulty
DNA repair machinery in epithelial ovarian cancers, starting from existing and well-established
treatments and investigating new therapeutic approaches which could possibly improve ovarian
cancer patients’ survival outcomes in the near future. In particular, we concentrate on the role of
both Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPis) and immune checkpoint inhibitors
in HGSOC, highlighting their activity in relation to BRCA1/2 mutational status and homologous
recombination deficiency (HRD). We investigate the biological rationale supporting their use in the
clinical setting, pointing at tracking their route from the laboratory bench to the patient’s bedside.
Finally, we deal with the onset of mechanisms of primary and acquired resistance to PARPis, reporting
the pioneering strategies aimed at converting homologous-recombination (HR) proficient tumors
into homologous recombination (HR)-deficient HGSOC.

Keywords: epithelial ovarian cancer; DNA repair deficiency; DNA homologous recombination;
DNA mismatch repair; PARP inhibitors; BRCA reversion mutations

1. DNA Repair Defects: the “Achille’s heel” of High-Grade Serous Ovarian Cancers

High-grade serous epithelial ovarian cancer (HGSOC) represents the deadliest malignancy among
gynecologic cancers and achieves the fifth rank among the most frequent causes of cancer-related
mortality in women in the United States [1]. Advanced disease is diagnosed in nearly 75% of
epithelial ovarian cancer (EOC) patients and this finding is primarily responsible for the modest 5-year
overall survival (OS) rate uncovered in women harboring EOC [2]. Primary surgical cytoreduction
followed by platinum-based chemotherapy constitutes the therapeutic strategy backbone in ovarian
carcinomas, but, despite important improvements attained in medical treatments by the addition
of taxanes, pegylated liposomal Doxorubicin, and Bevacizumab, patient survival has not changed
noticeably, suggesting that alternative approaches are needed [2]. Indeed, despite initial response
to platinum-based chemotherapy, most patients with this type of cancer experience disease relapse
and ultimately develop platinum resistance. This is strictly related both to extensive intratumoral
heterogeneity in primary high-grade serous carcinomas (accounting for about 70% of EOCs) and spatial
and temporal genomic evolution under the selective pressure of medical treatments [3–5].
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The prerogative for cell survival relies on the ability of maintaining genomic stability, a task
involving the regulation of DNA replication, DNA repair and cell-cycle progression, carried out by the
coordinated action of the DNA damage response (DDR) machinery. The DDR machinery is meant
to deal with the two main types of DNA lesions, i.e., single-strand breaks (SSBs) and double-strand
breaks (DSBs); whether DNA is not repaired, replication stress rises. While, on one hand, a defective
DDR may lead to neoplastic transformation and proliferation by increasing cell mutational load, on the
other hand, it can be exploited for therapeutic purposes as cells harboring a specific DDR defect can
become reliant on other targetable repair pathways for perpetuating their survival [6,7]. In particular,
since evidence from The Cancer Genome Atlas Research Project indicates that abnormalities of genes
and pathways involved in DNA damage repair contribute to impairment of homologous recombination
(HR) in almost 50% of HGSOC, DNA repair defects are regarded as the “Achille’s heel” of this group
of malignancies [1,6]. Moreover, pathways other than the homologous recombination system could be
implicated in HGSOC genetic instability (i.e., DNA mismatch repair) [8–10].

2. Homologous Recombination Deficiency in EOC

2.1. Relevant Proteins and Pathways

Homologous recombination preserves cell genetic information by fixing DNA DSBs in a highly
reliable fashion. In order to minimize the accumulation of DNA alterations deriving from both direct
DNA damage and inaccurate repair systems, the HR pathway coordinates DNA DSBs mending by
employing a sister chromatid as DNA template for nucleotide sequence regeneration [11,12].

As far as homologous recombination in epithelial ovarian cancer is concerned, both germline and
somatic BRCA1/2 mutations constitute the most common alterations, being detected in roughly 17%
and 3% of HGSOCs, respectively [1]. BRCA1 promoter hypermethylation-induced epigenetic silencing
is numbered among other mechanisms known to confer HR deficiency in EOC and is reported in
approximately 10% to 20% of HGSOCs; interestingly, this epigenetic modification occurs exclusively
for BRCA1 gene (not for BRCA2) and is mutually exclusive of BRCA1/2 mutations, suggesting a strong
selective pressure to inactivate BRCA via either mutation or epigenetic silencing in ovarian cancer [1].
Other alterations responsible for the disruption of the HR machinery integrity in EOC include mutations
in several Fanconi Anemia genes (mainly PALB2, FANCA, FANCI, FANCL, and FANCC), in core HR
RAD genes (such as RAD50, RAD51, RAD51C, and RAD54L) and in DNA damage response genes
involved in HR (such as ATM, ATR, CHEK1, and CHEK2) (Figure 1) [1,13–16].
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2.1.1. BRCA1 and BRCA2 Mutations

BRCA1 and BRCA2 genes encode protein products which participate together with other
tumor suppressor proteins in the formation of complexes committed to chromosome damage repair
by HR [17]. Interestingly, a distinctive clinical phenotype has been reported in association with
HR-deficient cancers, especially those characterized by BRCA1/2 mutations. Particularly, women
harboring BRCA1/2-mutated ovarian cancers exhibit both enhanced response to platinum-based
chemotherapeutic regimens and significantly improved OS when compared with patients diagnosed
with non-BRCA-mutated tumors; captivatingly, these effects are more prominent for BRCA2
mutation carriers, who show even longer survival with respect to BRCA1 patients [18–20].
Conversely, less favorable outcomes have been detected in EOCs displaying BRCA1 promoter
hypermethylation-induced epigenetic silencing, suggesting that different mechanisms of HR deficiency
may underlie distinct clinical phenotypes. Even though the better prognosis accompanying
BRCA-mutated cancers may be mainly explained by the higher rates of responsiveness to
platinum-based chemotherapy, a more indolent natural history due to intrinsic biologic peculiarities
may also play a role [1,18,21]. Several lines of evidence indicate that BRCA1/2-mutated tumors may
harbor an increased mutational load which renders them more immunogenic when compared with
their HR-proficient counterpart [19,22–25]. Finally, in terms of pattern of recurrence, BRCA1/2-mutated
tumors are more prone to spread to visceral organs (giving rise to liver, lung, adrenal, spleen and brain
metastases), this characteristic being more pronounced for BRCA1- mutated tumors [20].

