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Abstract 

Kefir is a well-known health-promoting beverage that can be produced by using kefir grains 

(traditional method) or by using natural starter cultures from kefir (backslopping method). The aim 

of this study was to elucidate the microbial dynamics and volatilome profile occurring during kefir 

production through traditional and backslopping methods by using five kefir grains that were 

collected in Bosnia and Herzegovina. The results from conventional pour plating techniques and 

amplicon-based sequencing were combined. The kefir drinks have also been characterized in terms 

of their physico-chemical and colorimetric parameters. A bacterial shift from Lactobacillus 

kefiranofaciens to Acetobacter syzygii, Lactococcus lactis and Leuconostoc pseudomesenteroides 

from kefir grains in traditional kefir to backslopped kefir was generally observed. Despite some 

differences within samples, the dominant mycobiota of backslopped kefir samples remained quite 

similar to that of the kefir grain samples. However, unlike the lactic acid and acetic acid bacteria, the 

yeast counts decreased progressively in the grains from the backslopped kefir. The backslopped kefir 

samples showed higher protein, lactose and ash content and lower ethanol content compared to 

traditional kefir samples, coupled with optimal pH values that contribute to a pleasant sensory profile. 

Concerning the volatilome, backslopped kefir samples were correlated with cheesy, buttery, floral 

and fermented odors, whereas the traditional kefir samples were correlated with alcoholic, fruity, fatty 

and acid odors. Overall, the data obtained in the present study provided evidence that different kefir 

production methods (traditional vs backslopping) affect the quality characteristics of the final product. 

Hence, the functional traits of backslopped kefir should be further investigated in order to verify the 

suitability of a potential scale-up methodology for backslopping.

Keywords: kefir grain microbiota, backslopped kefir, physico-chemical parameters, viable counts, 

Illumina sequencing, VOCs, SPME-GC/MS 
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1. Introduction

Kefir is a self-carbonated, acidic and low-alcohol fermented milk beverage characterized by a unique 

volatile profile and nutritional composition and a creamy texture (Gao & Li, 2016; Prado et al., 2015). 

Kefir originated from Caucasian and Balkans populations, and over time, its popularity and 

consumption have increased around the world due to its sensory properties, health-promoting features 

and its status of natural probiotic. All these features are related to the kefir microorganisms, their 

interactions and to their metabolic products such as lactic and acetic acids, carbon dioxide, ethanol, 

acetaldehyde, acetoin, and other volatile compounds, minerals, essential amino acids, vitamins (B1, 

B2, B5, B12, K and C), folic acid, bacteriocins, bioactive peptides, some nutraceutical components 

and exopolysaccharides (EPS) as kefiran (Arslan, 2015; Bourrie, Willing, & Cotter, 2016; Farnworth, 

2005; Guzel-Seydim, Kök-Taş, Greene, & Seydim, 2011; Leite et al., 2013a; Prado et al., 2015). 

Traditionally, kefir is obtained through the fermentation of milk by kefir grains, which are irregular, 

lobed-shaped, gelatinous and slimy structures with variable dimensions (from 1 to 4 cm in length) 

and colors (from white to light yellow) (Garofalo et al., 2015; Leite et al., 2013a; Prado et al., 2015). 

Kefir grains are made up of a natural matrix of EPS (kefiran) and proteins in which lactic acid bacteria 

(LAB), yeasts and sometimes acetic acid bacteria (AAB) coexist in symbiotic association (Garofalo 

et al., 2015; Leite et al., 2013a; Prado et al., 2015). At the artisanal/homemade level, kefir grains 

represent the starter culture for kefir production. Specifically, the grains are added to milk at variable 

ratios (generally from 1 to 20% w/v) and are left to ferment for 18-24 h at 20-25°C (Leite et al., 

2013a). During fermentation, the grains increase in biomass, and they may break into new, smaller 

grains and release viable cells into the substrate (Marshall & Cole, 1985; Prado et al., 2015). At the 

end of fermentation, the grains are separated from kefir by sieving, and they can be used for the next 

fermentation (Leite et al., 2013a). 

At the commercial level, kefir can be manufactured by i) the fermentation of milk with pure freeze-

dried commercial kefir cultures or ii) by using the so-called “Russian method”, in which the kefir is 
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produced at a larger scale than the traditional method through backslopping, a process of fermentation 

in series that starts from the kefir produced with grains that is then used as natural starter cultures for 

milk fermentation (Leite et al., 2013a; Prado et al., 2015). 

Although producing kefir with commercial starter cultures leads to a more standardized product 

compared with kefir produced using kefir grains, health benefits have been found to be linked only 

to kefir produced with the complex microbiota derived from grains or grain-fermented milks (Bourrie 

et al., 2016; Leite et al., 2013a). In fact, the microbiota of kefir grains may vary depending on the 

ratio of kefir grains to milk, the time and temperature of fermentation (which are strictly connected 

to the geographical origin of kefir grains and thus to the climate conditions) and the type of substrate 

used for fermentation, which is generally bovine milk, although buffalo, camel, sheep, goat, rice, 

coconut and soy drinks have also been used (Altay, Karbancıoglu-Güler, Daskaya-Dikmen, & 

Heperkan, 2013; Bourrie et al., 2016). As a consequence of the different microbial consortium that 

can become established within kefir grains, variable kefir products with different microbiological, 

physico-chemical, nutritional and sensorial properties may be obtained (Bengoa, Iraporda, Garrote, 

& Abraham, 2018). This last aspect justifies the huge number of scientific studies on microbiological 

aspects of kefir grains collected from several countries around the world (Prado et al., 2015). 

Surprisingly, although kefir originated in the Balkans, to the authors’ knowledge, few scientific 

studies have been published on microbiota characterizations of kefir grains from this area (Bulgaria; 

Simova et al., 2002), (Turkey; Guzel-Seydim, Wyffels, Seydim, & Greene, 2005; Kesmen & Kacmaz, 

2011; Kök-Taş, Ekinci, & Guzel-Seydim, 2012), with none from Bosnia and Herzegovina. 

Furthermore, relatively few studies have been published to compare the microbiota between kefir 

grains and the related kefir drinks obtained using the traditional method (Dobson, O'Sullivan, Cotter, 

Ross, & Hill, 2011; Gao & Zhang, 2019; Guzel-Seydim et al., 2005; Kesmen & Kacmaz, 2011; 

Korsak et al., 2015; Marsh, O'Sullivan, Hill, Ross, & Cotter, 2013), and to the author’s knowledge, 

there are none published data on microbial dynamics and volatilome profile that occur during the 

production of kefir through backslopping. To date, the study by Marshall & Cole (1985) first 
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described the backslopping method for kefir production, and later, Simova et al. (2002) investigated 

the changes in the LAB and yeast communities during the kefir backslopping production process by 

using a culture-dependent technique and by identifying isolates with phenotypic methods. Satir & 

Guzel-Seydim later (2016) applied the same fermentation methods to milks from different caprine 

and bovine species and analyzed the products from a chemical and nutritional point of view. Recently, 

Kim, Jeong, Song, & Seo (2018) characterized the microbial populations of traditional kefir and 

backslopped kefir by using a culture-dependent technique and species-specific quantitative real-time 

PCR to quantify the Lactobacillus kefiranofaciens, Lactobacillus kefiri and Kluyveromyces 

marxianus (considered as key functional microorganisms in kefir), coupled with physico-chemical, 

nutritional and sensorial characterizations of these kefir drinks.

Therefore, the aims of this study were i) the elucidation of the bacterial and fungal community 

compositions in five kefir grains collected in Bosnia and Herzegovina; ii) a study of the microbial 

dynamics that occur during the production of kefir by traditional and backslopping methods, by 

performing viable counts on selective culture media and amplicon-based sequencing; and iii) a full 

characterization of the related kefir drinks in terms of their physico-chemical parameters, colorimetric 

features and volatilome profiles.

2. Material and methods

2.1. Origin, maintenance of milk kefir grains and kefir production

Five milk kefir grains (KGA, KGB, KGC, KGD, and KGE) were obtained from private households 

located in Bosnia and Herzegovina. These kefir grains were activated in the laboratory as described 

below. The kefir grains were inoculated (10% w/v) into sterile whole bovine (U.H.T.) milk and 

incubated at 22 °C for 24 h. After this time, the grains were filtered through a sterilized plastic sieve, 

they were gently washed with sterile distilled water, and subsequently, they were inoculated into milk 
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again for a daily fermentation at 22 °C. This procedure was repeated for 1 month to keep the grains 

active and to increase the grain biomass.

Five kefir drinks were produced by traditional method (by using each type of kefir grains) or by 

backslopping method (by using the fermented milk obtained from each kefir grain fermentation) as 

follows. Twenty grams of each grain were inoculated (10% w/v) into 200 mL of sterile whole bovine 

(U.H.T.) milk (12.14% dry matter, 3.74% fat, 3.35% protein, 4.65% lactose, and 0.74% ash) and 

incubated at 22 °C for 24 h. 

