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Abstract In any ecosystem, chaotic situations may arise from equilibrium state for different reasons.6

To overcome these chaotic situations sometimes the system itself exhibits some mechanisms of self-7

adaptability. In this paper, we explore an eco-epidemiological model consisting of three aquatic groups:8

phytoplankton, zooplankton and marine free viruses. We assume that the phytoplankton population9

are infected by external free viruses and zooplankton get affected on consumption of infected phyto-10

plankton; also the infected phytoplankton do not compete for resources with the susceptible one. In11

addition, we model a mechanism by which zooplankton recognize and avoid infected phytoplankton,12

at least when susceptible phytoplankton are present. The zooplankton extinction chance increases on13

increasing the force of infection or decreasing the intensity of avoidance. Further, when the viral infec-14

tion triggers chaotic dynamics, high zooplankton avoidance intensity can stabilize again the system.15

Interestingly, for high avoidance intensity, nutrient enrichment has a destabilizing effect on the system16

dynamics, which is in line with the paradox of enrichment. Global sensitivity analysis helps to identify17

the most significant parameters that reduce the infected phytoplankton in the system. Finally, we18
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compare the dynamics of the system by allowing the infected phytoplankton also to share resources19

with the susceptible phytoplankton. A gradual increase of the virus replication factor turns the system20

dynamics from chaos to doubling state to limit cycle to stable and the system finally settles down to21

the zooplankton-free equilibrium point. Moreover, on increasing the intensity of avoidance, the system22

shows a transcritical bifurcation from the zooplankton-free equilibrium to the coexistence steady state,23

and remains stable thereafter.24

Keywords Phytoplankton · Zooplankton · Free-virus · Avoidance behavior · Chaos · Global25

sensitivity.26

1 Introduction27

Phytoplankton lie at the bottom of the aquatic trophic chains. Due to presence of chlorophyll pigment28

in the cells, phytoplankton grow photoautotrophically in aquatic environments [1]. These unicellular29

organisms are basically the energy sources, from which energy flows along the food webs up to the30

higher trophic levels. Any potential changes in these primary producers can therefore affect the en-31

tire food chain structure. Marine viruses have been recognized to play a major role in altering the32

metabolic capacity as well as the biochemical compositions of their algal hosts [2–6]. Moreover, many33

studies have illustrated the ecological importance of marine viruses as agents causing mortality in ma-34

rine phytoplankton communities [7–11]. In the last few decades, worldwide attention has been drawn35

towards the impacts of diseases in ecological systems [12,13]; in particular, algal-virus correlations and36

their effects on interspecies competition as well as on environmental issues [14,15].37

Marine viruses are exceptionally abundant, highly host-specific and have the feature of possibly38

infect the algae. There are two predominant ways for viral replication: the lytic and lysogenic cycle.39

Most of the non-enveloped and few enveloped marine viruses replicate through lytic cycles. Namely,40

virus particles get attached to their algal host cells and inject genome into the cell. Virus replication is41

performed using the hosts genetic machinery. After the completion of replication, the cell wall breaks42

and progeny virions are released into the environment. Viral infection alters the size, nutritional value43

and cell lipid membrane characteristics of the host cells. It also directly impacts on the grazing behavior44

and growth rate of zooplankton [16,17]. The coccolithophores Emiliania huxleyi are frequently found45

to be one of the dominant phytoplankton species in many pelagic ecosystems. In favourable water46

conditions, E. huxleyi can grow extremely rapidly and it forms very extensive blooms especially at high47

latitude [18]. It is well documented that E. huxleyi blooms are exterminated by viral lysis, with the48
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viruses unambiguously identified as EhV [19]. During viral infection E. huxleyi experiences remarkable49

structural, biochemical and physiological changes [5,20,21], which in turn affect the herbivory grazing.50

In the normal bloom conditions when viral infection has not yet started, the primary consumers51

like copepods, randomly feed on E. huxleyi and other phytoplankton species. In the presence of viral52

infection, however, zooplankton exhibit some grazing selection. Some zooplankton (e.g. Acartia tonsa)53

tend to avoid infected E. huxleyi cells in response to the chemicals released by the infected cell through54

their surface [18,20]. Under stress (i.e., in the presence of grazers) algal cells liberate a moderate amount55

of chemicals such as dimethyl sulfide (DMS) and amino acids [22–25], which give signals to their grazers.56

Feeding on them will be poisonous to the grazers, so they prefer to avoid them. But during viral infection57

the DMS release increases considerably and becomes toxic [26,27]. In such conditions, Acartia tonsa58

preferably ingests less infected than uninfected E. huxleyi cells. A further effect of consumed high59

lyase E. huxleyi cells is the increase of zooplankton mortality, caused by the reaction of the produced60

dimethyl gas and of the E. huxleyi’s calcium carbonate cell with the zooplankton’s internal pH, with61

the consequent destruction of the latter [28].62

Predator-prey systems with viral infection affecting the prey have been considered in [29–32], while63

the role of viral infection in the marine trophic chains has been investigated more specifically in [33–36].64

In [37] viral infection as a cause of recurrent phytoplankton blooms has been analyzed by formulating65

a three-species model consisting of susceptible and infected phytoplankton and their potential grazer.66

A virally infected phytoplankton-zooplankton system considering both susceptible and infected phy-67

toplankton being able to release toxic substances appears in [38]. The viral infection and “allelopathic68

agents” are shown to possess a major role for the control of phytoplankton blooms. The dynamics of69

ecological interactions caused by the infected phytoplankton where the disease is transmitted through70

contact have been investigated for instance in [39–42], while other models have been formulated to take71

into account that the disease is transmitted also through vectors or directly from the environment,72

e.g., pollutants, toxicant, free viruses etc., [14,15], with the typical assumption that both the healthy73

and infected phytoplankton are equally likely to predation and infected phytoplankton has no negative74

impact on the growth of zooplankton.75

Ecological systems possess all the elements to produce chaotic dynamics [43]. Although chaos is76

commonly predicted by mathematical models, evidence for its existence in the natural world is scarce77

and inconclusive. Even the characteristics of chaos and its presence in nature are much discussed in78

ecology [44–47]. Recent developments in dynamical system theory consider chaotic fluctuations of a79
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dynamical system as highly desirable because fluctuations allow such a system to be easily controlled.80

To assess the ecological implications of chaotic dynamics in different natural systems, it is important to81

explore changes in the dynamics when structural assumptions of the system are varied. One approach82

to the study of the dynamics of ecological community is via its food web and the coupling of interacting83

species with each other. Hastings and Powell [48] produced chaos in a three species food chain model84

with Holling type II functional responses. Chattopadhyay and Sarkar [49] modified the Hastings and85

Powell [48] model by introducing toxin producing parameter and its negative effect on zooplankton86

grazing on phytoplankton. Jørgensen [47] showed that chaos may appear in the planktonic system due87

to size variation in zooplankton species. According to the allometric principle of Peters [50], all the88

parameters vary as functions of size. Mandal et al. [51] applied thermodynamic principle (exergy) in89

the Hastings and Powell’s model of phytoplankton, zooplankton and fish, showing that on gradually90

decreasing the zooplankton size the model dynamics changes from an equilibrium state to chaotic91

conditions.92

In the present investigation, the key contribution is represented by the modeling of grazer zoo-93

plankton avoidance of virally infected phytoplankton in the presence of susceptible phytoplankton94

[17]. The variation in the zooplankton’s avoidance degree of infected phytoplankton when the sus-95

ceptible phytoplankton levels change may have a relevant impact for the species survival and for the96

understanding of the internal system dynamics. The previous related model of [52] dealing with the97

avoidance phenomenon in the presence of toxic phytoplankton, showed that the strength of avoidance98

deeply influences the dominance of the toxic species. In contrast to the other former studies [14,15], a99

negative effect of infected cell consumption on zooplankton, arising from the toxic chemical compounds100

released by viral cell lysis [17,28], is incorporated in the present model. We study the system dynam-101

ics in two cases: at first we assume that the infected phytoplankton do not compete with susceptible102

phytoplankton for resources, while in the second case, the resources are assumed to be shared by sus-103

ceptible and infected phytoplankton. The model contains the zooplankton feeding avoidance of infected104

phytoplankton as a function of the abundance of susceptible phytoplankton. Our objective is to assess105

whether the avoidance behavior enhances the survival and dominance of infected phytoplankton over106

its susceptible competitors, as well as its effect on the zooplankton. In chaotic situations, the negative107

effect of infected phytoplankton on zooplankton may reduce the grazing pressure of zooplankton and108

as a result the system may recover from chaos and return to a stable state.109
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The rest of the paper is organized as follows: in the next section, we formulate the mathematical110

model incorporating the zooplankton avoidance of infected phytoplankton in the presence of the sus-111

ceptible one. The mathematical analysis in Section 3 contains the analytical findings of the model;112

Hopf-bifurcation analysis is performed by taking the avoidance intensity as bifurcation parameter. In113

