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The vascular endothelium constitutes a semi-permeable barrier between blood and
interstitial fluids. Since an augmented endothelial permeability is often associated to
pathological states, understanding the molecular basis for its regulation is a crucial
biomedical and clinical challenge. This review focuses on the processes controlling
paracellular permeability that is the permeation of fluids between adjacent endothelial
cells (ECs). Cytosolic calcium changes are often detected as early events preceding
the alteration of the endothelial barrier (EB) function. For this reason, great interest
has been devoted in the last decades to unveil the molecular mechanisms underlying
calcium fluxes and their functional relationship with vessel permeability. Beyond the
dicotomic classification between store-dependent and independent calcium entry
at the plasma membrane level, the search for the molecular components of the
related calcium-permeable channels revealed a difficult task for intrinsic and technical
limitations. The contribution of redundant channel-forming proteins including members
of TRP superfamily and Orai1, together with the very complex intracellular modulatory
pathways, displays a huge variability among tissues and along the vascular tree.
Moreover, calcium-independent events could significantly concur to the regulation of
vascular permeability in an intricate and fascinating multifactorial framework.

Keywords: TRP, endothelial cell, store-operated Ca2+entry channels, permeability, vessel permeability,
microvessel, TRPC

FEATURES OF THE VASCULAR ENDOTHELIUM

Vascular endothelium lines the intima of the blood vessels, forming a semi-permeable interface
between blood and interstitial fluids. Macromolecules cross this barrier via endo/exocytosis
(transcellular permeability), while fluids and small solutes can pass endothelium through the
space between adjacent ECs (paracellular permeability) (Komarova and Malik, 2010). The
permeability of the endothelial layer is finely modulated in order to properly answer local
metabolic demands. When the endothelium loses its barrier function, tissue inflammation occurs
(Mehta and Malik, 2006).

Abbreviations: 4αPDD, 4α-phorbol 12,13-didecanoate; AA, arachidonic acid; AJs, adherent junction complexes; EB,
endothelial barrier; ECM, extracellular matrix; ECs, endothelial cells; EET, 14,15-epoxyeicosatrienoic acid; FACs, focal
adhesion complexes; hMEC, human microvascular endothelial cells; IEJs, intercellular endothelial junctions; LMECs, lung
microvascular EC; MLC, Myosin light chain; MMP, matrix metalloproteinases; nSOCs, non-store-operated channels; ROS,
reactive oxygen species; rPAECs, rat pulmonary aortic endothelial cells; rPMECs, rat pulmonary microvascular endothelial
cells; SOCE, Store-Operated Calcium Entry; SOCs, store-operated cation channels; SP1, sphingosine-1-phosphate; SPHK1,
sphingosine kinase 1; TER, transendothelial electrical resistance; TNF-α, tumour necrosis factor-α; TRP, Transient
receptor potential.
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Responsible for paracellular permeability regulation are the
intercellular contacts between ECs maintained by AJs, and the
cellular adhesion to the underlying matrix through FACs (Cioffi
and Stevens, 2006; Minshall and Malik, 2006). An enhanced
endothelial permeability is the result of loss of contact between
adjacent microvascular ECs and weakening of their adhesion
to the ECM (Minshall and Malik, 2006). Vessel permeability is
under the control of pro-inflammatory, thrombogenic mediators
and growth factors binding to selective endothelial receptors.
A convergent downstream effect is usually an increase of the
cytosolic calcium concentration that precedes the enhancement
of endothelial permeability. Indeed, cytosolic Ca2+ transients
induce the retraction of the cell borders by weakening IEJs and
cell-matrix junctions. Thus, while ECs change their morphology
from a flattened to a rounded shape, gaps between adjacent ECs
are formed, allowing the unrestricted flux of plasma proteins,
including albumin, and liquid through IEJs (Lum and Malik,
1994; Mehta and Malik, 2006; Minshall and Malik, 2006).