After the incubation, the grains were separated by filtration from the fermented milks. The filtrate 

that corresponded to the traditional kefir (hereafter referred to as TK) was also used as natural starter 

culture to produce kefir by backslopping (hereafter referred to as BK). Specifically, 50 mL aliquots 

of each TK were used to inoculate 1 L of sterile U.H.T. whole bovine milk (5% v/v). The fermentation 

was performed statically at 22 °C for 24 h (Puerari, Teixeira Magalhães, & Freitas Schwan, 2012; 

Satir & Guzel-Seydim, 2016). The preparation procedure for TK and BK is reported in 

Supplementary Figure 1. 

The kefir production was performed in duplicates (Puerari et al., 2012) and considered in blocks 

during the data analysis. 

2.2. Enumeration of culturable bacteria and yeasts in milk kefir grains and drinks

Ten grams of each kefir grain (KGA-KGE) was homogenized in 90 mL of cold sterile 0.1% peptone 

solution using a Stomacher apparatus (400 Circulator, International PBI) for 15 min at maximum 

speed (260 rpm) (Garofalo et al., 2015). 

Ten milliliters of each kefir drink, namely traditional kefir (TKA-TKE) and backslopped kefir (BKA-

BKE), was diluted in 90 mL of cold sterile 0.1% peptone solution. 

All of the samples were serially diluted. Serial decimal dilutions were prepared in cold sterile 0.1% 

peptone solution, and 0.1 mL of each serial dilution was inoculated by spreading it onto the surface 

of specific solid media in duplicate. The following microorganisms were counted: (i) LAB on MRS 
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agar (Difco, Sparks, MD, USA) at 37 °C under anaerobic conditions (Aquilanti et al., 2012); (ii) AAB 

on Gluconobacter Medium (GM) agar (mannitol 2.5%, yeast extract 0.5%, peptone 0.3%) and these 

media were supplemented with 400 mg/L of cycloheximide to inhibit yeast growth; and (iii) yeasts 

on Rose Bengal Chloramphenicol Agar (RBCA) (Difco) under aerobic conditions at 25 °C. The 

microbial enumerations of the bacteria and yeasts were performed after 3 and 10 days, respectively.

The results of the viable counts were expressed as the means of the log of the colony forming units 

(CFU) per gram or mL of kefir grains or kefir drinks, respectively. 

2.3. DNA extraction from milk kefir grains and drinks

The microbial DNA was extracted directly from the milk kefir grains (KGA-KGE) and kefir drinks 

(TKA-TKE and BKA-BKE) using a PowerFoodTM Microbial DNA Isolation Kit (Mo Bio 

Laboratories, Carlsbad, USA). Specifically, 1 mL of each kefir grain homogenate (dilution 10-1) used 

for microbial plating was centrifuged at 13.000 g for 3 min to produce a pellet, while 1.5 mL of each 

kefir drink was centrifuged at 13.000 g for 3 min. Each pellet (from the kefir grains and kefir drinks) 

was processed according to the kit manufacturer’s instructions. 

2.4 Analysis of bacterial and yeast diversity by rRNA gene Illumina sequencing and bioinformatics 

and data analysis

2.4.1 Amplicon target sequencing

A total of 30 DNA extracts were obtained from the two kefir productions, each including 5 kefir 

grains, 5 TK samples and 5 BK samples. The DNA extracts were quantified using a QUBIT dsDNA 

assay kit (Life Technologies, Milan, Italy) and they were standardized to 20 ng/μL. The DNA extracts 

from the two kefir productions were then pooled and used to amplify the V3-V4 region of the 16S 

rRNA gene (Klindworth et al., 2013) as well as the D1 domain of the 26S rRNA gene (Mota-Gutierrez 

et al., 2018). 
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PCR was performed for the two target regions using the following PCR mixture: 12.5 μL of the 2× 

Kapa HiFi HotStart ReadyMix Taq (Roche, Milan, Italy), 5 μL of each primer (1 μM), and 2.5 μL of 

DNA as a template. The PCR mixtures were subjected to the following amplification conditions: 

thirty cycles with 30 s of denaturation (95 °C), 30 s of primer annealing (55 °C), and 30 s of primer 

elongation (72 °C), followed by a final elongation step (72 °C) of 10 min.

The PCR amplicons were purified and sequenced according to the Illumina metagenomic pipeline 

instructions. The sequencing was performed with a MiSeq Illumina instrument (Illumina) with V3 

chemistry and generated 250 bp paired-end reads according to the manufacturer’s instructions. 

2.4.2 Bioinformatics analysis 

After the sequencing, the raw reads were merged with FLASH software (Magoc & Salzberg, 2011) 

and the resulting reads were analyzed with QIIME 1.9.0 software (Caporaso et al., 2010); the relevant 

pipeline was recently described (Ferrocino et al., 2017). For the 16S data, the centroid sequences of 

each OTU cluster was mapped against Greengenes 16S rRNA gene database version 2013 for 

taxonomic assignment, while for the 26S data, the in-house database from Mota-Gutierrez et al. 

(2018) was used.

To avoid biases due to the different sequencing depths, each dataset was rarefied at the lowest number 

of reads; the 26S data were rarefied at 37376 sequences while 7969 sequences were chosen for 16S 

data. The OTU tables generated through QIIME showed the highest taxonomy resolution that was 

reached. The sequences were double-checked using the BlastN search tool 

(http://www.ncbi.nlm.nih.gov/blast/) to confirm the taxonomy assignment.

The 16S and 26S rRNA gene sequences are available at the Sequence Read Archive of the NCBI 

(accession number SRP217033).

2.5 Physico-chemical measurement of kefir drinks
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The pH of the kefir drinks (TKA-TKE and BKA-BKE) was measured at room temperature using a 

model 300 pH meter equipped with an HI2031 solid electrode (HI2031, Hanna Instruments, Padua, 

Italy). 

For the total titratable acidity (TTA) determination, 10 mL of kefir drinks was mixed with 90 mL of 

distilled water, stirred with a magnetic stirrer and then titrated with 0.1 N NaOH. The results were 

expressed as the mean amounts of the NaOH (mL) used to reach a pH of 8.3. All the assays were 

performed in triplicate.

2.6 Proximate composition of kefir drinks

The kefir drinks (TKA-TKE and BKA-BKE) and milk were analyzed for their moisture, dry matter, 

fat, protein, lactose and ash contents. These analyses were all performed in the same accredited 

laboratory (ACCREDIA, accreditation No. 0217). The fat %, protein %, and lactose %, as expressed 

in w/w, were quantified via Fourier Transform Infrared (FTIR) spectroscopy using a CombiFoss FT+ 

made up of a Milkoscan FT Plus – 300 and a Fossomatic FC (Foss Electric, Hillerød, Denmark); the 

dry matter and ash were analyzed according to AOAC methodologies (950.46; 920.153). All these 

chemical analyses were performed in duplicate and the results were expressed as a % (w/w).

2.7 D-/L-lactic acid determination

The concentration of D-/L-lactic acid in the kefir drinks (TKA-TKE and BKA-BKE) was quantified 

using a Megazyme Assay Kit (K-DLATE 11/17) (MEGAZYME International, Wicklow, Ireland, 

2017) according to the manufacturer’s instructions. All the samples were examined in triplicate.

2.8 Color properties of kefir drinks

The colorimetric profile of the kefir drinks (TKA-TKE and BKA-BKE) was measured with a Chroma 

Meter CR-200 (Minolta, Japan) to determine the L (lightness) and chromaticity coordinates (a* and 

b* expressing redness and yellowness, respectively) according to CIELab. The color intensity was 
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determined by calculating the chroma index according to the following equation:  (a*2 + b*2). The 

set-up for the Chroma Meter was performed on a white reference standard plate with a D65 illuminant 

characterized by a visible spectrum similar to that of natural light. The colorimetric readings were 

performed in triplicate for each sample.

2.9 Volatile organic compounds (VOCs) of kefir drinks

2.9.1 Characterization of volatile organic compounds (VOCs) in kefir drinks

The volatile fraction of the kefir drinks (TKA-TKE and BKA-BKE) was analyzed by headspace 

sampling, using Solid Phase Micro-Extraction coupled with Gas Chromatography/Mass 

Spectrometry (SPME-GC/MS). For each SPME analysis, 5 g of sample was placed inside a 20 mL 

headspace vial, which was immediately sealed with a Teflon-lined septum and screwcap. The vial 

was placed in a thermostatic block on a stirrer at 55 °C for 5 min. After equilibration, the headspace 

of the samples was sampled using an SPME fiber coated with DVB/CAR/PDMS 

(divinylbenzene/carboxen/polydimethylsiloxane, thickness 50/30 mm) at 55 °C for 50 min. The HS-

SPME was automatically performed with a multipurpose sampler (Gerstel MPS2) (Dertli & Çon, 

2017). 