2.1.2. Role of Poly (ADP-ribose) Polymerase (PARP) in HR deficiency

In targeting HR-deficient ovarian cancers different strategies can be adopted, ranging from
conventional chemotherapy (platinum analogues, pegylated liposomal Doxorubicin, Topotecan,
Etoposide and Gemcitabine) to PARP and cell-cycle/DNA-damage checkpoint inhibitors [6,26,27].

The PARP family of enzymes encompasses 17 members which are involved in virtually every
essential pathway of cellular biology due to their role in ADP-ribose post-translational modification
of proteins using NAD+. Specifically, PARP1, PARP2, and PARP3 are mainly implicated in the DNA
damage response, since they are committed to identify DNA alterations and coordinate repair factors
assembly to the DNA break sites [28].
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The concept of synthetic lethality (defined as a genetic combination of mutations in two or more
genes that leads to cell death, whereas a mutation in only one of the genes does not) (Figure 2) in the
DNA damage response has recently had a translational application with the finding that PARP inhibitors
are toxic to HR-defective cells. Nevertheless, the exact biological bases underlying the synthetic lethal
interaction existing between PARPis and HR disruption have not been completely elucidated yet.
Originally, PARP1 was pointed at as an essential effector taking part in DNA base excision repair (BER),
thus preventing DNA SSBs from converting into more cytotoxic DSBs, routinely repaired by the HR
machinery. In this scenario, PARPis can lead to a higher rate of DNA DSBs that remain unrepaired in
HR-deficient cells, subsequently causing cytotoxic death [6,7]. However, recent observations recognize
a role for PARP1 also in the so-called “error-prone alt-EJ or microhomology-mediated end joining”
(MMEJ) repair pathway of DNA DSBs, underscoring how HR-deficient ovarian and breast tumors
display a compensatory increase in the Polθ/PARP1-mediated alt-EJ pathway that is strictly involved in
their survival and proliferation [29–31]. Therefore, this finding may disclose a possible synthetic lethal
combination between HR deficiency and inhibition of the Polθ/PARP1 axis. In addition, PARPis are
thought to be toxic to BRCA 1/2-mutant cancers by their ability to trap PARP1 enzyme on DNA. Indeed,
the most effective PARPis are those that most successfully trap PARP proteins on DNA, generating a
bulky protein-DNA adduct which leads BRCA 1/2-mutated cancer cells to death [32,33].
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Figure 2. Schematic illustration of synthetic lethality. The concomitant alteration of two genes (defined
as A and B), generally involved in complementary pathways, leads to cell death, while loss of function
of only one of them does not. Synthetic lethality exploits the notion that the presence of a mutation in a
cancer gene is often associated with a new vulnerability that can be targeted therapeutically.

2.1.3. Focus on p53 Protein

HGSOC is one of the tumor types presenting the highest prevalence of p53 mutations (around 96%
of cases), suggesting that p53 is a critical tumor suppressor for ovarian cancer [1]. As p53 mutations are
already found at the stage of early serous tubal intraepithelial lesions, it is believed that p53 alteration
is an early event in the evolution of HGSOC [34]. Anticancer agents induce apoptosis in ovarian
cancer cells by damaging DNA in dividing cells. While normal cells respond to such stress conditions
by increasing p53 expression, in the case of p53 mutation/absence, the cell is unable to initiate DNA
damage-induced apoptosis or to enter cell cycle arrest, thus undergoing continuous proliferation [35].
Unfortunately, there are no currently approved drugs able to reactivate p53.

2.2. Therapeutic Implications

While PARP inhibitors efficacy in treating BRCA1/2-mutated HGSOCs has been firmly
established [36], the clinical benefit demonstrated by PARPis in BRCA wild-type (BRCA WT) patients
has been rising awareness about the “beyond BRCA” efficacy of these drugs (Table 1).
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Table 1. FDA and EMA approvals for Poly (ADP-ribose) Polymerase (PARP) inhibitor (PARPis)
Monotherapy in ovarian cancer (OC).

Drug
Maintenance Therapy after

Response To First-Line
Platinum-Based ChT

Maintenance Therapy after Response
To Platinum-Based ChT

in Recurrence Setting
Monotherapy in Recurrence Setting

OLAPARIB
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In this landscape, the Study 19 [37], the ARIEL3 [38], the ENGOT-OV16/NOVA [39], and the
QUADRA [40] clinical trials indirectly laid the groundwork for the scientific rationale supporting the
disruption of the DNA-damage checkpoint system in BRCA WT HGSOC.

Assessing the efficacy of the oral PARP inhibitor Olaparib as maintenance monotherapy in
women with platinum-sensitive, relapsed HGSOC experiencing a partial or complete response to
their last platinum-based chemotherapy, Study 19 was the first randomized phase 2 clinical trial to
demonstrate that patients with BRCA1 or BRCA2-mutated HGSOCs are likely to derive the greatest
clinical benefit from treatment with a PARP inhibitor [37,41]. Interestingly, data from a retrospective
analysis conducted by stratifying patients according to their BRCA mutational status demonstrated that
patients harboring a BRCA-mutated HGSOC showed a significantly longer median progression-free
survival (PFS) in the Olaparib group than in the placebo group and the extent of this PFS improvement
substantially outperformed results formerly detected in the overall population and in the BRCA
WT subgroup. Nonetheless, despite this strong evidence underpinning the biological rationale of
synthetic lethality between HR deficiency deriving from BRCA mutations and PARP inhibitors,
a significant PFS improvement was also highlighted in women with BRCA WT ovarian carcinomas
randomly assigned to the Olaparib arm versus placebo. This observation might be likely due to
the heterogeneous framework of the BRCA WT population in Study 19, since it likely encompassed
patients whose ovarian cancers harbored mutations in other-than-BRCA genes strictly involved in the
DNA homologous recombination.

