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for dynamic map projection
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Abstract

This paper proposes a faceted information exploration model that supports

coarse-grained and fine-grained focusing of geographic maps by offering a graph-

ical representation of data attributes within interactive widgets. The pro-

posed approach enables (i) a multi-category projection of long-lasting geographic

maps, based on the proposal of efficient facets for data exploration in sparse and

noisy datasets, and (ii) an interactive representation of the search context based

on widgets that support data visualization, faceted exploration, category-based

information hiding and transparency of results at the same time. The integration

of our model with a semantic representation of geographical knowledge supports

the exploration of information retrieved from heterogeneous data sources, such

as Public Open Data and OpenStreetMap.

We evaluated our model with users in the OnToMap collaborative Web GIS.

The experimental results show that, when working on geographic maps popu-

lated with multiple data categories, it outperforms simple category-based map

projection and traditional faceted search tools, such as checkboxes, in both user

performance and experience.
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maps, GIS, geographic information search
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1. Introduction

Several works promote the development of faceted search interfaces (Hearst,

2006) to reduce information overload and keep users in control of the search

process in exploratory search (Marchionini, 2006). However, most of the existing5

approaches support an individual user who inspects a single data category, e.g.,

documents or movies, while pursuing a short-term information goal. Similarly,

most research on geographic information search focuses on helping individual

users retrieve relevant data for particular short-term goals; e.g., finding the

available routes between two Points of Interest (Quercia et al., 2014), identifying10

the 2-star hotels in a specific area (Lionakis & Tzitzikas, 2017), or studying the

relations among the items of an information category (Andrienko et al., 2007).

Indeed, map management can go farther than that in order to provide long-

term representations of shared projects to users having different information

interests. For instance, in participatory decision-making (Coulton et al., 2011;15

Brown & Weber, 2012), Hu et al. (2015) point out that 2D maps and 3D virtual

environments can facilitate participants’ learning and understanding, especially

as far as spatial decision-making processes are concerned; see also (Al-Kodmany,

1999) and (Simpson, 2001). Moreover, maps can support information sharing

and collaboration in simpler and less formal scenarios. For example, if somebody20

is planning a holiday, a custom map including selected Points of Interest, hotels,

and so forth, would provide a personalized projection of the area to be visited

that the user can consult and annotate before, during and after the trip, possibly

in collaboration with the other people travelling with her/him to gain a common

view of the vacation.25

These scenarios suggest the development of custom maps that define Per-

sonal Information Spaces (Ardito et al., 2013, 2016) useful to organize individual

and group activities. For this purpose, maps should be adapted to reflect tem-

porary information goals while persistently storing data in order to facilitate a
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quick projection and resumption of the collaboration context.30

In this paper we present a faceted exploration model for the management

of this type of map. Our model supports a flexible, map-based visualization of

heterogeneous data and it enables map focusing to satisfy specific information

needs by offering two graphical interactive exploration functions:

• The former enables coarse-grained map projection on data categories via35

opacity tuning, without taking the facets of items into account; all the

items of a category are subject to the same visualization policy.

• The latter combines opacity tuning with fine-grained faceted search sup-

port to enable map projection at different granularity levels, by taking the

properties of information items into account.40

In both cases, the projection is only visual and the information stored in the

map is preserved. The work we present has the following innovative aspects:

• Efficient multi-category faceted projection of long-lasting custom maps to

answer temporary information needs in sparse and noisy datasets. Our

model suggests information visualization constraints based on attributes45

of data which support an efficient exploration of the information items

stored in the maps.

• Representation of the search context by associating each data category to

a compact graphical widget that supports interactive data visualization,

faceted exploration, category-based information hiding and transparency of50

results. The widgets of the categories searched by the user are located in a

side bar of the user interface and play the role of breadcrumbs, representing

the types of information that (s)he has explored during the interaction

with the system and the applied visualization constraints.

Our model supports geographic information search within the OnToMap collab-55

orative Web GIS (Ardissono et al., 2017, 2018). We tested the model in a user

study to assess User Experience and performance in exploratory search. For the
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experiments we compared different graphical widgets supporting faceted explo-

ration, from traditional ones such as checkboxes, to space-filling ones based on

treemaps (Shneiderman, 1992) and sunburst (Stasko et al., 2000) diagrams. The60

study showed that, when working on geographic maps populated with hetero-

geneous information, our model outperforms simple category-based map pro-

jection and traditional faceted search tools such as checkboxes. Specifically,

we obtained the best user performance and experience results using the wid-

get based on the sunburst diagram, which displays visualization criteria in a65

compact structure.

This article builds on the work described in (Ardissono et al., 2018), which

presents our first opacity tuning model. With respect to that work, the present

paper introduces graphical widgets that support fine-grained data management

and a novel approach to the selection of efficient facets for information explo-70

ration in sparse and noisy datasets. The widgets extend the category hiding

function provided by the previous model with faceted data exploration to en-

hance information search and visualization. The present paper also provides an

extensive evaluation of the faceted exploration model.

In the following, Section 2 presents our research questions. Section 3 outlines75

the related research. Section 4 overviews OnToMap and Section 5 describes our

model. Section 6 presents the experiments we carried out and Section 8 discusses

the evaluation results. Section 9 summarizes limitations and future work and

the Appendix reports a few tables of details.

2. Research questions80

We designed the faceted search model presented in this paper after two pre-

liminary experiments with users carried out in the urban planning domain; see

(Voghera et al., 2016, 2018). In those experiments, the projection of long-lasting

maps on specific types of information emerged as a useful feature to support

data interpretation during project development. This feature was also requested85

in the final analysis phase, in which human planners analyzed complex maps
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obtained by integrating the students’ projects to identify the most recurring

represented territorial elements.

The present work describes the faceted search support offered by the current

version of OnToMap and investigates its usefulness to data search and interpre-90

tation in a project map. We pose the following research questions:

RQ1: Does faceted exploration of map content help users in finding the needed

information in a geographic map that visualizes different types of data?

RQ2: How does a compact, graphical view of the exploration options available

to the user, which also shows the status of the information visualization95

constraints applied to a map, impact on her/his efficiency and experience

in data exploration?

RQ3: How much does the user’s familiarity with the widgets for faceted explo-

ration impact on her/his efficiency in search and on her/his appreciation

of the exploration model they offer?100

The experiments described in Section 6 are aimed at answering these questions.

3. Background and related work

Exploratory search of large information spaces challenges users in the spec-

ification of efficient queries because, as most people are hardly familiar with

the search domain, their information goals are often ill-defined (Marchionini,105

2006; White & Roth, 2006). In this paper we focus on faceted search as an

alternative, or a complement, to query typing in order to use browsing-based

navigation as a proactive guide to information exploration, given the structure

of the information space.

Starting from the pioneer filtering model proposed by Ahlberg & Shnei-110

derman (1994), both Sacco (2000)’s Dynamic Taxonomies and Hearst (2006)’s

faceted search model propose to use dynamic filters extracted from items meta-

data as constraints that the system can suggest to help the user identify relevant

terms for information filtering and visualization of results. Specifically, Hearst
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Table 1: Classification of information search models.