2.9.2 Gas chromatography/mass spectrometry (GC/MS) analysis

The volatile analysis was performed using an Agilent Technologies 7890A GC coupled to an Agilent 

Technologies 5975 mass spectrometer (Santa Clara, California) equipped with a 30 m x 0.25 mm ID, 

film thickness 0.25 µm capillary column (HP-INNOWAX, Agilent Technologies). The gas carrier 

was helium (flow 1.5 mL/min) and the SPME injections were splitless (straight glass line, 0.75 mm 

ID) and performed at 240 °C for 20 min, during which the thermal desorption of analytes from the 

fiber occurred. The oven parameters were as follows: the initial temperature was 40 °C, which was 

held for 3 min, followed by an increase to 240 °C at a rate of 5 °C/min, and then held for 10 min. The 
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injector temperature was 240 °C. The mass spectrometer was operated in scan mode over a mass 

range from 33 to 300 amu (2 s/scan) at an ionization potential of 70 eV. The identification of volatile 

compounds was achieved by comparing the sample mass spectra with those in the Wiley library 

(Wiley7, NIST 05). The amounts of the individual compounds were expressed as a peak area 

percentage obtained by the automatic integration of the peak area of the compound/∑peak areas of 

all the compounds identified in the chromatograms. All the analyses were performed in duplicate. 

The operating conditions were in accordance with Di Renzo, Reale, Boscaino, & Messia (2018).

2.10 Statistical analyses

An analysis of variance (ANOVA) on the physico-chemical and colorimetric parameters included the 

kefir drink (KD) and kefir drink culture type (KD-CT) as the primary effects, and their interaction. 

The kefir drink had two levels: traditional kefir (TK) and backslopped kefir (BK); five different kefir 

drink culture types (KD-CT) were used, and they were coded as A, B, C, D, and E.

The data on the physico-chemical and colorimetric parameters were analyzed according to a split-

block design, in which the two replications of the experiment were considered as blocks. The 

significance of the error variances for the primary effects (KD; KD-CT) were tested, and, in the event 

of a lack of significance, a pooled error variance was generated and used to test the primary effects 

and interaction variances. A mean comparison between the two kefir drink levels was performed by 

least significant difference (LSD) test, whereas multiple comparisons among the means were 

performed using the honest significant difference (HSD) test for the kefir drink culture type and the 

KD x KD-CT interaction. The same ANOVA model was applied to the microbiological plate count 

variables (LAB, AAB, and yeasts), but the kefir factor had three level samples (kefir grains-KG, 

traditional kefir-TK and backslopped kefir-BK) hereafter referred as KS. Multiple comparisons were 

performed by honest significant difference (HSD) test using JMP software (version 11.0).

Statistical analyses of the volatile compounds were performed using SYSTAT 13.0 for Windows 

(Systat Software Inc., Richmond, CA, USA). The data were expressed as the means ± standard error 
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of the mean. The statistical significance was evaluated by one-way analysis of variance (ANOVA) 

with Tukey’s HSD test. A p-value of <0.05 was considered statistically significant. A principal 

component analysis (PCA) based on the contents of the volatile constituents was performed. 

For the sequencing, the data sample coverage and diversity index (alpha diversity) were calculated 

using the diversity function in the vegan package (Dixon, 2007). For the 16S data, Unweight UniFrac 

distance matrices were used to find differences between samples by Anosim and Adonis statistical 

tests using the vegan function in the R environment. Non-parametric pairwise Wilcoxon tests were 

used as appropriate to determine the significant differences in the alpha diversity index, OTU 

abundance or VOC composition among the three types of samples. Principal component analyses 

(PCA) were performed and plotted using the dudi.pca function through the made4 package of R. 

Pairwise Spearman’s correlations between the taxa and volatile organic compounds were assessed 

with the R package psych. The P values were adjusted for multiple testing using the Benjamini-

Hochberg procedure, which assesses the false discovery rate (FDR). 

3. Results and Discussion

3.1 Characteristics of kefir grains from Bosnia and Herzegovina 

Macroscopic observations of the five milk kefir grains collected from Bosnia and Herzegovina 

showed that all of the grains were lobed and irregular in shape and they differed in their size and color 

(Supplementary Figure 2). In particular, the KGA and KGB grains were the largest, spanning 

approximately 4 cm; the KGC grain was the smallest (approximately 1 cm in length), while KGD and 

KGE were approximately 2 cm in length. The KGC grain also appeared whiter than the others, with 

a light yellow color. The KGE grain was characterized by a cavity at the center of the grain. 
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3.2 Physico-chemical parameters, color profile of kefir drinks and microbial counts of kefir grains, 

and kefir drinks 

Concerning the statistical analysis of the data obtained from the physico-chemical and colorimetric 

profiles (Supplementary Table 1), the Blocks x KD and Blocks x KD-CT variances were always non-

significant for almost all the variables. Therefore, a single pooled error variance was applied to test 

the primary effects and the interaction variances in the physico-chemical and colorimetric profile 

parameters.

The ANOVA results (Supplementary Table 1) showed that the kefir drink variance was significant 

for all the parameters except for fat and lightness (L), and the KD-CT variance highlighted significant 

differences in the pH, TTA, and D-lactic acid. Moreover, significant KD x KD-CT interaction was 

detected only for the pH and L-lactic acid. 

A significant increase in the dry matter content for BKs (11.85%) compared to the TK products 

(10.88%) was recorded (Table 1). The same trend was observed for protein, lactose, and ash contents, 

with significantly higher values for BKs (3.35%, 2.92% and 0.70% respectively) than TKs (3.01%, 

2.39% and 0.66%, respectively). The fat content of the BKs increased (3.79%) compared to the TKs 

(3.40%), even though this difference was not significant. Overall, the proximate compositions of the 

kefir drinks were very similar in terms of the dry matter, fat, protein, ash and lactose contents, when 

compared to the results noted by Sekkal-Taleb (2016) and reported by Irigoyen, Arana, Castiella, 

Torre, & Ibanez (2005) using traditional fermentation method and by Kim et al. (2018) using both 

traditional and backslopping methods. No significant differences in the protein, fat and ash contents 

between TK and BK were detected by Kim et al. (2018), although some other differences in the 

nutritional factors for TK and BK were found. Interestingly, in the present study, protein content 

results for TKs and BKs (3.01% and 3.35%, respectively) were lower than the ones reported by Satir 

& Seydim (2016) that applied the same fermentation methods to kefirs manufactured using milks 

from caprine and bovine species. As expected, the lactose content of TKs and BKs were lower than 



14

that in the milk (4.65%), and this reduction rate was higher with respect to the values obtained by 

Irigoyen et al. (2005) and Garcia Fontan, Martinez, Franco, & Carballo (2006).

The highest pH values in the BK samples with respect to the TK samples were related to the minor 

TTA values in BK. An increase in the pH from TK to BK was also reported by Kim et al. (2018) who 

underlined that the higher pH would result in positive sensory features such as flavor and taste features 

over the shelf-life of the product (Kim et al., 2018). The pH value of BKs (4.30; Table 1) was the 

same as that reported by Kim et al. (2018) for the TK, and this value is indicated by Gao & Li (2016) 

as one of the best chemical characteristics of kefir. The D- and L-lactic acid contents showed opposite 

trends in TKs and BKs; the TK presented a significantly higher D-lactic acid content (5.79 g/L) than 

the BK (1.48 g/L), whereas a non-significant difference in L-lactic acid was observed between the 

BKs (5.20 g/L) and TKs (2.54 g/L). Certainly, the high amount of LAB (> 8.5 log CFU/mL) and 

AAB ( 9.0 log CFU/mL) counts (Table 2) in both kind of drink samples, strongly contributed to the 

acidification. The different acidification as well as the different lactose content between TKs and BKs 

was highly influenced by the different activity, proportions, interactions and utilization of lactose of 

the microbial starter cultures occurring in the different kefir drinks as highlighted below at paragraphs 

3.3 and 3.4. 

The comparison among the means of the five KD-CT showed that culture type B had a significantly 

higher pH level (4.26) then all the other cultures. Significant differences were also detected among 

the culture types for the TTA; culture type C had a significantly higher D-lactic acid content then all 

the other cultures except D, whereas the L-lactic acid content did not differ among the culture types 

(Table 1). For the remaining variables (compositional and colorimetric), the five culture types were 

very similar since no differences were detected (Table 1).

The pH and L-lactic acid content showed a significant interaction between the KD and KD-CT. For 

the pH parameters, multiple comparisons showed that the five culture types had significantly higher 

pH values in BKs than in TKs; however, culture type B revealed a much higher increase (3.88 in TK 

vs 4.63 in BK) than all the other cultures (Supplementary Table 2). The KD x KD-CT interaction in 
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L-lactic acid was primarily due to the significant increase in kefir produced with culture type E from 

traditional to backslopped kefir; all the other cultures showed a non-significant increase for this 

parameter (Supplementary Table 2).