Section 4, we numerically investigate the dynamical behavior of the system for the different parame-114

ters setups. In so doing we validate the criteria obtained from the mathematical analysis illustrated115

in Section 3. This section also contains the investigation of the system behavior when susceptible and116

infected phytoplankton compete for common resources. A final discussion concludes the paper.117

2 The mathematical model118

Viruses represent the most abundant entities in the sea and play a major role in the control of oceans119

life. However, not much is known about marine viruses and their ecological role in aquatic ecosystems,120

their interaction with other species, the spread of diseases and their impact on plankton blooming. We121

consider an ecological system consisting of susceptible phytoplankton (S), infected phytoplankton (I),122

zooplankton (Z) and the free viruses in the environment causing the infection (V ) under the following123

assumptions:124

1. In the absence of viral disease and the grazer zooplankton, the susceptible phytoplankton grow125

logistically with intrinsic growth rate a and carrying capacity K.126

2. The susceptible phytoplankton S, becomes infected by direct contact with free viruses, V . This is

modeled via the function

T0(S, V ) =
βSV

K1 + V

with transmission rate β and half saturation constant K1 [14].127

3. Zooplankton predate on both susceptible and infected phytoplankton; while they benefit the grazing128

of the former [14,15], uptake of infected phytoplankton instead inhibits them [17,26,27].129

4. The Holling type-II functional response to the grazer zooplankton is assumed for susceptible and

infected phytoplankton respectively given by

fS =
α1SZ

d1 + S
, fI =

α2IZ

d2 + I
,

where d1 and d2 denote the half-saturation constants for the susceptible and infected phytoplankton.130

5. Several experimental outcomes reveal that whenever abundance of susceptible phytoplankton is131

high, zooplankton prefer to graze on susceptible phytoplankton and avoid ingesting infected species132
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[17]. Also, zooplankton graze on infected phytoplankton in the presence of susceptible phytoplank-133

ton. Moreover, infected phytoplankton has no significant influence on the predation of susceptible134

phytoplankton, but the abundance of susceptible phytoplankton greatly reduces the ingestion of135

infected phytoplankton.136

6. To account for the fact that the presence of susceptible phytoplankton abundance greatly reduces

the ingestion of infected phytoplankton, we modify the predation rate on infected phytoplankton

by introducing an extra term γS in the denominator of the relevant functional response as [52],

f∗I =
α2IZ

d2 + I + γS
,

where γ measures the intensity of the avoidance of infected phytoplankton by zooplankton in the137

presence of susceptible phytoplankton.138

7. γ = 0 produces a system where zooplankton do not discriminate between susceptible and infected139

phytoplankton; whereas high γ results in a decrease in the uptake of infected phytoplankton by140

zooplankton in the presence of susceptible phytoplankton, although it does not affect the uptake141

of susceptible phytoplankton directly. Thus, higher values of γ result in the lesser mortality of the142

zooplankton due to ingestion of infected phytoplankton. Zooplankton natural mortality is taken as143

a linear function, νZ.144

8. The infected phytoplankton fail to contribute in the reproduction process due to their inability to145

compete for resources [53,54] as the energy required for viral replication of infected phytoplankton146

is negligible, and they are removed by cell lysis before having the capability of reproducing [55,147

56]. Further, the infected phytoplankton are assumed not to exert intraspecific pressure on the148

susceptible phytoplankton [37].149

9. From the time of infection to its lysis, within the body of the infected phytoplankton viruses150

replicate. Let µ represent the infected phytoplankton mortality rate and b� 1 the virus replication151

factor, i.e., the average number of viruses released in the environment upon infected phytoplankton152

lysis. The decay rate of virus is assumed to be constant, δ. The virus is removed through the153

infection of susceptible phytoplankton at the rate T0(S, V ).154

Based on the above assumptions, the schematic diagram for the interactions among susceptible phyto-155

plankton, infected phytoplankton, zooplankton and free viruses is depicted in Fig. 1. Thus, we obtain156
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Fig. 1 Schematic diagram of system (1).

the following system of differential equations,157

dS

dt
= aS

(
1− S

K

)
− α1SZ

d1 + S
− βSV

K1 + V
,

dI

dt
=

βSV

K1 + V
− α2IZ

d2 + I + γS
− µI,

dZ

dt
=
λ1α1SZ

d1 + S
− λ2α2IZ

d2 + I + γS
− νZ, (1)

dV

dt
= bµI − βSV

K1 + V
− δV.

All parameters involved in the system (1) are assumed to be positive, and their biological meanings158

are given in Table 1.159

160

3 Mathematical Analysis161

We first have the following theorem regarding the positivity property, boundedness and permanence162

of the system (1).163

Theorem 1 System (1) is positively invariant and bounded in R4
+, and the feasible region for system164

(1) is the following set165

Ω =

{
(S, I, Z, V ) : 0 ≤ S + I + Z +

ν

bµ
V ≤M

}
,
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Table 1 The meaning of the model parameters and their hypothetical values, chosen within ranges prescribed

in the literature [14,15].

Parameters Descriptions Values Units

a Intrinsic growth rate of susceptible phytoplankton 0.75 day−1

K Carrying capacity of susceptible phytoplankton 108 cells L−1

α1 Consumption rate of susceptible phytoplankton by zooplankton 0.045 day−1

d1 Half-saturation constant for the consumption of susceptible 2 cells L−1

phytoplankton by zooplankton

β Force of infection 0.65 day−1

K1 Half-saturation constant for the infection of susceptible 3 cells L−1

phytoplankton by free-viruses

α2 Consumption rate of infected phytoplankton by zooplankton 0.045 day−1

d2 Saturation constant for the consumption of infected 2 cells L−1

phytoplankton by zooplankton

γ Intensity of avoidance 3.8 —

µ Death rate of infected phytoplankton 0.16 day−1

λ1 Growth of zooplankton on consumption of susceptible phytoplankton 0.75 —

λ2 Death of zooplankton on consumption of infected phytoplankton 0.61 —

ν Death rate of zooplankton 0.012 day−1

b Virus replication factor 35 —

δ Decay rate of free viruses 1.23 day−1

which is compact and invariant with respect to system (1). Further, let the following inequalities be166

satisfied, where Sa, Im, Zm and Vm are defined in the proof:167

a >
βVm
K1

+
α1Zm
d1

, β >
Im
Sa

(
α2Zm
d2

+ µ

)
,
λ1α1Sa
d1 + Sa

> ν +
λ2α2Im
d2

. (2)

Then the system (1) is uniformly persistent.168

Proof System (1) has a Lipschitz-continuous right hand side, so that the existence and uniqueness169

theorem for its solutions holds. Observe further that it is homogeneous, so that the coordinate axes170

and (hyper)planes cannot be crossed, being themselves solutions. Therefore, any trajectory of the171

system (1) starting from an initial state in R4
+ remains trapped in R4

+.172

We define a new variable U = S + I + Z +
ν

bµ
V. For an arbitrary σ > 0, by summing up the173

equations in system (1), we find174

dU

dt
+ σU = (a+ σ)S − aS2

K
− {(µ− ν)− σ}I − (ν − σ)Z − ν

bµ
(δ − σ)V − (1− λ1)α1SZ

d1 + S

− (1 + λ2)α2IZ

d2 + I + γS
− ν

bµ

βSV

K1 + V
.
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Since λ1 ≤ 1, after choosing σ ≤ min{(µ− ν), ν, δ}, we obtain the following upper bound:175

dU

dt
+ σU ≤ (a+ σ)S − aS2

K
≤ K(a+ σ)2

4a
= L.

Applying standard results on differential inequalities [57], we have176

U(t) ≤ e−σt
(
U(0)− L

σ

)
+
L

σ
≤ max

{
L

σ
,U(0)

}
= M.

Thus, there exists an M > 0, depending only on the system parameters, such that U(t) ≤ M . Hence,177

the solutions of system (1) and consequently all the system populations are ultimately bounded above.178

Since

lim
t→∞

sup

[
S(t) + I(t) + Z(t) +

ν

bµ
V (t)

]
≤M

and lim
t→∞

S(t) ≤ K, there exist T1, T2, T3, T4 > 0 such that S(t) ≤ K ∀ t ≥ T1, I(t) ≤ Im ∀ t ≥ T2,179

Z(t) ≤ Zm ∀ t ≥ T3, V (t) ≤ Vm for all t ≥ T4, where Im, Zm and Vm are finite positive constants with180

K + Im +Zm + Vm ≤M . Hence, for all t ≥ max{T1, T2, T3, T4} = T , S(t) ≤ K, I(t) ≤ Im, Z(t) ≤ Zm181

and V (t) ≤ Vm. Let us define M1 = max{K, Im, Zm, Vm}.182

Now, from the first equation of system (1), we have183

dS

dt
≥ aS

(
1− S

K

)
− βSVm

K1
− α1SZm

d1
.