The ARIEL3 and the ENGOT-OV16/NOVA randomized phase 3 clinical trials further assessed
the effect of mutations in other-than-BRCA HRD genes on response to PARP inhibitors in HGSOCs.
Indeed, these two interventional studies respectively demonstrated that maintenance therapy with
Rucaparib and Niraparib (both oral PARPis) in women with platinum-sensitive, recurrent HGSOC
undergoing a partial or complete response after their last platinum-based chemotherapy prolonged
PFS not only in BRCA-mutated tumors but also in HRD-positive BRCA-WT HGSOCs. When compared
with placebo in nested patient subpopulation analyses, both Rucaparib and Niraparib showed a
declining trend of efficacy in terms of improved PFS: the most appealing results were achieved by
patients with BRCA-mutant carcinomas, with a gradually weakening effect in the HRD-positive
and the intention-to-treat populations. Despite this unequivocal tendency, focusing on BRCA-WT
HGSOCs harboring other-than-BRCA mutations impairing the DNA homologous recombination
system, the aforementioned PARP inhibitors significantly lowered the risk for disease progression with
respect to placebo, highlighting how the HRD status may provide predictive information about the
potential treatment benefit deriving from PARPis-mediated synthetic lethality [38,39,42].
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Finally, the QUADRA phase 2 clinical study explored the activity of Niraparib monotherapy
in heavily pre-treated ovarian cancer patients, including women harboring primary or acquired
platinum-resistant or platinum-refractory HGSOC, BRCA-mutated and BRCA WT, and HRD-positive
and HRD-negative carcinomas. Consistent with the ENGOT-OV16/NOVA trial results, the QUADRA
study highlighted a continuum of clinical benefit with late-line Niraparib monotherapy in subsets
of patients identified by clinical and molecular biomarkers. Significantly, a noteworthy activity of
Niraparib was reported in women with platinum-sensitive ovarian cancer characterized by homologous
recombination deficiency, a patient subgroup which gathered together both BRCA-mutated and BRCA
WT/HRD-positive HGSOC [40,43].

Recently, the 2019 European Society for Medical Oncology (ESMO) Congress set a ground-breaking
turning point in the forthcoming management of ovarian cancer treatment in the first-line
setting. The innovative leitmotif of the majority of research clinical studies lies in the attempt
to demonstrate the efficacy of early introduction of PARP inhibitors in the treatment algorithm
of advanced OCs, regardless of their BRCA mutational status. This approach aims at dealing
with a scenario where available therapies and active clinical surveillance do not address the
high unmet need for 85% of OC patients who are going to experience disease recurrence
or progression after standard-of-care (SOC), platinum-based chemotherapy for their advanced
carcinomas. The PRIMA/ENGOT-ov26-GOG-3012 [44], the PAOLA-1/ENGOT-ov25 [45], and the
VELIA/GOG-3005 [46] clinical trials demonstrated the efficacy of PARPis in newly-diagnosed
HGSOCs, highlighting a significantly longer PFS in the intention-to-treat population, including
both BRCA-mutated and BRCA wild-type ovarian cancers.

Currently, two commercial genomic scar assays have been tested in clinical trials to identify
tumors with HRD in ovarian cancer. The first one is “myChoice HRD” assay by Myriad, which detects
loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST)
across the genome. The output of this assay is presented as “HRD score”: a tumor with an HRD
score ≥ 42 is labeled as HRD-positive. This test is used as the diagnostic companion of Niraparib
trials. The “FoundationFocus CDx BRCA LOH” is designed to detect the presence of mutations in the
BRCA1/2 genes and the percentage of the genome affected by LOH in DNA from tumor tissue samples
of patients with ovarian cancer. According to the FoundationFocus test, tumors are categorized as
LOH-high if the score is ≥ 16. This test is used as the diagnostic companion of Rucaparib trials.
Unfortunately, it is unknown whether these two tests are also predictive of benefit from PARP inhibitors
different from the ones they were developed for and, most importantly, it is unclear why subsets
of HRD negative patients benefit from PARP inhibitors both in first line (Niraparib) and at relapse
(Niraparib and Rucaparib). For these reasons, the current position of ASCO (American Society of
Clinical Oncology) is to not recommend routine tumor testing using currently available homologous
recombination deficiency (HRD) assays [47].

More academic work is therefore needed to bring to the clinics a reliable test that could predict
benefit from most if not all PARPis.

2.3. Immunologic Features and Related Clinical Implications in HR-Deficient EOC

Cancer cells are able to escape immune-mediated killing by triggering different immune checkpoint
pathways which lead to an immunosuppressive cancer “habitat”. Monoclonal antibodies directed
against cancer immune response inhibitory actors are able to boost immune anti-tumor reaction,
enhancing elimination of tumor cells by the immune system [48].

Hypermutated cancers, such as melanomas and lung carcinomas, are extremely susceptible to
immune checkpoint inhibitors (ICIs) (i.e., anti-CTLA-4 (cytotoxic T-lymphocyte antigen-4), anti-PD-1
(programmed death-1) and anti-PD-L1 (programmed death-1 ligand) antibodies) [49,50]. The enhanced
activity of ICIs in hypermutated lesions seems to rely on the higher rate of tumor-specific neoantigens
which peculiarly characterizes these cancers; indeed, while the generation of a great multiplicity of
neoantigens attracts a pronounced number of tumor-infiltrating lymphocytes (TILs) within tumor
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tissues, T cell antitumoral cytotoxic activity is negatively counterbalanced by the overexpression of
immune checkpoints, such as PD-1 or PD-L1 [50].

Despite their relatively low mutational load, EOCs do not have to be considered as
“non-immunogenic” human cancers. Several lines of evidence underscore how EOCs could elicit a
detectable reaction sustained by the host immune system in terms of tumor-specific lymphocytes and
antibodies [51,52]. Bobisse et. al. [53] identified CD8+ T cells recognizing specific tumor neo-epitopes
in nearly 90% of patients with immunotherapy-naïve, heavily pre-treated recurrent advanced EOCs:
CD8+ lymphocytes were detected both within tumor tissue (i.e., TILs) and in peripheral blood,
with discordant neoantigen specificity and avidity among these two immune cell populations; of note,
gene signatures of cancers in which hosts displayed neoantigen-specific peripheral blood T lymphocytes
were enriched for genes involved in antigen-processing/presentation pathways and PD-1 signaling.
Furthermore, identification of neo-epitopes by circulating T cells was significantly enhanced in patients
harboring BRCA1/2-mutated ovarian carcinomas.

