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A Novel Solution to the Problem

of Old Evidence
Jan Sprenger*y
One of the most troubling and persistent challenges for Bayesian Confirmation Theory is
the Problem of Old Evidence ðPOEÞ. The problem arises for anyone who models sci-
entific reasoning by means of Bayesian Conditionalization. This article addresses the
problem as follows: First, I clarify the nature and varieties of the POE and analyze vari-
ous solution proposals in the literature. Second, I present a novel solution that combines
previous attempts while making weaker and more plausible assumptions. Third and last,
I summarize my findings and put them into the context of the general debate about POE
and Bayesian reasoning.

1. Introduction: The Problem of Old Evidence. One of the most troubling
and persistent challenges for Bayesian Confirmation Theory ðBCTÞ is the
Problem of Old Evidence ðPOEÞ: A phenomenon E remains unexplained by
the available scientific theories. At some point, a theory T is discovered that
accounts for E. Then, E is “old evidence”: at the time when T is developed,
the scientist is already certain or close to certain that the phenomenon E is
real. Nevertheless, E apparently confirms T—at least if T was invented on in-
dependent grounds. After all, it resolves a well-known and persistent tension
between theory and observation.
A famous case of old evidence in science is the Mercury perihelion anom-

aly ðGlymour 1980; Earman 1992Þ. For a long time, the shift of the Mercury
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perihelion could not be explained by Newtonian mechanics or any other rep-
utable physical theory. Then, Einstein realized that his General Theory of Rel-
ativity ðGTRÞ could explain the perihelion shift. This discovery conferred a
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substantial degree of confirmation on GTR, much more than some pieces of
novel evidence.
Also in other scientific disciplines, newly introduced theories are com-

monly assessed with respect to their success at accounting for observational
anomalies. Think, for example, of the assessment of global climate models
against a track record of historical data or of economic theories that try to
explain anomalies in decision making under uncertainty ðe.g., the Allais or
Ellsberg paradoxesÞ.
All this is hard to capture in the Bayesian framework, where confirmation

is expressed as an increase in an agent’s subjective degree of belief. On the
Bayesian account, E confirms T if and only if the posterior degree of belief
in T, p0ðTÞ, exceeds the prior degree of belief in T, pðTÞ. These two prob-
abilities are related by means of conditioning on the evidence E and Bayes’s
Theorem ðe.g., Howson and Urbach 2006Þ:

p0ðTÞ :5 pðT j EÞ5 pðTÞ pðE j TÞ
pðEÞ : ð1Þ

Here and in the sequel, reference to an accepted body of background as-
sumptions K in the credence function pð·Þ is omitted for the sake of sim-
plicity.
Let us now apply the Bayesian calculus to POE. When E is old evidence

and already known to the scientist, the prior degree of belief in E is max-
imal: pðEÞ 5 1. But with that assumption, it follows that the posterior prob-
ability of T cannot be greater than the prior probability: p0ðTÞ5 pðT j EÞ5
pðTÞ � pðE j TÞ ≤ pðTÞ. Hence, E does not confirm T. The very idea of
confirmation by old evidence, or equivalently, confirmation by accounting for
well-known observational anomalies, seems impossible to describe in the
Bayesian belief kinematics.
This article investigates the variety of the problems that POE poses for

BCT, reviews existing approaches, and finally proposes a novel solution.
Section 2 distinguishes the dynamic and the static version of POE and briefly
comments on attempts to solve the static problem. Section 3 analyzes the
solutions of the dynamic version proposed byGarber ð1983Þ, Jeffrey ð1983Þ,
Niiniluoto ð1983Þ, and Earman ð1992Þ. On these accounts, confirmation oc-
curs through conditionalizing on the proposition T ⊢ E. Section 4 presents
my own improvement on these attempts. Finally, section 5 puts my findings
into the context of the general debate about POE and BCT.
Throughout the article, I work in the framework of Bayesian epistemology

ðBovens and Hartmann 2003; Hájek and Hartmann 2010; Hartmann and
Sprenger 2010Þ and Bayesian philosophy of science ðHowson and Urbach
2006; Sprenger 2015Þ. I am using Bayesian Nets for representing depen-
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dencies between propositions of interest—a technique that has recently proved
its merits for modeling complex confirmation phenomena ðe.g., Dawid, Hart-
mann, and Sprenger 2015Þ.

THE PROBLEM OF OLD EVIDENCE 385
2. The Varieties of the POE. Part of the controversy about the POE con-
cerns the question of what the problem really consists in. Eells ð1985, 1990Þ
has introduced a helpful conceptual distinction between different problems
of old evidence:

1. The Problem of Old New Evidence: E is learned after T is formulated,
but even after updating our degrees of belief on E, we still say that E
confirms T although by now, p0ðEÞ 5 1. ðAs before, p0 denotes the
posterior probability distribution.Þ

2. The Problem of Old Evidence: E is known before T is formulated.
2aÞ The Problem of Old Old Evidence: Even after formulating T and

discovering that T accounts for E, E seems to confirm T.
2bÞ The Problem of New Old Evidence: Why does E confirm T at the
moment where T is discovered or when it is discovered that T
accounts for E?

