

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Combined Effect of Citrate and Fluoride Ions on Hydroxyapatite Nanoparticles

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1743925 since 2020-07-15T10:17:37Z
Published version:
DOI:10.1021/acs.cgd.0c00038
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Subscriber access provided by NATIONAL UNIV OF SINGAPORE

Combined effect of citrate and fluoride ions on hydroxyapatite nanoparticles

Lorenzo Degli Esposti, Alessio Adamiano, Anna Tampieri, Gloria Belén Ramírez-Rodríguez, Dritan Siliqi, Cinzia Giannini, Pavlo Ivanchenko, Gianmario Martra, Feng-Huei Lin, José Manuel Delgado-López, and Michele Iafisco

Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.0c00038 • Publication Date (Web): 17 Mar 2020

Downloaded from pubs.acs.org on March 18, 2020

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1 2 3 4		
5 6 7 8	1	Combined effect of citrate and fluoride ions on
9 10 11 12 13 14	2	hydroxyapatite nanoparticles
15 16	3	Lorenzo Degli Esposti ^{a,} *, Alessio Adamiano ^a , Anna Tampieri ^a ,
17 18 19	4	Gloria Belen Ramirez-Rodriguez ^b , Dritan Siliqi ^c , Cinzia
20 21	5	Giannini ^c , Pavlo Ivanchenko ^d , Gianmario Martra ^d , Feng-Huei Lin ^{e,f} ,
22 23 24	6	José Manuel Delgado-López ^b , Michele Iafisco ^{a,*}
25 26 27	7	aInstitute of Science and Technology for Ceramics (ISTEC),
28 29	8	National Research Council (CNR), Via Granarolo 64, 48018 Faenza
30 31 32	9	(Italy)
33 34 25	10	^b Department of Inorganic Chemistry, University of Granada, Av.
36 37 38	11	Fuente Nueva, s/n, 18071, Granada (Spain)
39 40	12	°Institute of Crystallography (IC), National Research Council
41 42 43	13	(CNR), Via Amendola 122/0, 70126 Bari (Italy)
44 45 46	14	^d Department of Chemistry and Interdepartmental Centre
47 48	15	"Nanostructured Interfaces and Surfaces-NIS", University of
49 50 51	16	Torino, Via P. Giuria 7, 10125, Torino (Italy)
52 53	17	^e Department of Biomedical Engineering, National Taiwan
54 55 56 57 58	18	University, 10617 Taipei (Taiwan)
59 60		ACS Paragon Plus Environment

Crystal Growth & Design

^fInstitute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Keyan Road 35, 35053 Miaoli (Taiwan) KEYWORDS Hydroxyapatite, nanocrystals, nano-rods, fluoride, biomineralization, citrate, enamel ABSTRACT Citrate and fluoride ions are two constituents of dental enamel hydroxyapatite (HA) nanocrystals. Their individual effect on HA crystallization was already studied, and it was proven that both citrate and fluoride ions regulate HA crystal growth. However, the combined effect of citrate and fluoride ions on HA nanocrystals has never been reported so far. In this work we have prepared citrate-fluoride-HA (citrate-FHA) nanoparticles in mild conditions and we have studied the evolution of morphology and composition upon maturation. We have proved that even in presence of citrate, fluoride ions are incorporated in the apatitic structure (replacing hydroxyl ions) and accelerate the crystallization Interestingly, citrate-FHA nanoparticles process. exhibit a flattened hexagonal rod-like morphology in contrast to the needle-**ACS Paragon Plus Environment**

2		
3 4	40	like platelet morphology of citrate-HA. The density of citrate
5 6	41	ions bounded on the citrate-FHA surface is higher than that on
7 8	42	citrate-HA. Moreover, the relative amount of unidentate citrate-
9 10 11	43	Ca^{2+} adducts vs the ionic-like ones is higher for citrate-FHA than
12 13	44	for citrate-HA. Our results provide a deeper understanding of the
14 15	45	combined effect of citrate and fluoride ions on HA nanocrystals
16 17	46	that can be used for the design of advanced biomaterials with
18 19 20	47	tailored features, for a better comprehension of enamel
20 21 22	48	biomineralization process, and for the synthesis of enamel-like
23 24	49	nanocrystals.
25 26		
20 27 28	50	
29 30	51	1. Introduction
31 32	52	It is nowadays widely demonstrated that nanomaterials, in
33 34 25	53	comparison to their bulk counterparts, possess unique and novel
35 36 37	54	properties that could have a huge impact in health, environment,
38 39	55	energy and many other technological sectors.
40 41	56	Being similar to the mineral phases of bone and teeth, the
42 43	57	generation of synthetic hydroxyapatite (HA, $Ca_{10}(PO_4)_6(OH)_2$)
44 45 46	58	nanocrystals is of great interest both to synthesize nanomaterials
47 48	59	for the medical field and to mimic in vitro the formation of
49 50	60	biominerals [1-3]. In addition, HA nanocrystals have recently
51 52	61	attracted great attention also as promising materials for
53 54 55 56	62	applications far from medicine, such as catalysis, water

remediation, and agriculture as they represent а more green alternative biocompatible and to the currently used materials [4-6].

Several methods have been set-up to prepare HA nanocrystals with tailored size, morphology, surface properties, chemical composition and crystallinity [7-9]. Among them, the strategies that employ organic templates and additives are successful to finely control the structural and morphological features of HA [9, 10]. These organic molecules influence the nucleation and crystal growth of HA by interacting with calcium or phosphate ions in the early stage of particle formation, and they can also bind preferentially to specific HA crystal faces inhibiting growth on the respective crystallographic axes [11]. In this respect, biological macromolecules, polymers, amines, amino acids, fatty acids, and small carboxylates have been used to tailor the features of HA nanocrystals [12]. Citrate was widely studied as a "bio-inspired" organic additive in HA synthesis because it is naturally present in bone, enamel and dentin [13, 14]. The strong effect of citrate on HA crystallization has been investigated using complementary techniques such as: powder X-ray diffraction (PXRD), synchrotron wide angle X-ray total scattering (WAXTS) [15], atomic [15], solid-state nuclear force microscopy (AFM) magnetic resonance (ssNMR) [13], IR and Raman spectroscopy [16], and high resolution transmission electron microscopy (HR-TEM) [17]. These

ACS Paragon Plus Environment

studies have proved that citrate plays a dual role in ΗA crystallization. First, it drives the growth of HA via an amorphous precursor, and second it induces a non-classical oriented aggregation of the nanocrystals [15, 16, 18, 19]. HA nanocrystals synthesized in presence of citrate (citrate-HA) possess a platy morphology, that means to say that the nanocrystals are elongated nano-platelets whose dimensions depend on crystallization time. It has been proposed that the effect of citrate molecules is to bind preferentially to the (1 0 -1 0) HA crystal face, inhibiting its orthogonal growth and making it the predominant one. Furthermore, demonstrated it was that during the early stages of crystallization, citrate-HA grows by an oriented aggregation mechanism through the attachment of the citrate-free (0 0 0 1) [19]. faces Citrate-HA nanocrystals excellent have biocompatibility and colloidal stability [16] and have been tested for biomedical applications as nano-carriers of drugs and imaging agents and as coatings of metallic prostheses [20, 21]. HA nanocrystals doped with foreign ions have also raised

attention, since ionic substitution is a powerful tool to improve their performances for different applications [22]. For example, doping was widely used to give HA antibacterial or osteoinductive activity, or for providing special properties like luminescence or magnetism [22, 23]. Among biologically relevant ions, fluoride ion (F⁻) is of high interest for dental application, since it reduces

enamel demineralization and inhibits microorganisms in the biofilm Fluoride-doped cariogenic [24]. ΗA (FHA, $Ca_{10}(PO_4)_6(F)_x(OH)_{2-x}$, $0 < x \le 2$) has been studied for osteoporosis treatment, as antibacterial biomaterial, for dental enamel protection and remineralization, and for improving the luminescence of rare earth-doped HAs [25-29]. FHA nanocrystals were mainly synthesized by hydrothermal treatments [30, 31] while few works used the wet chemical processes [32, 33]. It was demonstrated that fluorine doping influences HA crystallinity, crystalline domains size, and morphology [22, 33, 34]. The feasibility of doping citrate-HA nanocrystals with carbonate, metallic and lanthanide ions and their effect on the chemical-physical features of the resulting materials has been previously studied [16, 20, 35, 36]. Nonetheless, despite the fact that fluoride ion is present in enamel HA crystals of humans and other species [37, 38], the simultaneous effect of citrate and fluoride on HA nanocrystals has never been reported so far. The main aim of this work is the preparation of citrate-FHA nanoparticles in mild conditions and the investigation of the combined effect of citrate and fluoride ions on HA crystal structure evolution as a function of precipitation time. Herein, citrate-FHA nanocrystals were prepared employing a thermal-decomplexing batch reaction at 80°C [16]. The evolution of the physical-chemical, surface and morphological properties of

