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Abstract 

Ecologists are interested in prediction of potential distribution of species in suitable areas, essential for planning 
conservation and management strategies. Unfortunately, often the only available information in such studies is the 
true presence of the species at few locations of the study area and the associated environmental covariates over the 
entire area, referred as presence-only data. We propose a Bayesian approach to estimate logistic linear regressions 
adapted to presence-only data through the introduction of a random approximation of the correction factor in the 
adjusted logistic model that allows us to overcome the need to know a priori the prevalence of the species. 

Keywords: Bayesian  model; Data augmentation; MCMC algorithm; Presence-only data; Pseudo-absence approach; Potential 
distribution. 

1. Introduction 

An important issue in ecological studies is the estimation of the potential spatial extent of an ecological 
niche. The prediction of geographical distribution of species in suitable areas is essential for planning 
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conservation and management strategies, and it may concern studies on animal and plant species. Given a 
presence-absence process for a species, the logistic model represents a natural approach to estimate the 
species’ distribution given the environmental covariates. In ecological studies, however, the collecting of 
presence-absence data could be expensive and/or difficult. Often the observable information in such 
studies is not complete and we can collect the true presence of the species only at a few locations of the 
study area while the associated environmental covariates are available over the entire area. In order to 
handle that situation an interesting approach is based on the combination of two samples: the first one is 
composed by sites with true presences while the second one is a sample from the whole population area 
(referred as background or pseudo-absence sample [2]). Such data are known in literature as presence-
only data, see [1] for details. 

Following the above approach, it is possible to adapt and fit standard case-control models also in the 
setting of presence-only data. In this paper we propose a Bayesian approach to estimate logistic linear 
regressions adapted to presence-only data of rare species through the introduction of a random 
approximation of the correction factor in the adjusted logistic model that allows us to overcome the need 
to know the population prevalence of the species a priori. Under the assumption that the pseudo-absence 
locations are randomly sampled from the entire study area, we can estimate regression parameters jointly 
with prevalence through a data augmentation MCMC algorithm [3].  

The paper is organized as follows. In Section 2 we introduce the model and then we describe our 
algorithm. In Section 3 we conduct a simulation study in order to evaluate the performance of the 
proposed algorithm. 

2. Model and Algorithm 

Let Y be the true presence/absence process, where Y assumes value 1 if the species is present and 
value 0 if the species is absent. When presence-only data are considered we do not observe the Y process.
We are able to asses information on a naive approximation Z of Y. A first relation between Y and Z can 
be formalized as follow: Z=0 implies Y {0,1} and Z=1 implies Y=1. The introduction of the naive 
variable Z allows us to consider the full sample S as composed by two subset: Su of size nu that includes 
pseudo-absences (with Z=0) and Sp of size np that includes observed presences (with Z=1). For each 

observation i belonging to Su, we introduce a Bernoulli random variable iY  representing the missing-data 

process. Then, we can further formalize the relation between Y and Z as follow: Zi = 0 implies the i-th
observation belongs to Su and the missing value Yi  can be represented by the Bernoulli random variable 

iY ; Zi = 1 implies the i-th observation belong to Sp and the observed Yi  is equal to 1. 

In Table 1, we represent the relation between Y and Z:

Table 1. Sampling design for presence-only data 

Z

0 1 Total

Y
0 n0u 0 n0

1 n1u n1p n1

 Total nu np n

where n0u is the unknown number of unobserved absences in the subsample Su, n1u is the unknown 
number of unobserved presences in the subsample Sp, n1p is the number of observed presences in the 
subsample Sp, n0 is the unknown total number of absences in S and n1 is the unknown total number of 
presences in S. We assume that all the unknowns in Table 1 are random quantities from the effect of the 
missing data process in the subsample Su. In particular we can consider n1u as: 
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Moreover the following relationships hold: 

0 1u u un n n 0 0un n 1 1u pn n n      (2) 

Let  be the prevalence of the Y process, under the assumption that the subsample Su is randomly 
drawn from the entire target population, the expected number of true presences in the full sample S is 
given by: 

1 1[ ] [ ]u p u pE n E n n n n         (3) 

A typical presence-only data set consists of environmental information in the form of covariates 
covering the study area and of observed presences. That is why we cannot employ standard statistical 
approaches in the modeling of a species’ presence covering the whole study area. In this work we propose 
the use an adjusted logistic model extending the approach in [2]. Denoting by s=1 that an observation is 
in the sample, the probability that a species of interest is present at a location with covariates x can be 
formalized as follow: 
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where (x) is a regression function, 0 =Pr(s=1|Y=0) and 1=Pr(s=1|Y=1) are the probabilities of sampling 
respectively from the absences and from the presences.  

As introduced in [2] by Ward et al., we can handle the presence-only model following two 
approaches. The first one considers the full likelihood, i.e. the joint probability of the Y and Z processes, 
and the second one is based on the observed likelihood defined only with respect to the naive variable Z.

First we analyse the full likelihood: 
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In (6) it is introduced the observed likelihood with respect only to Z:

( ; , ) Pr( 0 | 1, ; ) Pr( 1 | 1, ; )
u p

i i i i i i
i S i S

L z x z s x z s x ,    (6) 

where 
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We propose an estimation procedure that works for both approaches. In order to manage 

computational aspects we need to discuss in details the role of the ratio 1

0

. From the case-control 

sampling, absences and presences are drawn separately at different and unknown rates, respectively 0

and 1, that we assume independent from the covariates x. Given the size N of the target population we 

have that 0
0 (1 )

n

N
 and 1

1

n

N
.