Due to the defective activity of their HR DNA repair machinery, BRCA1/2-mutated HGSOCs
exhibit a higher tumor mutational burden, thus expressing more tumor-specific neoantigens and
harboring increased amounts of TILs and PD-1/PD-L1 [23]. This evidence supports the greater
immunogenicity typifying HR-deficient EOCs with respect to their HR-proficient counterpart [23] and,
in order to clarify this aspect, recent studies have been investigating the association and prognostic
significance of BRCA1/2 mutational status with neoantigen load, number of TILs, and expression of
PD-1/PD-L1 in HGSOC.

In this scenario, Strickland et al. [23] proved significantly higher predicted neoantigens, TILs density
and PD-1/PDL-1 expression in BRCA1/2-mutated ovarian tumors when compared to cancers without
alterations in homologous recombination genes. Of note, improved overall survival was significantly
and independently associated with both BRCA1/2 mutational status and number of TILs, underpinning
a strong correlation between BRCA1/2-mutation status, immunogenicity and survival in HGSOCs [23].
Taken together, these findings seem to forecast a potentially enhanced susceptibility of BRCA1/2-mutated
HGSOCs to PD-1/PD-L1 inhibitors with respect to HR-proficient cancers.

Despite this evidence, phase 1b and 2 clinical trials aiming at assessing the activity of single-agent
anti-PD-1 or anti-PDL-1 therapy in recurrent EOC attained modest results, with objective response
rates ranging from 8% to 10% and median PFS achieving 8-week duration [54,55]. Starting from this
background, researchers have tried to uncover the mechanisms underlying immune resistance in
EOC. Odunsi pointed at the profoundly immunosuppressive microenvironment characterizing EOC
as the primary obstacle to immunotherapy efficacy, highlighting the potential synergism between
immunotherapeutic compounds and conventional chemotherapy/targeted agents as a promising
mean to overcome immune resistance [52]. This perspective is supported by the evidence that an
efficient immune response is based on a well-defined orchestration of different and interrelated
aspects, such as production of effective numbers of cytotoxic T cells with high avidity for tumor
antigens, infiltration of CD8+ T cells into the tumor, detection of tumor antigens, and, finally,
enhancement of an immune antitumor response [56]. In this landscape, combining immune checkpoint
inhibitors with standard chemotherapy drugs and/or target agents could simultaneously act on different
steps of immune response activation and elicitation, potentially dribbling and weakening resistance
mechanisms [56,57]. Particularly, the association of PARPis with immune checkpoint inhibitors in
EOCs may boost tumor neoantigen generation, promoting an antitumor immune microenvironment.
Furthermore, agents interfering with HR proficiency may foster antitumor immune response by
increasing the release of damaged DNA from cancer cells, thus triggering the activation of the host’s
innate immune system [56,57].

Underpinned by this evidence, several clinical trials assessing the safety and efficacy of
immune-checkpoint blockade in EOC are currently ongoing, testing anti-PD-1/PD-L1 and/or
anti-CTLA-4 agents alone or, more frequently, in combination with conventional platinum-based
chemotherapy or targeted therapies (Table 2).
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Table 2. Main clinical trials with immune checkpoint inhibitors in epithelial ovarian cancers.

Trial Name/Identifier Phase Condition Therapeutic Setting Drug Regimen(s) Primary Endpoint Status

IMagyn050/NCT03038100 III Stage III-IV EOC, FTC and PPT Neoadjuvant/post-operative
Atezolizumab + Paclitaxel, Carboplatin and

Bevacizumab vs. Placebo + Paclitaxel, Carboplatin
and Bevacizumab

PFS and OS
ITT/PDL-1+ population Active, not recruiting

ATHENA/NCT03522246 III Stage III-IV EOC, FTC and PPT Maintenance after CR or PR to
first line platinum-based ChT

Rucaparib + Nivolumab vs. Rucaparib + Placebo vs.
Placebo + Nivolumab vs. Placebo + Placebo PFS Recruiting

MITO 25/NCT 03462212 I/II Stage III-IV EOC, FTC and PPT First line

Carboplatin, Paclitaxel + Rucaparib (only in
maintenance) vs. Carboplatin, Paclitaxel +

Bevacizumab (in combination and maintenance) vs.
Carboplatin, Paclitaxel + Bevacizumab (in combination
and maintenance) + Rucaparib (only in maintenance)

PFS and Safety Recruiting

KEYNOTE-162/NCT02657889 I/II Advanced and metastatic TNBC,
EOC, FTC and PPT First and subsequent lines Niraparib + Pembrolizumab ORR and Safety Active, not recruiting

NCT02873962 II Progressive or recurrent EOC,
FTC and PPT Second, third or fourth line Nivolumab + Bevacizumab vs. Nivolumab +

Bevacizumab and Rucaparib ORR Recruiting

ATALANTE/NCT02891824 III Progressive or recurrent EOC,
FTC and PPT Second or third line

Atezolizumab + Bevacizumab and platinum-based ChT
followed by Atezolizumab maintenance vs. Placebo +
Bevacizumab and platinum-based ChT followed by

Placebo maintenance

PFS Active, not recruiting

JAVELIN/NCT01772004 I Metastatic or locally advanced
solid tumors

Progressive disease following
last “standard-of-care” line

of treatment
Avelumab BOR and Safety Completed

ANITA/NCT03598270 III Progressive or recurrent EOC,
FTC and PTT Second or third line

Atezolizumab + platinum-based ChT followed by
Atezolizumab and Niraparib maintenance vs. Placebo

+ platinum-based ChT followed by placebo and
Niraparib maintenance

PFS Recruiting

MEDIOLA/NCT02734004 I/II Advanced solid tumors Relapsed disease following
“standard-of-care” treatment