Hence, it follows that for some Sa,184

lim
t→∞

inf S(t) ≥ K

a

(
a− βVm

K1
− α1Zm

d1

)
= Sa.

From the second equation of system (1), we have185

dI

dt
≥ βSaV

K1 + V
− α2ZmIm

d2
− µIm > 0

provided that186

V (t) >
K1Im

(
α2Zm

d2
+ µ
)

βSa − Im
(
α2Zm

d2
+ µ
) .

Let Va > 0 be such that

K1Im

(
α2Zm

d2
+ µ
)

βSa − Im
(
α2Zm

d2
+ µ
) < Va < Vm,

then
dI

dt
> 0 for V (t) ≥ Va > 0, for all t > T . So, there exist T5 > 0 and 0 < Ia < Im such that187

I(t) ≥ Ia for all t ≥ T5. Therefore, for all t ≥ max{T, T5} = T ′ if Va ≤ V (t) ≤ Vm, then Ia ≤ I(t) ≤ Im.188
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From the third equation of system (1), we have189

dZ

dt
≥ Z

(
λ1α1Sa
d1 + Sa

− λ2α2Im
d2

− ν
)
.

Hence, it follows that for some Za,190

lim
t→∞

inf Z(t) ≥ Z(0) = Za

provided that191

λ1α1Sa
d1 + Sa

> ν +
λ2α2Im
d2

.

Let M2 = min{Sa, Ia, Za, Va}. For M2 to be positive, conditions in (2) must hold. Hence, the theorem192

follows.193

3.1 The ecosystem in the absence of free-viruses194

In the absence of viral disease in phytoplankton, system (1) reduces to the following simple subsystem,195

dS

dt
= aS

(
1− S

K

)
− α1SZ

d1 + S
,

dZ

dt
=
λ1α1SZ

d1 + S
− νZ, (3)

whose dynamics have been well studied [58]. Here, we summarize its dynamics as follows. System (3)196

has three feasible equilibria.197

1. The plankton-free equilibrium e0 = (0, 0), which is always a saddle.198

2. If K(λ1α1− ν) < d1ν, then the zooplankton-free equilibrium e1 = (K, 0) is globally asymptotically199

stable.200

3. If K(λ1α1 − ν) > d1ν and K <
d1(λ1α1 + ν)

λ1α1 − ν
, then the coexistence equilibrium e∗ = (S∗, Z∗) is

globally asymptotically stable, where

S∗ =
d1ν

λ1α1 − ν
, Z∗ =

λ1ad1{K(λ1α1 − ν)− d1ν}
K(λ1α1 − ν)2

.

4. If K(λ1α1−ν) > d1ν and K >
d1(λ1α1 + ν)

λ1α1 − ν
, then there is a unique globally asymptotically stable201

limit cycle around the coexistence equilibrium e∗ = (S∗, Z∗).202
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3.2 Equilibrium analysis of full system (1)203

System (1) exhibits five non-negative equilibria, of which the origin E0 = (0, 0, 0, 0) and the point

with only susceptible phytoplankton E1 = (K, 0, 0, 0) are always feasible. The disease-free equilibrium

E2 = (S2, 0, Z2, 0), with

S2 =
νd1

λ1α1 − ν
, Z2 =

K(λ1α1 − ν)− νd1
K(λ1α1 − ν)

is feasible provided the following inequality holds204

K(λ1α1 − ν)− νd1 > 0. (4)

The zooplankton-free equilibrium E3 = (S3, I3, 0, V3) has the populations

S3 =
K{aK1 + V3(a− β)}

a(K1 + V3)
, I3 =

KβV3{aK1 + V3(a− β)}
aµ(K1 + V3)2

,

where V3 is a positive root of the quadratic205

a2V
2 + a1V + a0 = 0, (5)

with coefficients206

a2 = aδ, a1 = 2aK1δ − (b− 1)βK(a− β), a0 = aK1[δK1 − βK(b− 1)].

A necessary condition for feasibility is then S3 ≥ 0, which entails207

aK1 + V3(a− β) > 0. (6)

Because a2 > 0, equation (5) has exactly one positive root if a0 < 0. Thus, sufficient conditions for E3208

to be feasible are given by209

aK1 + V3(a− β) > 0, βK(b− 1)− δK1 > 0. (7)

In case the latter is not satisfied, equation (5) has either two or no positive roots.210

Coexistence E∗ = (S∗, I∗, Z∗, V ∗) can be completely characterized. It has the populations:211

Z∗ =
d1 + S∗

α1

[
a

(
1− S∗

K

)
− βV ∗

K1 + V ∗

]
, I∗ = F1(S∗), V ∗ =

K1F2(S∗)

β − F2(S∗)
, (8)

where212

F1(S) =
(d2 + γS)[ν(d1 + S)− λ1α1S]

λ1α1S − (d1 + S)(λ2α2 + ν)
= γC

(S − S−F1
)(S0

F1
− S)

S − S∞F1

, C =
α1λ1 − ν

α1λ1 − α2λ2 − ν
, (9)

S0
F1

=
νd1

α1λ1 − ν
, S−F1

= −d2
γ
< 0, S∞F1

=
d1(α2λ2 + ν)

α1λ1 − α2λ2 − ν
, (10)

F2(S) =
ν(d1 + S)− λ1α1S

ν(d1 + S)− (λ1 + λ2)α1S

[
a

(
1− S

K

)
− µα1λ2(d2 + γS)

λ1α1S − (d1 + S)(λ2α2 + ν)

]
(11)
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and S∗ is positive root of the equation213

F1(S) = Φ(S), Φ(S) =
1

bµ
F2(S)

[
S + δ

K1

β − F2(S)

]
. (12)

Analyzing the coefficients in F1, by taking214

α1λ1 ≥ α2λ2 + ν (13)

it follows that C > 0 and then 0 ≤ S0
F1
≤ S∞F1

. Indeed the opposite case in (13) leads to F1(S) < 0 for215

S ≥ 0, which is not feasible. Further, the case S0
F1
≤ 0 ≤ S∞F1

is impossible, giving a contradiction on216

the signs of the coefficients of F1. Finally, F1(S) ≥ 0 for IF1>0 = S0
F1
≤ S < S∞F1

, which is the only217

range of interest where to seek a solution of (12) in what follows.218

We now perform the qualitative study of Φ(S) in steps. As mentioned above, we concentrate on219

the interval IF1>0 in which F1 is feasible, because the solution of the intersection problem (12) must220

be feasible, and therefore lie in this range.221

First of all, we concentrate on F2(S). This function can be rewritten as follows:222

F2(S) =
C

S∞F2
− S

[
a(S0

F1
− S)

(
1− S

K

)
− µα1λ2F1(S)

]
= C

S0
F1
− S

(S∞F2
− S)(S − S∞F1

)
Ψ(S),

S∞F2
=

νd1
α1(λ1 + λ2)− ν

, Ψ(S) = a

(
1− S

K

)
(S − S∞F1

)− µα1λ2(S − S−F1
) =

2∑
k=0

θkS
k,

θ2 = − a

K
< 0, θ1 = a

(
S∞F1

K
+ 1

)
− µα1λ2, θ0 = −aS∞F1

+ µα1λ2S
−
F1
< 0.

Thus, note that in view of (13) and (9), 0 < S∞F2
≤ S0

F1
. Also F2(S0

F1
) = 0, the same zero as for F1(S).223

The parabola Ψ is concave and it may or may not have real roots Ψ± depending on the sign of224

its discriminant ∆Ψ = θ21 − 4θ0θ2. If ∆Ψ < 0, it follows Ψ(S) < 0 for every S ∈ R and consequently225

F2(S) < 0. This situation is illustrated in case (Z1) below. In case the real roots Ψ± exist, there are226

several subcases that need to be analysed based on their location on the real axis with respect to the227

three relevant fixed knots, arranged, as we know, in the following order 0 < S∞F2
< S0

F1
< S∞F1

. To228

study these various situations, the signs of S−S∞F1
, S0

F1
−S and S∞F2

−S need to be considered. In the229

interval IF1>0, we find S − S∞F1
< 0, S0

F1
− S < 0 and S∞F2

− S < 0. By coupling them with the study230

of F2, we find the following results.231

(Z1) Here ∆Ψ < 0 and Ψ(S) < 0, so that F2(S) > 0 for every S ∈ IF1>0.232

(Z2) ∆Ψ > 0; Ψ± lie both to the left or both to the right of IF1>0. Then F2(S) > 0 for every S ∈ IF1>0.233

(Z3) ∆Ψ > 0; if S0
F1
< Ψ− < Ψ+ < S∞F1

, then F2(S) > 0 for S0
F1
< S < Ψ− and for Ψ+ < S < S∞F1

.234

(Z4) ∆Ψ > 0; if Ψ− < S0
F1
< Ψ+ < S∞F1

, then F2(S) > 0 for Ψ+ < S < S∞F1
.235
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(Z5) ∆Ψ > 0; if S0
F1
< Ψ− < S∞F1