ACS Paragon Plus Environment

Page 7 of 46

Crystal Growth & Design

1 2		
3 4	135	citrate-FHA nanocrystals have been thoroughly characterized upon
5 6	136	maturation by using conventional analytical techniques and Small-
7 8 0	137	angle X-ray scattering (SAXS) with synchrotron radiation.
10 11	138	
12 13	139	2. Materials and Methods
14 15 16 17 18 20 21 22 23 24 25 26 27 28 29	140	2.1. Materials
	141	Calcium chloride dihydrate (CaCl₂·2H₂O, ≥99.0% pure), sodium
	142	citrate tribasic dihydrate (Na $_3$ (C $_6H_5O_7$)·2H $_2O$, ≥99.0% pure (hereafter
	143	named Na ₃ (Cit)), sodium hexametaphosphate ((NaPO ₃) ₆ , \geq 96.0% pure),
	144	sodium phosphate dibasic dihydrate (Na $_2$ HPO $_4\cdot 2H_2O$, $\geq 99.0\%$ pure) and
	145	sodium fluoride (NaF, ≥99.0% pure) were purchased from Sigma
	146	Aldrich (St. Luis, MO, USA) and used without further purification.
30 31	147	All the solutions were prepared with ultrapure water (18.2 $M\Omega$ \times
32 33	148	cm, 25 °C, Arium© pro, Sartorius).
34 35 36 37 38 39 40	149	
	150	2.2. Sample preparation
	151	Dry powder citrate-FHA was synthesized by a wet chemical
41 42	152	precipitation previously reported by Delgado-López et al. [16]
43 44 45	153	with modifications. Namely, two solutions (1:1 v/v, 200 ml total)
46 47	154	of (i) 100 mM CaCl $_2$ + 400 mM Na $_3$ (Cit) and (ii) 120 mM Na $_2$ HPO $_4$ + 50
48 49	155	mM NaF were mixed at room temperature. Afterward the mixture was
50 51 52	156	thermostated at 80 $^{\circ}$ C under stirring in a water bath for three
53 54	157	maturation times (5 minutes, 30 minutes, and 4 hours). After
55 56	158	maturation the particles were repeatedly washed with ultrapure
57 58 50		
60		ACS Paragon Plus Environment

water by centrifugation at 7000 RPM for 10 minutes and then freeze-dried overnight at -50 °C under a vacuum of 3 mbar. The lyophilized powders were subsequently grinded and sieved with a 50 µm sieve in order to achieve a uniform granulometry. Citrate-HA samples were also prepared as control through the same protocol but without adding NaF into phosphate solution (ii). All the syntheses were performed in triplicates to ensure the reproducibility of the processes. Data are expressed as mean values ± standard deviation (SD) of independent experiments (n = 3). 2.3. Chemical, morphological and structural characterization Powder X-ray diffraction (PXRD) patterns of the samples were recorded on a D8 Advance diffractometer (Bruker, Karlsruhe, Germany) equipped with a Lynx-eye position sensitive detector using Cu K α radiation (λ = 1.54178 Å) generated at 40 kV and 40 mA. Diffractograms were recorded in the 20 range from 10 to 80° $\,$ with a step size (2θ) of 0.02 and a counting time of 1s. Unit cell indexing was performed with the software TOPAS5 [39]. Unit cell axes were obtained by Rietveld refinement considering a single-phase system, using tabulated atomic coordinates of FHA and HA (FHA: PDF card 00-015-0876, HA: PDF card 00-055-0592) [33, 40]. spherical harmonics Symmetrized were used to cope, phenomenologically, with anisotropic peak broadening effects due

60

Crystal Growth & Design

1 2		
3 4	182	to the anisotropic crystal shape. The PXRD patterns background was
5 6	183	calculated as 11-th order Chebychev function.
7 8	184	The average size of crystal domains along the apatite axis
9 10 11	185	directions (D $_{[0002]})$ and (D $_{[31-40]})$ were calculated as full-profile
12 13	186	peak broadening evaluation with the software TOPAS5, using
14 15	187	fundamental parameters peak function. Instrumental peak broadening
16 17	188	was evaluated by collecting a standard LaB_6 sample before the
 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 	189	analysis.
	190	Fourier transform infrared (FT-IR) spectroscopy analyses of bulk
	191	modes were carried out on a Nicolet iS5 spectrometer (Thermo Fisher
	192	Scientific Inc., Waltham, MA, USA) with a resolution of 2 $\rm cm^{-1}$ by
	193	accumulation of 64 scans, using a diamond ATR accessory model iD7.
	194	FT-IR spectroscopy in a controlled atmosphere mode was used for
	195	inspecting surface citrates. To this aim, nanoparticles were
	196	pressed in the form of self-supporting pellets and placed into an
37 38	197	IR cell equipped with KBr windows and connected to a conventional
39 40	198	vacuum line (residual pressure 5×10^{-4} mbar), allowing
41 42	199	adsorption/desorption experiment to be carried out in situ. The IR
45 44 45	200	spectra were collected in the transmittance mode with an Equinox
46 47	201	55 spectrometer (Bruker, Karlsruhe, Germany) equipped with a DTGS
48 49	202	detector (128 scans; resolution: 4 $\rm cm^{-1}$). Because the target was
50 51 52	203	the citrate spectral pattern in the 1720–1320 $\text{cm}^{\text{-1}}$ range, the $\delta\text{H}_2\text{O}$
53 54	204	band due to possibly co-adsorbed water molecules was shifted below
55 56 57	205	the lower limit of this range by exchanging H_2O molecules with D_2O

ones ($\delta D_2 O$ at ca. 1200 cm⁻¹). Details on the experimental procedure, as well as the spectra collected at each step, finally resulting in data reported Figure 3 in the following, are reported in the Supporting Information. Raman spectra were collected with a LabRAM-HR spectrometer with backscattering geometry (Jobin-Yvon, Horiba, Japan). The excitation line was provided by a diode laser emitting at a wavelength of 532 nm and a Peltier cooled charge-couple device (1064x256 pixels) was used as detector. (CCD) Spectrometer resolution was better than 3 cm^{-1} . The final spectrum resulted by the average of 3 acquisitions (acquisition time = 300 s). Transmission electron microscopy (TEM) evaluation was performed with Tecnai F20 microscope (Fei Corp., Hillsboro, OR, USA) operating at 120 kV. The powder samples were ultrasonically dispersed in ultrapure water and then a few droplets of the slurry were deposited on 200 mesh copper TEM grids covered with thin amorphous carbon films and incubated for several minutes. Nanoparticle morphology analysis was performed with software ImageJ [41]. Scanning transmission electron microscopy (STEM) images and compositional analysis (Ca, P and F) of selected areas were acquired with a FEI TITAN G2 microscope operating at 300 kV equipped with a HAADF detector and a SUPER-X Energy dispersive X-(EDS) detector (Centre for Scientific Instrumentation, ray ACS Paragon Plus Environment

Crystal Growth & Design

3 230 University of Granada). FHA nanoparticles were dispersed in pure 5 231 ethanol and some drops of the slurry were deposited on 200-mesh 7 8 232 copper grids with lacey carbon films.

Scanning electron microscopy (SEM) evaluation was performed with field-emission microscope (FEG-SEM, mod. ΣIGMA, ZEISS NTS Gmbh, Oberkochen, Germany) with in-lens acquisition mode, operating at 3 kV acceleration voltage, with a working distance of 1.7mm. The powder samples were ultrasonically dispersed at a concentration of 0.1mg/mL in 10 mL of a 0.01 wt.% sodium hexametaphosphate aqueous solution, sonicating it with a tip sonicator (Vibracell VCX 500 with 13mm sonicating tip, SONICS, Newtown, CT, USA) under ice cooling with the following working parameters: 20% amplitude, 3 minutes, pulsation 5s on / 5s off. Afterward, a drop of the stabilized particle suspension was deposited on a flat, mirror polished silicon wafer mounted on an aluminum stub and left to dry at room temperature. After drying the samples was sputter-coated (Polaron E5100, Polaron Equipment, Watford, Hertfordshire, UK) with 2nm of Pt/Pd (80:20) alloy in order to provide electrical conductance.

