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An existing model for the rate coefficients of enzyme-catalyzed processes involves the regularized gamma function of Euler
replacing the exponential dependence of the rate coefficient from the reaction barrier. $e application of this model to ex-
perimental data, on one hand, validates the model by correctly describing the negative curvature of Eyring plots. On the other
hand, this analysis evidences that enzymes never reach the maximum theoretical efficiency, a counterintuitive fact that requires an
explanation. $is work interprets this evolutionary limit in terms of the necessity of living systems to achieve and maintain
homeostasis. Further validation of the expression for the rate coefficients comes from the analysis of the discrepancy between the
theoretically predicted energy difference between reactants and products in a chemical equilibrium and the corresponding value
obtained by regression to the classical expression for the equilibrium constant. $e discrepancy is resolved by making use of the
proposed model.

1. Introduction

In previous works, a functional form of the rate coeffi-
cient for enzyme-catalyzed reactions based on the cou-
pling of the protein vibrational modes to the reaction
coordinate has been proposed [1, 2]. $e model was
tested on a series of both catalyzed and uncatalyzed
reactions, for which the temperature-dependent rate
coefficients have been measured [3]. $e outcome was
that, in the majority of cases, the curvature of the
Arrhenius plots was found to be negative, a feature that
transition state theory (TST) in its various forms is not
able to explain. On the other hand, the curvature
computed according to the model is always negative, an
indication that the new model is successful. We first give
an outline of the model to make clear what the topic of
this investigation is.

$e thermally averaged rate coefficient of a chemical
reaction is expressed as the integral of the product of an
energy-dependent rate coefficient kr(ε) and the classical
Boltzmann distribution of low-frequency vibrational modes:

kr(T) � 
∞

uTS

kr(ε)
ρ(ε)
zR

e
(− ε/kT)dε. (1)

$e lower limit of the integral is the threshold value uTS
of the potential energy that the substrate must exceed to be
able to cross the reaction barrier. $e functional form of the
energy-dependent kr(ε) is expressed as the ratio of the
number of states of the transition structure to the number of
states of the reactant, multiplied by the intrinsic frequency
for the energy transfer from active modes to the reaction
coordinate (]):

kr(ε) � ]
ρTS(ε)dε
ρ(ε)dε

. (2)

$e total number of modes s includes the subset of all the
excited modes that can transfer energy to the reaction co-
ordinate (indicated by a), implying (Zωi/kT)≪ 1, and the
classical expression for the vibrational density of states

ρ �
εs− 1

(s − 1)!
s
i�1 Zωi,

(3)

leading to the partition function
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zv � 
s

i�1

kT
Zωi

. (4)

$e density of states of the transition structure at the
total energy ε (ρTS) is expressed as the convolution integral of
the classical approximation for the vibrational density of
states of the subsystem of a oscillators and the subsystem of
the remaining s − a oscillators:

ρTS � 
ε

0

εa− 1

(a − 1)! 
a
i�1 Zωi

(ε − ε)s− a− 1

(s − a − 1)! 
s
i�a+1 Zωi

dε

�
zTS

kT
xs− 1

Γ(s)


1
ζ/x ua− 1us− a− 1 du


1
0 ua− 1us− a− 1 du

�
zTS

kT
xs− 1

Γ(s)

B(a, s − a, (ζ/x))

B(a, s − a)
,

(5)

in the variables u � (ε/ε) and x � (ε/kT), where the last
equality defines the regularized beta function (B(a, s − a,

(ζ/x))/B(a, s − a)). Taking the anharmonicity of the low-
frequency vibrational modes into account, we would have an
increase in the vibrational density of states of the transition
structure with respect to equation (5) [4]. However, this
effect is expected to be small, since the low-frequency modes
would be far from the dissociation limit, having energy
≈ kT.$e thermally averaged rate coefficient in equation (1)
thus becomes

kr(T) �
]

zR


∞

uTS

ρTS(ε)e
(− ε/kT)dε

� ]
zTS

zR

1
Γ(s)


∞

ζ

B(a, s − a, (ζ/x))

B(a, s − a)
x

s− 1
e

− xdx,

(6)

with ζ � (uTS/kT). Making use of the theorem [5],
1
Γ(s)


∞

ζ

B(a, s − a, (ζ/x))

B(a, s − a)
x

s− 1
e

− xdx

�
1
Γ(a)


∞

ζ
x

a− 1
e

− xdx,

(7)

we obtain the expression, independent of s, for the rate
coefficient in terms of the regularized gamma function Q:

kr � ]
zTS

zR

1
Γ(a)


∞

ζ
x

a− 1
e

− xdx

� ]
zTS

zR

Γ(a, ζ)

Γ(a)

� ]
zTS

zR

Q(a, ζ).