For the colorimetric profile, the two kefir drinks did not differ for the lightness parameter (L), whereas 

a significantly lower redness index (a*) and significantly higher b* and chroma were found for BKs 

(Table 1 and Supplementary Table 1). The mean values for the L coordinate resulted in lower levels 

(86.08 and 85.49, respectively for TKs and BKs) compared to data reported by Gul, Atalar, Mortas, 

& Dervisoglu (2018) for kefirs produced from cow and buffalo milk (91.93 and 92.22) using kefir 

grains according to traditional methodology, and by Znamirowska et al. (2017) for natural sheep kefir 

(91.44). The red-green coordinate (a*) showed lower means (-7.90 and -8.48), therefore resulting in 

lightly greenish color perception compared with those reported by Gul et al. (2018) for cow and 

buffalo kefir (-1.01 and -1.49, respectively) and by Znamirowska et al. (2017) for sheep milk kefirs 

(-4.17). The yellow-blue coordinates (b*) were similar to the ones measured in commercial and 

traditional cow milk kefir (Gul et al., 2018). The saturation index values (chroma), which were 

significantly different between kefir products, were higher compared to the commercial and 

traditional cow milk kefir noted by Gul et al. (2018). 

Concerning microbial counts, the ANOVA results for the LAB, AAB and yeast counts are reported 

in Supplementary Table 3, and they showed that all the sources of variation were highly significant.

Multiple comparisons for kefir grains and drinks showed a significant increase in LAB and AAB 

from kefir grains (KGs) to TKs and from TKs to BKs. Unlike the LAB and AAB, the yeast counts 

decreased progressively and significantly from the grains to the BKs (Table 2). This trend is not 

surprising since Marshall & Cole (1985) reported that when kefir was used as a starter culture for 

subsequent fermentations, the balance in the microbiota of the deriving products was lost since the 

lactobacilli counts remained high but the yeast counts were progressively reduced. The yeast counts 

reduction during the backslopping process was also recently confirmed by Kim et al. (2018). These 

data can be explained by several studies that have reported that cells of yeasts are localized on the 
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outer areas of grains, and therefore they may fall into milk easily, reducing the rate of growth in milk, 

probably due to the absence of the symbiotic association with LAB and AAB that occurs within the 

grains (Garofalo et al., 2015; Guzel-Seydim et al., 2005; Kesmen & Kacmaz et al., 2011; Leite et al., 

2013a; Pintado, Lopes da Silva, Fernandes, Malcata, & Hogg, 1996). Kim et al. (2018) underlined 

some positive effects from a commercial point of view that were related to the decreasing yeast counts 

since a reduced rate of low-temperature fermentation led by yeasts would prolong the shelf-life of the 

drink.

The overall LAB and yeast counts of kefir grains in the present study (7.99 log CFU/g and 7.62 log 

CFU/g, respectively; Table 2) were consistent with those generally reported in the literature, and they 

may vary from 4 to 9 log CFU/g and from 5 to 8 log CFU/g, respectively (Arslan, 2015; Garofalo et 

al., 2015; Guzel-Seydim et al., 2005; Kök Taş et al., 2012; Prado et al., 2015; Rea et al., 1996; Sarkar, 

2008). The LAB counts significantly increased until they reached 8.75 log CFU/mL in TKs and 9.30 

log CFU/mL in BKs, reaching values very similar to those reported by Kim et al. (2018). The TKs 

yeast counts were very similar to those reported by Guzel-Seydim et al. (2005) (6.16 log CFU/mL) 

and consistent with Arslan (2005), who reported values ranging from 3 to 6 log CFU/mL. 

Furthermore, Kim et al. (2018) also reported very similar yeast counts [7.10 log CFU/mL (TK) and 

5.22 log CFU/mL (BK)] relative to those found during the present study [6.31 log CFU/mL (TKs) 

and 5.90 log CFU/mL (BKs)] (Table 2).

Concerning AAB, these microorganisms are usually considered as minority species within the kefir 

grain microbiota since they are only occasionally detected at counts from 4 to 6 log CFU/g (Dobson 

et al., 2011; Farnworth, 2005; Guzel-Seydim et al., 2011; Rea et al., 1996), whereas in the present 

study, the viable AAB counts were higher than 7 log CFU/g (Table 2). Furthermore, the AAB 

numbers significantly increased in the TKs and BKs, reaching values (8.98 log CFU/mL and 9.23 log 

CFU/mL, respectively; Table 2) that were higher than those reported in the literature for AAB in the 

TK (6 log CFU/mL; Irygoyen et al., 2005). However, it is of note that an underestimation or 

undetection of AAB by culture-dependent techniques is often possible due to limited growth of AAB 
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on synthetic media, thus highlighting the importance of employment of suitable isolation media 

coupled with culture-independent techniques (Bourrie et al., 2016; Garofalo et al., 2015). Although 

the presence of AAB in kefir is sometimes considered undesirable, it is well known that they play a 

crucial role in both the microbial consortium and the quality features of the final drink (Bourrie et al., 

2016; Leite et al., 2013). The high AAB counts detected in the present study has certainly a role 

within the kefir microbiota thus influencing the volatile compounds profile of the related kefir drinks 

as discussed at paragraphs 3.3 and 3.4. 

For the LAB, AAB and yeasts, significant differences were found among the five kefir drink culture 

types, as shown in Table 3. In particular, culture type C had the highest count levels for the three 

microbial parameters.   

The interaction analysis revealed interesting differences in the trends for the five culture types, from 

the grains to the drinks (KS). The LAB counts increased from the KGs (7.79 – 8.44 log CFU/g) to 

the TKs (8.47 – 9.05 log CFU/mL) for all five cultures with different rates (Figure 1A), but similar 

final counts were detected in the BKs (9.07 – 9.38 log CFU/mL).

Figure 1B shows that in spite of the significant differences among the KGs, the five cultures reached 

similar AAB counts in the BKs (9.04 – 9.37 log CFU/mL).

A decrease in yeast counts (Figure 1C) was observed when moving from KGs (7.04 – 7.92 log CFU/g) 

to TKs (5.95 – 6.75 log CFU/mL) and then to BKs (5.16 – 6.37 log CFU/mL), but with a different 

trend for each culture. However, a significant difference between the TKs and BKs was detected only 

for culture type A.

3.3 Microbiota in kefir grains and kefir drinks

The bacterial diversity of the KGs and the kefir drinks (TKs and BKs) was obtained through rRNA 

gene amplicon sequencing. The total number of paired sequences obtained by 16S rRNA gene 

sequencing reached 456269 raw reads. After the data analysis, a total of 358468 reads passed filters 
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applied through QIIME, with a median value of 21362 ± 13.996 reads/sample and a mean sequence 

length of 465 bp. The rarefaction analysis and Good’s coverage, as expressed as a median percentage 

(98%), indicated satisfactory coverage for all the samples. The alpha diversity index showed a higher 

OTUs richness in the TK and BK samples if compared with the KGs (FDR < 0.05). However no 

significant difference was observed between the TKs and BKs for all the indexes (Supplementary 

Figure 3).

The Adonis and analysis of similarity (ANOSIM) statistical tests based on the Unweight UniFrac 

distance matrix showed significant differences among the three type of samples (P < 0.001). 

Differences between samples were further demonstrated by principal coordinate analysis (PCoA) 

based on the Unweight UniFrac distance matrix (Supplementary Figure 4). The PCoA clearly showed 

a separation between the three types of samples (KGs vs BKs vs TKs).

As shown in Figure 2 panel A, we observed a very simple microbiota composition that was dominated 

by Lb. kefiranofaciens, which had median values of 92.72, 42.37 and 22.17% of the relative 

abundance in the kefir grains, TKs and BKs, respectively; Acetobacter syzygii at 4.22, 27.09 and 

18.76% of the relative abundance in kefir grains, TKs and BKs, respectively; and Lactococcus lactis 

at 0.83, 16.75 and 50.06% of the relative abundance in kefir grains, TKs and BKs, respectively. 

In addition, we observed the presence of minor OTUs such as Leuconostoc pseudomesenteroides, 

(0.03% median value in kefir grains reaching 10% median value in BKs), Bacillus 

sporothermodurans (0.09% median value in kefir grains reaching 10% median value in TKs), 

Lactobacillus parakefiri in both kefir grains and TKs (2%) and reaching less than 1% in the BKs and 

the few LAB spread throughout the samples. 