< Ψ+, then F2(S) > 0 for S0
F1
< S < Ψ−.236

(Z6) ∆Ψ > 0; if Ψ− < S0
F1
< S∞F1

< Ψ+, then F2(S) < 0 for every S ∈ IF1>0 and consequently from (12)237

also Φ(S) < 0 so that no feasible intersection can exist.238

We now examine the possibility of solving (12) in the feasible range IF1>0, for each case. Note that239

F2 has the same zero S0
F1

of F1 and contains in its definition the latter function, so that it inherits its240

vertical asymptote too, S∞F1
.241

(Z1)-(Z2) In this situation F2(S) > 0 for every S ∈ IF1>0. In view of the above remarks, its graph must raise up242

from (S0
F1
, 0) to infinity as S approaches from the left S∞F1

. Note then that Y = β always intersects243

the graph of F2. We now construct the function Φ in steps. The function Π̃(S) = β − F2(S) is244

positive for S0
F1
< S ≤ A+ where it is zero. Then Π̃(S) = [Π̂(S)]−1 is positive in the same interval,245

but has a vertical asymptote at S = A+ and negative in (A+, S∞F1
], at which point it has a zero.246

Thus Π(S) = S + Π̂(S) is nonnegative in {[S0
F1
, A+]} ∪ {[Π+, S∞F1

]} where Π+ denotes a zero of247

Π(S). Finally Φ(S) = (bµ)−1F2(S)Π(S) has zeros at S0
F1

and Π+ and from each one of these points248

on the S axis, a branch emanates raising up to infinity, the former (i) at A+ and the second one (ii)249

at S∞F1
. Comparing this behavior with the one of F1(S) described formerly, the intersection with250

the branch (ii) may not always exists, as the F2 and F1 are asymptotic to each other; indeed they251

have the same vertical asymptote there. Another one might occur with branch (i), if the following252

sufficient condition on the slopes of the two functions is guaranteed, so that the functions interlace,253

namely254

F ′1(S0
F1

) > Φ′(S0
F1

). (14)

(Z3) This case gives rise to two subcases, as F2 has one positive hump connecting the points (S0
F1
, 0)255

and (Ψ−, 0) and the branch tending to the vertical asymptote at S∞F1
from (Ψ+, 0), depending on256

whether Y = β intersects or not the hump of F2.257

(Z3a) Y = β has three intersections with F2, with abscissae A−, A0, A+. Then Π̃(S) = β−F2(S) has258

zeros at these points and is positive in [S0
F1
, A−] and in [A0, A+]. Both Π̂(S) and Π(S) have259

asymptotes at A−, A0 and A+, as well as the resulting Φ(S), which is nonnegative in each one of260

the following intervals: [S0
F1
, A−], [A0, Π−], [Π+, A+], [A∗, S∞F1

). Thus Φ has four branches that261

either raise up to or come down from infinity and join the points on the S axis with abscissae262

S0
F1

, Π−, Π+, A∗. Thus F1 is bound to intersect the two intermediate of them, is asympototic263

to the rightmost one, and might intersect the leftmost one if the condition (14) holds.264
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(Z3b) In this subcase only one intersection of Y = β with F2 exists, giving rise to the zero A+ of Π̃.265

The latter function is positive for S0
F1
≤ S ≤ S+, Π̂, Π and Φ possess a vertical asymptote266

at S = A+. Thus Π is nonnegative in the intervals [S0
F1
, A−], [A0, Π−], [Π+, A+), [A∗, S∞F1

).267

Comparing with F1 an intersection occurs with the branch lying in [Π+, A+) and a second one268

might occur in the first interval [S0
F1
, A−] if the slope of F1 in this case is small enough, precisely269

if270

F ′1(S0
F1

) < Φ′(S0
F1

). (15)

(Z4) The function F2 is intercepted by Y = β only once, as it possesses only one nonnegative branch271

in [Ψ+, S∞F1
). It follows that Π̃ is nonnegative in [S0

F1
, A+], Π̂ is also, but has a vertical asymptote272

at S = A+, the same occurs for Π, which is nonnegative also in [Π+, S∞F1
). As a consequence, Φ273

has two branches raising up to the vertical asymptotes from the points of abscissa Ψ+ and Π+. An274

intersection of F1 is thus guaranteed with the leftmost branch.275

(Z5) In this case the nonnegative part of the function F2 is a hump joining the points on the S axis with276

abscissae S0
F1

and Ψ−. Again two subcases arise, whether Y = β does or does not intercept this277

hump.278

(Z5a) Two intersections of Y = β with F2 must occur with abscissae within [S0
F1
, Ψ−]. Then Π̃ is279

nonnegative in [S0
F1
, A−] and [A+, S∞F1

) and similarly for Π̂, but for the fact that at A− and A+
280

vertical asymptotes occur and at S∞F1
there is a zero. For Π similar properties hold, but for the281

latter, and finally Φ results nonnegative in [S0
F1
, A−] and in [A+, Ψ−]. The intersection with F1282

exists always in this latter interval, and one further can occur in the former, if the condition283

(14) is satisfied.284

(Z5b) If Y = β lies entirely above F2, Π̃ > 0 on the whole IF1 > 0, Π̂ ≥ 0 in it, with Π̂(S∞F1
) = 0,285

Π shares the same property and moreover Π(S0
F1

) = Π(S∞F1
) = S∞F1

+ β−1, and finally Φ has a286

nonnegative hump exactly in the same interval where F2 does, [S0
F1
, Ψ−]. To have an intercept287

with F1 we must once more require the slope condition (15).288

Note that the conditions (14) and (15) can be explicitly evaluated, and namely simplify to289

F ′1(S0
F1

) = γC
S0
F1
− S−F1

S∞F1
− S0

F1

, Φ′(S0
F1

) =
1

bµ
F ′2(S0

F1
)

(
S0
F1

+
K1δ

β

)
, F ′2(S0

F1
) = −CΦ(S0

F1
). (16)



Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses 15

3.3 Stability analysis290

The Jacobian J of system (1) has three vanishing entries, namely J12 = J34 = J43 = 0. The other291

components are292

J11 = a

(
1− 2S

K

)
− d1α1Z

(d1 + S)2
− βV

K1 + V
, J13 = − α1S

d1 + S
, J14 = − K1βS

(K1 + V )2
,

J21 =
βV

K1 + V
+

α2γIZ

(d2 + I + γS)2
, J22 = − α2Z(d2 + γS)

(d2 + I + γS)2
− µ, J23 = − α2I

d2 + I + γS
,

J24 =
K1βS

(K1 + V )2
, J31 =

λ1d1α1Z

(d1 + S)2
+

λ2α2γIZ

(d2 + I + γS)2
, J32 = −λ2α2Z(d2 + γS)

(d2 + I + γS)2
,

J33 =
λ1α1S

d1 + S
− λ2α2I

d2 + I + γS
− ν, J41 = − βV

K1 + V
, J42 = bµ, J44 = −

(
δ +

K1βS

(K1 + V )2

)
.

The origin E0 is unstable, having the eigenvalues a > 0, −µ, −ν and −δ. Two eigenvalues factorize

in the case of E1,

−a < 0,
λ1α1K

d1 +K
− ν,

and the Routh-Hurwitz conditions on the remaining minor become

βK

K1
+ δ + µ > 0, µ

(
δ − (b− 1)βK

K1

)
> 0.

Stability thus holds if the following conditions are satisfied:293

δK1 − β(b− 1)K > 0, νd1 −K(λ1α1 − ν) > 0. (17)

At E2 the characteristic equation factorizes into the product of two quadratic equations,294

ρ2 + C1ρ+ C2 = 0, ρ2 + C3ρ+ C4 = 0, (18)

with C1 = J22(E2) + J44(E2) > 0, C2 = J22(E2)J44(E2) − J14(E2)J42(E2), C3 = −J11(E2), C4 =295

J13(E2)J31(E2) > 0, because the Jacobian entries simplify as follows:296

J11(E2) =
aS2

K
− α1S2Z2

(d1 + S2)2
, J13(E2) =

α1S2

d1 + S2
, J14(E2) = J24 =

βS2

K1
, J42(E2) = bµ,

J22(E2) =
α2Z2

d2 + γS2
+ µ, J31(E2) =

λ1d1α1Z2

(d1 + S2)2
, J32(E2) =

λ2α2Z2

d2 + γS2
, J44(E2) =

βS2

K1
+ δ.

