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Adaptive procedures for meshfree RBF unsymmetric and symmetric

collocation methods
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bMember of the INdAM Research group GNCS

Abstract

In this article we present an adaptive scheme for solving radial basis function collocation problems,
which involve elliptic partial differential equations. The proposed algorithm is applied to two usual nu-
merical methods, known as the nonsymmetric Kansa’s method and the symmetric Hermite-based approach.
Basically, the refinement algorithm is firstly characterized by the use of an adaptive superimposition scheme,
in which an error estimate compares two approximate solutions computed on a coarser and a finer set of
collocation points, and then on a modified adaptive residual subsampling scheme. Blending these computa-
tional techniques we detect the areas that need to be refined, also having the chance to further add and/or
remove adaptively collocation points. Our study is supported by several numerical results, which illustrate
the performance of our iterative algorithm.

Keywords: meshfree approximation, adaptive algorithms, refinement schemes, collocation methods,
partial differential equations
2010 MSC: 65D15, 65M70

1. Introduction

Over the last years meshfree methods have been gaining more and more importance and recognition from
applied mathematicians and engineers since they are powerful and effective numerical tools that enable us
to solve various types of problems in approximation theory and in the field of partial differential equations
(PDEs). In particular, collocation methods involving the use of radial basis functions (RBF) or kernels
have constantly being studied and developed to effectively model science and engineering problems (see e.g.
[15, 22]). Compared to some traditional numerical methods such as finite differences, finite volumes and
boundary elements, the RBF collocation methods have many remarkable advantages. Such approaches can
indeed be easily implemented even in high dimensions and with complex domain geometries, and can also
get high convergence orders (see [11, 13]). Nevertheless, in literature RBF methods are known to suffer
from ill-conditioning, mainly when a large number of collocation points are involved and accordingly the
size of the resulting matrix system grows. For this reason, the need of designing new adaptive numerical
algorithms that enable to achieve a certain level of accuracy with the minimum number of points motivates
our research (see e.g. [3, 6, 16, 18, 27]). Moreover, we remark as – unlike the above-mentioned numerical
methods – in the context of meshfree RBF methods the number of works regarding this topic is relatively
reduced; for further details see [7, 8, 23, 25, 29].

In this paper we propose a new adaptive refinement algorithm to model elliptic PDEs. To analyze the
behavior of our numerical scheme, we focus on two collocation RBF approaches, namely the nonsymmetric
Kansa’s method [17] and the symmetric Hermite-based one [9]. Both computational techniques have spawned
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several works, mainly from people that commonly are scientifically active in several different research areas
(see e.g. [11, 19, 30] and references therein). The iterative algorithm we propose here is characterized by
two stages. The first stage consists in applying an adaptive superimposition (AS) refinement scheme, which
is based on an error estimate that makes a comparison between two approximate RBF collocation solutions
computed on a coarser and a finer set of discretization points. The second stage is instead distinguished by
a modified adaptive residual subsampling (MARS) refinement procedure which is dependent from another
error indicator. This approach enables us to further refine adaptively the collocation points on the basis of
information deduced from the previous error estimate. In doing so, we are able to add points if they are
missing and/or remove them when an excessive number of points is present. The resultant scheme consisting
of two stages is thus denoted as AS-MARS. Several numerical experiments highlight the performance of the
AS-MARS algorithm on some benchmark Poisson-type test problems, also showing how the procedures
work when applying to Kansa’s and Hermite-based methods. Finally, we conclude by observing that similar
approaches consisting in the addition/removal of points can also be found in some recent works, where we
used the RBF partition of unity (PU) collocation method (see [2, 3]). However, in those papers when the
PDE solution presents quite steep variations, the RBF-PU method is not always able to get the expected
precision. This fact motivated us to further investigate the mentioned issue by proposing new adaptive
algorithms in RBF collocation framework. With this aim in [5] we thus proposed a first scheme based on
the use of a Leave One Out Cross Validation technique, while a second approach is presented in the current
manuscript.

The paper is organized as follows. In Section 2 we exhibit nonsymmetric and symmetric RBF collocation
methods, which are used to solve numerically elliptic PDEs, introducing some basic notions regarding the
theory of RBFs. In Section 3 we present the adaptive refinement algorithm based on the AS scheme and
the MARS technique. Section 4 shows numerical results and illustrates the performance of our adaptive
algorithm on some elliptic PDE problems. Finally, Section 5 contains conclusions and future work.