(8)

$is expression is plotted in Figure 1, and it exhibits an
inflection point at ζ � a − 1. $e above expression for kr is
able to account for the large average mass of catalytic
proteins, pointed out by Pawlowski and Zielenkiewicz [6] in
a seminal paper on the correlation between the molecular
mass and the activation energy (according to the Eyring

equation) of enzymes. Analyzing 6,915 cases, the most
common value for the molecular mass of enzymes was found
to be around 75 kDa. In expression (8), the value of active
mode a is a subset of the total number of modes s, and in
order for a to reach the values necessary for enzyme ca-
talysis, s needs to be large, hence the large mass.

For integer values of a, we can integrate Q analytically,
obtaining

kr � ]
zTS

zR

e
− ζ



a− 1

i�0

ζ i

i!
. (9)

At the inflection point, the value of the function Q is
given by

Q(a, a − 1) � e
− (a− 1)



a− 1

j�0

(a − 1)j

j!
, (10)

and its values are plotted in Figure 2 as a function of a.
Figures 3–5 report logarithmic plots of experimental

data along with the best-fit curves for the rate coefficients of
three reactions (one in solvent and two catalyzed by en-
zymes). For a detailed analysis of these and other cases [3],
Figures 3–5 show that equation (8) gives a better fit to the
experimental data with respect to the TST expression and,
most importantly, reproduces the correct negative curvature
of the plots. How anharmonic potentials affect the frequency
] is probably specific to each system, i.e., the details of the
constraints on the system of coupled oscillators and its
structure. An example of the behavior of an harmonic os-
cillator with structural constraints coupled to a second
oscillator through an anharmonic potential is discussed in
[7]. $e analysis of experimental data for these and other
cases of enzyme-catalyzed reactions indicates that
(a/ζ)≃ 0.9, and the most common values of Q(a, ζ) are
slightly less than 1/2, since a typical value of the reduced
barrier ζ usually exceeds 40. $is prompts the question of
why the evolutionary pressure did not push the structure of
enzymes to reach the maximum efficiency at Q(a, ζ)≃ 1.

Q (α, ζ) (ζ = 1 red, ζ = 5 green, ζ = 20 blue, ζ = 60 lavender)
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Figure 1: Plots of Q(a, ζ) versus a at various fixed values of ζ.
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Figure 2: Values of Q(a, a − 1) versus a.
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Figure 3: Eyring plots [3] according to TST (green) of rate coefficients for the neutral hydrolysis of methyl trifluoroacetate (MeTFA) in
(H2O/DMSO). $e corresponding curve from equation (8), with a � 35, ](zTS/zR) � 0.50 s− 1, 〈ζ〉 � 49.29, (a/〈ζ〉) � 0.71, is shown in
blue and the experimental data in red.
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2. Results and Discussion

2.1. "e Physical Limit to Enzyme Catalysis. We begin by
clarifying the meaning of the frequency factor ] by ap-
proximating the density of vibrational states of the catalytic
protein with the Debye model that gives

ρ(ω)dω � 9N
ω2

ω3
D

dω, (11)

with

ωD � 6π2
N

V
 

(1/3)

vs

� 1.21 × 1013 Hz,

(12)

with vs being the speed of sound in a crystal of volume V

with N atoms. For a protein with an average molecular
weight of 125 kDa [6], we obtain


ω

0
ρ(ω)dω � 3N

ω
ωD

 

3

� 8.17 × 10− 21≪ 1,

(13)

an indication that ] is not the frequency of any vibrational
mode, but it is a reflection of the timescale ]− 1 of the ex-
change of energy between active modes and the reaction
coordinate. $is can be exemplified by a simple system of
two linear coupled oscillators with displacements x and y.
An initial energy E0 is placed in the first oscillator, and the
system evolves with the displacements shown in Figure 6,
while plots of the potential energy of the two bonds are
reported in Figure 7.