Quantification of Ca and P was carried out by inductively coupled plasma atomic emission spectrometer (ICP-OES) (Agilent Technologies 5100 ICP-OES, Santa Clara, CA, USA) while F was quantified with a fluoride ion electrode (Intellical™ ISEF121, Hach Lange, Loveland, CO, USA). Samples were prepared by dissolving an aliquot of powder in a 1 wt. % HNO₃ solution.

Thermogravimetry analyses (TGA) were performed using a STA 449F3 Jupiter (Netzsch GmbH, Selb, Germany) apparatus. About 10 mg of sample was weighted in an alumina crucible and heated from room temperature to 1100 °C under air flow with a heating rate of 10 °C/min.

Surface charge of the samples was evaluated by electrophoretic mobility (ζ -potential) using a Zetasizer Nano analyzer (Malvern, UK). Citrate-HA and citrate-FHA nanocrystals 0.5 mg/mL aqueous suspensions at pH \approx 7.0 were measured using disposable folded capillary cells (DTS1061; Malvern, UK) at 25°C. Three separate measurements (100 runs each) were collected in each case.

Specific surface area (SSA) of the powdered samples was measured through N_2 gas adsorption modeled by the Brunauer-Emmett-Teller (BET) method [42]. BET N₂ gas adsorption method was employed using a Surfer instrument (Thermo Fisher Scientific Inc., Waltham, MA, USA). Before the measurement, the samples were pre-treated at 100°C for 3 hours under vacuum.

Small Angle X-ray Scattering (SAXS) measurements were performed at the high brilliance Austrian SAXS beamline of the ELETTRA Synchrotron (Trieste, Italy). The available q-range was 0.08 to about 6 nm⁻¹ using an incident beam energy of 8 keV. A two-dimensional (2D) scattering image was acquired within 100 ms with a Pilatus 1 M detector (Dectris, CH). The samples were measured at room temperature in glass capillaries of 1.5 mm diameter (WJM-

ACS Paragon Plus Environment

Crystal Growth & Design

Glas/Müller GmbH, Berlin-Pankow, DE). As a first step, the scattering from the air and the sample holder was collected to be subtracted as background. The data reduction was done by the freely available software of the beamlines Fit2D [43]. The two-dimensional data were circularly averaged to convert them into one-dimensional scattering curves. Nine different scattering curves were collected for each sample and consequently were averaged and background corrected. From the experimental curves, the modeling was performed by using SasView package V4.2.2 (www.sasview.org). We estimated the averaged particle size for selected models, and as well as an estimation of the polydispersity of the samples, by using Schulz distribution [44, 45], which is the most indicated to describe particle sizes. SAXS data was fitted with the lamellar model as previously described [46]. 3. Results and discussion 3.1 Powder X-Ray Diffraction (PXRD) characterization PXRD patterns of citrate-FHA samples show the typical diffraction peaks of FHA as single phase (PDF card file 00-015-0876) (Figure 1A). In particular, the most intense reflections are the narrow peak at 25.87° due to the (0 0 0 2) crystallographic planes and the broad peak centered at about 32° that is the sum of three peaks at 31.77°, 32.19°, and 32.90°, due to planes (2 1 -3 1), (1 1 -1

3 4	302	2), and (3 0 -3 0). Other peaks are present at 39.81°, 46.71°,
5 6	303	49.46°, and 53.14°, which correspond to the planes (3 1 -4 0), (2
7 8	304	2 - 4 2), (2 1 - 3 3), and (0004), respectively [20]. In all the
9 10 11	305	samples, the diffraction peaks are broad and poorly defined,
12 13	306	indicating the presence of nanocrystals with reduced crystal
14 15	307	domains and crystalline order in all the samples [16]. The PXRD
16 17	308	patterns of citrate-FHA 5m show particularly broad peaks, while
18 19 20	309	the patterns of the samples prepared at longer maturation time
21 22	310	present sharper peaks. This behavior reveals an increase of
23 24	311	structural order and crystal growth upon maturation. Citrate-FHA
25 26 27	312	peaks are better defined than the corresponding citrate-HA peaks
27 28 29	313	(Figure S1A) in all time points, suggesting that citrate-FHA
30 31	314	crystal domains are always more ordered and larger in size than
32 33	315	those of citrate-HA. The increase of HA crystallinity as a function
34 35 36	316	of the incorporation of fluoride ions has been widely reported
37 38	317	[34, 47, 48] and this was attributed to a higher affinity of
39 40	318	fluoride ions for HA crystal lattice in comparison to hydroxyl
41 42 43	319	ions, which decreases lattice strain and enhances thermodynamic
43 44 45	320	stability.
46 47	321	
48 49	322	
50 51 52		
53 54		
55 56		
57 58 59		
60		ACS Paragon Plus Environment

20 324 Figure 1. (A) PXRD patterns and (B) IR-ATR of citrate-FHA 5m, 21 325 citrate-FHA 30m, and citrate-FHA 4h.

The evaluation of unit cell parameters calculated by Rietveld refinement of PXRD data show that the *a* unit cell parameters of citrate-FHA samples (Table 1 and Figure S2) are always notably shorter than those of citrate-HA (Table S1) while the c unit cell parameters are comparable. A shortening of the *a* cell axis of ca. 0.005 nm was reported for FHA. This was attributed to the shorter Ca-F equilibrium distance compared to the Ca-OH distance of HA 49]. It was previously demonstrated that carbonate doping [32, influences HA unit cell parameters [15], however taking into account that the carbonate content and position in the crystal lattice is similar for citrate-FHA and citrate-HA (see data below) it is likely that the presence of carbonate is not the cause of the different crystallographic properties of the two materials.

ACS Paragon Plus Environment

The unit cell parameters of both materials shrink at increasing maturation time (Figure S2). The unit cell parameters of citrate-HA calculated herein are close to those previously reported [15]. Sizes of the crystal domains were estimated along the $D_{(0001)}$ and $D_{(hki0)}$ directions, being parallel to the longest and the shortest axes of the hexagonal unit cell, respectively. To this aim, the broadening of the non-overlapped $(0 \ 0 \ 2)$ and $(3 \ 1 \ -4 \ 0)$ reflections were used, and the results are shown in Table 1 (and Figure S3). The average size of crystal domains of citrate-FHA along the c-axis $(D_{(0002)})$ and along the a-b plane $(D_{(31-40)})$ are both larger than the corresponding crystal domains of citrate-HA for each maturation time (Table S1) [16]. Similarly to citrate-HA, also $D_{(0002)}$ values of citrate-FHA are higher than those of $D_{(31-40)}$, indicating that the crystals are elongated along the c-axis. Interestingly, the aspect ratio estimated as $D_{(0002)}/D_{(31-40)}$ remains constant with maturation for citrate-FHA, while it increases over time for citrate-HA. All together, these data suggest that citrate-FHA crystal domains are larger in size than citrate-HA ones in all time points and that the crystal growth is faster in the presence of F^- , as suggested by the higher slope of the graph of the crystal domain dimensions vs time (Figure S3). The other striking difference is the isotropic growth of citrate-FHA (i.e. $D_{(0002)}/D_{(31-1)}$ 40) remains constant) versus the preferential crystal growth along c-axis for citrate-HA.