In our setting, being n1u interpreted as a random quantity, we have that also 0  and 1  are random and 
we can write: 

11 1

0 0 1

1 1u p

u u

n nn

n n n
.        (8) 

In order to handle (8), Ward et al. [2] approximate 1  and 0  by their expected values: 

1 1
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That ratio can be identified only if the prevalence  of population is known a priori. Our approach, which 
is based on MCMC simulations, does not require such knowledge. Under the assumption that Su is a 

random sample from S, we can approximate  through the empirical random prevalence 1u
u

u

n

n
 which 

can be introduced in the MCMC algorithm through an augmentation step. In this way we have: 

11

0 1

u p

u

n n

n
.         (10) 

From (10) we derive Pr( | 1, ; )i i iy s x  and Pr( | 1, ; )i i iz s x  that can be plugged into the full 
likelihood (5) and into the observed likelihood (6). We can now write the Bayesian model using either (5) 
or (6). 

2.3 Bayesian model and MCMC algorithm. 

Let p( ) be the prior distribution of the regression function, e.g. if we consider a linear regression we 
can choose that as a multivariate Gaussian distribution over the support of the parameters. Given  and 
the covariate information x, the Y process in the sample S can be described by independent Bernoulli 
random variables, each one with parameter ( ) Pr( 1 | 1, ; )s x y s x .
Then, the hierarchical Bayesian model is given by: 
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• ( )p

• | 1, ; [ ( )]i i i s iY s x Be x

• | , 1 Pr( | , 1)i i i i i iZ y s z y s  that can be derived from Table 1. 
Then the joint posterior distribution of the model can be derived with respect to the full likelihood or to 
the observed likelihood. In the following scheme we present the MCMC algorithm which can be applied 
to both approaches in order to result estimates of the quantities of interest. 

Step 0: initialize (0.5) i uy Be i S

Repeat:
Step 1: set 1

u

u i
i S

n y

Step 2: sample Pr( | , )y z ;

Step 3: sample Pr( | , 1, , ) i i i i i uy y z s x i S .

In Step 3 we draw from the Bernoulli distribution with parameter 
exp ( )

( )
1 exp ( )

i
i

i

x
x

x
. An estimation 

of the prevalence can be obtained by 1ˆ u
u

u

n

n
, where 1un  is the average of the simulations in Step 1. 

3. Simulation Study 

In this section we investigate the performance of our proposal on simulated data. We generate a binary 
response Y from the logistic model logit ( )i ix x , where = -1 while the covariate x is generated from 

a mixture of two Gaussian components with common variance and central values respectively 

1 2 and 2 2 .
In Figure 1 we show the distribution of X and Y for different level of the dispersion in the covariate. 

Fig. 1. Distribution of X and Y for different level of X .
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We generate a study area of N=10000 observations and randomly we select observed presences for Sp

and pseudo-absences for Su in a rate of 1:4. Then we fit the Bayesian model, in the observed likelihood 
version, for two different situations: with unknown   (M1) and assuming the population prevalence to be 
known (M2). The second situation represents our benchmark model and it can be considered similar to 
the model introduced in [2] by Ward et al.. Both models are fitted assuming the standard Gaussian N(0,1) 
as the prior for . We run 20000 iterations and discard the first 10000 as burn-in. In Table 2 we report the 
MCMC posterior mean and the 95% credibility interval for and the MCMC estimation for the 
population prevalence  with respect to different levels of X  and sizes of S.

Table 2. Posterior mean and credibility interval for  and posterior mean for the prevalence ( * represents the true population 
prevalence). 

X =0.5; * = 0,3681 X =1.0; * = 0,3809 X =2.0; * = 0,4088 

ˆ  (95% CI) ˆu
ˆ  (95% CI) ˆu

ˆ  (95% CI) ˆu

n=50 
M1 -0.14 (-0.75; 0.45) 0.487 -0.50 (-1.21; 0.12) 0.467 -0.89 (-1.87; -0.12) 0.463 

M2 -0.18 (-0.80; 0.46) 0.484 -0.53 (-1.27; 0.10) 0.466 -0.90 (-1.90; -0.12) 0.462 

n=500 
M1 -0.85 (-1.12; -0.61) 0.431 -0.93 (-1.21; -0.69) 0.4007 -0.80 (-1.10; -0.55) 0.419 

M2 -0.90 (-0.80; 0.46) 0.428 -0.96 (-1.23; -0.69) 0.3996 -0.82 (-1.11; -0.58) 0.418 

n=5000 
M1 -1.030 (-1.11; -0.95) 0.364 -1.07 (-1.16; -0.99) 0.3756 -1.02 (-1.13; -0.92) 0.4008 

M2 -1.029 (-1.11; -0.94) 0.364 -1.06 (-1.16 -0.97) 0.3759 -1.01 (-1.11; -0.91) 0.4011 

We can see that when n increases, then the prevalence estimates become closer to the true population 
one with respect to all the different levels of dispersion in X. Also the performance with respect to the 
benchmark model seems quite promising; in fact the estimates concerning the two models M1 and M2 are 
very close in all the several scenarios. 

4. Conclusions  

The model proposed aims at estimating the parameters of a logistic linear regression adapted to 
presence-only data. The introduction of a random approximation of the correction factor in the adjusted 
logistic model allows us to overcome the need to know the population prevalence a priori. Under the 
assumption that the pseudo-absence locations are randomly sampled from the entire study area, we can 
estimate regression parameters jointly with the prevalence through a data augmentation step in the 
MCMC algorithm. 

The simulation study, described in Section 3, allowed us to evaluate of the performance of the method 
in practice. The results are good and encouraging. Further works envisage real data applications and the 
development of an explicitly spatial model for presence-only data.  
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