2. Meshfree methods for RBF collocation

Assuming that Ω is a domain in R
d and L is a linear elliptic partial differential operator, a generic (time

independent) boundary value problem is given by the PDE

Lu(x) = g1(x), for x ∈ Ω, (1)

together with the related Dirichlet boundary conditions (BCs)

u(x) = g2(x), for x ∈ ∂Ω. (2)

In order to solve elliptic PDE problems via RBF collocation methods, we consider a nonsymmetric
approach, also known as Kansa’s method [17], and a symmetric one that is also often referred to as a
Hermite-based method [9]. In doing so, we define the set XN = {x1, . . . ,xN} ⊂ Ω of the so-called collocation

points and the set ZN = {z1, . . . ,zN} of the so-called centers. For the sake of clarity, in what follows we
will distinguish between interior and boundary collocation points and centers, denoting the corresponding
sets with the subscripts NI and NB , respectively.

2.1. Kansa’s collocation

In case of Kansa’s collocation the numerical solution û is defined as a linear combination of RBFs [10]

û(x) =

N
∑

j=1

cjφε(||x− zj ||2), (3)

where φε : R≥0 → R is any radial kernel or RBF which is dependent from a shape parameter ε > 0, with
φε(r) = φ(εr), and the distance r = ||x− z||2 expressed in 2-norm, for all x, z ∈ Ω (see Table 1, for details
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RBF φε(r)

Gaussian C∞ (GA) exp(−ε2r2)

Inverse MultiQuadric C∞ (IMQ)
1√

1 + ε2r2

MultiQuadric C∞ (MQ)
√
1 + ε2r2

Matérn C6 (M6) exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15)

Matérn C4 (M4) exp(−εr)(ε2r2 + 3εr + 3)

Table 1: Some examples of popular RBFs.

[1, 32]). The coefficients cj in (3) are obtained by solving the following collocation system

[

Φ̂L

Φ̂

]

c = t, (4)

where the entries in the two blocks of collocation matrix are given by

(Φ̂L)ij = Lφε(||xi − zj ||2), for xi ∈ XNI
, zj ∈ ZN ,

Φ̂ij = φε(||xi − zj ||2), for xi ∈ XNB
, zj ∈ ZN ,

and t is the vector consisting of entries

ti =

{

g1(xi), for xi ∈ XNI
,

g2(xi), for xi ∈ XNB
.

(5)

Since the collocation matrix in (4) may be singular for certain configurations of the centers zj , this
nonsymmetric approach could not be well-posed for some sets of centers (see [10, 14]). In any case, it is
possible to find sufficient conditions on the centers so that invertibility of the matrix in (4) is guaranteed.
Hence, based on theoretical convergence analysis of the nonsymmetric method in [21, 28], Kansa’s method
has gained popularity despite its potential failure when applying in its most straightforward and naive
implementation [14]. In fact, one possible approach is to adaptively select good centers to ensure invertibility
of the collocation matrix by means of an iterative scheme [26], or use refinement algorithms [5, 4].

2.2. Hermite-based collocation

The Hermite-based approach is derived from the corresponding generalized interpolation method (see
e.g. [10]). Assuming to be given the elliptic PDE problem (1)–(2), we can indeed apply the results from
generalized Hermite interpolation which ensure the non-singularity of the collocation matrix. In so doing,
instead of using the expansion (3), we express the approximate solution û for the unknown function u as
follows:

û(x) =

NI
∑

j=1

cjLzφε(||x− zj ||2) +
N
∑

j=NI+1

cjφε(||x− zj ||2). (6)

Here, the differential operator Lz acts on the radial function φε and has to be viewed as a function of
z. Moreover, we remark that in the second sum of the expansion (6) the index j = NI + 1, . . . , N simply
identifies the NB boundary centers. Then, the coefficients cj in (6) can be found by solving the linear system
of the form

[

Φ̂LLz Φ̂L

Φ̂Lz Φ̂

]

c = t, (7)
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where the entries of the four blocks in the collocation matrix are

(Φ̂LLz )ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZNI

,

(Φ̂L)ij = Lφε(||xi − zj ||2), xi ∈ XNI
, zj ∈ ZNB

,

(Φ̂Lz )ij = Lzφε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZNI

,

Φ̂ij = φε(||xi − zj ||2), xi ∈ XNB
, zj ∈ ZNB

,

and the vector t is defined as in (5). Hence, when the set ZN coincides with XN , we have the symmetric
matrix in (7) and the collocation approach is definitely well-posed. Moreover, we can give the following
convergence result [10, 32]:

Theorem 2.1. Let Ω ⊆ R
d be a polygonal and open region. Let L 6= 0 be a second-order linear elliptic

differential operator with coefficients in C2(k−2)(Ω̄) that either vanish on Ω̄ or have no zero there. Suppose

that φ ∈ C2k(Rd) is a strictly positive definite function. Suppose further that the boundary value problem

Lu = g1 in Ω,

u = g2 on ∂Ω

is uniquely solvable. In particular, the solution u ∈ NΦ(Ω) for some g1 ∈ C(Ω) and g2 ∈ C(∂Ω), where Nφ

denotes the native space. Then, if û is the approximate solution in (6), we get

||u− û||L∞(Ω) ≤ Chk−2||u||Nφ(Ω)

for all sufficiently small h, where h = sup
x∈Ω minxi∈XN

||x−xi||2 defines the fill distance, namely the larger

of the distances in the interior and on the boundary of Ω, respectively.

3. Adaptive refinement algorithm

In this section we present our new adaptive refinement algorithm, which is composed of two stages. The
first phase consists in applying the AS scheme, where we compare two approximate solutions of the form (3)
(or (6)) computed on a coarser and a finer set of collocation points, thus generating an error estimate. This
process enables us to detect and refine the regions of the domain Ω that do not give us accurate enough
results. The second phase is characterized by a further refinement technique based on the MARS method.
The latter also depends on an error estimate, which allows us to add/remove some points on the basis of
information extracted from the estimator.

3.1. Refinement technique based on the AS scheme

At first, we define two initial sets X1

N
(1)
1

= {x(1)
1 , . . . ,x

(1)

N
(1)
1

} and X1

N
(1)
2

= {x(1)
1 , . . . ,x

(1)

N
(1)
2

} of collocation

points and two initial sets Z1

N
(1)
1

= {z(1)
1 , . . . , z

(1)

N
(1)
1

} and Z1

N
(1)
2

= {z(1)
1 , . . . , z

(1)

N
(1)
2

} of centers. X1

N
(1)
1

and

Z1

N
(1)
1

represent coarser sets, while X1

N
(1)
2

and Z1

N
(1)
2

are finer ones. This means that N
(1)
1 < N

(1)
2 , where the

symbol (1) identifies the iteration number. For our purposes, it is useful to split the sets X1

N
(1)
i

and Z1

N
(1)
i

,

with i = 1, 2, as follows:

• X1

N
(1)
Ii

= {x(1)
1 , . . . ,x

(1)

N
(1)
Ii

} and X1

N
(1)
Bi

= {x(1)
1 , . . . ,x

(1)

N
(1)
Bi

} are sets of interior and boundary collocation

points, respectively;

• Z1

N
(1)
Ii

= {z(1)
1 , . . . ,z

(1)

N
(1)
Ii

} and Z1

N
(1)
Bi

= {z(1)
1 , . . . , z

(1)

N
(1)
Bi

} are sets of interior and external boundary

centers, respectively.
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Specifically, as evoked in [12], in this work we take Z1

N
(1)
Ii

= X1

N
(1)
Ii

whereas Z1

N
(1)
Bi

represents a set of centers

that lies outside the domain Ω. However, we notice that the number of outside centers, whose we refer to
as external boundary centers, is the same as boundary collocation points. Moreover, though our iterative
process is basically completely general, we choose to begin with two initial sets of grid interior and boundary
points, because this assumption allows us to uniformly cover the domain Ω detecting in a better way which
areas of Ω need to be refined. In addition, we highlight that as in the above-mentioned sets X1

N
(1)
1

, X1

N
(1)
2

,

Z1

N
(1)
1

and Z1

N
(1)
2

the superscript 1 refers to the first stage of the adaptive algorithm.

Then, the iterative procedure starts and, for k = 1, 2, . . ., the collocation solutions û
N

(k)
1

and û
N

(k)
2

of the

form (3) (or (6)) are computed on N
(k)
1 and N

(k)
2 collocation points and centers. In order to know where

we need to refine, we compare the two approximate RBF solutions evaluated at the (coarser) set X1

N
(k)
1

,

supposing that the solution computed on the (finer) set X1

N
(k)
2

gives us more accurate results than the ones

obtained by using the previous one. So we can define the following error indicator given by

E
(k)
i = |û

N
(k)
2

(x
(k)
i )− û

N
(k)
1

(x
(k)
i )|, x

(k)
i ∈ X1

N
(k)
1

. (8)

After fixing a tolerance τ , we detect all points x
(k)
i ∈ X1

N
(k)
1

such that

E
(k)
i > τ. (9)