Citations Model Facets Filters
Visualization

of results

(Ahlberg & Shneiderman, 1994) FilmFinder static list of terms buttons
sliders, . . . scatterplot

(Cao et al., 2010) FacetAtlas terms -
3D diagram with
multidimensional

relations

(Cao et al., 2011) SolarMap terms
topic facets +
keyword facets

document clusters +
radial facet

visualization

(Chang et al., 2019) SearchLens terms lenses
ranked list +

match to lenses

(Dachselt & Frisch, 2007) Mambo
from

metadata attributes
stack-based

hierarchical facets +
zoom on data

(Dachselt et al., 2008) FacetZoom
from

metadata attributes
stack-based

hierarchical facets +
zoom on data

(Hearst et al., 2002) Flamenco from metadata text queries
hyperlinks matrix view + miniatures

(Hildebrand et al., 2006) /facet
from RDF
metadata

attributes +
hyperlinks

hierarchical +
facets + list

(Hoeber & Yang, 2006) HotMap terms text queries
list + term distribution

with colors

(Hoeber & Yang, 2006)
Concept

Highlighter concepts text queries
list + concept distribution

with colors

(Lee et al., 2009) FacetLens attributes
text query +

attributes
matrix-based

bubbles by filter

(Lionakis & Tzitzikas, 2017) PFSgeo
from RDF
metadata

attributes +
hyperlinks +

geo. dimension
ranked list

(Papadakos & Tzitzikas, 2014) Hippalus
from RDF
metadata

attributes +
hyperlinks ranked list

(Peltonen et al., 2017)
Topic-Relevance

Map terms text query
radial distance +
relative distance

(Petrelli et al., 2009) -
from RDF
metadata

attributes +
hyperlinks

multiple
visualizations

(Stadler et al., 2014) Facete
from RDF
metadata

attributes +
sem. relations +
geo. dimension

ranked list +
map-based

visualization

(Sutcliffe et al., 2000)
Thesaurus-

Result Browser terms
Hierarchical
Thesaurus

bullseye
browser

et al. (2002) present the Flamenco framework in which facet-based filtering is115

based on the exposure of hierarchical faceted metadata that describes the items

of the search domain, i.e., apartments, or images (Yee et al., 2003).

Researchers also investigate ways to support the specification of the facets to

filter results, as well as the access to Semantic Web information and Linked Data

(W3C, 2018). As far as facet specification is concerned, new types of elements120

are proposed to filter the set of results; e.g., keywords or terms extracted from

textual queries, as in HotMap (Hoeber & Yang, 2006), concepts extracted from

a document pool, as in Concept Highlighter (Hoeber & Yang, 2006), or terms
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extracted from a thesaurus as in Thesaurus-Results Browser (Sutcliffe et al.,

2000). FacetLens (Lee et al., 2009) visualizes clickable facets in matrix-based125

bubbles, each one associated with a different search filter. Moreover, FacetZoom

(Dachselt et al., 2008) proposes a stack-based visualization of hierarchical facets,

also applied in Mambo (Dachselt & Frisch, 2007) as a model to combine faceted

browsing with zoomable user interfaces. SearchLens (Chang et al., 2019) enables

users to define long-lasting composite facet specifications (denoted as lenses) to130

support information filtering on multiple search sessions. In SearchLens, the

user can specify the importance of the selected facets; thus, filtering is based on

soft constraints used to rank search results.

In the faceted exploration of semantic data (Tzitzikas et al., 2017), search

interfaces expose rich metadata that support browsing the information space135

through semantic relations. For instance, in the /facet browser, Hildebrand

et al. (2006) propose to combine hierarchical faceted exploration with keyword-

based search. Moreover, Petrelli et al. (2009) enables the user to search for

heterogeneous types of information about items (e.g., texts and images) linked

according to semantic relations, by extracting facets to guide exploration. Hip-140

palus (Papadakos & Tzitzikas, 2014) introduces the Faceted and Dynamic Tax-

onomies to manage both hard and soft constraints in faceted filtering of semantic

data and PFSgeo (Lionakis & Tzitzikas, 2017) extends Hippalus to geographic

information management. Finally, focusing on geographic information, Stadler

et al. (2014) propose a semantic navigation method for SPARQL-accessible data145

(W3C, 2017a; OCG, 2017) in the Facete browser.

Similar to the cited works, our model exposes metadata derived from se-

mantic knowledge representation. However, it enables users to work on maps

populated with multiple data categories, i.e., with heterogeneous information,

as well as to focus the maps on temporary interests without losing the overall set150

of data they contain. This is useful to answer information needs in long-lasting

user activities. Notice also that OnToMap does not assume to work on RDF data

in order to comply with more general data sources, like public crowdmapping

platforms, thanks to the mediation of its domain ontology. Moreover, it sup-
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ports: (i) a browsing-based exploration guided by the structure of the domain155

ontology, which makes it possible to search for information following both IS-A

and semantic relations; (ii) the semantic interpretation of free text queries to

identify the data categories (ontology concepts) of interest by abstracting from

the specific words occurring in the queries, via Natural Language Processing

(Ardissono et al., 2016; Mauro et al., 2017). More generally, OnToMap enables160

search support over a configurable set of data categories; in this way, it enables

complex map development on different information domains. In contrast, most

of the previous systems work on a single data type or on a pre-defined set of

data categories, as in (Petrelli et al., 2009).

The dynamic extraction of facets can challenge the user with a large number165

of browsing options. Oren et al. (2006) focus on the efficiency of exploration

and they promote the facets that enable the user to split the set of results

in balanced subsets in order to minimize navigation steps. In comparison, we

propose a facet selection policy suitable for sparse and highly unbalanced result

sets, such as those typically retrieved from crowdsourced data sources, in which170

very few properties of items split results in subsets having similar cardinality.

Some works propose interactive graphical presentations of keywords to sup-

port sensemaking in the exploration of document sets. For instance, Peltonen

et al. (2017) propose the Topic-Relevance Map to summarize on a radial ba-

sis the keywords (filters) characterizing the result set, using distance from the175

center to represent relevance to the search query and angle between keywords

to denote their topical similarity. Moreover, FacetAtlas (Cao et al., 2010) re-

lates topics in a 3D diagram supporting the representation of multi-dimensional

relations among them, and SolarMap (Cao et al., 2011) combines topic-based

document clustering with a radial representation of facets to support a two-180

level, topic-based document filtering. While these models are appropriate to

the representation of topics in datasets of unstructured information, they are

less relevant to OnToMap, which is fed with structured data and benefits from

its domain ontology to organize the presentation of information.
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Figure 1: OnToMap user interface showing the widgets based on transparency sliders.

4. OnToMap overview185

The OnToMap Web collaborative GIS supports the management of interac-

tive maps for information sharing and participatory decision-making (Ardissono

et al., 2017). A semantic representation of domain knowledge based on an OWL

ontology (W3C, 2017b) defines the structure of the information space and en-

ables data retrieval from heterogeneous sources by applying ontology mappings;190

see (Mauro et al., 2019). This ontology currently makes it possible to query

a dataset of Public Open Data about Piedmont area in Italy and the Open-

StreetMap (OSM) server (OpenStreetMap Contributors, 2017); in this paper,

we focus on OSM data because it is a more general case than the other one.

The ontology also provides graphical details for map visualization, such as the195

color and icon associated to each data category; e.g., drugstores are depicted in

light green and they are represented as icons marked by a cross.