Lb. kefiranofaciens and Lactobacillus spp. (0.22% median value of the relative abundance in kefir 

grains) were highly associated with kefir grain samples, A. syzygii and B. sporothermodurans were 

associated with TK samples, and Lc. lactis and Leuc. pseudomesenteroides were associated with BKs 

(FDR < 0.05) (Supplementary Figure 5).
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Lactobacilli generally dominate the kefir grain microbiota and among them Lb. kefiranofaciens is a 

homofermentative species primarily involved in grain formation and the production of kefiran 

(Bengoa et al., 2018; Dertli & Ҫon, 2017; Garofalo et al., 2015; Hamet et al., 2013; Kotova, 

Cherdyntseva, & Netrusov, 2016; Leite et al., 2012; Plessas, Nouska, Mantzourani, Kourkoutas, & 

Alexopoulos, 2017; Wang et al., 2012). Kefiran is an EPS with excellent rheological properties that 

improve the viscosity of fermented milk and it can be used as a nutraceutical thanks to its several 

biological activities (Prado et al., 2015). Furthermore, Lb. kefiranofaciens strains have shown 

antimicrobial and anti-inflammatory activities (Bourrie et al., 2016). Lb. kefiranofaciens is commonly 

associated to Lb. parakefiri in kefir grains microbiota (Bourrie et al., 2016) as also found in the present 

study although, in this case, the latter species was detected with low relative abundance. The relative 

abundance of Lb. kefiranofaciens was reduced in the kefir drinks (TK and BK) in which other species 

prevailed. The species A. syzygii was found in low amounts in the kefir grains, becoming consistent 

in kefir drinks, primarily in TKs. This interesting species, which was found for the first time in 

Brazilian kefir grain by da Miguel, Cardoso, Lago, & Schwan (2010), was found to be capable of 

binding the mycotoxins in milk and reducing their gastrointestinal absorption (Taheur et al., 2017). 

Overall, among the AAB, Acetobacter is indicated as the most abundant genera within kefir grains 

with the ability to produce vitamin B that favors the growth of other microorganisms within the kefir 

grain consortium (Bengoa et al., 2018; Leite et al., 2013). The species Lc. lactis and Leuc. 

pseudomesenteroides were found to be significantly prevalent in the kefir drinks more often than in 

the kefir grains, as already found in other studies (Bourrie et al., 2016; Dobson et al., 2011; Gao & 

Zhang, 2019; Kesmen & Kacmaz, 2011; Korsak et al., 2015; Kotova et al., 2016; Leite et al., 2013b; 

Simova et al., 2002). Specifically, Gao and Zhang (2019) reported the same bacterial shift in the 

present study from Lb. kefiranofaciens, which was dominant among kefir grains from Tibet, to Lc. 

lactis and Leuc. pseudomesenteroides that increased their relative abundance in TK. These 

differences among the kefir grain microbiota and kefir drink microbiota have been explained by the 

different distributions of microorganisms in the grains. It has been reported that long bacilli (rod-
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shaped bacilli o lactobacilli) are generally distributed on the inner layers of the grains, while cocci, 

as also observed for the yeasts, are generally localized on the outer portion of the grains and are 

characterized by their weak grain adhesion (Gao, Gu, Abdella, Ruan, & He, 2012; Guzel-Seydim et 

al., 2005; Jianzhong, Xiaoli, Hanhu, & Mingsheng, 2009; Magalhães, de Melo Pereira, Dias, & 

Schwan, 2010; Magalhães, de Melo Pereira, Campos, Dragone, & Schwan, 2011; Rea et al., 1996; 

Wang et al., 2012). Therefore, cocci may easily fall into milk, and, thanks to their strong ability to 

grow in milk, they became dominant in kefir drinks (Gao & Zhang, 2019). In particular, Lc. lactis is 

a key species in fermented milks with an important flavoring activity (Maoloni et al., 2020a) and as 

also observed within the present study, other authors documented that its level increases in fermented 

kefir respect grains and it further increases in kefir produced with kefir as an inoculum (Bourrie et 

al., 2016; Simova et al., 2002). Gao & Zhang (2019) indicated that Leuc. pseudomesenteroides is able 

to grow in association with lactococci, and it also plays an important role in producing aromatic and 

flavoring compounds within the final product. Moreover, the association of Leuc. 

pseudomesenteroides with BK samples may be explained by the higher pH value of these end-

products respect to TKs since Leuc. pseudomesenteroides may be affected by the medium 

acidification (Cardinali et al., 2017). 

The mycobiota characterization was obtained by sequencing the D1 domain of the 26S rRNA genes, 

and a total of 1378677 raw sequences were obtained; 1369182 of these sequences passed the quality 

filtering with a median length value of 389 bp. The rarefaction analysis and Good’s coverage display 

a satisfactory coverage (99%) in all the samples. The alpha diversity index (Supplementary Figure 6) 

showed a higher level of complexity in the TK and BK samples when compared with kefir grains 

(FDR < 0.05). No significant differences were observed between TK and BK if compared with kefir 

grains (FDR < 0.05). A significant difference among the three types of samples (ANOSIM P < 0.001) 

was observed through PCA based on the OTU table abundance (Figure 3) in which the kefir grains 

were well separated from TKs and BKs and a slight separation was observed between the TKs and 

BKs. The core mycobiota consisted primarily of Kazachstania unispora (47.40, 12.69 and 32.31% in 
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kefir grains, TKs and BKs, respectively as a median value of the relative abundance), Saccharomyces 

cerevisiae (36.55, 14.78 and 39.24%), and Kl. marxianus (12.69, 52.78, and 7.04%) (Figure 2, panel 

B) although with some differences among samples. In particular, the kefir grains B, C and D were 

characterized by the prevalence of K. unispora species, whereas kefir grains A and E were 

characterized by the dominance of S. cerevisiae. All these yeast species were primarily isolated from 

kefir grains and drinks from around the world (Bengoa et al., 2018; Plessas et al., 2017; Prado et al., 

2015). In all the kefir grains, Kl. marxianus was detected, and it became more consistent in TKs. 

Interestingly, the potential use of some kefir-derived strains of Kl. marxianus as probiotics has been 

proposed due to their anti-inflammatory, antioxidant and hypocholesterolemic activities (Bengoa et 

al., 2018; Bourrie et al., 2016). Kl. marxianus is a lactose-positive yeast typically associated to dairy 

products, kefir grains and kefir due to its ability to metabolize the lactose in milk as a carbon source, 

thus ensuring the formation of ethanol, CO2 and the typical yeasty flavor of kefir (Bengoa et al., 2018; 

Cardinali et al., 2016; Leite et al., 2013a; Maoloni et al., 2020a,b; Vardjan, Mohar Lorbeg, Rogelj, & 

Čanžek Majhenič, 2013). By contrast, S. cerevisiae, K. unispora, Torulaspora delbrueckii and Pichia 

fermentans are non-lactose fermenting yeasts that may multiply in kefir grains and milk by using 

galactose and glucose that are released by the lactose hydrolysis caused by other bacteria and yeast 

species (Diosma, Romanin, Rey-Burusco, Londero, & Garrote, 2013; Garofalo et al., 2015). Indeed, 

it should also be noted that TK samples display a higher abundance of T. delbrueckii, P. fermentans, 

Pichia manshurica and Pichia orientalis when compared with kefir grains and BK samples. T. 

delbrueckii has already been found in kefir grains from Slovenia (Vardjan et al., 2013). Pichia species 

are oxidative yeasts well adapted to the dairy environment since previously detected in dairy products 

and fermented milks (Maoloni et al., 2020a). To the authors' knowledge, P. manshurica and P. 

orientalis have never been detected in kefir grains and kefir drinks although Pichia spp. has been 

found with any regularity within kefir and the identified species was P. fermentans (Bourrie et al., 

2016). Specifically, P. fermentans was identified in Taiwanese kefir (Wang, Chen, Liu, Lin, & Chen, 
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2008) and it has been reported as one of the biofilm producers involved during the initial stages of 

the small kefir granules formation (Prado et al., 2015). 

By comparing the relative abundance of the mycobiota, it was observed that several minor OTUs 

characterized the different samples (Supplementary Figure 7; FDR < 0.05). In particular, Alternaria 

tenuissima, Cladosporium cladosporioides and Malassezia spp. were associated with BK samples, 

while Kazachstania spp. was associated with kefir grains and, as already indicated, Kl. marxianus 

with TKs (Supplementary Figure 7). To the authors' knowledge, the filamentous fungi A. tenuissima 

and Cl. cladosporioides have never been isolated from kefir grains and kefir drinks, while the genus 

Malassezia has been detected, albeit in low abundance, in just one kefir sample, by Marsh et al. 

(2013). Alternaria spp., Cladosporium spp. and specifically Cl. cladosporioides are airborne 

eumycetes deriving from structure of plants and are plant pathogens or endophytes considered as food 

contaminants (Osimani et al., 2017). Although sub-dominants, these microorganisms have been 

found within all the kefir grains under study and the related kefir products. Their presence could be 

explained by the fact that the kefir grains were obtained from private households and therefore derived 

from an uncontrolled environment. An accurate selection of the kefir grains as microbial starters as 

well as the application of hygiene practices during commercial kefir manufacturing is recommended. 