1 2 3	364							
4 5 6	365	Table 1. Cell parameters and crystal domain sizes of citrate-FHA						
7 8 9	366	samples.						
10 11		a-b c						
12 13 14 15		Sample cell axes cell (nm) (nm) 40) (Å) axis (Å)						
16 17		Citrate- FHA 5m 9.413 6.894 24.7±0.5 9.4±1.6 2.6						
10 19 20		Citrate- FHA 30m 9.398 6.886 42.4±0.8 9 3.0						
21 22 23 24		Citrate- FHA 4h 9.390 6.885 56.9±1.1 20.4±0. 2.8						
25 26 27 28 29 30 31 32 33 34 35 36 37	367							
	368							
	369	3.2 Compositional analysis						
	370	The chemical composition and surface charge of citrate-FHA						
	371	samples are reported in Table 2. The Ca/P ratio of the citrate-						
	372	FHA nanocrystals is higher and closer to the stoichiometric value						
38 39	373	(i.e. 1.67) than citrate-HA (Table S2), which is in agreement with						
40 41 42	374	the higher structural order of FHA. The increase of Ca/P ratio as						
43 44	375	a function of the incorporation of fluoride ions due to increased						
45 46	376	structural order has been already reported [32, 49]. Ca/P ratio as						
47 48 40	377	well as fluoride content (about 3 wt. %) does not vary upon						
49 50 51	378	maturation. The Ca/F ratio of citrate-FHA samples is slightly lower						
52 53	379	than the value of stoichiometric fluorapatite (Ca/F = 5 for						
54 55 56 57 58 59	380	$\text{Ca}_{10}\left(\text{PO}_4\right)_6\left(\text{F}\right)_2)$. All the samples present a small amount of carbonate						

and citrate ions, that was evaluated by TGA-DTG analysis as previously described (Figure S4) [50]. The occurrence of carbonate ions is mainly due to dissolved CO_2 in the mother solution and its amount is similar in citrate-FHA and citrate-HA samples (about 1 wt.%).

Interestingly, citrate-FHA has a lower weight content of citrate than citrate-HA at each maturation time. The amount of citrate in the citrate-FHA samples decreases during the first 30 minutes of maturation and then it remains stable. On the other hand, the amount of citrate constantly decreases up to 24 hours of maturation time for citrate-HA samples [16]. This continuous decrease of citrate content upon maturation has been previously attributed to a gradual dissolution of the surface non-apatitic hydrated layer [16] which, as described by Rey et al. [51], is well present in freshly formed precipitates but progressively disappears as the stable apatitic crystalline domains develop upon maturation. It was also suggested that upon drying a partial restructuration of the surface hydrated layer occurs, but part of the non-apatitic environments still remains [51]. The ζ -potential of all the samples at pH 7.0 is negative, due to the presence of citrate ions on nanocrystals surface [52]. Citrate-FHA possesses a surface charge that is slightly more negative than citrate-HA in all time points (Table S2), in agreement with its higher density of citrates on the surface in comparison to citrate-HA (see below). Overall, the

ACS Paragon Plus Environment

Crystal Growth & Design

2 3 4	405	ζ-potentia	l of the s	amples b	ecomes	less nec	gative upor	ı matura	ation.
5 6	406	This trend	l is like	ly assoc	ciated	with the	e decrease	e of ci	trate
7 8	407	content [1	6].						
9 10 11	408								
11 12 13	409								
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 25	410	Table 2. Cl	hemical co	mpositio	n of ci	trate-FH	HA samples		
		Sample	Ca/P ^a	F ^b (% wt)	Ca/F ^a ' b	Citrat e ^c (% wt)	Carbonat e ^c (% wt)	ζ- Potent (mV)	ial
		Citrate -FHA 5m	1.60±0.0 1	3.1±0. 2	4.4±0 .5	3.2±0. 4	1.1±0.1	-15.2 0.4	±
		Citrate -FHA 30m	1.58±0.0 1	3.0±0. 1	4.6±0 .2	1.8±0. 2	0.9±0.1	-14.3 0.3	±
		Citrate -FHA 4h	1.59±0.0 1	3.0±0. 1	4.6±0 .2	1.8±0. 2	1.0±0.1	-11.1 0.4	±
	411 412	^(a) Quantif ^(c) Quantifie	ied by ICP ed by TGA.	9-0ES; ^(b)	Quantif	fied by f	fluoride id	on elect	; rode;
35 36 37	413								
37 38	414								
39 40	415	3.3 Spectroscopic characterization							
41 42 43	416	The IR-ATR spectra of the citrate-FHA samples are reported in							
44 45	417	Figure 1B. All samples displayed a main broad band at 1030 ${ m cm^{-1}}$							
46 47	418	with should	ders at 10	46 and 1	075 cm-	¹ due to	the triply	/ degene	erated
48 49	419	antisymmet	ric stretc	hing mod	le of ti	he apati	tic PO ₄ gr	oups (v	₃ PO ₄).
50 51	420	Other featu	ires emerge	e at 961	cm ⁻¹ (s	ymmetric	stretchin	g mode d	of the
52 53 54	421	apatitic P	O ₄ groups,	ν ₁ PO ₄)	and at	603 , 5 ⁻	76 (as a s	shoulder) and
55 56 57 58	422	565 cm ⁻¹ (triply de	generate	d bend:	ing mode	e of the	same gr	coups,
59 60				ACS Par	ragon Plus E	nvironment			

 v_4PO_4). The absence of the band associated to hydroxyl ions at 631 cm⁻¹ [53], that is present in the IR-ATR spectra of citrate-HA samples (Figure S1B), suggests the almost complete substitution of the OH^- groups by F^- in the crystal lattice, as it was previously reported in other FHA samples [47, 49]. The presence of trace amounts of carbonate ions detected by TGA analysis was confirmed by a very weak B-type carbonate substitution (CO₃ occupying PO₄ sites) band at 873 cm⁻¹ [54]. Equivalent information was obtained by Raman spectroscopy investigation (Figure S5 and related comments in Supporting Information). The understanding of the interaction of citrate ions with

surface particular nanocrystals is of interest. Previous investigation was performed on citrate-HA 4h through the use of IR spectroscopy under controlled atmosphere [55]. The same approach was adopted here for the investigation of citrate groups at the surface of citrate-FHA 4h.

Figure 2 shows a comparison between the spectra in the 1720 -1320 cm⁻¹ range of citrate-HA (curve a) and citrate-FHA (curve b) outgassed at beam temperature (b.t.). The data were collected after a complete exchange of surface H_2O molecules with D_2O ones in order to remove the possible contribution of the δH_2O mode from the spectral pattern. This method was preferred to water desorption by outgassing at higher temperature (ca. 423 K, ref. [55]) in order to avoid any possible modification of surface citrates. The spectra

Crystal Growth & Design

of citrate-FHA and citrate-HA are constituted by two sets of components, one in the $1700 - 1500 \text{ cm}^{-1}$ range and the second in 1460-1325 cm⁻¹ range. Because carbonate ions are present in this material in trace amounts (see above), it is expected that they should not contribute significantly to this pattern, which is attributed to the antisymmetric and symmetric stretching modes of carboxylate moieties (v_{asym} COO and v_{sym} COO), respectively. In more detail, in the previous study it was found that v_{asym} COO signal can result from the overlapping of two sub-bands at 1592 and 1560 cm⁻ 1 , which paired with the v_{svm} COO components can account for the presence of COO^- groups coordinated to surface Ca^{2+} ions in unidentate way, accompanied by a lower amount of $COO^{-} - Ca^{2+}$ adducts with an ionic-like structure. Likely, these latter can be due to the citrate molecules remaining in the surface hydrated layer. The spectral profile of citrate-FHA 4h shows a higher overall in comparison to citrate-HA. Being the spectra intensity normalized by either sample mass and specific surface area (details in the SI and in Figure S6), such a difference well accounts for the higher density of citrates on citrate-FHA 4h (ca. 0,71 cit/nm²) than on citrate-HA 4h (ca. 0,52 cit/nm²), resulting from the two-fold lower SSA of citrate-FHA 4h (81 \pm 8 m² g⁻¹) with respect to citrate-HA 4h (160 \pm 10 m² g⁻¹, as reported in ref. [55]).