OnToMap supports the creation of public and private custom geographic

maps to help project design and group collaboration. Search support is based

on free text queries and on category browsing. Textual queries are semantically200

interpreted using Natural Language Processing techniques with Word Sense Dis-

ambiguation (Moro et al., 2014); see (Ardissono et al., 2016; Mauro et al., 2017).
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Data categories can be browsed by means of a simple alphabetical menu with

auto-completion or by navigating a graphical representation of the taxonomy

defined in the domain ontology.205

Figure 1 shows the user interface of OnToMap. The top bar includes the

control panel that supports (A) free text search (“Search...”) and category

browsing (“Browse by concepts”), basic map management and user authentica-

tion; (B) map management tools available to authenticated users. The left side

bar (C) displays the widgets of the data categories that the user has searched210

for during the interaction: a different widget is associated to each category in

order to regulate the visualization of its items in the map.

The main portion of the interface (D) contains the geographic map, which

displays information items as pointers with category-specific icons or as ge-

ometries, depending on the input data. Color coding (Hoeber & Yang, 2006)215

visually connects the widgets representing data categories in the side bar with

the corresponding items in the map. Moreover, when several items of a category

are located in a restricted area, a cluster colored as the category is displayed

to avoid cluttering and, at the same time, provide visual information about the

grouped items. If the user clicks on the visual representation of an item, the220

system generates a table (E) describing its details.

5. Information exploration model

Our information exploration model is integrated in the OnToMap system to

support information search and it includes two main types of functions, imple-

mented as interactive graphical widgets.225

5.1. Exploration function 1: coarse-grained map projection by means of trans-

parency sliders

This function, introduced in (Ardissono et al., 2018), supports map projec-

tion via opacity tuning: for each searched category, a transparency slider enables

the user to assign different levels of opacity to its items; the widget also has a230
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checkbox to temporarily hide information by means of a click, without changing

the degree of opacity selected for the category.

The side bar of Figure 1 shows the widgets based on transparency slid-

ers. In the map, museums are visualized in full color because the slider of the

“Museums” category is selected and tuned to maximum opacity. Differently,235

drugstores and restaurants are semi-transparent and the map hides the items of

the “Parking Lots” category because its slider is de-selected.

The transparency slider does not enable the specification of constraints on

facet values; i.e., it works at the granularity level of the represented category

and it uniformly tunes the opacity of items. Nevertheless, this widget supports240

visual simplification by enabling the user to temporarily hide information by

type. Basically, opacity tuning enables her/him to highlight the information

in focus while maintaining an overview of what has been searched in the map.

This model is inspired by Colby & Sholl (1991)’s work on layers visualization

but it separately handles the opacity of items belonging to different categories;245

moreover, it supports the visualization of multiple layers, as a generalization of

Translucent Overlay (Lobo et al., 2015).

5.2. Exploration function 2: faceted approach

This function combines coarse-grained and fine-grained specification of vi-

sualization constraints by integrating transparency sliders with faceted infor-250

mation exploration. The widgets implementing this function include a trans-

parency slider and an internal component showing the facets of the represented

category. The internal component can be a set of checkboxes, a treemap or a

sunburst diagram, depending on the layout selected for the user interface, and

it enables the user to specify visualization constraints based on facet values.255

The transparency slider works in combination with facet selection and tunes

the opacity of the visualized items. The widgets are interactive and they can

be opened or closed by clicking on them; a closed widget only shows its own

transparency slider; e.g., see “Drugstores” in Figure 2, which shows the layout

based on checkboxes.260
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Figure 2: User interface showing the widgets based on checkboxes.

Let us consider a facet f of a category C and the set of retrieved items that

belong to C, henceforth denoted as EC , i.e., extension of C. The visualization

of the values of f in the widget is aimed at providing the user with a preview

of the corresponding items in the map. For this purpose we adopt a standard

approach to facet suggestion (Oren et al., 2006; Hearst, 2006):265

• The widget only displays the values {v1, . . . , vm} of f that have at least

one item in EC to prevent the user from following links to zero solutions.

• The values of f are sorted from the most frequent to the least frequent

ones in EC . Moreover the widget shows, or makes available on mouse

over, the number of items corresponding to each value. Notice that the270

widget may also show a “NOT SPECIFIED” value to represent the subset

of items in which f is not defined. This is aimed at providing the user

with a visual representation of the coverage of the facet in the results.

• In order to limit visual complexity, long lists of values are dropped, making

their tails available on demand by providing a “More...” link or a “+”275

symbol, depending on the layout of the widget.

By default, none of the facets in the widget of a category C is selected. If
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Figure 3: User interface showing the treemaps as faceted exploration widgets.

the user picks one or more values of the same facet, this is interpreted as an

OR constraint because (s)he has specified that all those values are eligible for

visualization. Conversely, the selection of values that belong to distinct facets280

of C generates an AND constraint because it identifies the items having more

than one property restricted to specific values. For instance, if the user chooses

fi = vi1, fi = vi2 and fj = vj1, items {x ∈ EC | fi(x) ∈ {vi1, vi2}∧ fj(x) = vj1}

are shown and the other items are hidden.

We use color coding to link visualization constraints to map content: the285

tables showing the details of items highlight the facets corresponding to the

selected visualization constraints in the color associated to the category. In this

way, the user can quickly identify the characteristics that make items eligible

for being displayed. For instance, the table of “DanoPark” in Figure 2 has the

“Parking” and “Supervised” facets highlighted in blue because they correspond290

to the visualization constraints imposed on the “Parking Lots” widget.

5.2.1. Layouts of the widgets for faceted information exploration

Before providing details about how we select the facets to be included in the

widgets we present the layouts we developed.

• The widgets based on checkboxes contain a rimmed rectangle for each295
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Figure 4: User interface showing the sunburst as faceted exploration widgets.

facet to be shown. By clicking on a rectangle, the user expands (or closes)

the corresponding facet. An expanded facet shows values as checkboxes

and offers a “More...” link to show the hidden ones. For instance, Figure

2 shows eight facets of widget “Parking Lots”: “Fee”, . . . , “Capacity”.

Users can select the checkboxes to impose visualization constraints in the300

map. In the figure the user has expanded the “Parking” and “Supervised”

facets and (s)he has selected values “UNDERGROUND” and “YES”.

• The widgets based on treemaps include facets in rimmed rectangles

as well. However, when a facet is expanded, its values are displayed as

components of a treemap whose size depends on the cardinality of the305

corresponding set of items (larger size means larger cardinality); see Figure

3. Long values are shortened but they can be visualized, together with

the cardinality of the corresponding sets of items, on mouse over. Only

the most frequent values are included in the treemap; the other ones are

available below it or on demand (“More...”) and the user can add them310

to the treemap by means of a click. The user can (de)select values by

clicking on them. The selected values take the color of the category (e.g.,

“YES” in “Outdoor Seating” and “NO” in “Smoking”); the other ones

14



have a pale tone of the same color.

• The widgets based on the sunburst diagram show the facets of the315

represented category C in a ring having the color associated to C. The

diagram is visualized in a pop-up window that the user can open or close

by means of a click, and the side bar of the user interface only displays

the thumbnails of the sunbursts; see Figure 4. The user can expand each

facet by clicking on the portion of ring representing it: values are shown in320

a second level, sorted clockwise by decreasing frequency in the extension

of C. Only the most frequent values are shown but the user can view and

add the other ones by clicking on the “+” button located in each portion

of the internal ring; the sunburst is extended by adapting the size of the

displayed values. The user can (de)select values by clicking on them and325

color coding is applied to link visualization constraints to map content.