To refine the distribution of discretization points, we compute the separation distance

q
X

(k)
N1

=
1

2
min
i6=j

||x(k)
i − x

(k)
j ||2, x

(k)
i ∈ X1

N
(k)
1

, (10)

and, afterwards, for k = 1, 2, . . . , we update the sets X1

N
(k+1)
1

and X1

N
(k+1)
2

of collocation points and the sets

Z1

N
(k+1)
1

and Z1

N
(k+1)
2

of centers. In particular, if the condition (9) is satisfied, we add to x
(k)
i four and eight

points to generate the sets X1

N
(k+1)
1

and X1

N
(k+1)
2

, respectively (see Figure 1, top, left to right). Nevertheless,

when x
(k)
i is on or near to the boundary, we reduce the number of points to be added (see Figure 1, bottom,

left to right). In both cases the new sets are obtained by either adding or subtracting the value of (10) to

the components of x
(k)
i . Finally, the adaptive algorithm stops when there are no points anymore that satisfy

the condition (9), returning the sets X1

N
(k∗)
2

and Z1

N
(k∗)
2

, with k∗ denoting the last iteration. A pseudo-code

of this first stage is given in Procedure 1.

3.2. Refinement technique based on the MARS method

At the second stage of the algorithm we further refine the collocation points on the basis of the information
deriving from a new error indicator. Here, this refinement phase is a sort of extension of the residual
subsampling method proposed in [8], and later suitably modified for a RBF-PU collocation method [2, 3].
Basically, our computational technique is obtained through a good combination between an error indicator
and a refinement procedure, which consists in solving, estimating and lastly adding or removing adaptively
any points in the areas identified by the error indicator.

Therefore, we start from the output of the previous stage described in Procedure 1, denoting those final
sets X1

N
(k∗)
2

as X2
N(1) and Z1

N
(k∗)
2

as Z2
N(1) , i.e. we set X2

N(1) = X1

N
(k∗)
2

and Z2
N(1) = Z1

N
(k∗)
2

, where the

superscript 2 denotes now the second stage of our adaptive process. Then, for k = 1, 2, . . ., we compute
iteratively two collocation solutions of the form (3) (or (6)), called û and ûe, respectively. Moreover,
we remark that the above-mentioned sets can be split as follows: X2

N(k) = X2

N
(k)
I

∪ X2

N
(k)
B

and Z2
N(k) =

Z2

N
(k)
I

∪ Z2

N
(k)
B

. Therefore, we need to find the two approximate solutions û and ûe, which are given by
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Figure 1: Example of refinement around the point x
(k)
i , marked by a blue dot, to generate the new sets

X
N

(k+1)
1

(left) and X
N

(k+1)
2

(right).

solving two linear systems of the form (4) (or (7)). For the sake of brevity, here we only deal with the case
of Kansa’s method but, similarly, it can also be applied to the Hermite one. Firstly, in order to determine û,
we construct a first system on coincident sets of collocation points and centers, i.e., we take Z2

N(k) = X2
N(k) ,

where k here is fixed. So the collocation matrix in (4) becomes

[

Φ̂L

Φ̂

]

=

[

Φ̂LII
Φ̂LIB

Φ̂BI Φ̂BB

]

, (11)

where

(Φ̂LII
)ij = Lφε(||x(k)

i − z
(k)
j ||2), x

(k)
i ∈ X2

N
(k)
I

, z
(k)
j ∈ Z2

N
(k)
I

,

(Φ̂LIB
)ij = Lφε(||x(k)

i − z
(k)
j ||2), x

(k)
i ∈ X2

N
(k)
I

, z
(k)
j ∈ Z2

N
(k)
B

,

(Φ̂BI)ij = φε(||x(k)
i − z

(k)
j ||2), x

(k)
i ∈ X2

N
(k)
B

, z
(k)
j ∈ Z2

N
(k)
I

(Φ̂BB)ij = φε(||x(k)
i − z

(k)
j ||2), x

(k)
i ∈ X2

N
(k)
B

, z
(k)
j ∈ Z2

N
(k)
B

.