We observe [8] that the energy transfer between oscil-
lators takes place at ω2t ≈ 25, clearly indicating the physical
significance of the frequency ] as the inverse of the timescale
for the energy transfer from the reaction medium (catalytic
protein in the case of enzyme catalysis) to the substrate.
$us, the time dependence of the energy transfer among the
oscillators is a complex function of the parameters of the
system, i.e., the coupling constants, the masses, and the
structure of the system with its geometrical constraints. All
the physical parameters contribute to the frequency ], a
fundamental quantity for each enzyme that limits its cata-
lytic efficiency.

$e derivatives of Q with respect to a, ζ, and T are,
respectively,

Chymotrypsin (TST)

28 29 30 31 3227
ζ

–6

–5.5

–5

–4.5

–4

–3.5

–3

–2.5

–2

–1.5

(a)

Chymotrypsin

–6

–5.5

–5

–4.5

–4

–3.5

–3

–2.5

–2

–1.5

150 155 160 165 170145
ζ

(b)

Figure 4: Eyring plots [3] according to TST (green) of rate coefficients for the hydrolysis of Suc-Ala-PhepNA catalyzed by α-chymotrypsin.
$e corresponding curve from equation (8), with a � 133, ](zTS/zR) � 1.619 s− 1, 〈ζ〉 � 156.5, (a/〈ζ〉) � 0.85, is shown in blue and the
experimental data in red.
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Figure 5: Eyring plots [3] according to TST (green) of rate coefficients for hydride transfer catalyzed by Escherichia coli dihydrofolate
reductase in 33% glycerol. $e corresponding curve from equation (8), with a � 96, ](zTS/zR) � 1061.7 s− 1, 〈ζ〉 � 106.7, (a/〈ζ〉) � 0.90, is
shown in blue and the experimental data in red.
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Figure 6: Plots of x(t) and y(t) versus time.
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Figure 7: Plots of (u1/E0) and (u2/E0) versus time.

Journal of Chemistry 5



zaQ(a, ζ) �
1
Γ(a)


∞

ζ
x

a− 1 lnxe
− xdx −

Q

Γ(a)

· 
∞

0
x

a− 1 lnxe
− xdx,

zζQ(a, ζ) � −
ζa− 1

Γ(a)
e

− ζ
,

zTQ(a, ζ) � −
ζ
T

zζQ(a, ζ).

(14)

Plots of the above derivatives are shown in Figure 8. $e
maximum of the temperature dependence of Q is obtained
by setting the second derivative:

z
2
aTQ(a, ζ) � zTQ(a, ζ) ln ζ −

1
Γ(a)


∞

0
x

a− 1 lnxe
− xdx 

� zTQ(a, ζ) ln ζ − da ln Γ(a) ,

(15)

equal to zero. $e digamma function da ln Γ(a) can be
approximated as

da ln Γ(a)≃ ln a −
1
2

 , (16)

and the solution of z2aTQ(a, ζ) � 0 gives the optimal value of
a at

a≃ ζ +
1
2
, (17)

and the ratio (a/ζ)≃ 1 + (1/2ζ) to be compared to the ob-
served (a/ζ)≃ 0.9.

We present an interpretation of the experimental ob-
servation (a/ζ)≃ 0.9 in terms of the inability of a living
system to maintain homeostasis for higher values of a,
followed by a substantiation of equation (8) based on its
consequence on the functional form of the chemical equi-
librium constant.

2.2. Homeostasis. Enzymes operating in an autotrophic or-
ganismwith a≫ ζ would synthesize a sugar with concentration
x with the rate Φ〈sin2 χ〉, where the parameter Φ expresses
both the solar energy flux and the efficiency of the photo-
synthetic process. $e average of the sun elevation 〈sin2 χ〉 is
time-dependent and averaged over one-day intervals.$e same
compound would be processed at a rate krx, resulting in the
overall evolution of x given by the equation

_x � Φ〈sin2 χ〉 − krx. (18)

$e sun elevation is given by

sin χ � cosH cosφ cos δ + sinφ sin δ, (19)

if

cosH + tanφ tan δ > 0, (20)

and sin χ � 0 otherwise.$e anglesH and δ in equations (19)
and (20) depend on time and represent the hour angle of the
sun and its declination, respectively. $e latitude φ is a
constant. $e solution of equation (18) is

x � x0e
− krt

+Φe
− krt


t

0
〈sin2 χ〉ekrudu, (21)

and its plot is shown in Figure 9 (green curve). In the
presence of homeostasis, the metabolism rate would also
depend on the solar irradiation through temperature, and we
would have