5.3. Selection of facets to be included in the information exploration widgets

The dynamic generation of widgets for the exploration of search results re-

trieved from open data sources is challenged by the amount and variability of

the information items to be managed. Facets have thus to be analyzed in order330

to identify the most convenient ones for map content analysis.

5.3.1. Navigation quality in semantic data repositories

Oren et al. (2006) introduce the navigation quality of a facet f to describe

its efficiency in supporting information browsing of RDF data repositories. This

measure takes values in [0, 1] (where 1 is the best value) and is based on the335

product of three metrics, which take values in [0, 1] as well:

1. The balance of f , i.e., its capability to split results in subsets having similar

cardinality; equally distributed facets have maximum balance.

2. An inverse measure of the number of distinct values of f occurring in the

results, denoted as “object cardinality”. The authors consider as accept-340

able the facets that have between 2 and 20 values because they can be

displayed in a search interface without overloading the user.
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Table 2: Value distribution of facets “Cuisine”, “Outdoor Seating” and “Takeaway” (OSM

tag: “amenity=restaurant”) in Torino city bounding box; retrieved using Overpass Turbo

(OpenStreetMap Wiki contributors, 2019) on Sept. 20th, 2019. The results include 719 items,

out of which 432 specify the value of “Cuisine”, 92 specify the value of “Outdoor Seating”

and 76 specify the value of “Takeaway”.

Cuisine Count

PIZZA 111

ITALIAN 74

REGIONAL 37

CHINESE 28

JAPANESE 17

ITALIAN; PIZZA 15

SUSHI 11

ITALIAN; REGIONAL 10

PIZZA; ITALIAN 10

MEXICAN 9

KEBAB 7

INDIAN 4

ASIAN 3

CHINESE; JAPANESE 3

FISH 3

INTERNATIONAL 3

ITALIAN; PIZZA; REGIONAL 3

ITALIAN PIZZA 3

PERUVIAN 3

STEAK HOUSE 3

AMERICAN 2

CHINESE; PIZZA 2

GREEK 2

ITALIAN PIZZA; PIZZA 2

KEBAB; PIZZA 2

LOCAL 2

MEDITERRANEAN 2

PIZZA; KEBAB 2

REGIONAL; ITALIAN 2

AFRICAN 1

...

56 more values with Count=1.

Outdoor Seating Count

NO 59

YES 33

Takeaway Count

YES 62

NO 10

ONLY 4

3. The frequency of f in the results, i.e., the percentage of retrieved items in

which the value of f is specified.

Navigation quality cannot be applied in OnToMap because of its assumptions:345

firstly, statistics about OSM data provided by TagInfo (OSM Contributors,

2019) show that most of the tags are hardly used.1 This can be explained

1For instance, by invoking https://taginfo.openstreetmap.org/tags/amenity=

restaurant#combinations it is possible to learn that “amenity=restaurant” has 178
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because crowdmappers tend to underspecify the items they map; moreover, they

sometimes define new tags instead of using the existing ones, thus generating

a plethora of synonyms which increase in an uncontrolled way the number of350

distinct facets and values. This phenomenon is so widespread that several efforts

try to systematize OpenStreetMap through semantic knowledge representation;

e.g., see (Codescu et al., 2011; Ballatore et al., 2013). We also notice that several

results retrieved from OSM are unbalanced and can be split into (i) a large set

of items in which the facet is not available, (ii) a few values identifying sets of355

items with reasonable cardinality, and (iii) a long tail of values represented by

one or two items. For instance, Table 2 shows the distribution of three facets

retrieved from OSM by searching for “amenity=restaurant” (which corresponds

to the “Restaurants” category of the OnToMap domain ontology) on Torino city

bounding box. The facets have fairly poor coverage and they are unbalanced:360

“Cuisine” is specified in 432 items out of 719 and it exhibits a distribution with

a long tail; “Outdoor Seating” and “Takeaway” are specified in 92 and 76 items

respectively; “Name”, not shown, is balanced but it only occurs in 675 items.

We thus define a novel approach to the computation of facet efficiency that

suits these types of distribution and is robust towards information lack. The365

idea is that (i) coverage has to be taken into account as a separate factor to

select useful facets, and (ii) balance and number of values have to be controlled

by the cardinality of the sets of items identified by the facet.

5.3.2. Our approach: evaluating exploration cost in sparse, unbalanced datasets

When searching for information in crowdsourced data sources, the suggestion370

of the most representative facet values in a result set is a primary goal because it

enables the system to provide the user with a relevant number of items to choose

from. Moreover, it can be complemented by free text queries that let the user

different tags, only 36 of which occur in more than 2% of the items mapped in OSM

worldwide. Moreover, the most frequent tag is “name”, which is only defined in 90.92% of

items, in spite of its importance as a POI identifier.
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express specific information needs; e.g., in OnToMap free text queries support

the retrieval of very specific items, such as “Pediatric hospitals in Torino”. It375

thus makes sense to propose facets that, regardless of balance, identify some

fairly large subsets of items, possibly leaving the long tail apart or making it

available on demand; e.g., consider the first values of “Cuisine” in Table 2.

Given these premises, we propose a two-step evaluation of facets efficiency to

exploration support.380

1) In the first step, we consider frequency as a pre-filtering metric to exclude

from any further computation the facets that appear very rarely in the results.

Having sampled a set of queries to OSM and taking Taginfo statistics as a

baseline, we empirically set to 3% the minimal frequency threshold under which

a facet is considered as useless. Only the facets over this threshold are considered385

for the evaluation of their efficiency.

2) In the second step, given the highly variable distribution of facets, we

consider balance and number of values in combination. We are interested in

facets that split EC in at least some portions having significant cardinality

because they identify homogeneous, relatively large sets of items to be analyzed.

These facets enable the system to propose visualization criteria that significantly

reduce the search space by showing the most representative values, leaving the

other ones on demand. Differently, in a small result set, as those typically

retrieved when the selected bounding box is strict, there are few items; therefore,

the efficiency in splitting results is less important because the user can easily

analyze items one by one. In order to capture this intuition, we compute the

cost of exploring the extension EC of a category C by means of a facet f that

takes values in {v1, . . . , vm} as follows:

explorationCost(f) =

−
m∑
j=1

p(vj)log2p(vj)

meanCard(f)
(1)

explorationCost(f) takes values in IR+. In the formula, p(vj) is the probability

of vj in EC , computed by considering the values vj 6= “NOT SPECIFIED”.

Moreover, meanCard(f) is the mean frequency of the values of f in EC , i.e.,
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the mean cardinality of the subsets of results identified by f :

meanCard(f) =
|EC |
m

(2)

The components of Equation 1 have the following roles:

• The numerator represents the (not normalized) entropy of f , which takes

values in IR+. The entropy of an information source is an average mea-

sure of the amount of uncertainty of its own m symbols; it is positively390

influenced by both the number of values that the source can take and by

the balance of the corresponding subsets of items. For instance, given two

balanced facets f1 and f2, if f2 has more values than f1, f2 also has higher

entropy than f1. Moreover, if two facets have the same number of values,

the most balanced one has the highest entropy. Finally, if all the items of395

EC have the same value of f (e.g., all the schools located in the bounding

box are primary ones), the entropy is 0, meaning that the facet does not

help discriminate among the items of EC .

• The denominator of Equation 1 captures our interest in the facets that

split results in fairly large subsets: even though a facet f has high entropy400

(e.g., because it has several values), its cost is smoothed if the subsets of

items it identifies have high mean cardinality, because f enables the user

to browse a large portion of results in few steps.