Olaparib + MEDI4736 (Anti-PDL-1 Antibody)/Olaparib
+ MEDI4736 (Anti-PDL-1 Antibody) + Bevacizumab DCR, ORR and Safety Recruiting

MITO27/NCT03539328 II Progressive or recurrent EOC,
FTC and PPT Second or third line

Pegylated liposomal Doxorubicin or weekly Paclitaxel
or Gemcitabine (at Physician’s discretion) vs. Pegylated

liposomal Doxorubicin + Pembrolizumab or weekly
Paclitaxel + Pembrolizumab or Gemcitabine +

Pembrolizumab (at Physician’s discretion)

OS Not yet recruiting

EOC: Epithelial Ovarian Cancer; FTC: Fallopian Tube Cancer; PPT: Primary Peritoneal Tumor; TNBC: Triple-Negative Breast Cancer; ChT: Chemotherapy; PFS: Progression Free Survival;
OS: Overall Survival; ORR: Objective Response Rate; BOR: Best Overall Response; DCR: Disease Control Rate; CR: Complete Response; PR: Partial Response; ITT: Intention-To-Treat;
PDL-1+: Programmed Death Ligand1. For more detailed information, see www.clinicaltrials.gov.

www.clinicaltrials.gov
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Specifically, as far as the neoadjuvant and post-operative settings are concerned, the phase 3
IMagyn050 trial (NCT03038100) aims at investigating the safety and efficacy of Atezolizumab, a fully
humanized monoclonal antibody that targets PD-L1, versus placebo when administered in combination
with Paclitaxel, Carboplatin and Bevacizumab (i.e., anti-VEGF humanized monoclonal antibody) in
both women harboring stage III or IV EOC eligible for neoadjuvant therapy followed by interval
debulking surgery and patients undergoing primary cytoreductive surgery with macroscopical residual
disease postoperatively who necessitate of post-surgical systemic treatment.

Shifting focus on the first-line setting, the ATHENA clinical trial (NCT03522246) is evaluating the
efficacy of maintenance therapy with the PARPi Rucaparib combined with the fully human anti-PD-1
monoclonal antibody Nivolumab in newly-diagnosed ovarian cancer patients who showed either
complete or partial response to front-line platinum-based chemotherapy. In the same treatment setting,
the MITO25 clinical trial (NCT03462212) is evaluating the potential synergism deriving from the
combination of anti-angiogenic agents with PARPis by assessing the activity of three different drug
regimens sharing a common platinum-based chemotherapy backbone. Specifically, treatment-naïve,
advanced, or metastatic OC patients are randomly assigned to receive platinum-based chemotherapy
followed by Rucaparib maintenance therapy versus platinum-based chemotherapy plus Bevacizumab
in combination and as maintenance therapy versus platinum-based chemotherapy plus Bevacizumab
followed by Bevacizumab plus Rucaparib maintenance therapy.

Most ongoing clinical trials are exploring the effectiveness of immune-checkpoint inhibitors
in the recurrence scenario and their potential exploitation in late therapeutic lines. In this light,
a phase 1/2 clinical trial (KEYNOTE-162; NCT02657889) has been designed to evaluate the safety
and efficacy of combination treatment with the PARPi Niraparib and Pembrolizumab, a humanized
monoclonal antibody targeting the PD-1 receptor, in recurrent EOCs. In another study (NCT02873962),
Nivolumab is being tested in association with Bevacizumab alone or with Bevacizumab plus Rucaparib
both in platinum-resistant and in platinum-sensitive relapsed EOC; the phase 3 ATALANTE trial
(NCT02891824) is instead enrolling women with platinum-sensitive recurrent EOC to be randomly
assigned to receive Atezolizumab in combination with Bevacizumab and platinum-based chemotherapy
or placebo plus Bevacizumab and a platinoid-containing schedule. The aforementioned studies are
ongoing and results are eagerly awaited.

Promising insights derive from the phase 1b JAVELIN clinical trial (NCT01772004) which
demonstrated the acceptable safety profile and clinical activity of the anti-PD-L1 fully humanized
antibody Avelumab in heavily pre-treated patients with EOC; interestingly, patients exhibiting
PD-L1-positive tumors displayed a higher overall response rate with respect to women diagnosed
with PD-L1-negative EOCs.

3. Mechanisms of Primary and Acquired Resistance to Platinum Salts and PARP Inhibitors
in HGSOC

A further crucial chapter in HGSOC natural history is represented by the emergence of resistance
to platinum-based chemotherapy and PARP inhibitors [26,58]. Indeed, the widespread use of germline
and tumor DNA sequencing and the approval of PARP inhibitors in everyday clinical practice have
led to a greater number of patients harboring BRCA 1/2 mutated ovarian tumors being treated with
platinum agents and/or PARPis, on one hand, and to the problem of acquired resistance to these
therapeutic regimens, on the other hand. Huge efforts in clinical research have been made trying to
identify molecular mechanisms underlying resistance in homologous recombination deficient HGSOCs
and different alterations have been reported (Figure 3A,B) [59–63].

Among resistance mechanisms, reversion mutations in BRCA1 or BRCA2 genes that partly
restore wild-type protein function constitute the most common key mechanism leading to platinum
compounds and PARPis resistance in HGSOCs (Figure 3A). Specifically, reversion mutations are
represented by secondary somatic mutations, i.e., base substitutions or, more often, insertions/deletions
(indels), in a mutant BRCA 1/2 allele which restore the open reading frame of the gene, heading to the
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expression of a partly functional protein product [26]. In brief, reversion mutations switch neoplastic
cells from an HR-deficient to an HR-proficient phenotype and promote drug resistance by enabling
DNA-damage repair induced by PARPis and/or platinum-based chemotherapy, undermining the basis
of synthetic lethality and ultimately leading to tumor cells survival [3,26,58].
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Figure 3. Mechanisms of resistance to PARPis. (A) BRCA-dependent mechanisms: (upper part)
appearance of secondary “revertant” BRCA mutations (favored by increased DNA mutation rate) that
restore the open reading frame and allow the synthesis of a functional BRCA protein; (lower part)
PARPi-induced selection of pre-existing cells with “revertant” BRCA mutations. (B) BRCA-independent
mechanisms: (from top to bottom) loss of PARP1 expression (often due to epigenetic mechanisms);
appearance of PARP1 mutations altering PARP1 trapping; inactivation of the DNA repair proteins
53BP1 or REV7, resulting in the restoration of homologous recombination repair; increased expression
of multidrug resistance proteins.