In view of C1 > 0 and C4 > 0, all roots of the equations in (18) are either negative or have negative297

real parts if and only if C2 and C3 are positive. Thus, the equilibrium E2 is locally asymptotically298

stable provided299

δ

(
α2Z2

d2 + γS2
+ µ

)
+
βS2

K1

α2Z2

d2 + γS2
− µ(b− 1)βS2

K1
> 0, a(d1 + S2)2 > Kα1Z2. (19)
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One eigenvalue of the Jacobian J(E3) factorizes to provide the necessary stability condition300

λ1α1S3

d1 + S3
<

λ2α2I3
d2 + I3 + γS3

+ ν (20)

and other three are given by roots of the cubic301

ρ3 +B1ρ
2 +B2ρ+B3 = 0, (21)

where302

B1 = J11(E3) + J22(E3) + J44(E3),

B2 = J11(E3)J22(E3) + J11(E3)J44(E3) + J22(E3)J44(E3)− J14(E3)J42(E3)− J14(E3)J21(E3),

B3 = J11(E3)J22(E3)J44(E3)− J11(E3)J14(E3)J42(E3) + J14(E3)J21(E3)J42(E3)− J14(E3)J21(E3)J22(E3)

with303

J11(E3) =
aS3

K
, J13(E3) =

α1S3

d1 + S3
, J14(E3) = J24(E3) =

K1βS3

(K1 + V3)2
,

J21(E3) = J41(E3) =
βV3

K1 + V3
, J22 = µ, J23(E3) =

α2I3
d2 + I3 + γS3

,

J33(E3) =
λ1α1S3

d1 + S3
− λ2α2I3
d2 + I3 + γS3

− ν, J42(E3) = bµ, J44(E3) =
K1βS3

(K1 + V3)2
+ δ.

The roots of equation (21) are either negative or with negative real parts if and only if the Routh-304

Hurwitz conditions criterion are satisfied,305

B1 > 0, B3 > 0, B1B2 −B3 > 0, (22)

so that in such case and if (20) holds, E3 is locally asymptotically stable.306

At coexistence, note that the Jacobian has only one simplification, namely J33(E∗) = J∗33 = 0. The307

associated characteristic equation is308

ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ+ σ4 = 0, (23)

where309

σ1 = J∗11 + J∗22 + J∗44,

σ2 = J∗11J
∗
22 + J∗11J

∗
44 + J∗13J

∗
31 − J∗14J∗41 + J∗22J

∗
44 − J∗23J∗32 − J∗24J∗42,

σ3 = J∗11J
∗
22J
∗
44 − J∗11J∗23J∗32 − J∗11J∗24J∗42 + J∗13J

∗
31J
∗
22 + J∗13J

∗
31J
∗
44

−J∗13J∗21J∗32 + J∗14J
∗
21J
∗
42 − J∗14J∗22J∗41 − J∗23J∗32J∗44,

σ4 = J∗13J
∗
22J
∗
31J
∗
44 − J∗11J∗23J∗32J∗44 − J∗13J∗21J∗32J∗44 − J∗13J∗24J∗31J∗42

+J∗13J
∗
24J
∗
32J
∗
41 − J∗14J∗23J∗31J∗42 + J∗14J

∗
23J
∗
32J
∗
41.
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Again using the Routh-Hurwitz criterion, E∗, whenever feasible, is locally asymptotically stable if and310

only if the following conditions are satisfied,311

σ1 > 0, σ4 > 0, σ1σ2 − σ3 > 0, σ3(σ1σ2 − σ3)− σ2
1σ4 > 0. (24)

In summary, we have the following theorem.312

Theorem 2 The origin E0 is always unstable. The phytoplankton only equilibrium E1 is stable pro-313

vided condition (17) holds. The disease-free equilibrium E2, if feasible, is stable if the conditions in314

(19) hold. The zooplankton-free equilibrium E3, if feasible, is stable if conditions (20) and (22) hold.315

The coexistence equilibrium E∗, if feasible, is stable if the conditions in (24) hold.316

3.4 Nonexistence of periodic solutions317

Periodic solutions can be ruled out using the approach of [59]. We have the following result.318

Theorem 3 The system (1) has no periodic solution around the interior equilibrium E∗ if319

a+ α1 +
K1βS

∗

(K1 + V ∗)2
+ bµ+

α1S
∗

d1 + S∗
+

βV ∗

K1 + V ∗
+

α2I
∗

d2 + I∗ + γS∗
+
λ2α2{d2 + γ(S∗ + I∗)}Z∗

(d2 + I∗ + γS∗)2

+
λ1α1d1Z

∗

(d1 + S∗)2
< min

{
β + µ+

α1Z
∗

d1
+

2aS∗

K
+

α2Z
∗

d2 + γS∗
, µ+

α2Z
∗

d2 + γS∗
, β +

α1Z
∗

d1
+

2aS∗

K
,

β

(
1 +

S∗

K1

)
+ δ +

2aS∗

K
+
α1Z

∗

d1
, µ+ δ +

βS∗

K1
+

α2Z
∗

d2 + γS∗
, δ +

βS∗

K1

}
. (25)

Proof The second additive compound matrix of the Jacobian of the system (1) is given by320

J [2] =



FS +GI GZ GV −FZ −FV 0

HI FS 0 0 0 −FV

LI 0 FS + LV 0 0 FZ

−HS GS 0 GI 0 −GV

−LS 0 GS 0 GI + LV GZ

0 −LS HS −LI HI LV


,

where321

FS = −J∗11, FZ = −J∗13, FV = −J∗14, GS = J∗21, GI = −J∗22, GZ = −J∗23,

GV = J∗24, HS = J∗31, HI = −J∗32, LS = −J∗41, LI = J∗42, LV = −J∗44.
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Let |X|∞ = sup
i
|Xi|. The logarithmic norm µ∞(J [2]) of J [2] endowed with the vector norm |X|∞322

is the supremum of FS + GI + |GZ | + |GV | + |FZ | + |FV |, |HI | + FS + |FV |, |LI | + FS + LV + |FZ |,323

|HS |+ |GS |+GI + |GV |, |LS |+ |GS |+GI + LV + |GZ | and |LS |+ |HS |+ |LI |+ |HI |+ |LV |.324

Now, (FS +GI + |GZ |+ |GV |+ |FZ |+ |FV |)E∗ < 0 if

a+ α1 +
K1βS

∗

(K1 + V ∗)2
+

α2I
∗

d2 + I∗ + γS∗
< β +

2aS∗

K
+ µ+

α1Z
∗

d1
+

α2Z
∗

d2 + γS∗
;

similarly (|HS |+ FS + |FV |)E∗ < 0 if

a+
K1βS

∗

(K1 + V ∗)2
+
λ2α2(d2 + γS∗)Z∗

(d2 + I∗ + γS∗)2
<

2aS∗

K
+ β +

α1Z
∗

d1
;

also, (|LI |+ FS + LV + |FZ |)E∗ < 0 if

a+ bµ+
α1S

∗

d1 + S∗
< β + δ +

2aS∗

K
+
α1Z

∗

d1
+
βS∗

K1
;

further (|HS |+ |GS |+GI + |GV |)E∗ < 0 if

λ1α1d1Z
∗

(d1 + S∗)2
+

α2γI
∗Z∗

(d2 + I∗ + γS∗)2
+

βV ∗

K1 + V ∗
+

K1βS
∗

(K1 + V ∗)2
< µ+

α2Z
∗

d2 + γS∗
;

then (|LS |+ |GS |+GI + LV + |GZ |)E∗ < 0 if

βV ∗

K1 + V ∗
+

α2γI
∗Z∗

(d2 + I∗ + γS∗)2
+

α2I
∗

d2 + I∗ + γS∗
< µ+ δ +

βS∗

K1
+

α2Z
∗

d2 + γS∗
;

and finally (|LS |+ |HS |+ |LI |+ |HI |+ LV )E∗ < 0 if

bµ+
βV ∗

K1 + V ∗
+
λ1α1d1Z

∗

(d1 + S∗)2
+
λ2α2{d2 + γ(S∗ + I∗)}Z∗

(d2 + I∗ + γS∗)2
< δ +

βS∗

K1
.