Figure 5 graphically compares the exploration cost of Equation 1 with Oren

et al. (2006)’s navigation quality on a few facets; see Tables 8 and 9 in the405

Appendix for details. We consider “Cuisine”, “Takeaway”, “Outdoor Seating”

and “Name”, based on the data described in Table 2, and two toy examples:

• “Ex1”, specified in 160 items, has 8 distinct balanced values, withmeanCard =

20.

• “Ex2”, specified in 24 items, has 8 distinct balanced values, withmeanCard =410

3.
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Exploration cost (1 - navigation quality)

Outdoor Seating 0.0205 0.8924

Takeaway 0.0335 0.9497

Ex1 0.1500 0.8949

Cuisine 0.8738 1.0000

Ex2 1.0000 0.9842

Name 9.3987 1.0000

Figure 5: Exploration cost and complement of navigation quality of a set of facets. The color

scale varies from the lowest cost values, depicted in green, to the highest ones, in red. Notice

that colors are tuned to the values observed in this example; i.e., [0, 10] for exploration cost

and [0, 1] for the complement of navigation quality.

Notice that Oren and colleagues compute a quality measure, i.e., the highest

values are the preferred ones; conversely, we compute a cost function that has

the opposite interpretation. In order to facilitate the comparison, Figure 5

graphically shows the complement of navigation quality in the [0, 1] interval and415

it tunes the color scale to the values observed in this example; i.e., [0, 10] for

exploration cost and [0, 1] for the complement of navigation quality.2

• In both approaches “Name” has very high cost, which is desirable because

this facet identifies hundreds of subsets of items to be browsed one by one.

• According to (Oren et al., 2006), “Outdoor Seating”, “Ex1” and “Take-420

away” are moderately inefficient, and “Takeaway” has higher cost than

the other ones; the reason is the low coverage of these facets and, with the

exception of “Ex1”, their lack of balance. Differently, our model attributes

low cost to these facets because they have few values which represent non

elementary sets of solutions to be inspected.425

2Oren et al. (2006)’s model introduces the σ and µ parameters for the computation of

balance and object cardinality metrics but we could not find the exact values that they

applied in their experiments. We reproduced the expected behavior, following the indications

given in the paper, by setting µ = 2 and σ = 4.9.
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• The main disagreement is in the evaluation of “Cuisine” and “Ex2”. Ac-

cording to (Oren et al., 2006), “Cuisine” is totally inefficient because of

its partial coverage of items, lack of balance and high number of values.

Moreover, “Ex2” is penalized by the lack of coverage of results. In our

approach “Cuisine” has moderate cost, in spite of the many values it can430

take, because it identifies a few large subsets that deserve attention when

browsing results, and the long tail of the facet can be ignored. “Ex2” has

higher cost than “Cuisine” because it identifies very small sets of items.

In summary, our approach supports the identification of facets which are not

“perfect” from the divide et impera viewpoint because they only occur in a435

subset of results and/or they split data in an unbalanced way. However, it

works on realistic cases in which balanced, frequent facets are extremely rare.

Moreover, it promotes facets that split results in subsets having a significant

cardinality because they are valuable for browsing results.

5.4. Selection of facets to be included in the widgets440

In order to select the facets to be shown in the widgets, we first exclude

those having cost(f) = 0 because this means that they have a single value in

EC . Then, we sort facets by increasing cost and we include them in the widget

up to a maximum number of 12 to avoid cluttering the user interface.

By applying Equation 1 to the results of query “amenity=restaurant” on445

Torino city bounding box, we obtain the following sorted list of facets: “Out-

door Seating”, “Takeaway”, “Wheelchair”, “Delivery”, “Addr city”, “Smok-

ing”, “Building”, “Addr postcode”, “Cuisine”, “Capacity”, “Addr street” and

“Opening hours”; see Figure 4. Almost all these facets correspond to semanti-

cally relevant dimensions. Only “Addr city” seems useless because the query is450

bounded in Torino city; however, according to the geocoder we use, the area of

the map that is considered includes Torino and a few small cities in its bound-

ary. Other facets, such as “Name”, “Phone” and “URL”, are excluded from

the sunburst because they have very high cost (they are identifiers) and thus

take the final positions in the ranked list. Facets such as “Cuisine 1”, which455
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is redundant with respect to “Cuisine”, are excluded because they are below

the minimum coverage threshold. Indeed, “Cuisine 1” is the typical tag that

somebody has duplicated instead of using the main “Cuisine” one.

6. Validation of our faceted exploration model

6.1. Study design460

We conducted a user study by exploiting OnToMap to evaluate the four

types of information exploration widgets described in Section 5, as far as data

interpretation in a geographic map is concerned. Specifically, we were interested

in comparing:

• The exploration model based on transparency sliders (which supports in-465

formation hiding at the granularity level of the data category) to the more

expressive one that also supports faceted exploration.

• The alternative graphical models we defined for faceted information explo-

ration in order to understand which ones are more effective to help users

in the exploration of an information space via map projection.470

For the experiment we defined a simple project planning scenario concerning the

preparation of a tourist trip in Torino city. We instructed each participant that

(s)he should imagine to plan a tour with some friends in different areas of the

town. We also explained that, for each area, (s)he would find the information

about Points of Interest that might be visited (e.g., urban parks, monuments,475

etc.), as well as travel facilities (e.g., parking lots), by exploring a custom ge-

ographic map focused on the specific area and previously prepared by her/his

friends. We aimed at separately evaluating the four widget types we defined

but we wanted to minimize the learning effect on participants. Therefore, we

prepared four maps, each one focused on a different geographic area of Torino480

city. Each map was populated with multiple data categories representing Points

of Interest and travel facilities. We investigated participants’ performance and
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User Experience in four map learning tasks, each one using a different type of

widget and map:

• Task1: question answering using checkboxes in combination with trans-485

parency sliders.

• Task2: question answering using treemaps in combination with trans-

parency sliders.

• Task3: question answering using sunburst in combination with trans-

parency sliders.490

• Task4: question answering using transparency sliders.

The study was a within-subjects design one. We considered each treatment

condition as an independent variable and every participant received the 4 treat-

ments. We counterbalanced the order of tasks to minimize the impact of result

biases and the effects of practice and fatigue. People participated in the user495

study on a voluntary basis, without any compensation, and they signed a con-

sent to the treatment of personal data. The participation to the user study took

place live, i.e., we did not perform any online interviews.

6.2. The experiment

One person at a time performed the study which lasted about 30 minutes.500

Before starting the user study, the participant watched a video describing the

widgets and showing how they work. After that, (s)he interacted with OnToMap

on an sample map to get acquainted with the user interface of the system. We

did not impose any restrictions on this activity and we allowed the participant to

take as much time as (s)he needed in order to comply with diverse backgrounds505

and levels of confidence with technology. Then, we asked her/him to answer

a pre-test questionnaire designed to assess demographic information, cultural

background, as well as familiarity with map-based online applications.

During the study, we asked the participant to use OnToMap in the context

of the organization of the trip. For each task (s)he had to look at the associated510
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map and (s)he had to answer two questions which required counting elements

that have certain properties, or identifying items given their descriptions. For

each specific map, all participants answered the same two questions. As far as

counting is concerned, we forced the participant to analyze the map by asking

her/him to answer the questions in a geographic area delimited by an orange515

border. In this way, (s)he could not simply read the cardinality information

provided by the faceted exploration widgets, which work by taking the bounding

box of the map as a reference to specify how many items satisfy the selected

visualization constraints. The questions proposed to the participants had the

following templates:520

• How many category name having characteristic1 and/or . . . and/or

characteristicn are visualized within the area delimited by the orange

line in the map?