Transient receptor potential channels play a key role in
endothelial calcium fluxes occurring during physiological events
and human diseases (Hsu et al., 2007; Watanabe et al., 2008;
Banner et al., 2011; Galindo et al., 2018; Tsagareli and Nozadze,
2019). Transient receptor potential channels (TRPs) contribute
to the regulation of the EB, but the intracellular mechanisms are
still partially elusive and highly variable in tissues as well as along
the vascular tree.

Here we discuss the state of the art in the field, highlighting
the discrepancies and conflicting evidence.

ENDOTHELIAL PERMEABILITY ALONG
THE VASCULAR TREE

Since an increased endothelial permeability is considered a
hallmark of vessel growth in many diseases (Bates and Harper,
2002), huge effort is devoted to uncover the underlying
mechanisms, especially within the microcirculation.

In resting rat lung, the vascular filtration coefficient
(K fc), indicative of the liquid flux, is near 42% in
microvessels and just 19% in arterial regions (Parker and
Yoshikawa, 2002). Similar results were found in canine lung
(Mitzner and Robotham, 1979).

Such a striking difference can be ascribed to the density
of fenestrae (Aird, 2007), together with EC shape, thickness
and the protein composition of the IEJs. Tight junctions
are well developed in large vessels, which have a conduct
function, while they are weakened along capillaries, the
canonical site for exchange with the surrounding tissue. Thus,
the number and complexity of tight junctions appear to be
inversely related to permeability (Aird, 2007). Microvascular
ECs also express a greater amount of proteins involved in
the interaction with the ECM (Chi et al., 2003), explaining
why the ECM contribution to permeability prevails in
capillaries (Qiao et al., 1995). In addition to these intrinsic
mechanisms, also extrinsic factor contribute: blood flow and
the relative mechanical stress is pulsatile in large vessels,
while linear within capillaries (Mehta and Malik, 2006;

Sukriti et al., 2014). Finally, capillary permeability is strongly
influenced by the coverage by pericytes, contractile cells
wrapped around ECs (Attwell et al., 2016). Indeed, pericytes
contraction reversibly opens endothelial gaps, while their loss
irreversibly compromises EB (Edelman et al., 2006). Moreover,
pericytes control tight junction expression and alignment
(Winkler et al., 2012).

CALCIUM SIGNALING REGULATES
ENDOTHELIAL VESSEL PERMEABILITY

Calcium signaling has a central role in the modulation of both
physiological and pathological permeability (Curry, 1992; Bates
and Curry, 1997; Kelly et al., 1998; Van Nieuw Amerongen
et al., 1998; Bates and Harper, 2002; Minshall and Malik, 2006;
De Bock et al., 2012). The intracellular calcium concentration
([Ca2+]i) increases in inflammation, causing a reorganization of
endothelial gaps (Moore et al., 1998; Mehta and Malik, 2006).

Calcium signals modulate endothelial permeability partly via
an ubiquitous mode referred to as SOCE, a calcium influx
dictated by the depletion of endoplasmic reticulum (ER) calcium
stores. The protein STIM1 is located in ER membranes acting
as sensor of Ca2+ levels in the lumen: upon ER depletion, it
underlies a rearrangement to plasma-membrane-ER junctions,
where activates SOCs, that include the pore forming protein
Orai1 (Smyth et al., 2010) and members of the TRP channel
superfamily (Cheng et al., 2013; Ambudkar et al., 2017).

Inflammatory mediators (e.g., thrombin and histamine) bind
to plasma membrane G protein-coupled receptors and trigger
InsP3-dependent Ca2+ release from ER and the following
SOCE. The calcium-mediated phosphorylation of MLC drives the
formation of actomyosin contractile units and stress fibers, which
exert force on the IEJs, weakening them (Dudek and Garcia,
2001; Sandoval et al., 2001; Birukova et al., 2004). In addition,
PKC phosphorylates junctional linking proteins vinculin and
talin in IEJs and FACs (Lum and Malik, 1994; Rebecchi and
Pentyala, 2000; Rhee, 2001). The disassembly of cell-cell and cell-
matrix contacts (PKC-mediated passive cell retraction) and the
concomitant establishment of contractile units (MLCK-mediated
active cell contraction) lead to ECs rounding as well as the
formation of intercellular gaps and permeability enhancement.