Items 1 and 2a describe the static ðEells: “ahistorical”Þ aspect of POE: be-
lief changes induced by the discovery of T, or the fact that T accounts for E,
have already taken place. Still, we would like to say that E is evidentially
relevant for T: when faced with a decision between T and a competitor T 0,
E is a good reason for preferring T over T 0. Item 2b, however, captures the

dynamic ðEells: “historical”Þ aspect of the problem: it refers to the moment
in time when T and its relation to E are discovered. Here, the challenge for
the Bayesian is to describe how the discovery of a new theory T and its
explanatory successes raises our confidence in T.
The Bayesian usually approaches both problems by different strategies.

The standard take on the dynamic problem consists in allowing for the
learning of logical truths. In classical examples, such as explaining the Mer-
cury perihelion shift, the newly invented theory ðhere: GTRÞwas initially not
known to entail the old evidence. It took Einstein some time to find out that
T entailed E ðBrush 1989; Earman 1992Þ. Learning this deductive relation-
ship undoubtedly increased Einstein’s confidence in T since such a strong
consilience with the phenomena could not be expected beforehand.
However, this belief change is hard to model in BCT. A Bayesian rea-

soner is assumed to be logically omniscient, and the logical fact T ⊢ E
should always have been known to her. Hence, the proposition T ⊢ E can-
not be learned by a Bayesian: it is already part of her background beliefs.
To solve this problem, several philosophers have relaxed the assumption

of logical omniscience and enriched the algebra of statements about which
we have degrees of belief. New atomic sentences of the form T ⊢ E are
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added ðGarber 1983; Jeffrey 1983; Niiniluoto 1983Þ, such that BCT can ac-
count for our cognitive limitations in deductive reasoning. Then, it can be
shown that under suitable assumptions, conditioning on T ⊢ E confirms T.
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I comment on these efforts in the next section.
The response to the static problem is different. Eells ð1990, 209Þ pro-

poses that “E is ðactualÞ evidence for T . . . if, at some point in the past, the
event of its confirming T took place.” On that definition, the solution of the
static problem in 1 and 2a would reduce to the solution of the dynamic
problem ðcf. Christensen 1999, 444Þ: when we can show that at the time of
the formulation of T, E confirmed T, then E would also be evidence for T
afterward ðEells 1990, 210Þ. However, most takes on the dynamic problem
do not try to show that E confirms T at the relevant moment in time: rather,
this work is done by the proposition T ⊢ E. This strategy also fails to ac-
count for changes over time in our assessment of the strength of the evi-
dence that E provides for T.
Therefore, Colin Howson ð1984, 1985, 1991Þ developed a more princi-

pled take on the static problem. He gives up the Bayesian explication of
confirmation as positive probabilistic relevance relative to actual degrees of
belief. Rather, he suggests to subtract the old evidence E from the agent’s
background knowledge K and to evaluate the confirmation relation with
respect to the counterfactual credence function pK =fEg: “The Bayesian as-
sesses the contemporary support E gives H by how much the agent would
change his odds on H were he now to come to know E. . . . In other words,
the theory is explicitly a theory of dispositional properties of the agent’s
belief-structure” ðHowson 1984, 246Þ. For instance, if T is a hypothesis
about the bias of a coin and E the outcome of some series of coin tosses,
then eliminating E from the background knowledge allows us to describe
how E raises the probability of T since we would have definite and non-
trivial values for pK =fEgðE j TÞ and pK =fEgðE j :TÞ ðHowson 1991, 551–52Þ.
As the above quote indicates, Howson thinks that BCT is essentially a

counterfactual or dispositional theory. I happen to agree with him on this
point, but there are a couple of technical problems with Howson’s specific
choice of a counterfactual credence function. In particular, E may be en-
tangled with other propositions that are part of K. As Chihara ð1987Þ notes,
just removing E from the set of background assumptions K will not work
in general if K is supposed to be a deductively closed set. If we ignore this
feature, we would sacrifice a main advantage of Howson’s counterfactual ap-
proach: that it need not give up the elegance of the standard Bayesian ratio-
nality assumptions ðe.g., epistemic closureÞ in order to account for the POE.
Alternatively, Howson may choose to evaluate the confirmation relation

with respect to the agent’s credence function at some point in the past ðe.g.,
just before she learned EÞ. But the agent’s belief in E may have gradually
grown over time, and no such time point may exist. Moreover, without
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knowledge of E, T may even not have been formulated ðcf. Glymour 1980,
87–93Þ.
All in all, the credence function p that is supposed to ground the