For instance, “How many Christian churches accessible to wheelchairs are

visualized within the area delimited by the orange line in the map?”. In525

the question, “Christian” is a value of facet “Religion” and wheelchair

accessibility corresponds to value “YES” of facet “Wheelchair”.

• Find category name having characteristic1 and/or . . . and/or

characteristicn within the orange line in the map, and list them.

E.g., find restaurants serving pizza or Italian food (values of “Cuisine”).530

In Task1, Task2 and Task3, we proposed selective questions because we wanted

to understand whether the widgets helped participants satisfy specific informa-

tion needs by exploring the metadata of the searched categories and by project-

ing the maps accordingly. Differently, the questions of Task4 did not require the

imposition of any visualization constraints because participants only used the535

transparency sliders; in this task we assessed the general usefulness of category-

based map projection in reducing the visual complexity of a map that includes

diverse types of information. This function was appreciated by users in a previ-

ous experiment (Ardissono et al., 2018) but we wanted to evaluate it extensively.
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Table 3: Post-task questionnaire (translated from the Italian language).

# Question

1 How familiar are you with the widget that you just used?

2
How much did the widget help you find the information that you were looking for in the

map?

3 How much did the widget help you save effort in answering the questions we asked you?

4 Please, rate the ease of use of the widget you just used.

5 Please, rate the novelty of the widget you just used.

6
Did you encounter any difficulties in finding the information that you were

looking for?

7 Is there any aspect of the widget you used that you particularly appreciated?

While the participant carried out a task, the experimenter took notes about540

how much time (s)he used to answer the questions, sitting at some distance

from her/him. We did not put any time restrictions on question answering and

we allowed checking the answers multiple times.

As objective performance indicators, we measured task completion time and

the percentage of correctly answered questions. As a subjective measure, we545

analyzed User Experience: after the completion of each task, the participant

filled in a post-task questionnaire to evaluate the type of widget (s)he had just

used. We were interested in evaluating the following traits of the facet-based

widgets: familiarity, helpfulness in finding information, effort saving in solving

the task to be performed, ease of use and novelty. We defined the questions to550

be posed by taking inspiration from NASA TLX questionnaire (NASA, 2019);

however, for simplicity, we kept a 5-points Likert scale for the expression of

ratings. Table 3 shows our questionnaire: for questions 1-5 the participant had

to provide values from 1, the worst value, to 5, the best one; questions 6 and 7

were open to free text comments.555

After the completion of the four tasks the participant filled in a post-test
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questionnaire to compare the widgets.3 We also asked her/him to provide feed-

back to improve the User Experience in OnToMap. For the experiments we

used a set of laptops with 15.6” display and 1920x1080 resolution.

7. Results560

7.1. Demographic data and background

For the user study, we recruited 62 participants (32.3% women, 66.1% men

and 1.6% not declared). Their age is between 20 to 70 years, with a mean value

of 33.45. They are part of the University staff (researchers, professors and sec-

retaries) and students, as well as people working in the industry or retired. In565

the pre-test questionnaire we analyzed their background and familiarity with

technology: 41.9% of participants have a scientific background, 29% a technical

one, 21% humanities and linguistics, 6.5% economics and law, 1.6% arts. Re-

garding the education level, 46.8% of them attended the high school, 45.2% the

university, 6.5% have a Ph.D and 1.6% attended the middle school. 41.9% of570

people declared that they use e-commerce platforms or online booking services

monthly, 38.7% said one or two times per year and 19.4% weekly. Moreover,

56.9% declared that they often use online services based on geographic maps,

17.7% sometimes and 25.8% every day.

7.2. User performance575

Table 4 shows the results concerning participants’ execution time and per-

centage of correct answers for each task. A Friedman test on execution times

among the four tasks showed that there is a statistically significant difference

between them: χ2(3) = 207.57, p < 0.001, Kendall’s W = 0.56. The percent-

ages of correct answers is statistically significant, too: χ2(3) = 14.14, p < 0.002,580

Kendall’s W = 0.04.

3Also in this case, we took inspiration from User Experience Questionnaire and NASA

TLX.
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Table 4: Participants’ performance during the execution of individual tasks. Time is expressed

in seconds and the best values are in boldface. Significance is encoded as (**) p < 0.001 and

(*) p < 0.002.

Widget type Min time Max time Mean time Correct answers

1: Checkboxes 33 184 94.26 100.00%∗

2: Treemaps 33 180 77.39 98.39%

3: Sunburst 20 149 55.94∗∗ 100.00%∗

4: Transparency sliders 23 146 57.05 95.16%

As shown in the table, people achieved the lowest mean execution time and

they correctly answered 100% of the questions when they used the widget based

on the sunburst diagram. In comparison, when they used the checkboxes, they

correctly answered all the questions but they spent the longest time to complete585

the task. By using the treemaps, participants spent a long time to perform the

tasks (almost as long as with checkboxes) but they correctly answered 98.39%

of the questions. Finally, they spent relatively little time with transparency

sliders but they provided 95.16% correct answers. The high number of correct

answers should not surprise because people could check them more than once.590

We observed that, in Task1, Task2 and Task3, almost all the participants

removed some irrelevant data categories using the transparency sliders to reduce

map cluttering; then, they used faceted exploration to analyze data. However,

they leaned to use the checkboxes embedded in the transparency sliders instead

of using the sliders to tune the opacity of items.595

7.3. User Experience - post-task questionnaire

Table 5 shows the results of questions 1-5 of the post-task questionnaire and

Table 6 shows the results of a Friedman significance test applied to these results.

• Question 1 (familiarity): participants were most familiar with the wid-

gets based on checkboxes and, in second position, with the transparency600

sliders. They were less familiar with the treemaps and much less with the
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Table 5: Results of the post-task questionnaire. The best values are shown in boldface.

Significance is encoded as (**) p < 0.001 and (�) p < 0.03.

Question # 1 2 3 4 5

Task1: Checkboxes

Mean 3.90∗∗ 4.03 3.77 4.02 2.94

Variance 1.40 1.08 1.39 0.84 1.31

St. Dev. 1.18 1.04 1.18 0.91 1.14

Task2: Treemap

Mean 3.32 4.00 3.95 3.98 3.48

Variance 1.21 0.66 0.87 0.84 0.84

St. Dev. 1.10 0.81 0.93 0.91 0.92

Task3: Sunburst

Mean 2.95 4.11 3.84 3.87 4.10∗∗

Variance 1.62 0.72 1.22 0.84 0.97

St. Dev. 1.27 0.85 1.10 0.91 0.99

Task4: Transparency sliders

Mean 3.79 3.85 3.69 4.31� 3.02

Variance 1.28 1.21 1.20 0.87 1.52

St. Dev. 1.13 1.10 1.10 0.93 1.23

sunburst diagrams (p < 0.001).

• Question 2 (helpfulness): the results are not statistically significant but

the generally high ratings prove that participants perceived all the widgets

as helpful to find information items in the maps. The transparency sliders605

received the lowest ratings.