3.4 Volatile organic compounds (VOCs) in kefir drinks 

The SPME-GC/MS analysis allowed us to detect and to identify more than 60 volatile components 

in the TK and BK samples revealing a complex volatile profile of the kefir samples obtained. Peaks 

with an area at < 1% of the total peak areas and with no significant differences (ANOVA, Tukey’s 

HSD test) under the different conditions were discarded from further statistical and graphical 

analyses. Table 4 shows the 31 volatile components that primarily (P < 0.05) (ANOVA) characterized 

the samples. The most characteristic volatile compounds belonged to the ketones, esters and acetates, 

alcohols and acids and they were similar to the previous findings reported by Dertli & Çon (2017) for 
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four different traditional kefir samples. Among the carboxylic acids, acetic acid was the most 

representative one in all the fermented drinks (Table 4) probably due to the high AAB counts found 

in TK and BK samples. Upon determining the volatilome composition among the TK and BK 

samples, a separation was clearly observed between the types of samples based on the VOC 

composition, highlighting that the different methods used to produce the kefir drinks (TK and BK) 

significantly influenced the final flavor of the products. Furthermore, some differences in the volatile 

profile within each kefir drink culture type (A, B, C, D, E), as already shown for some physico-

chemical parameters, microbial counts and microbial structure were also found (Table 4).

By comparing the presence of the VOCs among the samples, we observed the predominance (FDR < 

0.05) of ethyl acetate, ethyl lactate, benzoic acid and ethanol in TKs. The presence of ethanol 

undoubtedly gives the desired flavor of a light alcoholic beverage to the final products, and higher 

alcohol contents may be associated with a slight yeasty flavor (Güzel-Seydim, Seydim, Greene, & 

Bodine, 2000). Ethanol is one of the main metabolites of the alcoholic fermentation produced by 

yeasts during the manufacturing of a self-carbonated, acidic and low-alcohol fermented milk beverage 

as kefir (Leite et al., 2013a). The significant reduction of this key metabolite of kefir in BKs (Table 

4) was probably linked to the significant reduction of yeast counts among BK samples (Table 2). The 

BK samples displayed the 2-propanone, 2-butanone, acetoin, butanoic and hexanoic acids (Figure 4; 

FDR < 0.05) that are characteristic volatile components associated with a yogurt-like aroma or sweet 

cheese flavor (Dertli & Çon, 2017). Acetoin was also reported by Guzel-Seydim et al. (2000) and 

Güzel-Seydim, Seydim, & Greene (2000) as one of the major end products of microbial fermentation 

that characterizes the kefir aroma. More specifically, the hierarchical cluster analysis clearly showed 

this separation (Supplementary Figure 8). Indeed, TKs were primarily characterized by the presence 

of short chain fatty acid (e.g., acetic, benzoic, and, propanoic acids), different acetates such as ethyl 

acetate, ethyl lactate, and phenethyl acetate, and ketones (2,3-butanedione, 2-heptanone) and ethanol. 

In addition, isoamyl alcohol, 2,6-dimethyl-4-heptanol and phenethyl alcohol were characteristic of 

the TK samples. However, the BK samples predominantly showed medium and long chain fatty acid 
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(pentanoic, butanoic, hexanoic, heptanoic, octanoic and decanoic acids) and ketone compounds 

(acetoin and 2-nonanone). 

By plotting the correlation between VOCs and microbiota (Figure 5; FDR < 0.05), we observed that 

A. syzygii displayed a significant positive correlation with 2,3-butanedione (diacetyl) and 2-heptanol 

while B. sporothermodurans was correlated with ethyl lactate, and both these bacteria were associated 

with TK samples. Diacetyl and 2-heptanol are two important flavoring agents of the dairy fermented 

food products (Reale et al., 2016) that are also responsible for the buttery flavor as well as caramel 

and fruity odor in red wine vinegar (Yu et al., 2012). The production of secondary alcohols such as 

2-heptanol can be achieved from 2-heptanone a ketone also found among TK and BK samples (Mota-

Gutierrez et al., 2019). The main OTU of the BK samples was Lc. lactis, which was correlated with 

2-butanone, acetoin, isoamyl alcohol, 2,6-dimethyl-4-heptanol and phenethyl alcohol, while Leuc. 

pseudomesenteroides was correlated with formic, heptanoic, octanoic, nonanoic, decanoic and 

dodecanoic acids (Figure 5; FDR < 0.05). Lb. kefiranofaciens was highly correlated with ethyl 

acetate, ethanol, ethyl lactate and benzoic acid. Few correlations were observed between the VOCs 

and mycobiota; however, there was a notable correlation between Kl. marxianus, the more abundant 

yeast in the TK samples, with ethyl acetate, ethanol, ethyl lactate, benzoic acid and phenethyl acetate; 

these are volatile compounds that strongly characterized the TK samples (Figure 5). Additionally, 

among the yeasts, S. cerevisiae was associated with pentanoic acid and T. delbrueckii was associated 

with phenethyl alcohol (Figure 5; FDR<0.05). It is also interesting to note that, as recently reviewed 

by Mota-Gutierrez, Barbosa-Pereira, Ferrocino, & Cocolin (2019), VOCs are organic compounds that 

are naturally produced by microorganisms during fermentations as secondary metabolites, and they 

may also provide health benefits to consumers in addition to their sensory properties. In kefir, several 

health promoting features are ascribed to this non-microbial fraction composed by organic acids (as 

lactate, acetate, propionate and butyrate), short chain fatty acids, ethanol, diacetyl, acetaldehyde, 

esters, alcohol compounds, acetoin (Bengoa et al., 2018). In particular, among the VOCs detected in 

TKs, phenethyl alcohol (or 2-phenylethanol) confers a floral, rose-like odor, and it has been 
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demonstrated to have the ability to inhibit the growth of gram-negative bacteria and filamentous fungi 

(Mota-Gutierrez et al., 2019). The synthesis of phenethyl alcohol is performed by metabolism of 

yeasts, primarily by Kl. marxianus, Pichia anomala, Pichia farinosa, Pichia kudriavzevii, S. 

cerevisiae and Wickerhamomyces anomalus (Mota-Gutierrez et al., 2019). In addition, the ester 

phenethyl acetate (or 2-phenylethyl acetate) that is well known for its antimicrobial activity is derived 

from the transformation of amino acids that are metabolized by yeast species including Kl. marxianus, 

Kluyveromyces lactis, P. anomala, P. farinosa, P. kudriavzevii and S. cerevisiae (Mota-Gutierrez et 

al., 2019). Antimicrobial properties of kefir are also related to lactic and acetic acid, ethanol and 

diacetyl that are able to reduce pathogenic and spoilage microorganisms in kefir and in 

gastrointestinal and vaginal infections (Farnworth, 2005; Prado et al., 2015). Regarding the 

production of lactic acid, a high correlation was found among D-lactic acid and Lb. kefiranofaciens, 

Kl. marxianus, Kluyveromyces spp. and Lactobacillus spp. Specifically, Lactobacillus spp. and Lb. 

kefiranofaciens were more abundant in the TKs than the BKs and in the TKs the amount of D-lactic 

acid (5.79 g/L) was significantly higher with respect to the BK samples (1.48 g/L) (Table 1). The 

species Lb. kefiranofaciens, as well as other homofermentative species of Lactobacillus spp., in fact, 

can produce DL-lactic acid homofermentatively but with a marked excess of D-lactic acid (Fujisawa 

T., Adachi, Toba, Arihara, & Mitsuoka, 1988). Unlike the TK samples, the BK samples were 

characterized by high L-lactic acid (5.20 g/L) and low D-lactic acid (1.48 g/L) content (Table 1), 

highlighting that the backslopping method could move the ratio of two stereoisomeric forms to favor 

L-(+)-lactate. The dominance of Lc. lactis in the BK samples was probably responsible for the 

accumulation of L-lactic acid, since it is known that Lactococcus species have a homo-fermentative 

metabolism and produce exclusively L-lactic acid (Roissart & Luquet, 1994). Furthermore, the yeasts 

as K. unispora and S. cerevisiae, found in high abundance in BK samples, may also have contributed 

to L-lactic production (Whiting, 1976). This fact is favorable because the steroisomer D-lactic acid 

is at times harmful to human metabolism and can result in acidosis and decalcification (Hofvendahl 

& Hahn-Hägerdal, 2000). 
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The results related to kefir VOCs composition provide evidence that different processing conditions 

such as traditional and backslopping methods, influence the volatile compounds pattern related to the 

microbial composition developed, thus affecting the quality characteristics of the final products as 

confirmed by the Principal Component Analysis (PCA) (Figure 6). The first two principal 

components (PC) explained 70.7% of the total variance. Samples produced by traditional method 

(TKs) were clearly separated from samples obtained by backslopping (BKs) on the basis of their 

odors reported in Table 4. Based on flavornet and pherobase online databases the TK samples were 

primarily correlated with alcoholic (solvent), fruity, fatty and acid odors, whereas all the BK samples, 

with the exception of the BKB, were correlated with cheesy, buttery, floral and fermented odors. To 

the author’s knowledge, this is the first report on volatilome profile of the backslopped kefir.