THE PROBLEM OF OLD EVIDENCE 387
K =fEg
confirmation relation between T and E is rather indefinite even in cases
where everybody agrees that E confirms T. As a consequence, we can hardly
determine whether the degree of confirmation conferred on T by E is strong,
weak, or nil.
Another solution proposal for the static problem is based on the choice of

a specific confirmation measure ðFitelson 1999, 2014Þ. Christensen ð1999Þ
contends that for the measure s*ðT ; EÞ5 pðT j EÞ2 pðT j :EÞ, the POE
does not arise. For instance, if T entails E, then:E also entails ¬T, which
implies pðT j :EÞ5 0 and s*ðT ; EÞ5 pðT j EÞ > 0. According to s*, old
evidence E can substantially confirm theory T, whereas the degree of con-
firmation is 0 for measures that compare the prior and posterior probability
of T, such as dðT ; EÞ5 pðT j EÞ2 pðTÞ or rðT ; EÞ5 logð pðT j EÞ=pðTÞÞ.
Christensen’s move has its merits for cases where pðEÞ is close to, but not

entirely equal to, 1 ðalthough it is questionable whether s* is a good ex-
plicatum for the degree of confirmation; see Eells and Fitelson 2000Þ. But in
the classical POE where pðEÞ 5 1, pðT | :EÞ may not have a clear-cut
definition since pðT j :EÞ5 pðT ∧: EÞ=pð:EÞ involves a division by 0.
And if pðT |:EÞ has to be evaluated relative to a counterfactual credence
function, not much may have been gained with respect to Howson’s pro-
posal.
The static POE thus proves to be a tough challenge for Bayesian confir-

mation theorists. Are prospects any better for the dynamic problem?

3. The GJNApproach to POE. The first models of the dynamic POE have
been developed by Daniel Garber, Richard Jeffrey, and Ilkka Niiniluoto in
a group of papers that all appeared in 1983.Henceforth, we refer to the family
of their solution proposals as GJN solutions. In order to properly compare
my own solution proposal to the state of the art, and to assess its innovative
value, I will briefly recap the achievements of the GJN models and elabo-
rate their limitations and weaknesses.
The GJNmodels take into account that a scientist is typically not aware of

all possible theories and their relations to the evidence, thus parting with the
assumption of logical omniscience that characterizes the ideal Bayesian
reasoner. Consequently, the relevant piece of evidence is not E itself but the
learning of a specific relation between theory and evidence, namely, that T
implies E or accounts for E. The notational convention to write this prop-
osition as ⌈T ⊢ E⌉ conceals that we do not necessarily deal with a strict
logical deduction—also explanatory relationships may fall under the scope
of this model ðGarber 1983, 103; Eells 1990, 212Þ. Such cases count, after
all, as confirmatory arguments for T in ordinary scientific reasoning. How-
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ever, thinking of deduction facilitates notation and can be used as a guide
for intuition and the development of an adequate Bayesian model.
What the GJN models aim to show is that conditionalizing on the prop-
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osition T ⊢ E increases the posterior probability of T. Eells ð1990, 211Þ dis-
tinguishes three steps in this endeavor: first, parting with the logical om-
niscience assumption and developing a formal framework for imperfect
Bayesian reasoning; second, describing which kind of relation obtains be-
tween T and E; and third, showing that learning this relation increases the
probability of T. While the GJN models neglect the second step, probably in
due anticipation of the diversity of logical and explanatory relations in sci-
ence, they are quite explicit on step 1 and step 3.
Garber’s ð1983Þmodel focuses on step 1 and on learning logical truths in

a Bayesian framework. After all, no reasoner is ever logically omniscient.
Learning logical/mathematical truths can be quite insightful and lead to
great progress in science. The famous, incredibly complex proof of Fermat’s
Last Theoremmay be a good example ðseeWiles ½1995� for a short versionÞ.
Garber therefore enriches the underlying language L in a way that T ⊢ E is
one of the atomic propositions of the extended language L0.
Garber also demands that the agent recognize some elementary relations

in which the proposition T ⊢ E stands to other elements of L0:

pðE j T ; T ⊢ EÞ5 1 pðT ; E; T ⊢ EÞ5 pðT ; T ⊢ EÞ: ð2Þ

These constraints express the closure of degree of belief under modus po-
nens. Or alternatively, if an agent takes T and T ⊢ E for granted, then she
maximally believes E. Even in a boundedly rational picture of Bayesian rea-
soning, such as Garber’s, knowledge of such elementary inference schemes
sounds eminently sensible. Garber then proves the following theorem: there
is at least one probability function on L0 such that every nontrivial atomic
sentence of the form T ⊢ E gets a value strictly between 0 and 1. Thus, one
can coherently have a genuinely uncertain attitude about all propositions in
the logical universe, including tautologies. Finally Garber shows that for any
atomicL0-sentence of the form ⌈T ⊢ E⌉, there are infinitely many probability
functions such that pðEÞ 5 1 and pðT j T ⊢ EÞ > pðTÞ. A similar point is
made by Niiniluoto ð1983Þ, although with less formal rigor and elaboration.
While Garber’s efforts are admirable, they only address the first step of

solving the dynamic POE: he provides an existence proof for a solution to
the POE but no set of conditions that guide our judgments on when learn-
ing T ⊢ E confirms T. This lacuna is closed by Richard Jeffrey ð1983Þ, who
published his solution in the same volume in which Garber’s paper ap-
peared.
Jeffrey considers the proposition T ⊢ E as an object of subjective un-

certainty. We follow Earman’s ð1992Þ presentation of Jeffrey’s ð1983, 150–
51Þ solution, which contains the following assumptions:
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a. pðEÞ5 1.
b. pðTÞ; pðT ⊢ EÞ; pðT ⊢:EÞ ∈ ð0; 1Þ.
g. pð½T ⊢ E� ∧ ½T ⊢:E�Þ5 0.
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d. pðT j ½T ⊢ E� ∨ ½T ⊢:E�Þ ≥ pðTÞ.
h. pðT ; :E; T ⊢:EÞ5 pðT ; T ⊢:EÞ.