Early studies highlighted a variable contribution of calcium
signaling to vascular permeability between larger and smaller
vessels. Kelly et al. (1998) showed that an increase of [Ca2+]i
enough to promote permeability in rPAECs, failed to exert any
effect on rPMECs, initially suggesting an apparent uncoupling
of [Ca2+]i signaling pathways or dominant Ca2+-independent
mechanisms in microvasculature. In vitro permeation studies
showed that the phosphodiesterase-4 inhibitor Rolipram inhibits
SOC in PAECs while revealing it in PMVECs, with consequent
shift of the fluid leakage site from big vessels to the
microcirculation. Thus, the intracellular events associated with
SOCE appear to be site specific, according to the variability of the
response to proinflammatory stimuli (Dudek and Garcia, 2001;
Wu et al., 2005).
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More recently, nSOCs were proposed as major players
in microvascular permeability (Alvarez et al., 2006; Cioffi
et al., 2009; Komarova et al., 2017; Phuong et al., 2017).
Activated following agonist stimulation and independently of
store depletion, nSOCs regulate EB (Mehta and Malik, 2006).

TRPs IN ENDOTHELIAL PERMEABILITY

Transient receptor potential channels are a superfamily of ion
channels, which regulate the plasma membrane permeability to
cations in response to a broad range of stimuli. Importantly, 19
of the 28 mammalian TRP channel isoforms are expressed in
vascular ECs. Among them, all of the TRPC; TRPV1, -V2, and
-V4; all of the TRPM except -M5; and TRPP1 and -P2 (Yao and
Garland, 2005; Kwan et al., 2007).

In the following paragraphs, research works that discuss the
role of TRP channels in the regulation of EC permeability
will be discussed.

The involvement of TRPs in EB regulation is well established
(Groschner et al., 1998; Owsianik et al., 2006; Ramsey et al., 2006;
Tiruppathi et al., 2006; Moccia, 2012; Ong et al., 2016). TRPs
can be activated by both intra- and extra-cellular messengers,
as well as by physical or mechanical stimuli, promoting calcium
signals and membrane depolarization, that may respectively,
recruit store-operated and voltage-gated channels (Nilius, 2007;
Mulier et al., 2017).

Consistent literature supports the involvement of TRP
channels in both SOCE and non-SOCE calcium entry in ECs, as
well as in endothelial permeability.

The molecular identity of the channels involved in endothelial
SOCE gave rise to a long and exciting debate, with conflicting
data due to methodological issues as culture conditions,
overexpression systems, electrophysiological protocols, and
pharmacological approaches (Groschner et al., 1998; Abdullaev
et al., 2008; Trebak, 2009). The general accepted model recognizes
highly Ca2+ selective SOCE currents through Orai1 channels
and non-selective SOCE currents (the canonical ISOC) mediated
by Orai1 and TRPC1, considered the predominant isoform
expressed in human vascular endothelium (Tiruppathi et al.,
2006; Worley et al., 2007; Cheng et al., 2013; Sabourin et al., 2015;
Ambudkar et al., 2017; Lopez et al., 2020). The ER Ca2+ sensor
STIM1 regulates both these kinds of channels (Lopez et al., 2020)
and triggers Orai1 and TRPC1 activation by distinct C-terminus
domains. Therefore, TRPC1 function is not only dependent
on STIM1, but also requires the interaction with Orai1 (Ong
et al., 2016). Moreover, Orai1-mediated Ca2+ entry is needed
for recruitment of TRPC1 and its insertion into membranes,
while STIM1 gates the channel (Cheng et al., 2013). In human
ECs, the phosphorylation of TRPC1 by PKCa is essential for the
thrombin-induced activation of SOCE (Ahmmed et al., 2004).
The expression of TRPC1 is also regulated: in human PAECs
(hPAECs), the inflammatory cytokine TNF-α promotes TRPC1
overexpression (Paria et al., 2004) that triggers Ca2+ influx and
enhances endothelial permeability (Tiruppathi et al., 2006). Upon
thrombin exposure, RhoA triggers the association of TRPC1 to
InsP3R, its translocation to the plasma membrane, calcium entry