5. Conclusion

The five kefir grains collected in Bosnia and Herzegovina were dominated by lactobacilli, particularly 

Lb. kefiranofaciens. A shift in the bacterial species toward A. syzygii, Lc. lactis and Leuc. 

pseudomesenteroides from kefir grains to traditional kefir and backslopped kefir was then generally 

observed. In fact, the bacterial species that were detected with higher relative abundance in kefir 

grains were progressively reduced in kefir drinks, while the species that were minorities in the grains 

became dominant in the kefir drinks. The core mycobiota of the kefir grains under study were 

primarily characterized by the presence of K. unispora, S. cerevisiae and Kl. marxianus. Despite some 

differences among the five kefir drink culture types, the dominant mycobiota of backslopped kefir 

samples remained quite similar to that of the kefir grain samples, but unlike the LAB and AAB, the 

yeast counts decreased progressively from the grains to the backslopped kefir. The microbial 

dynamics observed here may be explained by the different localization and adhesion to grains by the 

microbial species involved in the grain microbiota as well as to their different growth abilities in milk. 
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Similar to the diversity of microbiota in the traditional and backslopped kefir samples, there were 

differences in some physico-chemical parameters and in the volatile components among kefir drinks. 

The backslopped method enhanced the final drink for protein, lactose and ash content, compared to 

traditional kefir, coupled with a optimal pH that contributes to a pleasant sensory profile. Most of the 

backslopped kefir samples were correlated with cheesy, buttery, floral and fermented odors, whereas 

the traditional kefir samples were correlated with alcoholic, fruity, fatty and acid odors. Overall, the 

data obtained in the present study provided evidence that different kefir production methods 

(traditional vs backslopping) influenced both the microbial composition and the volatile compounds 

pattern, as well as some physico-chemical parameters of the final product, thus affecting its quality 

characteristics. The dominance of Lc. lactis (that is a typical species of fermented milks) coupled with 

a progressive reduction of Lb. kefiranofaciens (the key microorganism of kefir) in backslopped kefir 

samples, as well as the yeast counts decrease, the ethanol reduction and lower acidity of the final 

product, prompted us to hypothesize that the backslopping method may have reduced some of the 

functional traits of kefir. Hence, the functional traits of backslopped kefir should be further 

established in order to verify the usefulness of a potential scale-up methodology for backslopping.  
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FIGURE CAPTIONS

Figure 1. KS x KD-CT interaction: lactic acid bacteria (Panel A), acetic acid bacteria (Panel B) and 

yeast (Panel C) counts in kefir grains (log CFU/g), traditional kefir (log CFU/mL) and backslopped 

kefir (log CFU/mL) with the 5 culture types (CT). Means within each panel with different letters are 

different at P < 0.05. KS = kefir grains and kefir drinks; KD-CT = kefir drink culture type.

Figure 2. Panel A) The incidence of the major taxonomic groups detected by 16S rRNA gene 

sequencing. Panel B) Incidence of the major taxonomic groups detected by 26S rRNA gene 

sequencing. Only OTUs with an incidence above 0.2% in at least two samples are shown. KGA-KGE, 

kefir grain; TKA-TKE, traditional kefir; and BKA-BKE, backslopped kefir.

Figure 3. PCA based on the OTU abundance of 26S datasets as a function of the sample type. The 

first component (horizontal) accounts for 40.66% of the variance, and the second component 

(vertical) accounts for 22.53%.

Figure 4. Box plots showing the relative abundance of the VOCs indicate their differential abundance 

based on a pairwise Wilcoxon test (FDR ≤ 0.05) in traditional kefir (blue bars) and backslopped kefir 

(green bars).

Figure 5. Correlation between the abundance of VOCs (mg/kg) and OTUs occurring at 0.2% in at 

least two samples. The intensity of the colors represents the degree of correlation between OTUs and 

VOCs as measured by the Spearman's correlations, where the color blue represents a positive degree 

of correlation and red a negative correlation.
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Figure 6. Score and loading plots of the first and second principal components after the principal 

component analysis based on odors that primarily (P < 0.05) differentiated the traditional kefir (TKA-

TKE) from the backslopped kefir (BKA-BKE). The odors related to the volatile organic compounds 

used in the PCA are listed in Table 4. 
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Table 1 Physico-chemical and colorimetric parameters mean comparisons of kefir products using least significant difference (LSD) test and five kefir culture types using the honest 

significant difference (HSD) test

H2O
(%)

D.M.
(%)

Fat
(%)

Protein
(%)

Lactose
(%)

Ash
(%)

pH TTA
(g/L)

D-lactic 
acid
(g/L)

L-lactic 
acid
(g/L)

L a* b* Chroma

Kefir products
TK 89.11a 10.88b 3.40a 3.01b 2.39b 0.66b 3.74b 11.42a 5.79a 2.54a 86.08a -7.90a 9.10b 12.07b

BK 88.15b 11.85a 3.79a 3.35a 2.92a 0.70a 4.30a 6.82b 1.48b 5.20a 85.49a -8.48b 11.26a 14.11a

Culture types
KD-CT A 88.40a 11.60a 3.85a 3.33a 2.45a 0.70a 4.03b 8.65ab 2.90b 4.42a 85.90a -8.17a 10.46a 13.29a

KD-CT B 88.24a 11.76a 3.73a 3.30a 2.87a 0.67a 4.26a 8.13b 3.22b 3.89a 84.88a -8.46a 10.48a 13.47a

KD-CT C 88.64a 11.37a 3.59a 3.08a 2.41a 0.69a 3.89c 10.01a 4.86a 3.42a 86.12a -8.22a 10.37a 13.24a

KD-CT D 89.28a 10.72a 3.28a 2.92a 2.74a 0.69a 3.99bc 8.93ab 3.91ab 3.14a 86.27a -8.18a 9.63a 12.67a

KD-CT E 88.62a 11.38a 3.54a 3.28a 2.79a 0.68a 3.95bc 9.88a 3.28b 4.49a 85.75a -7.94a 9.97a 12.77a

Means within the same column with different letters for kefir products are different at P < 0.05
Means within the same column with different letters for culture types are different at P < 0.05
D.M. = dry matter, TTA = Total Titratable Acidity, L = lightness, a* = redness, b* = yellowness, TK = traditional kefir, BK = backslopped kefir, KD-CT = kefir drink culture type
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Table 2 Lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeast counts mean comparisons using the honest significant difference (HSD) test of kefir grains and drinks 

Means within the same column with different letters are different at P < 0.05
KG = kefir grains, TK = traditional kefir, BK = backslopped kefir
Viable counts are expressed as log CFU/g for KG; viable counts are expressed as log CFU/mL for TK and BK

LAB AAB Yeasts

KG 7.99±0.29 c 7.86±0.37 c 7.62±0.36 a

TK 8.75±0.20 b 8.98±0.26 b 6.31±0.28 b

BK 9.30±0.13 a 9.23±0.16 a 5.90±0.47 c
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Table 3 Lactic acid bacteria (LAB), acetic acid bacteria (AAB) and yeast counts mean comparisons using the honest significant difference (HSD) test of kefir drink culture type 

(KD-CT)

LAB
(log CFU/mL)

AAB
(log CFU/mL)

Yeasts
(log CFU/mL)