It has been demonstrated that the restoration of BRCA 1/2 functionality can occur in the setting
of either germline or somatic BRCA 1/2 mutations and that different tumor sites within one patient
may harbor distinct reversion mutations, highlighting the great spatial and temporal intratumoral
heterogeneity which basically characterizes HGSOCs [3]. This striking heterogeneity draws attention
to the importance of having a real-time “global picture” of molecular characteristics typifying each
individual HGSOC, in order to tailor the best therapeutic intervention for every single patient.
In this scenario, analysis of circulating cell-free DNA (cfDNA) may identify multiple reversion
mutations simultaneously, at the time of or prior to clinically detectable resistance to platinum
compounds or PARPis. Interestingly, in order to evaluate the prevalence of BRCA reversion mutations
in HGSOCs, Lin et al. [64] conducted targeted next-generation sequencing (NGS) of circulating



Cancers 2020, 12, 1315 11 of 20

cell-free DNA extracted from pre-treatment and post-progression plasma in patients with deleterious
germline or somatic BRCA mutations treated with the PARP inhibitor Rucaparib. BRCA reversion
mutations were identified in pre-treatment cfDNA from 18% of platinum-refractory and 13% of
platinum-resistant cancers, compared with only 2% of platinum-sensitive cancers. Of note, patients
carrying BRCA-mutant cancers without detectable BRCA reversion mutations in pre-treatment cfDNA
analysis showed significantly longer progression-free survival after treatment with Rucaparib when
compared to those with pre-treatment reversion mutations (median PFS 9.0 vs. 1.8 months; HR 0.12;
p < 0.0001). Furthermore, since this positive trend was also unveiled within the platinum-resistant
and platinum-refractory BRCA-mutant cohorts (median PFS 7.3 vs. 1.7 months; HR 0.16; p < 0.0001),
this finding gave some appealing insights on the potentially beneficial role of PARPis in women whose
cancers retain BRCA mutations after progressing within 6 months after the completion or during
their last platinum-based chemotherapy. As far as acquired resistance to Rucaparib is concerned,
by analyzing plasma cfDNA at time when progression to Rucaparib occurred, Lin and collaborators
detected eight extra patients harboring BRCA reversion mutations not mapped in pre-treatment cfDNA.
Captivatingly, in four of the eight patients with acquired BRCA reversion mutations, the reversion
mutations were detected in plasma samples collected prior to clinical progression (assessed by
RECIST (Response Evaluation Criteria In Solid Tumors) criteria) and, specifically, at a median of
3.4 months (range 0.7–8.3 months) before progression. By contrast, the remaining four patients had
BRCA reversion mutations detected in plasma samples only at the time of radiologic progression.
Taken together, these results underline how the detection of BRCA reversion mutations by cfDNA
analysis is associated with forthcoming or concurrent cancer progression and may warrant a change in
the adopted therapeutic approach: HGSOCs which harbor a BRCA reversion mutation and progress
during one single-PARPi therapy should not be treated with another single-agent PARPi-based strategy.

Furthermore, only a little subgroup within patients with platinum-resistant and platinum-refractory
HGSOCs revealed BRCA reversion mutations in pre-treatment and post-progression cfDNA, pointing
at the presence of other mechanisms involved in primary and acquired resistance to platinum agents
and PARPis. Among these, reversion mutations in other tumor suppressor genes associated with the
DNA repair machinery, such as PALB2, RAD51C, and RAD51D, have been described [64].

As a consequence, in order to better predict sensitivity to platinum-based chemotherapy and
PARPis, assays aimed at distinguishing cancers with ongoing genomic instability from those with
just a history of genomic instability followed by functional restoration of DNA repair defects are
eagerly awaited [3]. Indeed, since the purpose of next generation clinical trials consists in evaluating
the effectiveness of different therapies after PARPis progression, patients should be stratified for the
presence of reversion mutations in tumor tissue and/or cfDNA at the time of trial entry. In the near
future, cfDNA analysis could effectively support oncologists in the clinical management of HGSOCs,
unveiling the probability of tumor response or the risk of tumor refractoriness/progression in the setting
of a drug regimen consisting of platinum-based compounds or PARPis [64]. In this scenario, it could be
employed to enhance and refine the predictive power of the well-known “platinum-free interval” (PFI),
which, regrettably, constitutes the only predictive marker of response currently used to guide drug
selection in relapsed HGSOCs and which is not effective in discriminating, among platinum-resistant
and platinum-refractory patients, those who would benefit from a PARP inhibitor-based schedule
despite their clinical behavior (assessed by PFI) following a platinum-based regimen [26,58,64].

Other processes involved in DNA repair pathways that mediate resistance to PARPis but are not
related to BRCA genes are represented by the decreased expression of PARP enzymes [61], the onset
of PARP1 mutations altering its trapping on DNA [61], the inactivation of the DNA repair proteins
53BP1 (i.e., tumor protein p53 binding protein 1) [65–67] or REV7 [68,69] and the increased expression
of ATP-binding cassette transporters (i.e., the p-glycoprotein efflux pump, also known as multidrug
resistance protein 1) [62] (Figure 3B).

In particular, 53BP1 is a chromatin binding protein that regulates DNA repair by inhibiting DNA
end resection and homologous recombination by binding to double strand breaks and promoting
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non-homologous end joining [65]. It has been shown that loss of 53BP1 in BRCA1 null cells promotes
homologous recombination, conferring PARPis resistance [65–67]. REV7 has recently been identified
as a component of the shieldin complex, a downstream effector of 53BP1 in DNA double strand break
repair [68]. Loss of REV7 re-establishes end resection of DSBs in BRCA1-deficient cells, leading to HR
restoration and PARP inhibitor resistance [69].