Hence the condition (25).325

3.5 Hopf-bifurcation analysis326

In this section, we show that at the coexistence equilibrium E∗ a Hopf-bifurcation arises, by taking327

the intensity of avoidance, γ, as bifurcation parameter while keeping the other parameters fixed. More328

specifically, we have the following result.329

Theorem 4 The coexistence equilibrium E∗ enters into Hopf-bifurcation as γ ≥ 0 crosses the critical

threshold γ∗, this value being defined as a positive root of the equation ψ(γ) = 0, where ψ : (0,∞)→ R

represents the following continuously differentiable function of γ:

ψ(γ) = σ1(γ)σ2(γ)σ3(γ)− σ2
3(γ)− σ4(γ)σ2

1(γ).
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The Hopf-bifurcation occurs if and only if the condition330

σ2
1(σ1σ

′
4 − σ′2σ3)− (σ1σ2 − 2σ3)(σ1σ

′
3 − σ′1σ3) 6= 0, (26)

holds and all other eigenvalues have negative real parts.331

Proof Using the condition ψ(γ∗) = 0, the characteristic equation (23) can be rewritten as332 (
ρ2 +

σ3
σ1

)(
ρ2 + σ1ρ+

σ1σ4
σ3

)
= 0. (27)

Let the roots of the above equation be denoted by ρi, i = 1, 2, 3, 4 and the pair of purely imaginary333

roots at γ = γ∗ be ρ1 and ρ2. We then have334

ρ3 + ρ4 = −σ1, (28)

ω2
0 + ρ3ρ4 = σ2, (29)

ω2
0(ρ3 + ρ4) = −σ3, (30)

ω2
0ρ3ρ4 = σ4, (31)

where ω0 = Im
(
ρ1(γ∗)

)
. By (31) we find ω0 =

√
σ3σ

−1
1 . Now, if ρ3 and ρ4 are complex conjugate335

then from (28), it follows that 2Re
(
ρ3
)

= −σ1; if they are real roots, recalling that σ4 > 0 by the336

Routh-Hurwitz conditions, then by (31) they must have the same sign and from (28) they must be337

negative, i.e. ρ3 < 0 and ρ4 < 0. To complete the discussion, it remains to verify the transversality338

condition.339

As ψ(γ∗) is a continuous function of all its roots, there exists an open interval Iγ∗ = (γ∗−ε, γ∗+ε),340

where ρ1 and ρ2 are complex conjugate for all γ ∈ Iγ∗ . Let their general forms in this neighborhood be341

ρ1(γ) = χ(γ) + iξ(γ), ρ2(γ) = χ(γ)− iξ(γ).

Substituting ρj(γ) = χ(γ) ± iξ(γ), into the characteristics equation D(ρ) = 0 and calculating the342

derivative, we have343

L1(γ)χ′(γ)− L2(γ)ξ′(γ) + L3(γ) = 0, L2(γ)χ′(γ) + L1(γ)ξ′(γ) + L4(γ) = 0,

where344

L1(γ) = 4χ3 − 12χξ2 + 3σ1(χ2 − ξ2) + 2σ2χ+ σ3, L2(γ) = 12χ2ξ − 4ξ3 + 6σ1χξ + 2σ2ξ,

L3(γ) = σ′1χ
3 − 3σ′1χξ

2 + σ′2(χ2 − ξ2) + σ′3χ+ σ′4, L4(γ) = 3σ′1χ
2ξ − σ′1ξ3 + 2σ′2χξ + σ′3ξ.
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For γ = γ∗, we obtain345

L1(γ∗) = −2σ3, L2(γ∗) = 2

√
σ3
σ1

{
σ2 −

2σ3
σ1

}
,

L3(γ∗) = σ′4 −
σ′2σ3
σ1

, L4(γ∗) =

√
σ3
σ1

(
σ′3 −

σ′1σ3
σ1

)
.

Solving for χ′(γ) at γ = γ∗, we have346

d

dγ
(Reρj(γ))|γ=γ∗ = χ′(γ∗) = −L2(γ∗)L4(γ∗) + L1(γ∗)L3(γ∗)

L2
1(γ∗) + L2

2(γ∗)

=
σ2
1(σ1σ

′
4 − σ′2σ3)− (σ1σ2 − 2σ3)(σ1σ

′
3 − σ′1σ3)

2σ3
1σ3 + 2(σ1σ2 − 2σ3)2

6= 0

if (26) is satisfied. Thus the transversality condition holds and hence the claim.347

To better understand the nature of the instability, we determine the initial period and the amplitude348

of the oscillatory solutions. From (28)−(31), solving (30) for ω2 and substituting from (28) we get349

ω2 = σ3σ
−1
1 . Obtaining σ4 from (31) and combining with the previous result, we find σ4 = σ3ρ3ρ4σ

−1
1 .350

The quantity ρ3ρ4 is obtained then from (29), and thus leads to the expression σ4 = σ3(σ1σ2−σ3)σ−21 .351

Then relaxing it to σ4(ψ) = ψσ4 and substituting into equation (23), if ρ depends continuously on ψ,352

we can rewrite equation (23) as353

ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ+
ψσ3(σ1σ2 − σ3)

σ2
1

= 0. (32)

At ψ = ψ∗ = 1, because σ2
1σ4 = σ3(σ1σ2 − σ3), equation (23) factorizes into the form (27) which354

has a pair of purely imaginary roots, ρ(ψ∗) = ±i
√
σ3σ

−1
1 while the other two roots are either negative355

or have negative real parts. This substantiates the claim that the Hopf-bifurcation is present.356

Further, if ψ ∈ (0, 1), then σ2
1σ4− σ3(σ1σ2− σ3) is positive, which assures stability, and conversely357

for ψ > 1, we obtain instability.358

Observe now that ρ is a function of ψ. We differentiate equation (32) with respect to ψ, denoting359

this operation by a prime. By setting ψ = ψ∗+ ε2ξ, where |ε| � 1 and ξ = ±1, then ρ(ψ) = ρ(ψ∗+ε2ξ)360

so that expanding in Taylor series of ρ around ψ∗ up to the first order, we find361

ρ(ψ) = ρ(ψ∗) + ρ′(ψ∗)ε2ξ +O(ε4). (33)

Replacing ρ(ψ∗) by i±
√

σ3

σ1
in the derivative and conjugating the expression for the derivative we get362

equation363

ρ′(ψ∗) ≡ σ1σ3(σ1σ2 − σ3)

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

± i
√
σ3
σ1

(σ1σ2 − σ3)(σ1σ2 − 2σ3)

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

. (34)
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Using the fact that

<(ρ(ψ∗)) = 0, <(ρ′(ψ∗)) =
σ1σ3(σ1σ2 − σ3)

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

> 0

and substituting ρ(ψ∗) and ρ′(ψ) into equation (33), we obtain the approximation364

ρ(ψ∗) = ρ(ψ∗) + ρ′(ψ∗)ε2ξ

=
σ1σ3(σ1σ2 − σ3)ε2ξ

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

± i
√
σ3
σ1

(
1 +

(σ1σ2 − σ3)(σ1σ2 − 2σ3)ε2ξ

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

)
+O(ε4). (35)

Setting ε =
√
|ψ − ψ∗| × |ξ|−1, the initial period and amplitude of the oscillations associated with

the loss of stability when ψ > ψ∗ respectively are

2π√
σ3

σ1

(
1 + (σ1σ2−σ3)(σ1σ2−2σ3)ε2ξ

2[σ3
1σ3+(σ1σ2−2σ3)2]

) , exp

(
σ1σ3(σ1σ2 − σ3)ε2ξ

2[σ3
1σ3 + (σ1σ2 − 2σ3)2]

)
.

4 Simulations of the ecoystem behavior365

Here, we report the simulations to investigate the behavior of system (1), performed using the Matlab366

variable step Runge-Kutta solver ode45. The set of parameter values are chosen within the range367

prescribed in various previous literature sources [14,15,52], and are given in Table 1.368

4.1 Sensitivity analysis369

To assess the sensitivity of the solutions to variations in the model parameters partial rank correlation370

coefficient (PRCC), a global sensitivity analysis technique that is proven to be the most reliable and371

efficient among the sampling-based methods, is utilized. The PRCC determines the effect of changes in372

a specific parameter, by discounting linearly the influences over the other parameters, on the reference373

model output [60]. In order to obtain the PRCC values, Latin Hypercube Sampling (LHS) is chosen for374

the input parameters by performing a stratified sampling without replacement. In the current study,375

a uniform distribution is assigned to each model parameter and sampling is performed independently.376

The range for each parameter is initially set to ±25% of the nominal values given in Table 1. A total377

of 200 simulations are considered, wherein a set of parameter values are selected from the uniform378

distribution.379

Note that the PRCC values lie between −1 and 1. Positive (negative) values indicate a positive380

(negative) correlation of the parameter with the model output. A positive (negative) correlation implies381

that a positive (negative) change in the parameter will increase (decrease) the model output. The larger382
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Fig. 2 Effect of uncertainty of the model (1) on (a) S, (b) I, (c) Z and (d) V . Significant parameters are

marked by ∗ for p < 0.01. Baseline values of the parameter are the same as in Table 1.

the absolute value of the PRCC, the greater the correlation of the parameter with the output. The383

bar diagram of the PRCC values of susceptible phytoplankton, infected phytoplankton, zooplankton384

and free viruses against the parameters is depicted in Fig. 2. It therefore emerges that susceptible385

phytoplankton is significantly correlated with the model parameters a, α1, α2, ν and λ1, while for the386

infected phytoplankton, the most influential parameters appear to be a, α1, α2, d1, β, µ, ν, λ1 and387

λ2. Further, the parameters a, α1, α2, β, ν, λ1 and λ2 instead significantly affect zooplankton. Finally,388

free viruses are mostly dependent on the parameters a, α1, α2, β, ν, b, γ, λ1 and λ2.389



Modeling the avoidance behavior of zooplankton on phytoplankton infected by free viruses 23

0 1000 2000 3000 4000 5000
Time

0

5

10

15

S

γ=0
γ =2
γ=15

a

0 1000 2000 3000 4000 5000
Time

0

10

20

30

40

50

60

70

I

γ=0
γ=2
γ=15

b

0 1000 2000 3000 4000 5000
Time

0

5

10

15

20

Z

γ=0
γ=2
γ=15

c
0 1000 2000 3000 4000 5000

Time

0

50

100

150

200

250

300

V

γ=0

γ=2

γ=15

d

Fig. 3 Variations of susceptible phytoplankton (S), infected phytoplankton (I), zooplankton (Z) and free-

viruses (V ) with respect to time for different values of γ. Rest of the parameter values are the same as in Table

1.