From these assumptions, Jeffrey derives pðT j T ⊢ EÞ > pðTÞ, which
amounts, given the constraint pðEÞ 5 1, to a solution of the dynamic POE.
The strength of Jeffrey’s solution crucially depends on how well we can

motivate condition d. The other conditions are plausible: a is just the stan-
dard presumption that at the time where confirmation takes place, E is al-
ready known to the agent; b demands that we not be certain about the truth
of T or T ⊢ ±E beforehand, in line with the typical description of POE; and
g requires that T do not entail E and :E at the same time. In particular, T
has to be consistent. Finally, h is a modus ponens condition similar to equa-
tion ð2Þ: the joint degree of belief in T, :E, and T ⊢ :E is equal to the joint
degree of belief in T and T ⊢ :E, demanding that the agent recognize the
implications that the latter two propositions have on :E.
Hence, d really carries the burden of Jeffrey’s argument. This condition has

some odd technical consequences, as pointed out by Earman ð1992, 127Þ.
Assume, for instance, that pðT ⊢ EÞ5 pðT ⊢:EÞ, which may be a plausi-
ble representation of our momentary ignorance regarding the implications
of T for ±E. Then it follows that pðT j T ⊢ EÞ ≥ 2pðTÞ, which implies that
the prior degree of belief pðTÞ must have been be smaller than .5. In other
words, d cannot be satisfied for theories that are rather probable a priori.
This restriction is ad hoc and quite troubling since it severely limits the
scope of Jeffrey’s solution: why should probable theories not be confirmed
by old evidence? To this I would like to add that in the absence of specific
motivation, it is very surprising that the posterior probability of T should
be at least twice as large as the prior probability.
The real problem with d is, however, not technical but philosophical.

Jeffrey ð1983, 148–49Þ supports d by mentioning that Newton was, on for-
mulating his theory of gravitation G, convinced that it would bear on the
phenomena hewas interested in, namely, themechanism governing the tides.
Although Newton did not know whether G would entail the phenomena as-
sociated to the tides or be inconsistent with them, he used his knowledge that
G would bear on the tides as an argument for endorsing it and for tempo-
rarily accepting it as a working hypothesis.
To my mind, this reconstruction conflates an evidential virtue of a theory

with a methodological one. We are well advised to cherish theories of which
we know that they make precise predictions on an interesting subject matter,
even if we do not yet know what these predictions look like in detail. This
is basically a Popperian rationale for scientific inquiry: go for theories that
have high empirical content and that make precise predictions and develop
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them further. They are the ones that will finally help us to solve deep sci-
entific problems. It is plausible that Newton, on deciding to further pursue
his theory of gravitation, followed this methodological rule when discov-

390 JAN SPRENGER
ering that it would have some implications for the tides phenomena. But
following this rule is very different from arguing that the informativity and
empirical contentof a theory increases its plausibility.Actually, Popper ð1959/
2002, 268–69Þ thought the other way round: theories with high empirical
content rule out more states of the world and will have low ðlogicalÞ prob-
ability. This is just because they take, in the virtue of making many predic-
tions, a higher risk of being falsified. Indeed, it is hard to understand why in-
creasing the ðunconfirmed and unrefutedÞ empirical content of T provides an
argument that T is more likely to be true. The reply that p describes a sub-
jective rather than a logical probability function will not help much: even if
p is a purely subjective function, it remains opaque why increasing the class
of potential falsifiers of T will increase its plausibility. Jeffrey’s condition d
is therefore ill-grounded and at the very least too controversial to act as a
premise in a solution of the POE.
Earman ð1992, 128–29Þ considers two alternative derivations of pðT j T

⊢ EÞ > pðTÞ where different assumptions carry the burden of the argument.
One of them is the inequality

f. pðT j T ⊢ EÞ > pðT j ½T ⊬E� ∧ ½T ⊬ :E�Þ,

but it is questionable whether this suffices to circumvent the above objec-
tions. What Earman demands here is very close to what is supposed to be
shown: that learning T ⊢ E is more favorable to T than learning that T gives
no definite prediction for the occurrence of E or ¬E. In the light of the above
arguments against d and in the absence of independent arguments in favor
of f, this condition just seems to beg the question.
The second alternative derivation of pðT j T ⊢ EÞ > pðTÞ is proposed by

Jeffrey ð1983, 149Þ himself and relies on the equality

w. pð½T ⊢ E� ∨ ½T ⊢:E�Þ5 1.

However, as Earman admits himself, this condition is too strong: it amounts
to demanding that on formulating T, the scientist was certain that it either
implied E or ¬E. In practice, such relationships are rather discovered grad-
ually. As Earman continues, discussing the case of GTR: “the historical ev-
idence goes against this supposition: . . . Einstein’s published paper on the
perihelion anomaly contained an incomplete explanation, since, as he him-
self noted, he had no proof that the solution of the field equations . . . was the
unique solution for the relevant set of boundary conditions” ð1992, 129Þ.
Taking stock,we conclude thatGarber, Jeffrey, Niiniluoto, andEarmanmake
This content downloaded from 
�������������87.79.184.140 on Mon, 04 May 2020 12:30:16 UTC������������� 

All use subject to https://about.jstor.org/terms



interesting proposals for solving the dynamic POE but that their solutions
are either incomplete ðGarber, NiiniluotoÞ or based on highly problematic
assumptions ðEarman, JeffreyÞ. I now present a novel solution proposal that
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also aims at the dynamic problem but that makes use of a slightly different
conceptualization.