KD-CT A 8.76ab 8.63ab 6.19b

KD-CT B 8.54b 8.62ab 6.81a

KD-CT C 8.86a 8.81a 6.96a

KD-CT D 8.61b 8.59b 6.75a

KD-CT E 8.64ab 8.79a 6.33b

Means within the same column with different letters are different at P < 0.05
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Table 4 Volatile organic compounds (VOCs) identified by solid phase microextraction/gas chromatography-mass spectrometry in the five traditional and backslopped 
kefir samples
  Traditional kefir  Backslopped kefir Odor*
RI Compounds A B C D E A B C D E  
 Ketons
774 2-propanone nd nd 0.1±0.0 nd nd 0.5±0.1a 0.3±0.1b 0.2±0.0b 0.2±0.0b nd solvent, ethereal
924 2-butanone nd nd nd nd nd 0.1±0.0a nd nd 0.1±0.0a 0.1±0.0a buttery, yogurt-like aroma
1008 2,3-butanedione 1.9±0.2a* 1.1±0.2b* 1.4±0.2b* 1.9±0.3a* 0.7±0.0c 0.7±0.1a§ 1.5±0.0b§ 0.6±0.1a§ 0.7±0.1a 0.5±0.1a buttery, sweet, creamy
1158 2-heptanone 1.1±0.1a 4.4±0.4b* 3.4±0.1c* 1.0±0.1a* 2.8±0.1d* 1.2±0.1a 0.9±0.1a§ 1.0±0.1a§ 2.8±0.1b§ 1.9±0.2c§ cheesy
1275 acetoin 8.6±0.4a* 9.8±1.3a 6.4±0.5b* 5.1±0.8b* 9.7±0.4a* 10.1±0.5a§ 9.5±1.3a 11.0±1.3a§ 10.9±0.6a§ 11.2±0.5a§ buttery, creamy, dairy
1390 2-nonanone 1.3±0.1a* 1.0±0.1b* 2.0±0.2c* 1.5±0.1a 1.4±0.1a 1.7±0.2a§ 1.6±0.2a§ 1.4±0.0a§ 1.4±0.0a 1.5±0.2a cheesy, sweet
1598 2-undecanone 0.4±0.0a 0.5±0.0a* 0.5±0.0a 0.3±0.0a 0.4±0.0a 0.4±0.1a 0.6±0.0b§ 0.4±0.1a 0.5±0.0a 0.5±0.1ab fruity, creamy
 Esters and acetates
910 ethyl acetate 1.0±0.1a* 0.9±0.1a* 2.2±0.2b* 1.5±0.1c* 1.0±0.1a* 0.2±0.0a§ 0.6±0.0b§ 0.4±0.1c§ 0.3±0.0c§ 0.1±0.0a§ fruity, sweet
1116 isoamyl acetate nd nd nd nd nd nd nd nd 0.1±0.0a nd fruity, banana
1188 ethyl hexanoate 0.2±0.0a nd nd 0.2±0.0a nd nd nd 0.0±0.0a nd nd fruity, waxy, green banana
1298 ethyl lactate 0.5±0.0a* 0.9±0.1b 0.4±0.1a* 0.8±0.1b 0.6±0.1a* 0.1±0.0a§ nd 0.1±0.0a§ nd 0.1±0.0a§ fruity, buttery, butterscotch
1799 phenethylacetate 0.3±0.0a 0.6±0.0b 3.6±0.0c* 0.8±0.0d* 0.6±0.1b nd nd 0.9±0.1 a§ 0.1±0.0 a§ nd fruity, sweet, honey
 Alcohols
957 Ethanol 9.7±1.2a* 15.5±0.5b* 17.9±1.4b* 35.9±4.4c* 15.8±2.5b* 1.9±0.2a§ 6.4±1.0bc§ 5.9±0.1b§ 7.2±0.1c§ 3.5±0.5d§ solvent, ethereal, 
1210 isoamyl alcohol 4.5±0.5a* 3.4±0.5b* 5.2±0.4a* 7.6±1.1c* 6.7±0.6c* 8.9±1.1a§ 1.7±0.2b§ 10.3±1.0a§ 12.5±0.4c§ 8.1±0.2d§ fermented
1280 2-heptanol 0.7±0.1a* 0.4±0.0b* 0.6±0.1a* 0.7±0.1a* 0.4±0.0b* 0.3±0.1a§ 2.2±0.3b§ 0.3±0.0a§ 0.2±0.0a§ 0.2±0.0a§ fruity, fresh lemon
1460 2,6-dimethyl-4-heptanol 2.2±0.3a* 0.3±0.0b 4.0±0.2c* 1.7±0.2a* 4.3±0.5c* 9.3±1.1a§ nd 14.5±1.7b§ 11.8±1.5abd§ 11.5±0.2d§ fermented yeasty
1925 phenethyl alcohol 1.6±0.2a* 1.6±0.1a* 1.9±0.1a* 2.9±0.1c* 2.5±0.1c 2.2±0.3a§ 0.2±0.0b§ 3.7±0.4c§ 5.0±0.2d§ 2.9±0.2e floral rose
 Acids
1446 acetic acid 33.9±0.8a* 34.3±1.1a 21.2±3.1b 16.0±0.1c 20.1±1.7b* 21.7±0.5a§ 31.9±3.6b 23.2±3.5a 16.7±1.1c 23.3±2.9a§ acidic, pungent sour vinegar
1474 formic acid 0.1±0.0a* nd nd nd 0.5±0.1b 1.6±0.1a§ 0.7±0.0b nd nd 0.5±0.0c acidic, pungent vinegar
1480 propanoic acid 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a 0.2±0.0a 0.1±0.0a 0.1±0.0a 0.1±0.0a acidic, pungent, dairy-like
1580 isobutanoic acid 0.3±0.0a 0.4±0.1a 0.3±0.1a 0.1±0.0b 0.3±0.0a 0.4±0.1a 0.3±0.0a 0.4±0.0a 0.3±0.0a 0.4±0.0a acidic, dairy creamy
1605 butanoic acid 1.3±0.1a 0.9±0.0b* 0.8±0.0b* 0.9±0.1b* 1.1±0.0a 1.5±0.1ab 1.8±02a§ 1.3±0.1bc§ 1.3±0.1bc§ 1.0±0.1c cheesy, dairy-like
1684 pentanoic acid 1.3±0.1a* 1.1±0.1a* 1.0±0.1a 0.3±0.0b* 1.0±0.0 a* 1.8±0.1a§ 0.4±0.0b§ 1.2±0.1c 1.2±0.1c§ 2.0±0.1a§ cheesy, dairy milk cheesy
1843 hexanoic acid 7.6±0.9a 6.1±0.3b* 5.5±0.0c* 5.8±0.1b* 6.3±0.3b 8.4±0.7a 8.7±0.7a§ 6.7±0.6bc§ 7.8±0.8ab§ 6.7±0.1c sweet cheese, yogurt-like aroma
1978 heptanoic acid 0.3±0.0a 0.2±0.0a* 0.3±0.0a 0.1±0.0a 0.3±0.0a 0.3±0.0a 0.5±0.0b§ 0.2±0.0a 0.2±0.0a 0.4±0.0b cheesy sweat
2057 octanoic acid 6.4±1.0ab 6.6±0.1a* 6.7±0.6a 5.5±0.3b* 8.0±1.2a 8.0±1.0ac 10.4±0.5b§ 7.1±0.4a 7.9±0.2ac§ 8.0±0.2c fatty, cheesy
2159 nonanoic acid 0.3±0.0a 0.3±0.0a* 0.9±0.1b* 0.1±0.0c 0.4±0.0a 0.2±0.0a 0.5±0.0b§ 0.2±0.0a§ 0.1±0.0a 0.3±0.0a fatty, cheese, dairy
2263 decanoic acid 3.3±0.5a 2.6±0.3a* 1.5±0.2b* 2.1±0.0c 3.4±0.3a 4.0±0.4a 5.5±0.8b§ 2.8±0.0c§ 1.8±0.2d 3.2±0.2e fatty, unplesant rancid
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2340 9-decenoic acid 0.3±0.0a 0.2±0.0a* 0.3±0.0a 0.2±0.0a 0.4±0.1a 0.5±0.2ac 0.6±0.1a§ 0.2±0.0b 0.2±0.0b 0.3±0.0c fatty, waxy
2430 benzoic acid 3.4±0.3a* 3.4±0.3a 3.6±0.2a* 3.0±0.1a* 4.3±0.1b* 2.6±0.3ab§ 3.0±0.1a 2.5±0.2b§ 2.4±0.3b§ 3.0±0.4ab§ fruity, alcholic 
2470 dodecanoic acid 0.8±0.1a 0.5±0.0b* 0.8±0.1a* 0.3±0.0b 0.9±0.1a  1.0±0.1a 1.1±0.1a§ 0.4±0.0b§ 0.4±0.0b 0.7±0.1c fatty, coconut
RI = Retention Index, identification by comparison with RI database; nd = not detected. Results are expressed as RAP= Relative Peak Area (Area Peak Compound/Area Peak Internal Standard) 100.  

* Based on flavornet (www.flavornet.org) and pherobase (www.pherobase.com) online databases. For traditional kefir or backslopped kefir, lowercase letters (a, b, c, d, e) indicate significant differences (p < 0.05) in relative volatile 
compounds within the different culture types (A, B, C, D, E). Symbols (*,§) indicate significant differences (p < 0.05) in relative volatile compounds among traditional kefir and the respective backslopped kefir.
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Graphical abstract



51

Highlights 

 The microbial dynamics and volatilome profile in kefir production have been studied

 A microbial shift was observed during the production of backslopped kefir 

 Backslopped kefir samples showed higher pH, protein, lactose and ash content 

 Backslopped kefir was correlated with cheesy, buttery, floral and fermented odors

 This is the first report on volatilome profile of the backslopped kefir
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