469 Noteworthy, the two patterns are also different in shape,

Crystal Growth & Design

TEM micrographs of citrate-FHA nanocrystals are shown in Figure 3A-C. Citrate-FHA 5m nanocrystals consist of irregular, small nanoparticles that aggregate in elongated formations. Citrate-FHA 30m is composed of elongated particles with better-defined border and with increased crystallinity, as evidenced by the increased presence of spots in the SAED pattern (Figure 3B). Finally, TEM micrographs of citrate-FHA 4h show highly regular crystalline nanoparticles with a rod-like morphology, having an average length of 60 \pm 20 nm and an average width of 20 \pm 4 nm (Figure 3C). Differently, previously reported TEM analyses have demonstrated that citrate-HA evolves from aggregated amorphous or very poorly crystalline particles to thin needle-like nanoparticles [16, 55]. The rod-like morphology of citrate-FHA 4h was never observed in citrate-HA, neither in citrate-HA doped with carbonate, europium nor other metal cations. On the other hand, rod-like FHA nanoparticles were reported in the case of FHA prepared through a hydrothermal process [30, 56] or in the presence of Tween 80 surfactant [57]. In the former case, the rod-like shape is likely due to the high-energy crystallization conditions that induce the formation of the most thermodynamically stable crystal, which for FHA is a hexagonal prism morphology identical to the unit cell symmetry. In the latter case, it is likely that the surfactant has no preferential faces for adsorption, therefore all the six faces are equally inhibited and grow hexagonal (1 00)

Crystal Growth & Design

510 isotropically. In a previous report HA was prepared in presence of 511 both citrate and fluoride ions through a hydrothermal process [56]. 512 In this case, particles appeared as dumbbell-shaped microcrystals 513 and did not present the rod-like morphology of the nanoparticles 514 prepared herein.

518 Figure 3. (A-C) TEM micrographs of (A) citrate-FHA 5m, (B) citrate-519 FHA 30m and (C) citrate-FHA 4h. Insets show the relative SAED 520 pattern. (D-E) Histograms of the distributions of (D) width and 521 (E) length of citrate-FHA 5m, citrate-FHA 30m, and citrate-FHA 4h 522 (blue bars).

1 2 3	523	
4 5	524	The mean length (L) along the longest axis, the mean width (W)
6 7 8	525	orthogonal to L, and the aspect ratio (the ratio between L and W)
9 10	526	of citrate-FHA nanocrystals were estimated from TEM observations
11 12 12	527	and they are reported in Table 3. L and W values of citrate-FHA
13 14 15	528	increase with maturation time, while the L/W values remain almost
15 16 17	529	constant. The increase over time of the mean size of nanoparticles
18 19	530	evaluated by TEM follows the same trend of crystals domains
20 21 22	531	calculated from PXRD data (Figure S7).
23 24	532	
25 26	533	Table 3. Mean length (L), mean width (W), and aspect ratio (L/W)
27 28 29	534	of citrate-FHA nanoparticles.
30 31		Complo I (nm) M (nm) I /M
32 33		Sample $L(IIII)$ $W(IIIII)$ L/W
34 35		Citrate-FHA 5m 39.5 ± 9.6 10.8 ± 3.5 3.7
36 37		Citrate-FHA 53.7 ± 15.6 ± 2.3 3.4 30m 10.2
37 38 39 40		Citrate-FHA 4h $\begin{array}{c} 76.9 \pm \\ 40.1 \end{array}$ 22.5 \pm 4.6 3.4
41 42 43 44 45 46	535 536 537 538	Measured from TEM micrographs. The mean value and the standard deviation were calculated measuring the sizes of 100 particles from different experiments.
40 47 48 49	539	Figure 3D-E represents the histograms of the distribution of
50 51	540	length and width of citrate-FHA nanoparticles synthesized at
52 53	541	different maturation times. Both length and width of the particles
54 55 56 57	542	with highest frequency distribution increased as a function of
58 59 60		ACS Paragon Plus Environment 25

maturation time. Interestingly, length distribution of citrate-FHA 4h was spread in a wide range (from 30 to 180 nm) (Figure 3D). This high spreading of length values explains the higher error associated to mean value of L for citrate-FHA 4h. Comparing the length and width frequency distribution of citrate-HA 4h nanoparticles previously reported [19], with those of citrate-FHA 4h, it is worth to notice that this latter has both a bigger average particle length and a bigger average particle width. In particular, citrate-FHA 4h and citrate-HA 4h are remarkably different in particle width. investigate the chemical composition of То citrate-FHA nanocrystals, STEM-HAADF analysis was performed on citrate-FHA 4h

(Figure 4). The EDS spectrum of a selected region (Figure 4A') show the presence of Ca, P, O, and F, which further confirmed the fluoride doping in citrate-FHA. It may be noted that Cu signals observed in the EDS spectra are due to the sample holder used in the analysis. Elemental mapping of Ca, P, and F was performed for a detailed distribution of atomic content of the nanocrystals (Figure 4B-D). The STEM-HAADF chemical maps show a homogeneous distribution of all these elements in the nanocrystals. This finding is consistent with the presence of fluorine ions in the crystal structure of citrate-FHA indicated by IR-ATR and XRD data.

(PDF card file 00-015-0876), indicating that the crystals are

elongated along the c-axis. Moreover, some facets of the a(b)-

1 2		
- 3 4	579	planes (e.g., (0 -1 1 0) facet in Figure 5B and magnification B^{\prime})
5 6	580	exhibited stepped surfaces, likely suggesting a classical layer-
7 8	581	by-layer growth. Interestingly, in few cases lattice fringes
9 10 11	582	spaced at ca. 0.344 nm with a hexagonal pattern were observed,
12 13	583	suggesting that for these particles the c -axis was parallel to the
14 15	584	electron beam during the image acquisition (Figure 5A,
16 17	585	magnification A'') [58]. Therefore, in these cases nanocrystal
18 19 20	586	width and thickness (T) was estimated, suggesting a W/T ratio of
21 22	587	ca. 2.
23 24	588	
28 29 30 31 32 33 34 35 36		50 nm
 37 38 39 40 41 42 43 44 45 46 47 48 	589	A' 0.815 nm 5 nm A'' 0.344 nm 5 nm 5 nm 5 nm 5 nm
49 50	590	Figure 5. HR-TEM micrographs of citrate-FHA 4h. A', A'', and B'
51 52	591	correspond to the high magnification of the portions enframed
53 54 55	592	within the black squares in micrographs A and B, respectively.
56 57 58 59 60		ACS Paragon Plus Environment

Crystal Growth & Design

2 3 4	593	(A') 0.815	5 nm fringes that	run along d	citrate-FHA 4h nano	crystal
5 6	594	length, (2	A'') hexagonal f	ringe pattern	n with 0.344 spacir	ng, and
7 8 9	595	(B') stepp	ped surfaces (mar)	ked by arrows) along <i>a-b</i> planes.	
10 11 12	596	Citrate-FH	IA 4h and citrate	-HA 4h were a	nalyzed also by FEG	-SEM at
13 14	597	high magni	fication (Figure	S8). Microgr	aphs show that the	samples
15 16	598	have a di	ifferent morpholo	ogy, namely,	citrate-FHA 4h ar	e rods
17 18	599	(Figure S8	BA), while citrat	e-HA 4h appea	ar as thin needles	(Figure
19 20 21	600	S8B).				
21 22 23	601	Citrate-	FHA and citrate-H	A nanopartic	les were evaluated }	oy SAXS
24 25	602	with synch	nrotron radiation	(Figure S9).	The two materials	present
26 27	603	different	SAXS curve shapes	s. A lamellar	model was used to	fit the
28 29 30	604	SAXS data	providing the valu	ues of thickne	esses and the corres	ponding
31 32	605	polydisper	sity (Table 4 and	d Table S3).		
33 34	606					
35 36	607	Table 4. M	Mean thickness and	d polydispers	ity of citrate-FHA	samples
37 38 39	608	extracted	as lamellar model	l fitting SAX	S data.	
40 41 42 43		-	Sample	Thickness (nm)	Polydispersity	
44 45		-	Citrate-FHA 5m	8.9	0.70	
46 47 48			Citrate-FHA 30m	7.1	0.32	
49 50			Citrate-FHA 4h	11.3	0.63	
51 52	609	-				
53 54 55 56 57 58 59	610			Davagon Dluc Environn	cont	
60			ACST	Falagon Flus Environn	nent	~ ~ ~

Thickness of citrate-FHA is larger than citrate-HA nanoparticles, in particular at 4 hours of maturation. The thickness of citrate-FHA 4h extracted by SAXS is comparable to the values measured by HR-TEM, thus validating the W/T ratio estimated by the latter technique. The isotropy of citrate-FHA 4h (evaluated as W/T ratio) was compared to the one of citrate-HA 4h previously analyzed [15]. The W/T ratio of citrate-FHA 4h (ca. 2) is notably lower than the one of citrate-HA 4h (ca. 6). This result confirms that citrate-FHA and citrate-HA nanocrystals are different, where the former has a flattened rod morphology, in contrast to the thin platelet morphology of the latter. Interestingly, the rod-like morphology of citrate-FHA nanoparticles reported in this work are similar to the rod-like enameloid nanocrystals of shark teeth, that contain a high fluorine amount (about 3-5 wt.%, comparable to citrate-FHA), in contrast to the platy enameloids of puffer fish having a much lower fluorine content in teeth (about 0,2 wt.%) that resemble citrate-HA [59]. 5. Conclusions In this paper we have studied the combined effect of citrate and fluoride ions on HA in terms of crystal growth, structure and morphology, since only their individual effects were previously investigated.