4. ANovel Solution of POE. The troubles with both Howson’s approach to
the static problem and the GJN approach to the dynamic problem seem to be
technical at first sight. Howson has trouble with the counterfactual credence
function pK =fEg, and the GJN-style solutions by Jeffrey and Earman are based
on implausible assumptions. How are we supposed to take it from there?
The aim of this section consists in solving the dynamic problem and in

showing that if E is already known, learning R :5T ⊢ E raises the subjective
probability of T. To achieve this goal, we combine ideas from Howson with
the machinery of the GJN models. Specifically, we assume a couple of con-
ditions on when R confirms T relative to E. The first condition has the fol-
lowing qualitative form:

ð1Þ If ¬T is already known, then learning R 5 T ⊢ E leaves the prob-
ability of E unchanged.

To motivate this constraint, consider the following fictitious scenario. Con-
sider the hypothesis that Steven is going on a ski trip in the Alps. We already
know that Steven had to cancel the trip because his employer did not give
him leave. Now, Steven tells us: “Oh, by the way, if I were to go on this ski
trip ðTÞ, I would soon buy a newwinter jacket ðEÞ.”Does this utterance raise
our credence that Steven will buy a new winter jacket soon? Plausibly not.
Remember that we already know that the ski trip is canceled when learning
T ⊢ E. Does it lower it? Plausibly not. Steven’s statement neither under-
mines nor supports those reasons for buying a winter jacket that are inde-
pendent of his ðnotÞ going on a ski trip ðe.g., the winter temperatures in his
home placeÞ. More generally, learning that certain events are predicted by a
refuted hypothesis is just irrelevant to our assessment of the plausibility of
these events. Nostradamus’s astrological theory is in all probability wrong;
therefore, on learning the content of his predictions, we should neither raise
nor lower our credence in the events that his theory predicted to happen.
Formally, ð1Þ can be written as pðE j :T ; RÞ5 pðE j :TÞ or pðE j :T ;

RÞ5 pðE j :T ; :RÞ. However, one may worry about the credence function
involved. If E is old evidence, then pðE | ·Þ 5 1, regardless of which prop-
osition stands to the right of the vertical dash. In this reading, ð1Þ would be
utterly trivial. Therefore, we have, like Howson, to define a counterfactual
credence function p and to give it an interpretation. Instead of just elimi-
nating E from the background knowledge, p should represent the degrees of
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belief of a scientist who has a sound understanding of theoretical principles
and their impact on observational data but who is an imperfect logical rea-
soner and lacks full knowledge of the observational history ðcf. Earman
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1992, 134Þ. Such probabilistic assessments are typically made by scientists
who assess evidence and review journal articles: How probable would the
actual evidence E be if T were true? How probable would E be if T were
false? When T and :T are two definite statistical hypotheses, such judg-
ments are immediately given by the corresponding sampling distribution.
Also in more general contexts, such judgments may be straightforward, or
at least a matter of consensus in the scientific community.
This proposal resembles Howson’s proposal for introducing counterfac-

tual reasoning into the POE, but it is not bound to a particular credence func-
tion. I say more about this in section 5. Let us now proceed by formulating
constraints on p that allow us to solve the dynamic POE. The first one char-
acterizes the elementary inferential relations between E, T, and R:

½1� pðE j T ; RÞ5 1.

If T is true and T entails E, then E can be regarded as a certainty. In this
scenario, R codifies a strict deductive relation between T and E; later, we re-
lax this condition and also consider weaker ðe.g., explanatoryÞ dependencies.
The second condition just spells out ð1Þ in terms of the p-function:

½2� pðE j :T ; RÞ5 pðE j :T ; :RÞ > 0.

In other words, if :T is already known, then learning R or:R does not change
the probability of E, as argued above. Moreover, we should not be certain
that E can only occur if T is true.
Finally, we have the following inequality:

½3�

pðE j T ; :RÞ < 12 pðR j :TÞ
pðR j :TÞ � pðR j TÞ

12 pðR j TÞ :

This condition demands that the value of pðE j :R; TÞ be smaller than the
threshold on the right-hand side.1 When the ðdubiousÞ Jeffrey condition d is
satisfied and R and T are positively relevant or neutral to each other, ½3� is

1. In this formulation of condition ½3�, it is implicit that 1 > pðR j TÞ; pðR j :TÞ > 0
since, otherwise, either the expression would be undefined ðdivison by 0Þ or pðE j

:R; TÞwould have to be smaller than 0, which is impossible. We will use this fact in the
proofs.
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trivially satisfied since in that case, pðR j TÞ ≥ pðR j :TÞ, implying that the
right-hand side of ½3� is greater or equal to 1. But also if R and T are neg-
atively relevant to each other, ½3� is plausibly satisfied. To see this, note that
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½3� can be written in the form pðE j :R; TÞ < OðR j :TÞ=OðR j TÞ, where
O represents the betting odds for a proposition that correspond to a par-
ticular degree of belief. When the mutual negative impact of R and T is not
too strong and the two betting odds are quite close to each other, ½3� will be
satisfied as long as pðE j :R; TÞ is not too close to 1. And given that T is
assumed to be true, but that by ¬R it does not fully account for E, E should
not be a matter of course for a rational Bayesian agent.
These three conditions are jointly sufficient to prove the following result

ðproof in the appendixÞ:

Theorem 1. Let T, R, and E be three elements of an algebra A with asso-
ciated probability measure p, and let the following three conditions be sat-
isfied:

½1� pðE j T ; RÞ5 1.