_xh � Φ〈sin2 χ〉 − kr〈sin
2 χ〉xh, (22)

which has the solution

xh �
Φ
kr

+ x0 −
Φ
kr

 exp − kr 
t

0
〈sin2 χ〉du , (23)

also shown in Figure 9 (blue curve).
$us, a temperature-dependent rate coefficient for

metabolism, that in turn is a consequence of the tem-
perature dependence of the rate coefficient for enzyme
catalysis, entails a more stable concentration of the
nutrient that would not attain the low values endan-
gering the survival of the organism. $is temperature
dependence, along with homeostasis, would be lost at
high values (a≫ ζ) of the number of coupled vibrational
mode a.

2.3. "e Equilibrium Constant. We can find further support
to the validity of the model expressed by equation (8) by
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Figure 8: Plots of zaQ(a, ζ), zTQ(a, ζ), and z2aTQ(a, ζ) versus
((a − 1)/ζ).
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analyzing the discrepancy between the computed energy
difference between reactants and products in the
equilibrium

α − D − glucopyranose⇌
k1

k2

β − D − glucopyranose, (24)

in water and the corresponding quantity obtained by re-
gression to the thermodynamic expression

Keq �
zP

zR

e
− Δu/kT

. (25)

Neglecting the weak temperature dependence of the
ratio of the partition functions, the temperature dependence
of Keq would be

zT lnKeq ≃
Δu
kT2. (26)

$us, the plot of Keq versus temperature would exhibit a
slope with the same sign as Δu. Hence, the negative slope of
the plot in Figure 10 for the equilibrium constant of the
reaction α − D − glucopyranose⇌ β − D − glucopyranose in
water implies the negative Δu � − 0.79 kcalmol− 1 (green line
(zP/zR) � 0.40). On the other hand, the potential energies of
all the conformations of β − D − glucopyranose calculated at
the B3LYP/6-311 + +G∗∗ level of theory exhibit positive
differences with respect to the ground state conformation
α − gt− 4C1 of α − D − glucopyranose and the β conforma-
tion with the lowest energy being the β − gg− 4C1 with Δu �

0.855 kcalmol− 1 [9]. $ere is thus a discrepancy between
this computational result and the negative Δu obtained by
the regression of equation (25) to experimental data.

If we consider, instead, the expression for the equilib-
rium constant according to equation (8), i.e., the ratio of the
rate coefficient for the forward reaction (with a1 active
oscillators and reduced barrier ζ1) to the corresponding
reverse reaction (with a2 active oscillators and reduced
barrier ζ2), its form would be

Keq �
]1
]2

zP

zR

Q a1, ζ1( 

Q a2, ζ2( 

� ]
Q1

Q2
,

(27)

with the temperature dependence

zT lnKeq ≃ zT lnQ1 − zT lnQ2, (28)

that can be negative also if Δu> 0. In fact, the blue curve in
Figure 10 is the best fit of equation (27) to the experimental
data with a1 � 5 and a2 � 1, affording ] � 0.153 and
Δu � 0.989 kcalmol− 1, in good agreement with the result
given by theoretical calculations.

3. Conclusions

(1) A proposed model for the expression of the rate
coefficient of enzyme-catalyzed reactions is in
agreement with the observed negative curvature of
the Eyring plots for these reactions.

(2) An explanation for the observed relation between the
number of active modes a and the reduced barrier ζ
((a/ζ)≃ 0.9) is given in terms of the necessity of
maintaining homeostasis in the early autotrophic
organisms.

(3) An analysis of the experimental measurements of the
equilibrium constant at various temperatures for the
reversible reaction α − D − glucopyranose⇌ β − D −

glucopyranose in water affords a negative slope. $e
interpretation of this negative slope with the con-
ventional expression for the equilibrium constant
affords a negative potential energy difference be-
tween reactants and products, at odds with the result
of theoretical calculations. On the other hand,
consistently with the prediction of theoretical cal-
culations, the expression for the equilibrium
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Figure 9: Plots of x(t) (green) and xh(t) (blue) versus time.
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constant derived from the proposed model gives a
positive potential energy difference between reac-
tants and products even in the presence of a negative
slope of the equilibrium constant at various
temperatures.
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