More recently, focusing on the PARP-trapping mechanism of action of PARPis, researchers
have pointed at the restoration of replication fork stability as another emerging way for cancer
cells to withstand PARP inhibition; indeed, cytotoxic death deriving from PARPis-induced stalled
replication forks may be bypassed by parallel compensatory pathways restoring and restarting the
DNA-repair machinery [63].

4. Issues with the Management of HR Proficiency in HGSOC

The ENGOT-OV16/NOVA trial results [39] underscored the efficacy gap of Niraparib maintenance
therapy between patients harboring HRD-positive HGSOCs and their HRD-negative counterpart.
Indeed, even though Niraparib significantly reduced the risk for disease progression in the
HRD-negative patient subpopulation, this beneficial effect was considerably lower when compared
with the magnitude of PFS improvement achieved in the HRD-positive subgroup. This evidence
emphasizes both the marginal impact of PARPis in the treatment of HRD-negative OC patients and the
need for new therapeutic strategies targeting HR-proficient ovarian cancers.

The detection of BRCA1/2 reversion mutations during the natural history of HGSOC highlights how
the loss of BRCA1/2 function and its associated DNA-repair defect seem to be required only for initiation
of tumorigenesis and not needed for maintenance of the cancer phenotype. As a consequence, treating
BRCA1/2-deficient HGSOCs by trying to restore BRCA1/2 function could represent an ineffective
strategy and might render these cancers even more fit. According to Rojas and collaborators [7],
this phenomenon can be referred to as “tumor-suppressor tolerance”, in order to place it in contrast to
“oncogene addiction”. In this landscape, it is quite straightforward to understand how challenging the
purpose to find ways to overcome de novo and acquired homologous-recombination proficiency is.

A fascinating and pioneering strategy consists in an attempt to convert HR-proficient tumors into
HR-deficient phenotypes by means of drugs which aim at disrupting HR pathway through different
mechanisms (Figure 4). The objective of this paradigm is to combine platinum compounds and PARPis
with agents that functionally abrogate HR, in order to confer a “BRCAness” phenotype to HR-proficient
tumors, enhancing the therapeutic activity of platinoids and PARPis beyond HR-deficient HGSOCs.Cancers 2020, 12, x 13 of 20 
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Figure 4. Ovarian cancer (OC) tumor evolution under treatment with HR-synthetic lethal agents and
new insights into novel therapeutic approaches aiming at disrupting HR proficiency in OC. Legend.
Blue circle: HR-deficient ovarian cancer cell; Red star: HR-proficient ovarian cancer cell; OC: Ovarian
Cancer; HR: Homologous Recombination; ChT: Chemotherapy; PARPis: Poly (ADP Ribose) Polymerase
Inhibitors; CDK1is: Cyclin-Dependent Kinase 1 inhibitors; PI3Kis: PhosphoInositide 3-Kinase inhibitors;
BETis: Bromodomain and Extraterminal Domain inhibitors; HDACis: Histone DeACetylase inhibitors.
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In this setting, several approaches meant to selectively interfere with DNA HR-repair and to
sensitize cancer cells to platinum or PARPis have been evaluated, both preclinically and in early
clinical trials.

Johnson et al. [70] demonstrated how cyclin-dependent kinase 1 (CDK1) is deeply implicated in
HR, since CDK1-mediated BRCA1 phosphorylation constitutes an essential step for HR machinery
effector scaffolding upon DNA DSBs: by combining CDK1 and PARP inhibition, they obtained reduced
cell colony formation, disrupted human tumor xenograft growth and tumor regression leading to
improved survival in a mouse model of BRCA WT lung adenocarcinoma. Therefore, targeting CDK1
activity could impair the HR DNA repair machinery and render transformed cells more prone to the
cytotoxic activity of PARPis. On the wave of the same speculative principle, other intriguing studies
have been performed over time. Ibrahim and collaborators [71] demonstrated that phosphoinositide
3-kinase (PI3K) inhibition could be exploited to induce HR deficiency and sensitization to PARPis
in BRCA-proficient triple-negative breast cancers, since PI3K closely interacts with the HR complex
in order to stabilize and preserve DSB repair, while other researchers focused their attention on
exploring the role played by epigenetic mechanisms in HR efficiency. In particular, Vorinostat [72] and
Panobinostat [73], two histone deacetylase inhibitors (HDACis), were shown to downregulate genes
implicated in HR DNA repair, such as cyclin E, E2F1, and BRCA1, in HR-proficient ovarian cancer cells,
leading to synergistic enhancement of cytotoxicity when these compounds were combined with the
PARPi Olaparib. Of note, the cytotoxic effect of the combination between Panobinostat and Olaparib
was striking chiefly in cyclin E-overexpressing HR-proficient ovarian tumor cells. This finding could be
explained by the intrinsic reliance of cyclin E-overexpressing HGSOCs on high levels of HR proficiency;
indeed, since amplified cyclin E is a well-known oncogenic driver of unchecked replication which
leads to replicative stress and great genomic instability, cyclin E-overexpressing ovarian tumors are
strictly dependent on robust HR DNA repair mechanisms for their survival [73].

As far as epigenetic mechanisms are concerned, another molecular player which seems deeply
involved in HGSOC homologous recombination DNA repair is represented by the bromodomain and
extraterminal domain (BET) protein BRD4. BRD4, along with BRD2 and BRD3, acts as an epigenetic
reader in order to regulate gene transcription; particularly, since BET target genes’ products actively
participate in key cellular processes involving cell cycle control, DNA repair, cell growth, cancer and
inflammation, small molecule BET inhibitors (BETis) have drawn researchers’ attention lately [74].
Of note, according to The Cancer Genome Atlas database, BRD4 gene is amplified in approximately
10% of HGSOCs, laying the groundwork for BETis to represent a potentially effective therapeutic
strategy in this subtype of tumors with poor clinical outcome. Specifically, by both knocking down and
inhibiting BRD4 via the novel BETi INCB054329, Wilson et al. [75] observed a substantial reduction in
the expression and function of HR components, in particular BRCA1 and RAD51, both in cultured
ovarian cell lines and in patient-derived xenografts; furthermore, they noticed enhanced tumor cell
growth inhibition, DNA damage generation, and apoptosis when BRD4 pathway disruption was
associated with treatment with Olaparib.