½2� pðE j :T ; RÞ5 pðE j :T ; :RÞ > 0.

½3�

pðE j T ; :RÞ < 12 pðR j :TÞ
pðR j :TÞ � pðR j TÞ

12 pðR j TÞ :

Then, R confirms T relative to old evidence E; that is, pðT j E; RÞ >
pðT j EÞ. In other words, learning that T entails E also confirms T.

This result solves the POE on the basis of a conceptualization that com-
bines elements from the GJN and Howson’s counterfactual strategy. We
use the main idea from the GJN models—the confirming event is the dis-
covery that T accounts for/explains E—but we spell out the confirmation
relation relative to counterfactual credences, as Howson envisions.
However, in many cases of scientific reasoning, condition ½1�; that is,

pðE j T ; RÞ5 1, may be too strong. It may apply well to the Mercury peri-
helion shift, which is deductively implied by GTR, but it may fail to cover
cases where T accounts for E in a less rigorous manner ðsee also Earman
1992, 121; Fitelson 2014Þ. If we allow for a weaker interpretation of R
ðe.g., as providing some explanatorymechanismÞ, thenwe are facedwith the
possibility that even if we are certain that T is true, and that T explains E, the
conditional degree of belief in E may not be a certainty. And pðE j TÞ < 1
could even make sense if the relationships between T and E are deductive:
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the proof of T ⊢ E could so complex that the involved scientists have some
doubts about its soundness and refrain from assigning it maximal degree of
belief. Again, Fermat’s Last Theorem may be a plausible intuition pump.
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For covering this case, I prove a second theorem that covers the case of
pðE j T ; RÞ5 12 ε for some small ɛ > 0 ðproof in the appendixÞ.

Theorem 2. Let T, R, and E be three elements of an algebra A with asso-
ciated probability measure p, and let the following three conditions be sat-
isfied:

½10� pðE j T ; RÞ5 12 ε for some 0 < ε < 1.

½20� pðE j :T ; RÞ5 pðE j :T ; :RÞ > 0.

½30�

pðE j T ; :RÞ < ð12 εÞ 12 pðR j :TÞ
pðR j :TÞ � pðR j TÞ

12 pðR j TÞ :

Then, R confirms T relative to old evidence E; that is, pðT j E; RÞ >
pðT j EÞ. In other words, learning that T accounts for E also confirms T.

The motivations and justifications for the above assumptions are the same
as in theorem 1. Condition ½10� just accounts for lack of full certainty about
the old evidence, and ½20� is identical to ½2�. Moreover, condition ½3� of the-
orem 1 can, with the same line of reasoning, be extended to condition ½30� in
theorem 2. Condition ½30� sharpens ½3� by a factor of 1 − ɛ but leaves the
qualitative argument for ½3� intact. As long as pðE j T ; :RÞ and pðE j T ; RÞ
decrease by roughly the same margin, the result of theorem 1 transfers to
theorem 2.
Thus, we can extend the novel solution of POE to the case of residual

uncertainty about the old evidence E—a case that is highly relevant for case
studies in the history of science. If we compare this solution of the POE to
Jeffrey’s and Earman’s proposals, we note that our assumptions ½1�, ½2�, and
½3� are silent on whether Jeffrey’s d—or Earman’s ϕ and w, for that matter—
is true or false.2 Hence, we can discard Jeffrey’s dubious assumption d that
increasing empirical content makes a theory more plausible, without jeop-
ardizing our own results.

2. A Mathematica notebook file that checks the relevant probability models is appended

in a zip file online as proof of this claim. In the model checking, I used the PrSAT
decision procedure for probabilistic models invented by Branden Fitelson ð2008Þ.
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I have thus provided a solution of the dynamic POE that makes less de-
manding assumptions than Jeffrey and Earman and that achieves stronger
results than Garber and Niiniluoto. The final section discusses the reper-
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cussions of these results on the general debate about POE and BCT.