Crystal Growth & Design

Herein, we have found that even in presence of citrate fluoride ions substitute for OH- and accelerate the crystallization process. The presence of fluoride ions induces a shrinkage of the *a* unit cell parameter of ca. 0.005 nm, a progressive decrease in unit cell parameters, and a concomitant increase of crystal domains as a function of maturation time.

Citrate-FHA nanocrystals have a flattened hexagonal rod-like morphology in contrast to the elongated platy morphology of citrate-HA. Indeed, citrate-FHA nanocrystals are elongated too, but their growth is isotropic along all axes of the hexagonal unit cell and without changes in their aspect ratio. Conversely, the growth of citrate-HA nanocrystals is anisotropic, as the growth along the *c*-axis is progressively faster than along normal directions, yielding needle-like nanocrystals.

The density of citrate ions bounded on the citrate-FHA surface is higher than that on citrate-HA. Moreover, IR spectra indicated that the relative amount of unidentate citrates vs the ionic-like ones is higher for citrate-FHA in comparison to citrate-HA.

The data reported in this work are highly relevant to attain a deeper understanding of the combined effect of citrate and fluoride on HA nanocrystals for designing advanced biomaterials with tailored features, for a better understanding of the enamel biomineralization process, produce enamel-like and to nanocrystals. Based on the obtained results, future studies will

focus in elucidating the interaction of citrate ions with citrate-through computational modeling FHA surface and in the determination of the mechanical and biological properties of citrate-FHA nanorods. ASSOCIATED CONTENT Supporting Information. Crystallographic data, TGA analysis interpretation, IR-ATR spectra, Raman spectra, experimental details of FT-IR spectroscopy in controlled atmosphere, SEM micrographs, and SAXS data fitting are supplied as Supporting Information available free of charge (word file). AUTHOR INFORMATION Corresponding Author *Dr. Michele Iafisco, Ph. D. Institute of Science and Technology for Ceramics (ISTEC) National Research Council (CNR), Via Granarolo 64, 48018 Faenza (RA), Italy. E-mail: michele.iafisco@istec.cnr.it *Lorenzo Degli Esposti, M. Sc. Institute of Science and Technology for Ceramics (ISTEC) National Research Council (CNR),

1 2		
3 4 5	680	Via Granarolo 64, 48018 Faenza (RA), Italy.
6 7 8 9 10 11 12 13 14 15	681	E-mail: lorenzo.degliesposti@istec.cnr.it
	682	
	683	ACKNOWLEDGMENT
	684	The authors acknowledge the CERIC-ERIC Consortium for the access
10 17 18	685	to experimental facilities and financial support under proposal
19 20	686	CERIC-ERIC-20175403, and Dr. Heinz Amenitsch of Austrian SAXS
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	687	beamline of the ELETTRA Synchrotron for the scientific and
	688	technical support provided during data collection experiments.
	689	J.M.DL and G.B.RR. acknowledge the Ministry of Science,
	690	Innovation and Universities of Spain (MCIU/AEI/FEDER, UE) for the
	691	funding through NanoSmart project (RYC-2016-21042) and for her
	692	postdoctoral contract within the Juan de la Cierva Program (JdC-
	693	2017), respectively.
37 38 39	694	
40 41	695	ABBREVIATIONS
42 43	696	HA, hydroxyapatite; FHA, fluorine-doped HA; PXRD, powder x-ray
44 45	697	diffraction; WAXTS, wide angle x-ray total scattering; AFM,
46 47	698	atomic force microscopy; ssNMR, solid-state nuclear magnetic
48 49 50	699	resonance; TEM, transmission electron microscopy; HR-TEM, high
50 51 52	700	resolution transmission electron microscopy; STEM-HAADF,
53 54	701	scanning transmission electron microscopy with high-angle
55 56 57 58	702	annular dark-field detector; FEG-SEM, field-emission gun
59 60		ACS Paragon Plus Environment

60

2 3	703	scan	ning electron microscopy; SAXS, small angle x-ray	
4 5				
5 6 7	704 scattering; L, nanoparticles length; W, nanoparticles wid			
/ 8 0	705	nanoparticles thickness.		
9 10 11	706			
12	700			
13 14 15	707	REFE	RENCES	
16		_		
17	708	1.	Dorozhkin, S. V. Nanosized and nanocrystalline calcium	
18	709		orthophosphates. Acta Biomater. 2010, 6, 715-734.	
20	710	2.	Al-Kattan, A.; Girod-Fullana, S.; Charvillat, C.; Ternet-	
20	711		Fontebasso, H.; Dufour, P.; Dexpert-Ghys, J.; Santran, V.;	
22	712		Bordre, J.; Pipy, B.; Bernad, J.; Drouet, C. Biomimetic	
23	713		nanocrystalline apatites: Emerging perspectives in cancer	
24	714		diagnosis and treatment. Int. J. Pharm. 2012, 423, 26-36.	
25	715	3.	Epple, M.; Ganesan, K.; Heumann, R.; Klesing, J.; Kovtun, A.;	
26	716		Neumann, S.; Sokolova, V. Application of calcium phosphate	
27	717		nanoparticles in biomedicine. J. Mater. Chem. 2010, 20, 18-	
28	718		23.	
29	719	4.	Ali, I. New generation adsorbents for water treatment. Chem.	
30	720		Rev. 2012, 112, 5073-5091.	
27	721	5.	Kottegoda, N.; Munaweera, I.; Madusanka, N.; Karunaratne, V.	
33	722		A green slow-release fertilizer composition based on urea-	
34	723		modified hydroxyapatite nanoparticles encapsulated wood	
35	724		Curr Sci 2011 73-78	
36	725	6	Mori K · Yamaguchi K · Hara T · Mizugaki T · Ebitani K ·	
37	726	0.	Kanoda K Controllod synthesis of hydroxyanatito-synportod	
38	720		nalladium complexes as highly officient beterogeneous	
39	729		catalysts 7 Am Chom Soc 2002 124 11572-11573	
40	720	7	Earrag M: Montaira E: Manual C Hudrowyapatita	
41	720	/ •	reliaz, M., Montello, F., Manuel, C. Hydroxyapacite	
42 43	730		Appl Diemster Diemsch 2004 2 74 20	
44	731	0	Appi. Biomater. Biomech. 2004, 2, 74-80.	
45	132 722	Ο.	The synthesis of calcium	
46	733		phosphale crystals with controlled size and shape. Acta	
47	/34	0	Biomater. 2014, 10, 40/1-4102.	
48	/35	9.	Sadat-Shojai, M.; Khorasani, MT.; Dinpanan-Khoshdargi, E.;	
49	/36		Jamshidi, A. Synthesis methods for nanosized hydroxyapatite	
50	./3./		with diverse structures. Acta Biomater. 2013, 9, 7591-7621.	
51	738	10.	Newcomb, C. J.; Bitton, R.; Velichko, Y. S.; Snead, M. L.;	
52 52	739		Stupp, S. I. The role of nanoscale architecture in	
55 57	740		supramolecular templating of biomimetic hydroxyapatite	
55	741		mineralization. Small 2012, 8, 2195-2202.	
56				
57				
58				
59				