Along with the improvements made in the knowledge of mechanisms underlying epigenetic
regulation of gene expression, other molecular targets have been studied and exploited in order
to turn HR-proficient HGSOCs into HR-deficient ones. Of note, attractive molecular targets are
constituted by: the heat shock protein 90 (HSP90), which is an ATP-dependent molecular chaperone
mediating the maturation, stability and activation of several hundreds of different proteins, including
cell cycle regulators, such as CDK1, and key proteins essential for DNA repair, such as BRCA1,
BRCA2, and RAD51 [76]; cyclin D1, a component of the cell cycle machinery which is involved in
HR-mediated DNA repair and is overexpressed in 14–89% of ovarian cancer cases, resulting associated
with a poorer prognosis [77]; vascular endothelial growth factor receptor 3 (VEGFR3), in which
inhibition resulted in cell cycle arrest, decrease of both BRCA1 and BRCA2 expression, and significant
increase of chemosensitivity in resistant ovarian cell lines in which a BRCA2 mutation had reverted
to wild-type [78].
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5. DNA Mismatch Repair Deficiency in EOC and Deriving Clinical Implications

Focusing on the other DNA repair mechanism, i.e., DNA mismatch repair (MMR), it is necessary
to highlight how this field of research has been poorly systematically investigated in the landscape
of EOCs [8,9,79].

MMR is involved in the correction of DNA base-base mismatches and insertion/deletion mismatch
repairs generated during DNA replication, and its deficiency is associated with an increased risk of
developing several types of cancer, constituting the most common cause of hereditary ovarian cancer
after BRCA1/2 mutations [79–81]. Even though germline MMR gene mutations occur in only 2% of
ovarian carcinomas, the incidence rate of MMR deficiency rises to 29% when considering expression
loss of one of the seven MMR main genes (i.e., MSH2, MSH3, MSH6, MLH1, MLH3, PMS1, and PMS2).
Interestingly, both mutational and expression data point at non-serous ovarian carcinomas as the
histologies that more frequently display MMR deficiency [8]. Unfortunately, findings concerning the
prognostic landscape in MMR-deficient ovarian cancers are highly controversial. Whereas numerous
studies have explored survival in MMR-deficient colorectal cancers, survival and treatment outcomes
in MMR-defective ovarian cancers are still hugely under-investigated. As far as colorectal cancer is
concerned, after reviewing 32 eligible studies which stratified survival in colorectal cancer patients by
microsatellite instability (MSI) status, Popat et al. [82] confirmed that MSI-high status is associated with
enhanced survival. Moreover, Radman and Wagner [83] reported the relationship intervening between
MSI-related genetic instability and compromised cancer progression, suggesting its implication in
improving colorectal cancer patient survival. By contrast, since only few studies with diverging
or inconclusive results have been investigating the role played by DNA MMR deficiency in EOCs,
its implications in both EOC prognosis and clinical response to different therapeutic regimes remain
uncovered [84–92]. However, despite the scarce scientific evidence concerning MMR-deficient EOC,
an appealing insight into this undiscovered and niche landscape is represented by a distinctive
subset of clear cell ovarian carcinomas (CCOC) characterized by microsatellite instability. Howitt [93]
described for the first time an epidemiologically rare but clinically relevant cohort composed by
MMR deficient CCOCs, highlighting how they were associated with a significantly higher number
of TILs and PD-1-positive TILs with respect to their microsatellite-stable counterpart and HGSOC;
furthermore, MSI CCOCs homogenously expressed PD-L1 in the tumor cells and/or in the intraepithelial
or peritumoral immune cells. These unique immunogenic biological features pointed at the MSI
CCOC subset as a favored candidate for immune-checkpoint blockade, offering this uncommon,
standard-chemotherapy resistant histologic subtype a promising effective therapeutic alternative [93].

6. Conclusions and Future Perspectives

Despite noteworthy improvements achieved in surgical and medical treatments, high-grade
serous ovarian cancer still represents the deadliest gynecologic malignancy, essentially due to the
high tendency to relapse and develop resistance to platinum-based chemotherapy during its natural
history. Huge preclinical and clinical efforts have been made to cope with these issues, particularly
focusing on DNA repair deficiency and strategies to exploit this distinctive feature, which is regarded
as “the Achille’s heel” of HGSOC.

Two DNA repair mechanisms are mainly investigated and targeted in cancers, i.e., DNA
homologous recombination and DNA mismatch repair pathways. As far as MMR pathway is
concerned, this field of research remains poorly systematically assessed in epithelial ovarian cancer
and evidence concerning survival and prognosis features and potential treatment approaches in
microsatellite-instable EOCs is actually controversial and inconclusive. On the other hand, DNA
HR deficiency and its clinical implications have been deeply explored in HGSOCs, leading to both a
greater understanding of biological and clinical characteristics of HRD-positive ovarian carcinomas
and the introduction of novel therapeutic drugs acting as synthetic lethal to HR pathway alterations.
Germline and somatic BRCA 1/2 mutations represent the most frequent alterations interfering with HR
in HGSOCs; striking improvements in BRCA 1/2-mutated HGSOC natural history have been reached
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with PARP inhibitors in clinical practice. Nonetheless, the widespread use of PARPis has determined
the emergence of resistance to this innovative therapeutic approach, principally related to reversion
mutations restoring BRCA 1/2 activity. As a consequence, research attention has been driven to both
assess new targets able to revert a HR-proficient tumor phenotype to a HR-deficient one and investigate
potential antitumor activity of immune-checkpoint inhibitors in TILs-enriched EOCs. Several promising
preclinical and clinical trials are ongoing and their results are eagerly awaited. However, despite
increasing knowledge about HGSOC biological and molecular landscapes, a “grey zone” concerning
HGSOC biological behavior and implications of intratumoral and spatial/temporal heterogeneity still
remains uncovered. Clinical trials relying on firm scientific bases and solid translational research are
keenly needed in order to address these unmet preclinical and clinical answers. Future insights would
possibly derive from next-generation sequencing analyses conducted on circulating cell-free DNA.
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