(12)

Secondly, to find the approximate solution ûe, we have to define a second system. In doing that, for each
iteration k, we use the same set X2

N(k) = X2

N
(k)
I

∪ X2

N
(k)
B

of collocation points as for û, whereas we split

the set of centers as Z2
N(1) = Z2

N
(k)
I

∪ Z
2,e

N
(k)
B

, where Z
2,e

N
(k)
B

denotes the external boundary centers previously

6



Procedure 1: Refinement technique based on the AS scheme

Step 1 Generate two initial sets X1

N
(1)
1

and X1

N
(1)
2

of collocation points

and two initial sets Z1

N
(1)
1

and Z1

N
(1)
2

of centers, with N
(1)
1 < N

(1)
2

Step 2 Fix a tolerance τ > 0

Step 3 For k = 1, 2, . . . compute the collocation solutions û
N

(k)
1

and û
N

(k)
2

via (3) (or (6))

constructed on the coarser sets X1

N
(k)
1

and Z1

N
(k)
1

, and the finer ones X1

N
(k)
2

and Z1

N
(k)
2

Step 4 Evaluate the error indicator (8) at the point x
(k)
i ∈ X1

N
(k)
1

, ∀i

Step 5 If the error indicator (8) is such that E
(k)
i > τ

then a refinement is applied around the point x
(k)
i to create

the sets X1

N
(k+1)
1

, X1

N
(k+1)
2

, Z1

N
(k+1)
1

and Z1

N
(k+1)
2

else set k∗ = k + 1 and stop

Step 6 Return the refined sets X1

N
(k∗)
2

and Z1

N
(k∗)
2

introduced. Although the associated collocation matrix has the same structure as in (11) and the blocks
(Φ̂LII

)ij and (Φ̂BI)ij are as in (12), the two remaining blocks (Φ̂LIB
)ij and (Φ̂BB)ij are expressed in the

following form

(Φ̂LIB
)ij = Lφε(||x(k)

i − z
(k)
j ||2), x

(k)
i ∈ X2

N
(k)
I

, z
(k)
j ∈ Z

2,e

N
(k)
B

,

(Φ̂BB)ij = φε(||x(k)
i − z

(k)
j ||2), x

(k)
i ∈ X2

N
(k)
B

, z
(k)
j ∈ Z

2,e

N
(k)
B

.

As a result, the RBF approximate solutions û and ûe are obtained by using the same collocation points,
while the centers turn out to be different. In fact, while the interior points in Z2

N
(k)
I

and X2

N
(k)
I

coincide

for both systems, the boundary points in Z2

N
(k)
B

(first system) and Z
2,e

N
(k)
B

(second system) are arranged on

and outside the domain boundary, respectively. It is, however, important to observe that the number of
boundary centers considered to find û is the same as external boundary ones used to compute the RBF
solution ûe.

After defining a set Y (k) = {y(k)
1 , . . . ,y

(k)

N(k)} of test or check points, we validate the obtained results by
means of the following error indicator

I
(k)
i = |û(y(k)

i )− ûe(y
(k)
i )|, y

(k)
i ∈ Y (k). (13)

Note that here the choice of check points is arbitrary. So, in order to validate the results, we might take
scattered, quasi-random or other distributions of points. For this reason, our adaptive refinement is not
mesh-based, but meshfree, since we have no assumption on the point refinement and no problem on the
possible “distortion” of the original gridded structure of collocation points.

Now, fixed two tolerances (or thresholds) τlow and τupp, such that 0 < τlow < τupp, for each iteration

k = 1, 2, . . ., if the indicator value I
(k)
i in (13) is larger than τupp, we add the point y

(k)
i among the collocation

points (and centers as well). Instead, if I
(k)
i is smaller than τlow, the test point is removed along with its

nearest point. We can thus define the sets

S
T

(k)
upp

= {y(k)
i ∈ Y (k) : I

(k)
i > τupp, i = 1, . . . , T (k)

upp}
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and

S
T

(k)
low

= {x̄(k)
i ∈ X2

N(k) : I
(k)
i < τlow, i = 1, . . . , T

(k)
low},

where x̄
(k)
i is the point closest to y

(k)
i , while T

(k)
upp and T

(k)
low denote the number of test points for which

the indicator (13) is upper or lower than τupp and τlow, respectively. Iteratively, for k = 2, 3, . . ., we can
therefore obtain a new set of discretization points

X2
N(k+1) = X2

N
(k+1)
I

∪X2

N
(k+1)
B

, where X2

N
(k+1)
I

= (X2

N
(k)
I

∪ S
T

(k)
upp

)\S
T

(k)
low

,

and, accordingly, update the corresponding set Z2
N(k+1) of centers defined similarly. The process stops

when the set S
T

(k)
low

is empty. The iterative procedure concludes once the refinement process is completed,

returning the final sets X2
N(k∗) and Z2

N(k∗) associated with the collocation solution ûe, where k∗ denotes the
last iteration of the second phase. A pseudo-code of this second stage is sketched in Procedure 2. Therefore,
the algorithm allows us to refine the set of collocation points when the error indicator (13) does not give us
precise enough results, or coarsen the set of collocation points if the level of accuracy achieved is over the
desired one. This process thus results in an addition or removal of points, thus making adaptive even this
stage of the algorithm.