4.2 Effect on the ecosystem behavior on variations of the model parameters390

We see the impact of avoidance parameter, γ, on the equilibrium values of each variables of the system391

(1), Fig. 3. We see that the abundances of susceptible phytoplankton, infected phytoplankton and392

free-viruses are at higher values when the zooplankton do not discriminate between susceptible and393

infected phytoplankton. For the non-zero values of γ, the zooplankton discriminate between susceptible394

and infected phytoplankton. As the value of γ increases, both type of phytoplankton and free-viruses395

decrease in the system. For very large values of γ, the phytoplankton and free-viruses settle to very low396

equilibrium values. Interestingly, the zooplankton population become zero for large time in the case397

when they do not discriminate between susceptible and infected phytoplankton, as the ingestion of398

infected phytoplankton increases the death rate of zooplankton. As the values of avoidance parameter399

increases, the zooplankton move away from the infected phytoplankton, and ingest them at a very low400

rate. This results in lesser death of zooplankton, and hence their abundance increase with increase in401

the values of γ. For very large values of γ, the zooplankton population attains high equilibrium values.402
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Fig. 4 Contour lines representing the equilibrium values of susceptible phytoplankton (first column), infected

phytoplankton (second column), zooplankton (third column) and free viruses (fourth column) as functions of

(a) β and γ, (b) µ and b, (c) α1 and ν, and (d) α2 and δ. Rest of the parameter values are the same as in Table

1.

Next, we see how equilibrium abundances of ecosystem populations change by varying some of the403

input parameters, namely β, γ, µ, b, α1, α2, ν and δ. By varying two parameters at a time in biolog-404

ically meaningful regions, we plot contour lines for the surfaces representing the system populations,405

Fig. 4. It is apparent from Fig. 4(a) that the concentration of zooplankton increases with increase in406

the intensity of avoidance γ, but for the remaining populations this parameter is instead much less407
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Fig. 5 For virus-free environment (I = 0 and V = 0) i.e., subsystem (3): (a) zooplankton-free equilibrium is

achieved at K = 3 and λ1 = 0.01. System (3) shows (b) stable coexistence at K = 3 and λ1 = 0.75, and (c)

limit cycle oscillations around the coexistence equilibrium at K = 4.3 and λ1 = 0.75. Rest of the parameters

are at the same values as in Table 1.

influential. On increasing the force of infection β, the concentrations of susceptible phytoplankton and408

zooplankton decrease while those of infected phytoplankton and free viruses initially increase and then409

decrease. Fig. 4(b) shows that with an increase in the death rate of infected phytoplankton µ, the410

concentration of infected phytoplankton decreases but that of zooplankton increases. On increasing411

the virus-replication factor b, the susceptible phytoplankton and zooplankton populations decrease412

but the free viruses increase significantly. Looking at Fig. 4(c), we may note that the concentration of413
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Fig. 6 Bifurcation diagram of the system (1) with respect to force of infection β. Here, the maximum and

minimum values of the oscillations are plotted in red and blue colors, respectively. Rest of the parameter values

are the same as in Table 1.

susceptible phytoplankton for low values of α1 decreases by increasing this parameter. The same situ-414

ations occurs for the infected phytoplankton and the free viruses. However, zooplankton benefits by an415

increase in the values of α1. On increasing the zooplankton mortality rate, susceptible phytoplankton,416

infected phytoplankton and free viruses all increase, but the zooplankton population attains very low417

equilibrium values. From Fig. 4(d) increasing the values of α2, leads to higher values of susceptible418

phytoplankton, infected phytoplankton and viruses, while zooplankton decrease. On increasing the419

free viruses mortality rate δ, susceptible and infected phytoplankton increase, the latter slightly, while420

free viruses decrease. Zooplankton essentially are not affected by δ. Looking at the combined effect of421

α2 and δ, we observe that along the main diagonal the susceptible phytoplankton increase while free422

viruses decrease.423

4.3 Existence of Hopf-bifurcation and Transcritical bifurcation424

First, we investigate the dynamics of the system (1) in the absence of free viruses and infected phyto-425

plankton. For system (3), note that the zooplankton-free equilibrium e1 is related to the coexistence426
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Fig. 7 Variation of the maximum Lyapunov exponent with respect to β for the model (1), where other

parameter values are the same as in Table 1. The maximum Lyapunov exponent becomes negative from

positive values, which confirms that the system (1) becomes stable from chaotic dynamics for increase in the

values of parameter β.

equilibrium e∗ via a transcritical bifurcation taking λ1 as a bifurcation parameter. For low values of427

λ1 (λ1 = 0.01, K = 3), the zooplankton-free equilibrium e1 is stable, Fig. 5(a), while the zooplankton-428

free equilibrium e1 loses its stability and the coexistence equilibrium e∗ emanates from the former429

on increasing the values of λ1 past a critical threshold, specifically for λ1 = 0.75, K = 3, Fig. 5(b).430

Further, observe that on increasing the values of K, specifically λ1 = 0.75, K = 4.3, the coexistence431

equilibrium e∗ loses its stability and persistent oscillations occur, Fig. 5(c), that are found also by a432

further increase in the values of K. For the model (1), stability of the disease-free equilibrium E2 can433

be obtained with K = 3.4, β = 0.12 and K1 = 1.6, while the remaining parameter values appear in434

Table 1. Now, we see how dynamics of the system (1) changes on varying the force of infection β,435

virus replication factor b, intensity of avoidance γ and carrying capacity K, while keeping the values of436

remaining parameters as in Table 1. We vary the parameter β in the interval [0.59,0.75] and note the437

different behaviors of system (1), Fig. 6. At β = 0.59, we observe that the system (1) shows chaotic438

dynamics; at β = 0.6 the system exhibits period halving oscillations; at β = 0.62, the system shows439

limit cycle oscillation; at β = 0.65, the system shows stable focus. We find that for large values of β,440

namely β = 0.74, the system settles down to the zooplankton-free steady state. Thus, there exists a441

transcritical bifurcation between equilibria E3 and E∗ where β represents the bifurcation parameter;442

the former arises while the latter loses its stability as β crosses its critical value from below. The most443

important mathematical attribute of chaos is the absence of any stable equilibrium point or any stable444

limit cycle in system dynamics, for which the patterns never repeat themselves. We also report the445
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Fig. 8 Bifurcation diagram of the system (1) with respect to virus replication factor b. The two columns

correspond to two very different ranges for this parameter value. Here, the maximum and minimum values of

the oscillations are plotted in red and blue colors, respectively. Rest of the parameter values are the same as

in Table 1.

maximum Lyapunov exponent with respect to β in Fig. 7, its positive values indicating the chaotic446

regime of the system.447

Further, to visualize the effect of the virus replication factor on the system dynamics, we draw448

the bifurcation diagram by taking b as a bifurcation parameter, Fig. 8. Increasing the values of b, two449

critical values of b are found, b1H = 10.96 and b2H = 65.15, so that for b < b1H , limit cycle oscillations450

are observed, for b1H < b < b2H , the system stabilizes, while for b > b2H again persistent oscillations451
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Fig. 9 Bifurcation diagram of the system (1) with respect to avoidance intensity, γ. Here, the maximum and

minimum values of the oscillations are plotted in red and blue colors, respectively. Rest of the parameter values

are the same as in Table 1.

appear. Furthermore, a bifurcation diagram in terms of the avoidance intensity γ is shown in Fig. 9. For452

low values of γ, the zooplankton-free equilibrium is stable, while on increasing it at the critical value453

γT = 1.99 the coexistence equilibrium emanates from the former. Further, there exist two critical values454

of γ, namely γ1H = 4.05 and γ2H = 10.95, such that at γ = γ1H , the system undergoes a supercritical455

Hopf-bifurcation and produces oscillations. Keeping on increasing the value of γ, the system undergoes456

a subcritical Hopf-bifurcation at γ = γ2H after which it stabilizes again. Therefore, this ecosystem may457

show multiple stability switching depending on the values of virus replication factor and avoidance458

intensity. Note that in Fig. 9 we have chosen β = 0.65, which lies in the stable region of Fig. 6. Now,459
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Fig. 10 Chaotic behavior of the system (1) with respect to intensity of avoidance (γ). Here, the maximum

and minimum values of the oscillations are plotted in red and blue colors, respectively. Rest of the parameter

values are the same as in Table 1 except β = 0.62.