Crystal Growth & Design

1			
2	340		
4	742	⊥⊥.	Wang, A.; Yin, H.; Liu, D.; Wu, H.; Ren, M.; Jiang, T.; Cheng,
5	743		X.; XU, Y. Size-controlled Synthesis of hydroxyapatite
6	744		2007 61 2004 2000
7	745	1.0	2007, 61, 2084-2088.
8	746	12.	Neira, I. S.; Kolen Ko, Y. V.; Lebedev, O. I.; Van Tendeloo,
9 10	747		G.; Gupta, H. S.; Guittan, F.; Yoshimura, M. An effective
10	740		morphology control of nydroxyapatile crystals via
12	749	1 0	Hydrothermal Synthesis. Cryst. Growth Des. 2008, 9, 466-474.
13	/3U 751	13.	Hu, YY.; Rawai, A.; Schmidt-Rohr, K. Strongly bound citrate
14	751 750		Acad Cai U. C. A 2010
15	752 752	1 /	Acau. Sci. U. S. A. 2010.
16	753	⊥4.	Euro Dial Mad 1062 112 520 524
1/	754	1 5	Exp. BIOI. Med. 1903, 113, 500-504.
18	755	15.	Deigado-Lopez, J. M.; Filson, R.; Cervellino, A.;
20	750		Gomez-Morales, J.; Guagilaidi, A.; Mascioccii, N. Crystal
21	750 750		Napogrustals Adv. Fungt Mator 2014 24 1000-1000
22	750 759	16	Dolgado-Lópoz I M · Lafisco M · Podríguoz I · Tampiori
23	760	10.	A · Prat M · Cómez-Morales J Crystallization of
24	761		hioinspired citrate-functionalized papoapatite with tailored
25	762		carbonate content Acta Biomater 2012 8 3491-3499
20	763	17	Sakhno Y · Ivanchenko P · Jafisco M · Tampieri A ·
28	764	± / •	Martra, G. A step toward control of the surface structure of
29	765		biomimetic hydroxyapatite nanoparticles: effect of
30	766		carboxylates on the $\{010\}$ P-rich/Ca-rich facets ratio. J.
31	767		Phys. Chem. C 2015, 119, 5928-5937.
32	768	18.	Chatzipanagis, K.; Iafisco, M.; Roncal-Herrero, T.; Bilton,
33 34	769		M.; Tampieri, A.; Kroger, R.; Delgado-Lopez, J. M.
35	770		Crystallization of citrate-stabilized amorphous calcium
36	771		phosphate to nanocrystalline apatite: a surface-mediated
37	772		transformation. CrystEngComm 2016, 18, 3170-3173.
38	773	19.	Iafisco, M.; Ramirez-Rodriguez, G. B.; Sakhno, Y.; Tampieri,
39	774		A.; Martra, G.; Gomez-Morales, J.; Delgado-Lopez, J. M. The
40 41	775		growth mechanism of apatite nanocrystals assisted by citrate:
42	776		relevance to bone biomineralization. CrystEngComm 2015, 17,
43	777		507-511.
44	778	20.	Martínez-Casado, F. J.; Iafisco, M.; Delgado-López, J. M.;
45	779		Martínez-Benito, C.; Ruiz-Pérez, C.; Colangelo, D.; Oltolina,
46	780		F.; Prat, M.; Gómez-Morales, J. Bioinspired Citrate-Apatite
47 79	781		Nanocrystals Doped with Divalent Transition Metal Ions.
40 49	782		Cryst. Growth Des. 2015 , 16, 145-153.
50	783	21.	Delgado-López, J. M.; Iafisco, M.; Rodríguez-Ruiz, I.; Gómez-
51	784		Morales, J. Bio-inspired citrate-functionalized apatite thin
52	785		films crystallized on Ti-6Al-4V implants pre-coated with
53	786		corrosion resistant layers. J. Inorg. Biochem. 2013, 127,
54 55	787		261-268.
56			
57			
58			
59			

2			
3	788	22.	Šupová, M. Substituted hydroxyapatites for biomedical
4	789		applications: a review. Ceram. Int. 2015, 41, 9203-9231.
5	790	23.	Tannotti, V.: Adamiano, A.: Ausanio, G.: Lanotte, L.:
6	791		Aquilanti G · Coev J M D · Lantieri M · Spina G ·
7	702		Fittipaldi M. Margaria C. Trobidou K. Sprid S.
8	702		Montogi M., Margaris, G., Honruou, K., Spito, S.,
9	793		Montesi, M.; Panseri, S.; Sandri, M.; Talisco, M.; Tampieri,
10	/94		A. Fe-Doping-Induced Magnetism in Nano-Hydroxyapatites.
11	795		Inorg. Chem. 2017, 56, 4446-4458.
12	796	24.	Ten Cate, J. M. Contemporary perspective on the use of
13	797		fluoride products in caries prevention. Br. Dent. J. 2013,
14	798		214, 161-167.
16	799	25.	Qu, H.; Wei, M. The effect of fluoride contents in fluoridated
17	800		hydroxyapatite on osteoblast behavior. Acta Biomater. 2006,
18	801		2. 113–119
19	802	26	Wiegand A · Buchalla W · Attin T Review on fluoride-
20	002	20.	releasing restorative materials flueride release and untake
21	003		iereasing rescoracive materials-indoride release and uptake
22	804		characteristics, antibacterial activity and influence on
23	805		caries formation. Dent. Mater. 2007, 23, 343-362.
24	806	27.	Ten Cate, J.; Featherstone, J. Mechanistic aspects of the
25	807		interactions between fluoride and dental enamel. Crit. Rev.
26	808		<i>Oral Biol. Med.</i> 1991, <i>2</i> , 283-296.
27	809	28.	Sun, R.; Chen, K.; Wu, X.; Zhao, D.; Sun, Z. Controlled
28	810		synthesis and enhanced luminescence of europium-doped
29	811		fluorine-substituted hydroxyapatite nanoparticles.
30	812		CrystEngComm 2013 15 3442-3447
31	813	29	Wang I · Wang M · Li M · Shon 7 · Wang V · Shao V ·
32	011	29.	Wally, L., Wally, M., LI, M., Shell, Z., Wally, I., Shao, I.,
33			And, i. frace fruorine substituted calcium deficient
34	C18		nydroxyapatite with excellent osteoplastic activity and
35	816		antibacterial ability. CrystEngComm 2018, 20, 5744-5753.
36	817	30.	Chen, H.; Sun, K.; Tang, Z.; Law, R. V.; Mansfield, J. F.;
3/	818		Czajka-Jakubowska, A.; Clarkson, B. H. Synthesis of
38	819		fluorapatite nanorods and nanowires by direct precipitation
39 40	820		from solution. Cryst. Growth Des. 2006, 6, 1504-1508.
40 //1	821	31.	Nathanael, A. J.; Mangalaraj, D.; Hong, S.; Masuda, Y.; Rhee,
41 12	822		Y.; Kim, H. Influence of fluorine substitution on the
43	823		morphology and structure of hydroxyapatite nanocrystals
44	824		prepared by hydrothermal method Mater Chem Phys 2013
45	825		137 067_076
46	025	20	The L. Deet C. Knowled L. Dehman L. Contes I. D.
47	020	52.	Dia, L.; Best, S.; Knowles, J.; Renman, I.; Santos, J. D.;
48	827		Bonfield, W. Preparation and characterization of fluoride-
49	828		substituted apatites. J. Mater. Sci.: Mater. Med. 1997, 8,
50	829		185-191.
51	830	33.	Roche, K. J.; Stanton, K. T. Measurement of fluoride
52	831		substitution in precipitated fluorhydroxyapatite
53	832		nanoparticles. J. Fluorine Chem. 2014 , 161, 102-109.
54			
55			
56			
57			
58			
59			