Procedure 2: Refinement technique based on the MARS scheme

Step 1 Take the sets X1

N
(k∗)
2

and Z1

N
(k∗)
2

of collocation points and centers

from Procedure 1, assuming X2
N(1) = X1

N
(k∗)
2

and Z2
N(1) = Z1

N
(k∗)
2

Step 2 Fix two tolerances τlow and τupp, such that 0 < τlow < τupp

Step 3 For k = 1, 2, . . . compute the k-th approximate solutions û and ûe via (3) (or (6))

constructed on the sets X2
N(k) and X2

N(k) ∪X
2,e
N(k)

Step 4 Define a set Y (k) of test points

Step 5 Evaluate the error at the test point y
(k)
i ∈ Y (k) via indicator (13), ∀i

Step 6 Construct the refined set

X2
N(k+1) = X2

N
(k+1)
I

∪X2

N
(k+1)
B

, with X2

N
(k+1)
I

= (X2

N
(k)
I

∪ S
T

(k)
upp

)\S
T

(k)
low

where

S
T

(k)
upp

= {y(k)
i ∈ Y (k) : I

(k)
i > τupp, i = 1, . . . , T

(k)
upp}

S
T

(k)
low

= {x̄(k)
i ∈ X2

N(k) : I
(k)
i < τlow, i = 1, . . . , T

(k)
low}

So if the error indicator

i) I
(k)
i > τupp, add the test point y

(k)
i among the collocation points

ii) I
(k)
i < τlow, remove the collocation point x̄

(k)
i nearest to y

(k)
i

from the collocation points

Then the set Z2
N(k+1) is updated

Step 7 Stop when the set S
T

(k)
low

is empty

Step 8 Return the final sets X2
N(k∗) and Z2

N(k∗) associated with ûe

8



3.3. Complexity of the computational procedures

The first phase of our refinement technique is based on the AS scheme, in which we compare two approx-
imate RBF solutions computed on coarser and finer sets of points via the error indicator (8). Nevertheless,
this evaluation requires to solve two linear systems that involve the collocation matrices in (4) (or (7)).
These numerical computations have a cost of O(N3) complexity. Obviously, this process is initially applied
to the sets X1

N
(1)
1

, X1

N
(1)
2

, Z1

N
(1)
1

and Z1

N
(1)
2

, but it has then to be iterated on the refined sets X1

N
(k)
1

, X1

N
(k)
2

,

Z1

N
(k)
1

and Z1

N
(k)
2

, for k = 2, 3, . . ., till the stop criterion is satisfied.

In the second phase of the algorithm we apply the refinement procedure based on the MARS technique.
Here, this computational approach is generally iterated a few times till the stop criteria are fulfilled. So we
update step-by-step the sets X2

N(k) and Z2
N(k) , for k = 1, 2, . . .. It is, however, evident that the error indicator

(13) needs to solve at each iteration two collocation problems, which are characterized by computation of
the approximate solutions û and ûe. At each iteration this requires to solve two collocation system of the
form (4) (or (7)), whose order of computational cost is O(M3) and O(M3

e ), respectively. Notice that here,
M denotes the number of interior and boundary discretization points, while Me identifies the same number
that also includes external boundary points that are taken outside the domain Ω.

After determining the final collocation points, the adaptive refinement algorithm stops and the resulting
approximate solution of the elliptic PDE problem can be computed on a set of evaluation points. This is
done with a matrix-vector multiplication that returns a vector whose size is given by the final number of
centers.

4. Numerical results and discussion

In this section we show some numerical results on the performance of the adaptive refinement algorithm
described in Section 3. All the codes are implemented in Matlab environment, while the experiments are
carried out on a laptop with an Intel(R) Core(TM) i7-4500U CPU 1.80 GHz processor and 4GB RAM.