5. Discussion. This article has analyzed some Bayesian attempts to solve
the Problem of Old Evidence ðPOEÞ, and it has proposed a new solution.
I started with a distinction between the static and the dynamic aspect of
the problem. Then I presented my criticism of the Garber-Jeffrey-Niiniluoto
ðGJNÞ approach and my own solution proposal to the dynamic POE. Like
Howson, I rely on counterfactual credences, but unlike him, I use them for
developing a more plausible and robust solution to the dynamic POE. Since
I have already defended the specific assumptions of theorems 1 and 2, this
last section is devoted to placing my proposal in the literature and to a gen-
eral synopsis of the relation between POE and Bayesian Confirmation The-
ory ðBCTÞ.
Let us first reconsider the relation between the static and the dynamic

POE. The static problem concerns, in a nutshell, the question whether E
provides evidence for T, and the dynamic problem concerns the question
whether discovering T ⊢ E confirms T. The words “evidence” and “con-
firmation” are often used synonymously, but they have a different emphasis,
namely, explanatory power for the data versus an increase in degree of belief.
This is mirrored in the literature in the foundations of statistics ðe.g., Berger
and Wolpert 1984; Royall 1997; Lele 2004Þ and also in Bayesian measures
of evidential support. Some of them, like the log-likelihood ratio lðT ; EÞ5
pðE j TÞ=pðE j :TÞ, express the difference in explanatory power of T and
¬T for the evidence, whereas others, such as the difference measure dðT ;
EÞ5 pðT j EÞ2 pðTÞ, focus on the increase in degree of belief in T. If we
are interested in the dynamic POE—modeling our increase in degree of be-
lief in T—then by assumption, old evidence E cannot confirm T. This is why
many philosophers have shifted their attention to studying how learning the
proposition R :5 T ⊢ E affects our degree of belief in T. In the static POE,
however, we compare how expected E is under the competing hypotheses.
In scientific practice, such assessments are usually counterfactual, as How-
son rightfully remarks. That is, we standardly interpret pðE | TÞ and pðE | :TÞ
as principled statements about the predictive import of ±T on E, without
referring to our complete observational record. Such judgments are part and
parcel of scientific reasoning, for example, in statistical inference, where the-
ories T, T 0, and so on, impose definite probability distributions on the obser-
vations, and our credences pðE | TÞ, pðE | T 0Þ, and so on, follow suit ðsee also
Ramsey 1926; Sprenger 2010Þ.
So I believe that a resolution of the static problem should be not technical

but conceptual—by spelling out why central aspects of scientific reason-
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ing are suppositional and counterfactual. If we managed to substantiate this
claim, the static POE would vanish because the relevant concept of evi-
dence would differ from an increase in degrees of belief. This would not
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imply a farewell to Bayesian reasoning since subjective degrees of belief
are required for weighing hypotheses within complex models, integrating
out nuisance parameters, and so on. However, making such a counterfac-
tual theory of scientific reasoning explicit and articulating the role of BCT
in this context goes beyond the scope of this article. I hope to address the
challenge in a future paper by means of a detailed analysis of scientific
reasoning patterns.
It is also worth mentioning that our treatment of the POE allows for a

distinction between theories that have been constructed to explain the old
evidence E and those that explain E surprisingly ðlike Einstein’s GTRÞ. In
the first case, we would not speak about proper confirmation. Indeed, if
we accommodate the parameter values of a general theory T such that it
explains the old evidence E, then R is actually a certainty, conditional on E:
pðR | EÞ 5 1. This is because T has been designed to explain E. As a con-
sequence, pðT j E; RÞ5 pðT j EÞ, and R fails to confirm T. Whereas in
the case of a surprising discovery of an explanatory relation between T and
E, pðR | EÞ < 1. The degree of confirmation that R confers on T then gets
bigger, the more surprising R is—a property that aligns well with our in-
tuitive judgment that surprising explanations have special cognitive value.
Finally, a general but popular critique of Bayesian approaches to the POE

is inspired by the view that the POE poses a principled and insoluble prob-
lem for BCT. For instance, Glymour writes at the end of his discussion of the
POE: “our judgment of the relevance of evidence to theory depends on the
perception of a structural connection between the two, and . . . degree of be-
lief is, at best, epiphenomenal. In the determination of the bearing of evi-
dence on theory there seem to be mechanisms and strategems that have no
apparent connections with degrees of belief ” ð1980, 92–93Þ.
What Glymour argues here is not so much that a specific formal aspect of

the Bayesian apparatus ðe.g., logical omniscienceÞ prevents it from solving
the POE but that these shortcomings are a symptom of a more general in-
adequacy of BCT: the inability to capture structural relations between evi-
dence and theory. This criticism should not be misunderstood as claiming
that confirmation has to be conceived of as an objective relation that is in-
dependent of contextual knowledge or contingent background assumptions.
Rather, it suggests that solutions to the dynamic POE mistake an increase in
degree of belief for a structural relation between T and E. But what makes
E relevant for T is not the increase in degree of belief pðT j EÞ > pðTÞ but
the entailment relation between T and E—hence, Glymour’s verdict that
BCT gives “epiphenomenal” results.
To my mind, this criticism is too fundamental to be a source of concern:

it does not only affect solutions to the POE, but it directly attacks the en-
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tire Bayesian explication of confirmation as increase in degree of belief.
However, BCT can point to a lot of success stories: explaining the confir-
matory value of evidential diversity, mitigating the tacking by conjunction
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paradoxes, resolving the raven paradox, and so on ðsee Crupi 2013 for a
detailed reviewÞ. What I have shown in this article is that the confirmatory
power of old evidence might be added to this list.