1 ว			
2 3	833	34	Rodríguez-Lorenzo I. M · Hart J N · Gross K A Structural
4	834	51.	and chemical analysis of well-crystallized
5	835		hydroxyfluorapatites. J. Phys. Chem. B 2003, 107, 8316-8320.
6 7	836	35.	Gómez Morales, J.; Fernández Penas, R.; Verdugo-Escamilla,
7 8	837		C.; Degli Esposti, L.; Oltolina, F.; Prat, M.; Iafisco, M.;
9	838		Fernández Sánchez, J. Bioinspired Mineralization of Type I
10	839		Collagen Fibrils with Apatite in Presence of Citrate and
11	840		Europium Ions. <i>Crystals</i> 2019 , <i>9</i> , 13.
12	841	36.	Gómez-Morales, J.; Verdugo-Escamilla, C.; Fernández-Penas,
13 14	842		R.; Parra-Milla, C. M.; Drouet, C.; Maube-Bosc, F.; Oltolina,
15	843		F.; Prat, M.; Fernández-Sánchez, J. F. Luminescent biomimetic
16	844		citrate-coated europium-doped carbonated apatite
17	845		nanoparticles for use in bioimaging: physico-chemistry and
18	846		cytocompatibility. RSC Adv. 2018 , 8, 2385-2397.
19	847	37.	Dorozhkin, S. V. Calcium orthophosphates (CaPO4): occurrence
20	848		and properties. Prog. Biomater. 2016, 5, 9-70.
22	849	38.	Free, A. H. The citrate content of whole teeth, dentin and
23	850	2.0	enamel. J. Dent. Res. 1943, 22, 477-478.
24	851	39.	Coelho, A. Topas Academic V5. Coelho Software 2012.
25	852	40.	Hugnes, J. M.; Cameron, M.; Crowley, K. D. Structural
26	833		variations in natural F, OH, and CI apatites. Am. Mineral.
27 28	804 055	11	1989, /4, 8/U-8/0.
29	0JJ 856	4⊥•	with Imagol Biophotonics Intern 2004 11 36-42
30	857	12	Brunguer S · Emmott P H · Toller E Adsorption of gases
31	858	42.	in multimolecular layers J Am Chem Soc 1938 60 309-
32	859		319
33 24	860	43.	Hammerslev, A. FIT2D: an introduction and overview. ESFR
35	861	10.	Internal Report ESRF97HA02T 1997 , 68, 58.
36	862	44.	Kotlarchvk, M.; Chen, S. H. Analysis of small angle neutron
37	863		scattering spectra from polydisperse interacting colloids. J.
38	864		Chem. Phys. 1983, 79, 2461-2469.
39	865	45.	Kotlarchyk, M.; Stephens, R. B.; Huang, J. S. Study of Schultz
40 41	866		distribution to model polydispersity of microemulsion
42	867		droplets. J. Phys. Chem. 1988 , 92, 1533-1538.
43	868	46.	Nallet, F.; Laversanne, R.; Roux, D. Modelling X-ray or
44	869		neutron scattering spectra of lyotropic lamellar phases:
45	870		interplay between form and structure factors. J. Phys. II
46 47	871		1993, <i>3</i> , 487-502.
47	872	47.	Rameshbabu, N.; Kumar, T. S.; Rao, K. P. Synthesis of
49	873		nanocrystalline fluorinated hydroxyapatite by microwave
50	874		processing and its in vitro dissolution study. Bull. Mater.
51	875		<i>Sci.</i> 2006 , <i>29</i> , 611–615.
52	876	48.	Venkateswarlu, K.; Sreekanth, D.; Sandhyaranı, M.;
53 54	877		Muthupandı, V.; Bose, A.; Rameshbabu, N. X-ray peak profile
55	8/8		analysis of nanostructured hydroxyapatite and fluorapatite.
56	8/9		INL. J. BIOSCI., BIOCNEM. BIOINI. 2012 , 2, 389-393.
57			
58			
59 60			ACS Paragon Plus Environment
00			

Rodriguez-Lorenzo, L.; Hart, J.; Gross, K. Influence of 49. fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials 2003, 24, 3777-3785. Tonsuaadu, K.; Gross, K. A.; Plūduma, L.; Veiderma, M. A 50. review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 2011, 110, 647-659. Rey, C.; Combes, C.; Drouet, C.; Sfihi, H.; Barroug, 51. Α. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater. Sci. Eng. C 2007, 27, 198-205. Di Mauro, V.; Iafisco, M.; Salvarani, N.; Vacchiano, M.; 52. Carullo, P.; Ramírez-Rodríguez, G. B.; Patrício, Τ.; Tampieri, A.; Miragoli, M.; Catalucci, D. Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs. Nanomedicine 2016, 11, 891-906. and 53. Koutsopoulos, s. Synthesis characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600-612. Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and 54. FTIR studies of synthetic and natural apatites. Biomaterials 2007, 28, 3043-3054. Ivanchenko, P.; Delgado-López, J. M.; Iafisco, M.; Gómez-55. Morales, J.; Tampieri, A.; Martra, G.; Sakhno, Y. On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Sci. Rep. 2017, 7, 8901. Wu, Y.-J.; Tseng, Y.-H.; Chan, J. C. Morphology control of 56. fluorapatite crystallites by citrate ions. Cryst. Growth Des. 2010, 10, 4240-4242. 57. Zhang, H. G.; Zhu, Q. Surfactant-assisted preparation of fluoride-substituted hydroxyapatite nanorods. Mater. Lett. 2005, 59, 3054-3058. 58. Selvig, K. A. Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif. Tissue Res. 1970, 6, 227-238. 59. Miake, Y.; Aoba, T.; Moreno, E.; Shimoda, S.; Prostak, K.; S. Ultrastructural studies on crystal growth Suga, of enameloid minerals in elasmobranch and teleost fish. Calcif. Tissue Int. 1991, 48, 204-217.

ACS Paragon Plus Environment

1 2		
3 4 5	922	
6 7 8	923	
9 10	924	
11 12 13 14	925	
15 16	926	
18 19	927	
20 21 22 23	928	
24 25 26	929	
27 28 29	930	
30 31 32	931	For Table of Contents Only
33 34 35	932	Manuscript Title: "Combined effect of citrate and fluoride ions on
36 37 38	933	hydroxyapatite nanoparticles"
39 40	934	Authors: Lorenzo Degli Esposti, Alessio Adamiano, Anna Tampieri,
41 42 43	935	Gloria Belen Ramirez-Rodriguez, Dritan Siliqi, Cinzia Giannini,
44 45	936	Pavlo Ivanchenko, Gianmario Martra, Feng-Huei Lin, José Manuel
46 47 48	937	Delgado-López, Michele Iafisco
49 50 51	938	Table of Contents Graphic:
52 53		
54 55		
56 57		
58 59		
60		ACS Paragon Plus Environment

1 2		
3 4		Bio-inspired crystallization
5 6 7 8 9 10 11 12 13	939	Citrate Citrate Citrate Citrate-fluorhydroxyapatite Fluorine Fluorine Fluorine Fluorine Fluorine Fluorine
14	940	
15 16	940	
17 18 19	941	Synopsis: Citrate-fluoride-hydroxyapatite (citrate-FHA)
20	942	nanoparticles were prepared in order to assess the combined effect
21 22 23	943	of citrate and fluoride ions on HA. Citrate-FHA exhibits a
24 25	944	flattened hexagonal rod-like morphology in contrast to the needle-
26 27 28	945	like platelet morphology of citrate-HA. The density of surface
29	946	citrates and the relative amount of unidentate citrate-Ca $^{2+}$ adducts
30 31 32	947	vs the ionic-like ones is higher for citrate-FHA than for citrate-
33 34	948	HA.
35		
36 37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56 57		
58		
59 60		ACS Paragon Plus Environment

Figure 1. (A) PXRD patterns and (B) IR-ATR of citrate-FHA 5m, citrate-FHA 30m, and citrate-FHA 4h.

Figure 2. FT-IR spectra of citrate-HA 4h (a) and citrate-FHA 4h (b) after exchange with D2O and subsequent 60 min outgassing at b.t., the spectra are normalized by mass of sample and SSA of the material; curve (c) resulting from the difference (b)-(a).

186x139mm (300 x 300 DPI)

Figure 3. (A-C) TEM micrographs of (A) citrate-FHA 5m, (B) citrate-FHA 30m and (C) citrate-FHA 4h. Insets show the relative SAED pattern. (D-E) Histograms of the distributions of (D) width and (E) length of citrate-FHA 5m, citrate-FHA 30m, and citrate-FHA 4h (blue bars).

Figure 4. (A) STEM-HAADF micrograph of citrate-FHA 4h, (A') EDS spectrum from area marked in (A), and chemical maps of Ca (B), P (C), and F (D) from the same micrograph reported in (A). In (A'), the Cu peaks are due to the sample holder.

Figure 5. HR-TEM micrographs of citrate-FHA 4h. A', A", and B' correspond to the high magnification of the portions enframed within the black squares in micrographs A and B, respectively. (A') 0.815 nm fringes that run along citrate-FHA 4h nanocrystal length, (A") hexagonal fringe pattern with 0.344 spacing, and (B') stepped surfaces (marked by arrows) along a-b planes.

Table of contents