In the following we report the results obtained by the numerical solution of some benchmark elliptic
Poisson-type problems with Dirichlet BCs of the form (1)–(2), with L = −∆. In particular, in order to
test more thoroughly our new adaptive scheme, we apply it to both nonsymmetric and symmetric RBF
collocation methods discussed in Section 2. Acting in this way, we also have the chance to better analyze
how the algorithm works in the different situations by changing the PDE problem. Moreover, in our test
we focus on two RBFs of different smoothness such as M6 and M4 (see Table 1). The shape parameter
ε is generally taken fixed, but in this work we also study the behavior of the numerical scheme when ε

varies. From the numerical viewpoint it is indeed relevant to analyze what is the effect on the algorithm
performance due to a change of the parameter ε. In fact, even if in this paper we are mainly interested
in seeing how the new adaptive scheme works – and so not getting the best accuracy – from literature we
know that the selection of the RBF shape parameter is a remarkable issue, since such a choice might even
significantly influence the accuracy of the computational technique (see e.g. [10, 11]). As regards, then, the
selection of the check points in Procedure 2, we use the sequence of Halton points [10]. It is however obvious
that the choice of these validation points is arbitrary and so – as already remarked – other possible point
distributions can be considered.

In the various tests we analyze the performance of our adaptive algorithm by considering four test
problems of the form (1)–(2), defined both on the unit square domain Ω = [0, 1]2 on an irregular domain
Ω ⊂ [0, 1]2. The exact solutions of such Poisson problems are given by

u1(x1, x2) = sinh(0.3(4x1 − 4) sin(8x2 − 4) exp(−(4x1 − 2.1)4)),

u2(x1, x2) =
1

25(4x1 − 2)2 + 25(4x2 − 2)2 + 1
,

u3(x1, x2) = tanh(15(x2 − (0.4 + 0.2x1))),

u4(x1, x2) =
x3
1 + x3

2

2
+ exp(−400(x1 − 0.5)2 − 400(x2 − 0.5)2).

9



In Figure 2 we show a graphical representation of such analytic solutions defined on Ω = [0, 1]2. Such
problems are also studied in recent works (see e.g. [16, 20, 24]). They are good and diversified examples for
testing new adaptive refinement algorithms.

u1(x1, x2) u2(x1, x2)

u3(x1, x2) u4(x1, x2)

Figure 2: Exact solutions of PDE problems.

As a measure of the accuracy of the numerical results, we compute the Root Mean Square Error (RMSE)
given by

RMSE =

√

√

√

√

1

Neval

Neval
∑

i=1

|u(ξi)− û(ξi)|2 =
1√

Neval

||u− û||2. (14)

Here in (14) the evaluation error is carried out on a grid of Neval = 40 × 40 evaluation points, which are
defined by ξi, i = 1, . . . , Neval. Additionally, since we take an interest in analyzing the stability of RBF
collocation methods, we report the Condition Number (CN) of the collocation matrix in (4) (or (7)) by
making use of the Matlab command cond.

Therefore, in order to numerically analyze the performance of our iterative algorithm on the unit square
domain Ω = [0, 1]2, we start the adaptive process by taking two sets of grid collocation points, which

consist of N
(1)
1 = 529 and N

(1)
2 = 1089 interior and boundary points. In Table 2 we show a summary of

results that we obtain by applying the nonsymmetric method and the symmetric one via M6 with ε = 4,
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also providing the final number Nfin of discretization points used to get the final result. In particular, we
note that the value of τ regarding the refinement phase based on the AS scheme is chosen on the basis
of the considered test problem, whereas the lower and upper tolerances related to the MARS scheme are
given by (τlow, τupp) = (10−8, 10−4). Furthermore, Figures 3–4 show graphical representations of the final
discretization points obtained for both Kansa’s and Hermite-based approaches.

Nonsymmetric Symmetric

Problem τ Nfin RMSE CN Nfin RMSE CN

u1 1 · 10−4 1139 2.53E−5 9.61E+12 1043 9.95E−5 2.79E+13

u2 2 · 10−2 1513 1.80E−4 1.27E+13 1443 1.53E−4 6.13E+13

u3 5 · 10−4 913 1.39E−4 8.33E+12 789 5.56E−4 2.34E+13

u4 5 · 10−4 861 3.75E−4 7.47E+12 821 1.33E−3 3.45E+13

Table 2: Results obtained by applying the AS-MARS method via M6 with ε = 4 and (τlow, τupp) =
(10−8, 10−4). Tests have been carried out on the unit square domain.