• Question 3 (effort saving): the results are not statistically significant;

however, similar to Question 2, the transparency sliders are evaluated

worse than the other widgets. In this case, ratings show that participants
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Table 6: Statistical significance of the post-task questionnaire results.

Question # Friedman’s χ2 df p-value Kendall’s W

1 25.038 3 < 0.001 0.1346

2 4.6779 3 = 0.197 0.0251

3 1.4063 3 = 0.704 0.0076

4 9.4442 3 < 0.03 0.0508

5 43.611 3 < 0.001 0.2345

felt that the widgets helped them to save efforts during task execution but610

values are a bit lower than those of Question 1.

• Question 4 (ease of use): participants perceived transparency sliders

as the easiest tool, followed by the checkboxes, treemaps and sunburst

diagram (p < 0.03). This finding is in line with the results of Question 1:

even though sliders and checkboxes are in a different preference order, the615

Pearson Correlation between the answers to Question 1 and Question 4

shows that they are positively correlated both on checkboxes (ρ = 0.5015)

and on transparency sliders (ρ = 0.4802).

• Question 5 (novelty): participants perceived the widgets based on the

treemaps and sunburst diagrams as more innovative than the other ones;620

they also evaluated the checkboxes as the least innovative one (p < 0.001).

The Kendall’s W value (0.2345) is the best one across the five questions.

This demonstrates that there is more agreement among participants about

the perception of novelty of widgets with respect to the other evaluation

dimensions, i,e., ease of use, and so forth.625

About a quarter of the participants answered the free text questions; the per-

centages reported below refer to this set of people.

• Question 6 (difficulties): 50% of the participants who answered this

question declared that, due to the amount of textual information displayed

in the checkboxes, they had difficulties in the identification of the widgets630
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Table 7: Post-test questionnaire (translated from the Italian language).

# Question/statement

1 The widget was familiar to me.

2 The widget helped me find the information I needed.

3 The widget helped me to save effort in answering the questions.

4 The widget was easy to use.

5 The widget is novel.

6
Do you think that using transparency sliders in combination with checkboxes,

treemaps or sunburst diagram is useful?

7 Which information exploration widget would you use again in the future?

8 Why?

9 Which information exploration widget did you like the least?

10 Why?

representing the categories of interest in the side bar. Some people pointed

out that the treemap and the sunburst were new visualization models;

thus, they initially had some difficulties in understanding how they worked.

A few participants complained about the shortening of facet values in the

treemaps because they had to move the mouse over their components to635

read the information. The only observed limitation of the sunburst was

that it is visualized in a separate window, partially covering the map.

• Question 7 (appreciations): some participants liked the graphics of

the treemaps and declared that the size of the components representing

facet values provides an intuitive visualization of the cardinality of the640

corresponding sets of items. About 25% of people perceived the sunburst

as good to compactly visualize all the facets and values of a data category.

They also appreciated the fact that the sunburst reduces the vertical ex-

pansion of the side bar; thus, it limits the scrolling to reach the widgets of
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Figure 6: Post-test: evaluations of the questions listed in Table 3.

interest. Some participants specified that they liked the correspondence645

of colors between sliders and items in the map; i.e., color coding. In gen-

eral, the transparency slider was perceived as useful to reduce information

overload by imposing visualization constraints on whole data categories.

7.4. User Experience - post-test questionnaire

After participants completed the four tasks, we asked them to fill in a post-650

test questionnaire to capture their overall experience with the widgets.

In the first part of this test we asked them to select the widgets which better

matched familiarity, helpfulness, effort saving, easy of use and novelty; see Table

7. People could check multiple options in case more than one widget satisfied

them; therefore, the percentages reported below may be over 100%. The results655

of this part of the test, shown in Figure 6, are consistent with those of the

post-task questionnaires. Specifically, they confirm that:

• Question 1 (familiarity): people considered the checkboxes as the most

familiar widget and they placed transparency sliders in second position.

• Question 2 (helpfulness): the sunburst was perceived as more helpful660

than the other widgets as far as information finding is concerned.
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• Question 3 (effort saving): the sunburst, followed by the checkboxes,

was the preferred widget from the viewpoint of effort saving. This is

different from the results of the post-task questionnaires but it should be

noticed that those results are not statistically significant.665

• Question 4 (ease of use): the checkboxes were evaluated as the easiest

widget to use, slightly easier than transparency sliders. In the post-task

results were reversed but the two widgets were anyway the best rated ones.

• Question 5 (novelty): the sunburst was perceived as the most novel

widget.670

Regarding the second part of the post-test questionnaire (see Table 7):

• Question 6 (transparency sliders with facet-based widget): 53.2%

of participants declared that the joint usage of transparency sliders with

checkboxes, treemaps or sunburst efficiently helps information exploration.

They found it convenient to organize search in two steps: (i) visual simpli-675

fication of maps by hiding the data categories irrelevant to the questions,

using transparency sliders; (ii) identification of the items of the category of

interest on the basis of their properties, using faceted exploration widgets.

• Questions 7 and 8 (future usage of widgets and why): 60% of

people stated that they would use the widget based on the sunburst680

again because it offers a complete view of each data category. Moreover,

56% declared that they would use the checkboxes again because this is a

widespread way to search for information.

• Questions 9 and 10 (least preferred widget and why): 34% of par-

ticipants evaluated the treemaps as the least preferred widget because they685

are not intuitive and they are difficult to use; 37% did not like the trans-

parency sliders either because they poorly help solving complex search

tasks. 21% of people did not like the sunburst, mostly because it covers

part of the map instead of being displayed within the side bar. Finally,
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15% declared that they would not use the checkboxes in the future be-690

cause they carry a large amount of textual information and it’s difficult

to identify the relevant values.

8. Discussion

The user performance and experience results consistently suggest that the

sunburst is the best widget for faceted information exploration. Specifically,695

User Experience results can be explained as follows:

• Regarding the familiarity with the types of widget (Question 1), we ex-

pected that people would be more familiar with checkboxes and trans-

parency sliders because they are used to support faceted search in several

e-commerce and booking applications, while treemaps and sunburst are700

rarely used outside scientific contexts.

• Question 2 provides some evidence that participants perceived the widget

based on the sunburst as the most helpful one (post-test), while trans-

parency sliders were suitable to solve simple search problems because they

do not support facet-based map projection (post-task and post-test). Peo-705

ple also considered the transparency slider as useful within a facet-based

widget (Question 6 - post-test).

• As far as effort saving is concerned (Question 3), the moderate appre-

ciation and the mixed ratings given by participants might be explained

by considering that, even though all the widgets support map projection,710

they require some interaction, which could be perceived as an effort.

• Participants’ familiarity with the widgets can explain the fact that they

evaluated transparency sliders and checkboxes as the top easy-to-use tools

(Question 4), and treemaps and sunburst as the most novel ones (Ques-

tion 5). Moreover, the moderate ease of use attributed to treemaps and715

sunburst can partially depend on the fact that people had to learn how to

use them (Question 6 - post-task).
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Interestingly, in the answers to the free text questions (Question 6 - post-task

and Questions 9 and 10 - post-test) a relevant number of participants criticized

the amount of textual information visualized in the checkboxes, complaining720

that it challenges the identification of the relevant widgets or values in the side

bar. Actually, all the faceted widgets include the same information, generated

as described in Section 5. Therefore, this comment can be interpreted in a

different way, in relation to the lack of compactness of the layout provided by

the checkboxes (and presumably also by the treemaps, even though they save a725

bit more space than the former).