enhancement and finally the increase in endothelial permeability
(Mehta et al., 2003). A role for SPHK1 was suggested in the
pathway by which TRPC1-mediated calcium entry destabilizes
AJs: TRPC1 holds SPHK1 constitutively in a suppressed state
to prevent SP1 production, enabling inflammatory agonists to
mediate vascular leak (Tauseef et al., 2016; Simmons et al., 2019).

TRPC1 overexpression in hMEC caused a twofold increase in
thrombin-induced calcium depletion and in InsP3 store-operated
cationic current. Actin-stress fiber formation was augmented and
TER decreased (Paria et al., 2004). On the contrary, TRPC1
depletion reduced the global cytosolic Ca2+ response by 25%
and ISOC by 50% (Brough et al., 2001). Further, the application
of a specific antibody directed against an extracellular epitope
of TRPC1 blocked thrombin- or InsP3-induced Ca2+ entry
(Ahmmed et al., 2004).

Some members of TRPC family (i.e., TRPC-3, -6, and -
7) can be stimulated by the membrane-permeant analog of
DAG, 1-oleoyl-2-acetyl-sn-glycerol (Hofmann et al., 1999).
Furthermore, these three channels show different levels of
store-dependence: TRPC-3 is quite sensitive to InsP3-mediated
responses, whereas TRPC-6 and -7 appear to be completely
store-independent. Nevertheless, the independence of TRPC-
3 from InsP3 receptor activation has been demonstrated
in that PLC activation in InsP3 receptor-deficient cell lines
still retained TRPC-3 activation (Tiruppathi et al., 2002;
Pocock et al., 2004).

Beside TRPC1, TRPC4 was also proposed as a major
contributor in SOCE (Wu et al., 2005; Trebak, 2009;
Sundivakkam et al., 2012; Antigny et al., 2017). TRPC1 and
TRPC4 can heterodimerize in ECs, forming a single functional
channel (Antoniotti et al., 2006; Ma et al., 2011; Du et al.,
2014; Greenberg et al., 2019). TRPC4 binds to STIM1 (Worley
et al., 2007) as well as to Orai1: interestingly, Orai1 knockdown
decreases the opening probability and the selectivity of TRPC1/4
channel (Cioffi et al., 2012; Thakore and Earley, 2019).

Knock out models for TRPC4 confirmed its role in
permeability in vivo. Ca2+ influx evoked either by thrombin or
a synthetic agonist (TFLLRNPNDK) was drastically diminished
in isolated-perfused TRPC4-/- mouse lungs and in cultures
ECs from the same model (Tiruppathi et al., 2002). This was
associated with a lack of thrombin-induced actin-stress fiber
formation and an impaired endothelial cell retraction.

Interestingly, TRPC4/5 channels can be mobilized not only
via the Gq/11-protein–PLC pathway, but also following Gi/o-
coupled signaling (Jeon et al., 2012).

Even if not demonstrated in ECs, recent evidences show
that TRPC4/5 recruitment requires the dissociation of NHERF
proteins from the channel C terminus, thus providing DAG
sensitivity (Storch et al., 2017; Mederos y Schnitzler et al., 2018).