we set β = 0.62, in the Hopf-region of Fig. 6, while keeping all the other parameters as in Table 1.460

We obtain that varying the avoidance parameter γ in the interval [9, 39], Fig. 10, stable coexistence is461

achieved via a chaotic regime through period halving oscillations. The combined effect of the avoidance462

parameter γ and of the force of infection β are seen in Fig. 11, that portrays the different stability463

regions of the system (1). Here, blue, red, orange and green colors respectively represent the chaotic,464

period halving, limit cycle oscillation and stability domains. For higher values of the avoidance intensity,465

the ecosystem may show different stability behavior on increasing the force of infection. It goes possibly466

from chaos to period halving oscillations to limit cycle oscillations and finally to a stable focus. For467

intermediate values of β, the ecosystem experiences limit cycle oscillation to period doubling oscillation468

to chaotic behavior by increasing γ. Further simulations that are not reported indicate that for higher469

values of γ, chaos can be controlled and the system attains a stable focus. The stable equilibrium enters470
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Fig. 11 Two-parameter bifurcation diagram as a function of γ and β. Regions in blue, red, orange and green

colors represent chaotic, period halving, limit cycle and stable domains, respectively. Rest of the parameter

values are the same as in Table 1.

into a chaotic regime through period doubling high-amplitude oscillations by increasing the values of471

K, i.e., increasing the nutrient supply, Fig. 12. This result is in line with the paradox of enrichment472

[61].473

Next, we observe how the dynamics of the system changes if the susceptible phytoplankton feels474

the intraspecific pressure due to infected phytoplankton [39]. In such case, system (1) is reformulated475

as,476

dS

dt
= aS

(
1− S + I

K

)
− α1SZ

d1 + S
− βSV

K1 + V
,

dI

dt
=

βSV

K1 + V
− α2IZ

d2 + I + γS
− µI,

dZ

dt
=
λ1α1SZ

d1 + S
− λ2α2IZ

d2 + I + γS
− νZ, (36)

dV

dt
= bµI − βSV

K1 + V
− δV.

The dynamics of (36) is investigated only by numerical simulations and compared with the findings of477

system (1). For low values of β, system (36) shows limit cycle oscillations but the oscillations vanish478

for increasing values of β, and for very high value of β, the zooplankton disappears from the system,479

Fig. 13(a). For low values of β, system (1) exhibits instead chaotic dynamics. Further, for low values480

of b, system (36) shows chaotic dynamics, but on increasing the values of b it switches to a stable focus481
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Fig. 12 Bifurcation diagram of the system (1) with respect to carrying capacity of the system (K). Here, the

maximum and minimum values of the oscillations are plotted in red and blue colors, respectively. Rest of the

parameter values are the same as in Table 1 except γ = 10.

through period halving bifurcation, Fig. 13(b). Moreover, for very high value of the parameter b, the482

zooplankton population does not survive in the system, Fig. 13(c). Recall that for very low and very483

high values of b, the system (1) shows limit cycle oscillations, and stable dynamics for moderate values484

of b. For low values of avoidance parameter, γ, system (36) shows extinction of zooplankton, and stable485

coexistence of all the populations after a threshold value of γ. Previously, we observed that the system486

(1) showed extinction of zooplankton for low values of γ, but on increasing the values of γ, the system487

experienced stability switches from stable to unstable to stable dynamics. We note that for low values488

of K, the zooplankton population becomes extinct from the system (this behavior is not observed for489

system (1)) but the coexistence equilibrium appears on increasing the values of K, see Fig. 13(e), and490

the system becomes chaotic for very large values of K, see Fig. 13(f).491
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Fig. 13 System (36) shows (a) limit cycle oscillation for low values of β, (b) chaotic dynamics for low values

of b, (c) extinction of zooplankton for very high value of b, (d) extinction of zooplankton for low values of γ

but stable dynamics after a threshold value of γ, (e) extinction of zooplankton for low values of K, and (f)

chaotic dynamics for very large values of K. Here, the maximum and minimum values of the oscillations are

plotted in red and blue colors, respectively. Parameters are at the same value as in Table 1 except λ2 = 0.42.

5 Conclusion and discussion492

The interest in ecological studies of prey avoidance by a predator ranges from the details of individual493

feeding behavior to the implications for predator-prey dynamics. Some predators have the ability to494

discriminate between different types of prey and show avoidance to some specific prey population495

based on several known and unknown criteria [62]. In this paper, a mathematical model for the study496
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of the avoidance behavior of zooplankton on infected phytoplankton is proposed and its essential497

dynamical features are analyzed. The dynamics of free viruses is explicitly considered in the model.498

The partial rank correlation coefficient (PRCC) technique is performed to assess the sensitivity of the499

ecosystem with respect to the model parameters. The main parameters influencing the system behavior500

appear to be a, K, K1, α2, d1, d2, ν, δ, b and λ2. They present positive correlations with the infected501

phytoplankton. Similarly, the parameters α1, d2, β, µ, δ, γ and λ1 possess negative correlations with502

free viruses.503

To identify the role of different parameters for the coexistence of all the populations, we use contour504

plots to represent the populations equilibrium values in terms of some important parameters: β, γ,505

µ, b, λ1, λ2, α1, α2, ν and δ. From these plots, the force of infection β, the virus replication factor506

b and the decay rate of free viruses δ appear to be important quantities to control the infection. To507

reduce disease prevalence in the phytoplankton, β and b should be reduced while δ should be fostered.508

On the other hand, the avoidance intensity γ fosters species coexistence. In the presence of viral509

infection, high intensity of zooplankton avoidance triggers the system chaotic behavior from a stable510

focus, due to nutrient enrichment. There is a minimum strength of the force of infection above which511

the infection becomes endemic in the system. Interestingly, increasing the infection rate the system512

switches from chaotic oscillations to a stable endemic equilibrium. Hence, the force of infection can513

control the chaotic behavior in this eco-epidemiological system. Further increasing the infection rate,514

the grazer zooplankton becomes extinct past a critical value of the force of infection. Increasing the515

virus replication factor values, the system stabilizes from persistent oscillations. If the virus replication516

factor exceeds a threshold value, the system becomes unstable again. Thus, the system shows multiple517

stability switching as a function of b, which therefore may play a crucial role in the system dynamics. A518

similar behavior for multiple stability switching is observed also in terms of the avoidance intensity, for519

which the system goes from a stable state to persistent oscillations via a supercritical Hopf bifurcation.520

Later on via another subcritical Hopf bifurcation, it stabilizes again. Our study suggests that the521

zooplankton’s chance of extinction increases for lower values of the avoidance intensity. Interestingly,522

the avoidance parameter γ possesses a stabilizing role for the aquatic system by terminating the chaotic523

nature of the system. Thus, the avoidance parameter γ may be treated as a control parameter for the524

aquatic balance of the food web, indicating that the zooplankton avoidance of infected phytoplankton525

may significantly affect the ultimate ecosystem behavior.526
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Finally, we compare the dynamics of system (1) i.e., when infected phytoplankton do not compete527

for resources with the susceptible, with the system (36) i.e., when infected phytoplankton share re-528

sources with the susceptible ones. In the latter case, the system exhibits limit cycle oscillations (chaotic529

dynamics) for low values of force of infection (virus replication factor) while in the former case, the530

system shows chaotic dynamics (limit cycle oscillations) for low ranges of these two parameters. More-531

over, in the second case, the system becomes zooplankton-free for higher values of the virus replication532

factor. The limit cycle oscillations also disappear for the second case on increasing the avoidance pa-533

rameter, and interestingly the second model shows extinction of zooplankton for low values of the534

system carrying capacity.535

The size of an organism affects virtually all aspects of its physiology and ecology [63]. The zooplank-536

ton body size gradually decreases during equilibrium condition in comparison to chaos [50]. Jørgensen537

et al. [64] showed that size combinations between phytoplankton and zooplankton are very crucial538

for the system’s self-organization. The system cannot adapt to the gradual decrease of zooplankton539

size and as a result it moves from an equilibrium state to a chaotic condition. It is beneficial for low540

zooplankton populations to grow fast. If the fast growth continues the phytoplankton will be rapidly541

exhausted and in turn the zooplankton population will plunge, with the consequence that the system542

is led into violent oscillations and will ultimately attain chaos. This behavior however is not prevalent543

in many ecosystems, because they are self-organizing and self-adapting [65]. They tune themselves to a544

critical state [66] and show a high extent of self-organization based upon a hierarchy of feedback mech-545

anisms. Among the many ways for which ecosystems can be self-adjusted, we have proposed and shown546

here that avoidance of virally infected phytoplankton by zooplankton, which reduces the zooplankton547

grazing, could be one of them and would help the system to recover from chaotic situation. These548

observations indicate that the avoidance of infected phytoplankton by zooplankton acts a bio-control549

by changing the state of chaos to order.550
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