The widget based on the treemaps was the least preferred one because it was

not particularly intuitive and it was difficult to use (Questions 9 and 10 - post-

test). Despite the appeal of its graphics (Question 7 - post-task), this widget

challenges the user with readability issues. Moreover, similar to the checkboxes,730

it occupies a fairly relevant amount of vertical space in the side bar (Question 6

- post-task), thus increasing the amount of scrolling needed to inspect the other

treemaps.

We conclude that the experimental results help us answer our research ques-

tions, which we repeat here for the reader’s convenience:735

RQ1: Does faceted exploration of map content help users in finding the needed

information in a geographic map that visualizes different types of data?

We compared participants’ performance and experience using different

widgets for faceted information exploration, with respect to transparency

sliders alone. By using some of these widgets, people could complete a set740

of map learning tasks more quickly and/or precisely than by only using

the sliders. However, participants appreciated the combination of faceted

exploration with basic category hiding because the latter enables the user

to quickly hide irrelevant data, thus reducing visual complexity in the

map, and the former supports detailed exploration of relevant items. This745

is different from traditional faceted exploration, in which users search for

information within a single category. It also indicates that, when maps
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show multiple types of information, faceted exploration is effective but can

be strengthened by adopting a model that jointly supports coarse-grained

and fine-grained data projection.750

RQ2: How does a compact, graphical view of the exploration options available

to the user, which also shows the status of the information visualization

constraints applied to a map, impact on her/his efficiency and experience

in data exploration?

The results of the experiment show that not all the facet-based widgets755

equally helped participants while executing the tasks of the experiment.

The reason for this difference is in the capability of the widgets to clearly

and compactly describe the search context.

Specifically, the widget based on the sunburst was considered as partic-

ularly useful and effective, and it supported the best user performance.760

This finding is in line with previous experiments; e.g., those by Stasko

et al. (2000). It can be explained by the fact that the sunburst provides

a compact representation of the facets of a category, supporting the read-

ability of their values. The compactness of this widget also enhances the

conciseness of the side bar; in turn, this reduces scrolling during faceted765

search. Conversely, the treemaps challenged participants because their

graphical layout hampers readability and their vertical extension exces-

sively increases the length of the side bar.

Participants appreciated both sunburst and checkboxes; however, when

using the latter they completed the tasks slower than with the former. As770

the main difference between these two widgets is in their vertical extension

(much more compact in the sunburst), we can say that this is the main

dimension determining the difference in performance.

The transparency sliders achieved the lowest user performance results be-

cause they fail to support the specification of fine-grained visualization775

constraints. However, using the sliders in combination with the other

widgets was perceived as a very convenient approach because it enables to
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first focus the map on the categories of interest, and then further project

it by imposing detailed visualization constraints on the remaining items.

RQ3: How much does the user’s familiarity with the widgets for faceted explo-780

ration impact on her/his efficiency in search and on her/his appreciation

of the exploration model they offer?

The results of the experiment suggest that the familiarity with the widgets

does not influence users’ efficiency in search: the best performance in task

execution was achieved by using the sunburst, which most participants785

considered as moderately ease to use and they did not know before inter-

acting with OnToMap. Moreover, familiarity positively influences people’s

disposition towards the faceted exploration widgets and their perception

of ease of use; see the case of the checkboxes. However, participants ap-

preciated the sunburst as well because it efficiently supports exploration790

at the expense of some initial learning effort. We can thus conclude that,

if the widget is not too difficult to use, the functionality it provides can

override the effect of its familiarity on user appreciation.

9. Conclusions and future work

We presented a faceted information exploration approach supporting a flexi-795

ble visualization of heterogeneous geographic data. Our model provides a multi-

category faceted projection of long-lasting geographic maps to answer temporary

information needs; this is based on the proposal of efficient facets for data explo-

ration in sparse and noisy datasets. Moreover, the model provides a graphical

representation of the search context by means of alternative types of widget800

that support interactive data visualization, faceted exploration, category-based

information hiding and transparency of results at the same time.

We carried out a user study involving 62 people who have diverse familiarity

with technology and with map-based online systems. The results of this study

show that, when working on maps populated with multiple data categories,805

our model outperforms simple category-based map projection and traditional
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faceted search tools such as checkboxes. Moreover, the layout that uses the

sunburst diagram as a graphical widget supports the best user performance and

experience, thanks to its clarity and visual compactness. We thus conclude that

this implementation is promising for flexible faceted exploration in Geographic810

Information Search. The described work has limitations that we plan to address:

• Our model only supports the specification of hard visualization constraints

on facet values; i.e., the items having a certain value of a facet are either

shown, or hidden. However, the user might want to specify preferences.

Therefore, similar to what has been done in some related works (see Sec-815

tion 3), we plan to manage soft visualization constraints.

• So far, we present search results in geographic maps and we provide item

details in dynamically generated tables showing their properties. In or-

der to enhance data interpretation and sensemaking, we plan to develop

additional visualization models supporting visual analytics; e.g., see (An-820

drienko et al., 2007; Tsai & Brusilovsky, 2019; Cardoso et al., 2019).

• We designed the questionnaires of our user study by taking inspiration

from existing sources (NASA TLX and User Experience Questionnaire)

but we personalized the questions in order to test the specific aspects which

are the focus of the present paper. We plan a credibility/validity analysis825

to verify that our questionnaires are strictly related to these sources.

• Further experiments are needed to validate the proposed model with a

larger set of people and on mobile phones (the OnToMap user interface

scales well to the screens of tablets).

• Currently, our model supports a “one size fits all” type of faceted search830

that exploits general efficiency criteria to guide the user in data explo-

ration. However, some researchers propose to adapt facet suggestion to

the user’s preferences in order to personalize the navigation of the in-

formation space; e.g., see (Tvarožek et al., 2008; Tvarožek & Bieliková,

2010; Koren et al., 2008; Abel et al., 2011). In our future work, we plan835
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to offer multiple data exploration strategies which the user can choose

from, including a user-adaptive facet suggestion that depends on her/his

preferences and on the search context.

• Depending on their roles, in some scenarios users might need to access

different, long-lasting custom views of a shared information space (Ras-840

mussen & Hertzum, 2013). We plan to extend our model by introducing

permanent, user-dependent views on map content.
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Appendix

Table 8: Entropy, mean cardinality and exploration cost of the facets displayed in Figure 5.

Entropy Mean Cardinality Exploration cost

Outdoor Seating 0.9416 46.0000 0.0205

Takeaway 0.8482 25.3333 0.0335

Ex1 3.0000 20.0000 0.1500

Cuisine 4.3895 5.0233 0.8738

Ex2 3.0000 3.0000 1.0000

Name 9.3987 1.0000 9.3987

Table 9: Balance, object cardinality, frequency and navigation quality of the facets shown in

Figure 5, according to (Oren et al., 2006) with µ = 2 and σ = 4.9. We remind that the colors

of facets in Figure 5 correspond to the complement of the values reported in the present table.

Balance Object cardinality Frequency Navigation quality

Outdoor Seating 0.8587 0.9794 0.1280 0.1076

Takeaway 0.5175 0.9201 0.1057 0.0503

Ex1 1.0000 0.4725 0.2225 0.1051

Cuisine 0.3663 4.54E-66 0.6008 9.99E-67

Ex2 1.0000 0.4725 0.0334 0.0157

Name 1.0000 0.0000 0.9388 0.0000
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