As stated above, TRPC6 may also be involved in EB
dysfunction. Indeed, in frog mesenteric microvessels, VEGF-
induced increase in vascular permeability can be mimicked by
DAG, an agonist of TRPC3/6/7. Furthermore, flufenamic acid,
which positively regulates TRPC6 but inhibits -C3 and -C7,
enhances the effect exerted by VEGF (Pocock et al., 2004).

Evidences from studies with transfected cells demonstrated
the TRPCs can mediate Ca2+ gated by DAG and are store and
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PKC independent (Nilius and Droogmans, 2001). Consistently,
OAG-induced Ca2+ currents in TRPC-6-expressing cells were
not sensitive to PKC inhibition, suggesting that TRPC-6 is
directly gated by DAG (Hofmann et al., 1999).

Moreover, in Pocock et al. (2004) demonstrated in vivo that at
least one mechanism of action of VEGF involves the increase in
[Ca2+]i through store-independent TRPC-6 activation.

Finally, by the use of calcium imaging in isolated perfused
rat lungs and patch clamp in rPAECs, TRPC6 was found to be
critically involved in lung vascular leakage after stimulation with
platelet-activating factor through its recruitment into caveolae
(Samapati et al., 2012). In human PAECs, cell contraction exerted
by thrombin is mediated by TRPC6 via a PKA-dependent
pathway (Singh et al., 2007).

A member of TRPM subfamily, TRPM2, is highly expressed
in ECs (Simmons et al., 2019), but its role in permeability

is controversial. In cultured hPAECs, TRPM2 is opened by
intracellular ADP-ribose and mediates the hyperpermeability
triggered upon exposure to H2O2. Some in vivo studies reported
that TRPM2−/− mice develop pulmonary edema upon LPS
treatment (Thomas et al., 2012), but other authors failed to
reproduce the evidence (Hardaker et al., 2012). The discrepancy
could be due to different mouse strains used in the experiments
(Thakore and Earley, 2019).

In the ECs of blood vessels following spinal cord
injury, TRPM4 resulted up-regulated, but the underlying
mechanism in vascular permeability remains unclear
(Grunewald et al., 2006).

Finally, some components of TRPV subfamily are under
intense investigation.

The role of TRPV1 channels in this context is controversial.
Indeed, Alvarez et al. demonstrated that the TRPV1 agonists did

FIGURE 1 | Regulation of endothelial permeability by TRP channels. The endothelial calcium signals regulate vascular permeability in large vessels as well as in
capillaries through different mechanisms.
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not affect lung permeability (Alvarez et al., 2005). Nevertheless,
Wang et al. reported a protective effect by capsaicin, a potent
TRPV1 activator, in rabbit lung ischemia-reperfusion injury
(Wang et al., 2012; Thakore and Earley, 2019). On the other hand,
TRPV1 expression is very low in hMECs (Thomas et al., 2012).