Appendix

Proofs

Proof of Theorem 1. First, we define

e1 5 pðE j T ; RÞ e2 5 pðE j :T ; RÞ
e3 5 pðE j T ; :RÞ e4 5 pðE j :T ; :RÞ
t 5 pðTÞ r5 pðR j TÞ
t 0 5 pðT j RÞ �r5 pðR j :TÞ:

By making use of ½1� ðe1 5 1Þ, ½2� ðe2 5 e4 > 0Þ, and the extension the-
orem pðX j ZÞ5 pðX j Y ; ZÞpðY j ZÞ1 pðX j :Y ; ZÞpð:Y j ZÞ, we can
quickly verify the identities

pðE j TÞ5 pðE j T ; RÞpðR j TÞ1 pðE j T ; :RÞpð:R j TÞ
5 r1 e3ð12 rÞ

pðE j :TÞ5 pðE j :T ; RÞpðR j :TÞ1 pðE j :T ; :RÞpð:R j :TÞ

5 e2�r1 e4ð12 �rÞ

5 e2

that will be useful later. Second, we note that by Bayes’s Theorem and as-
sumption ½1�,

pðT j E; RÞ5 pðT j RÞ pðE j T ; RÞ
pðE j RÞ

5 11
pð:T j RÞ
pðT j RÞ

pðE j :T ; RÞ
pðE j T ; RÞ

� �21

5 11
12 t 0

t 0
� e2

� �21

:

ðA1Þ
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Third, we observe that by ½1�, ½2�, and the above identities for pðE j TÞ and
pðE j :TÞ,
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pðT j EÞ5 pðTÞ pðE j TÞ
pðEÞ

5 11
pð:TÞ
pðTÞ

pðE j :TÞ
pðE j TÞ

� �21

5 11
12 t

t

e2
r1 e3ð12 rÞ

� �21

:

ðA2Þ

We also note by ½3� that e3 5 12 �rð Þ=�r½ � r= 12 rð Þ½ �. This allows us to derive

r1 e3ð12 rÞ < r1
12 �r

�r

r

12 r
ð12 rÞ

5 r � 11
12 �r

�r

� �

5
r

�r
;

ðA3Þ

and in addition,

12 t 0

t 0
5

pð:T j RÞ
pðT j RÞ 5

pðR j :TÞ
pðR j TÞ � pð:TÞ

pðTÞ 5
12 t

t
� �r

r
: ðA4Þ

All this implies that

pðT j E; RÞ
pðT j EÞ 5

A3ð Þ; A4ð Þ
11

12 t 0

t 0
� e2

� �21

� 11
12 t

t

e2
r1 e3ð12 rÞ

� �

>
A5ð Þ

11
12 t 0

t 0
� e2

� �21

� 11
12 t

t

e2�r

r

� �

5
A6ð Þ

11
12 t 0

t 0
� e2

� �21

� 11
12 t 0

t 0
e2

� �

5 1;

completing the proof. The second line has also made use of e2 > 0, as ensured
by ½2�.3 QED

3. It might be objected that we have tacitly assumed that t 5 pðTÞ < 1. This is right

insofar as if pðTÞ5 1, then no confirmation can occur. However, pðTÞ < 1 is entailed by
½1�–½3�. If pðTÞ5 1, then also pðE j RÞ5 1, because R states that T implies E, and T
is ðalmostÞ certain. However, pðE j RÞ5 pðE j :T ; RÞpð:T j RÞ1 pðE j T ; RÞpðT j RÞ
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Proof of Theorem 2. By means of performing the same steps as in the proof
of theorem 1, we can easily verify the equalities
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pðT j E; RÞ5 11
pð:T j RÞ
pðT j RÞ

pðE j :T ; RÞ
pðE j T ; RÞ

� �21

5 11
12 t 0

t 0
� e2

12 ε

� �21

pðT j EÞ5 11
pð:TÞ
pðTÞ

pðE j :TÞ
pðE j TÞ

� �21

5 11
12 t

t

e2�r1 e4ð12 �rÞ
ð12 εÞr1 e3ð12 rÞ

� �21

5 11
12 t

t

e2
ð12 εÞr1 e3ð12 rÞ

� �21

;

where we have made use of ½10� and ½20�5 ½2�. We also note that ½30� implies

ð12 εÞr1 e3ð12 rÞ < ð12 εÞr1 ð12 εÞ 12 �r

�r

r

12 r
ð12 rÞ

5 ð12 εÞ � r � 11
12 �r

�r

� �

5 ð12 εÞ r
�r
:

This brings us to the final calculation:

pðT j E; RÞ
pðT j EÞ 5

11 12 tð Þ=t½ � e2= 12 εð Þr1 e3ð12 rÞ½ �f g
11 12 t 0ð Þ=t 0½ � � e2= 12 εð Þ

>
11 12 tð Þ=t½ � 1= 12 εð Þ½ � �r=rð Þe2

11 12 tð Þ=t½ � � �r=rð Þ � e2= 12 εð Þ
5 1;

where we have, in the penultimate step, also applied equation ðA4Þ. This
completes the proof. QED

and from ½2� and the implicit condition in ½3� ðpðT j RÞ < 1Þ it follows that this ex-
pression is smaller than 1. Hence, we have a contradiction, and pðTÞ must be smaller

than 1, too.
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