From an analysis of these results, we observe as our algorithm works rather well for each of the problems
studied, giving us back the expected level of accuracy. However, in general, from Table 2 it seems to be
evident that Kansa’s method provides slightly more precise results than Hermite approach. This fact is also
proven by our further tests reported in Table 3, where we compare – for the sake of brevity only for the
nonsymmetric method – the results obtained by varying the value of the shape parameter ε between 3 and
5 in the case of M6 and M4 basis functions. As regards the stability, we remark that the CN has a order
of magnitude around 10+10–10+13. Although the RBF methods can suffer from severe ill-conditioning (in
particular with very smooth kernels), the use of RBFs with limited smoothness along with the refinement
strategies described in Section 3 allow us to keep under control the ill-conditioning avoiding the number of
collocation points excessively grows. Then, from Figures 3–4 we can note as our adaptive scheme identifies
clearly what are the areas that need to be refined. The main differences on the distribution of discretization
points are essentially due to direct response of the numerical method with respect to the adaptive refinement
technique. This is evident, for instance, if we compare Figures 3–4 on top-right, because in practice in Table
2 we do not observe significant changes in terms of both accuracy and stability. In addition, in order to
conclude this study, in Figure 5 we report some graphs of the approximate RBF solution false colored by
maximum absolute error.

In order to prove that our adaptive scheme is helpful, in Table 4 we show the results obtained in a specific
case by applying the non-adaptive nonsymmetric (Kansa) and symmetric (Hermite) collocation schemes. In
particular, here, for the sake of brevity we focus on the approximation of u2 considering some sets of gridded
points and using M6 with ε = 4. Comparing computational errors with those of Tables 2 and 3, on the
one hand we can observe that a similar level of precision can be achieved only when we use more than 2000
collocation points. On the other hand, we note as with a similar number of points the accuracy in Table 4
is about one order of magnitude lower than the one obtained by our adaptive scheme (cf. Table 2).

Finally, we test our adaptive refinement algorithm considering the previous four Poisson-type problems
on an irregular domain Ω ⊂ [0, 1]2, which is bounded by the parametric curve [31]

Γ(θ) =
1

9
(17− 8 cos(3θ)) .

In these experiments we are also interested in showing that the combination between AS and MARS turns
out to be advantageous in terms of accuracy. In particular, in Table 5 we compare the results obtained by
applying the AS scheme (Procedure 1 only) and the AS-MARS (Procedure 1 + 2) via M6 with ε = 4. Lower
and upper tolerances used in these tests are given by (τlow, τupp) = (10−8, 10−5), while the initial numbers of

gridded points are N
(1)
1 = 441 and N

(1)
2 = 1089. However, since these numbers refer to the points contained
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Figure 3: Final discretization points obtained by applying the AS-MARS scheme on the unit square domain.
Tests have been carried out by using the nonsymmetric method via M6 with ε = 4.

in the unit square domain, the true initial numbers of points in the irregular shape domain are N
(1)
1 = 198

and N
(1)
2 = 460, with N

(1)
I1

= 138 and N
(1)
I2

= 360 gridded interior points, and N
(1)
B1

= 60 and N
(1)
B2

= 100
boundary points. All tests have been done by using Kansa’s method. From Table 5 we can then remark as
the AS-MARS method outperforms the AS scheme applied alone, enabling us to reduce the computational
errors. This general benefit however results in a larger final number of collocation points and, obviously,
slightly higher CNs and execution times (that are measured in seconds). The final discretization points
obtained by applying the AS-MARS scheme are given in Figure 6.

5. Conclusions and future work

In this paper we presented a new adaptive refinement algorithm for solving elliptic Poisson-type PDE
problems. This scheme is applied to Kansa’s and Hermite-based methods. More precisely, the proposed
algorithm is characterized by two stages. The first phase involves the AS scheme, where we compare two
approximate RBF solutions that are computed on a coarser and a finer set of collocation points. The second
phase is instead based on the MARS technique depending on an error indicator, which enables us an adaptive
addition/removal of points on the basis of information extracted from error estimate.
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Figure 4: Final discretization points obtained by applying the AS-MARS scheme on the unit domain. Tests
have been carried out by using the symmetric method via M6 with ε = 4.

As future work we propose to further improve our adaptive scheme to model other types of PDEs with
any possible discontinuity or singularity. Additionally, since the method requires to solve two linear systems
at each iteration to obtain the error indicators, its use turns out to be quite expensive in case of large scale
problems. Further studies in this direction will therefore be necessary in future works.
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Figure 6: Final discretization points obtained by applying the AS-MARS scheme on the irregular domain.
Tests have been carried out by using the nonsymmetric method via M6 with ε = 4.

problems, Eng. Anal. Bound. Elem. 87 (2018) 173–183.
[16] S. Kaennakham, N. Chuathong, An automatic node-adaptive scheme applied with a RBF-collocation meshless method,

Appl. Math. Comput. 348 (2019) 102–125.
[17] E.J. Kansa, Multiquadrics–A scattered data approximation scheme with applications to computational fluid-dynamics–II

solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (1990) 147–161.
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