Nowadays, TRPV4 is attracting much attention for its
influence on capillary barrier function (Morty and Kuebler,
2014; Simmons et al., 2019). Downregulation of TRPC1 and
TRPC4 in artery and vein lung endothelium is associated
with the loss of response to the SOCE-activating compound
thapsigargin, supporting the idea that thapsigargin triggers
a TRPC1/TRPC4-containing channel to increase permeability.
However, permeability regulated by EET, a metabolite of the
AA, was retained, opening the possibility for the involvement
of other channels (Alvarez et al., 2005). 14,15-EET, which is
produced upon high peak inspiratory pressure, activates TRPV4
and the subsequent increase in pulmonary vascular permeability
(Watanabe et al., 2002; Hamanaka et al., 2007; Simmons et al.,
2019; Thakore and Earley, 2019). TRPV4 is abundantly expressed
in the endothelium from lung intra-alveolar capillaries and,
to a lesser extent, from large, extra-alveolar vessels (Danbara
et al., 1982; Alvarez et al., 2006). The TRPV4 agonist 4αPDD
increased permeability in wild type capillaries, with disruption
of cell-matrix tethering, but failed to exert any effect in TRPV4
knockout mice; on the other hand, thapsigargin produced the
same effect in extra-alveolar vessels (Alvarez et al., 2006; Thakore
and Earley, 2019). Therefore, TRPC1 and TRPC4 appear to
interfere preferentially with the lung extra-alveolar EB, whereas
TRPV4 is prominently functional in lung capillaries (Cioffi et al.,
2009). In mice, TRPV4 knockout prevented the permeability
increase of lung microvasculature induced by both 4αPDD and
14,15-EET, without affecting SOCE (Komarova et al., 2017).
Moreover, TRPV4 triggers Ca2+-activated K+ channels (KCa)
in rPMECs, enhancing the driving force for calcium entry and
the response to TRPV4 (Lin et al., 2015). In mouse and human
LMECs, ROS enhance vessel permeability via a Fyn Src kinase-
TRPV4-dependent Ca2+ influx (Suresh et al., 2015; Thakore and
Earley, 2019). TRPV4 seems to be also involved in the pulmonary
edema associated with heart failure (Thorneloe et al., 2012).
Interestingly, a NO/cGMP-dependent negative feedback loop was
discovered for protection against the excessive microvascular
barrier permeability (Yin et al., 2008). In LMECs, mechanically
gated recruitment of TRPV4 elicits the release of the MMP
MMP2 and MMP9, which degrade collagen IV and laminin, key
structural components of the alveolar basement membrane, as
well as integrins, intercellular E-cadherin and other intercellular
targets (Villalta et al., 2014). The overall effect is the endothelial
detachment from the basement membrane (Willette et al., 2008;
Villalta and Townsley, 2013) and a permeability enhancement.

TRPV4 is also expressed in retinal hMECs and in intact blood
vessels of the inner retina. Its selective agonist GSK101 promoted
MEC permeability in association with disrupted F-actin
organization, occludin downregulation and adherent contacts
remodeling. Moreover, GSK101 increased the permeability of
WT retinal blood vessels, but not in TRPV4 knockout mice,
pointing to a major role for the channel in Ca2+ homeostasis and
retinal barrier function (Phuong et al., 2017).

CONCLUSION

Calcium signaling tunes endothelial permeability in capillaries as
well as in larger vessels. However, it is not surprising to find a
huge variability in the related molecular machinery due to the
well known heterogeneity of the endothelium in different tissues
(Figure 1).

A general and established model for the relative contribution
of SOCE and non-SOCE in macro- and micro-vessel
permeability, as well as for the identity and function of TRP
channels, is not available yet. A severe limitation is the lack of
a detailed TRP proteomic pattern and intracellular targeting
landscape in capillary and arterial/vein ECs. In addition, selective
pharmacological compounds are only available for some TRP
members and some of them are not suitable for systemic
treatments due to their highly toxicity (Meotti et al., 2014;
Rodrigues et al., 2016; Rubaiy et al., 2017; Lawhorn et al., 2020).

Finally, the simple detection of a variety of active calcium
entry mechanisms, with their complex protein machineries,
does not necessarily provide an evidence for their exclusive
functional involvement in vessel permeability. Trebak and
coworkers reported that the acute barrier disruption activated
by thrombin in hUVECs and hMECs requires endoplasmic-
reticulum localized STIM1 independently of Orai1, MLCK, and
Ca2+ entry across the plasma membrane. STIM1 couples the
thrombin receptor, recruits guanosine triphosphatase RhoA and
stimulates MLC phosphorylation, finally leading to formation of
actin stress fibers and loss of cell-cell adhesion (Shinde et al., 2013;
Stolwijk et al., 2016).

Vascular permeability is probably the result of a concurrence
among diverse, tissue-dependent intracellular processes, all
contributing in variable weights to the overall event.
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