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An infinite-dimensional version of the
Poincaré–Birkhoff theorem

on the Hilbert cube
To the memory of Maria Gramegna (1887–1915)

Alberto Boscaggin, Alessandro Fonda and Maurizio Garrione

Abstract. We propose a version of the Poincaré–Birkhoff theorem
for infinite-dimensional Hamiltonian systems, which extends a recent
result by Fonda and Ureña [20]. The twist condition, adapted to a
Hilbert cube, is spread on a sequence of approximating finite-dimen-
sional systems. Some applications are proposed to pendulum-like sys-
tems of infinitely many ODEs. We also extend to the infinite-dimen-
sional setting a celebrated theorem by Conley and Zehnder [10].

1 Introduction
The Poincaré–Birkhoff theorem was conjectured by Henri Poincaré in 1912,
shortly before his death [35]. It was first stated for an area-preserving home-
omorphism on an invariant planar annulus, assuming a twist condition at the
boundary. A modern formulation of this original version, expressed in the
covering space, reads as follows (see [8]).

Theorem 1. Let ϕ : R× [a, b]→ R× [a, b] be an area-preserving homeomor-
phism of the form

ϕ(x, y) = (x+ ϑ(x, y), ρ(x, y)),

where the continuous functions ϑ(x, y) and ρ(x, y) are 2π-periodic in their
first variable x, with ρ(x, a) = a and ρ(x, b) = b, for every x ∈ R. Assume
the boundary twist condition

ϑ(x, a)ϑ(x, b) < 0, for every x ∈ R.

Then ϕ has at least two fixed points in [0, 2π[× ]a, b[ .
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George Birkhoff in 1913 first gave a partial proof of the theorem [5], then
started extending it to some mappings for which the invariance of the annulus
is not required [6], and finally also proposed a version of the theorem in a
higher dimensional setting [7].

For more than a century, a lot of effort has been devoted to generalize the
theorem in both these directions. Indeed, on the one hand, the invariance of
the domain turns out to be a serious obstacle in the applications to dynamical
systems; along this line of research, several remarkable results have been
obtained, making nowadays the theorem a very powerful tool when looking
for periodic solutions of planar Hamiltonian systems. We refer to [12, 18, 27]
for a review on the development of the planar theory, with special emphasis
on the applications to ODEs; let us state here a version of the Poincaré–
Birkhoff theorem, taken from [20], which can be employed in the planar
Hamiltonian setting.

Theorem 2. Consider the finite-dimensional Hamiltonian system

u′ =
∂H

∂v
(t, u, v) , v′ = −∂H

∂u
(t, u, v) , (1)

where H : R×R2 → R is T -periodic in t and 2π-periodic in u, continuous in
(t, u, v) and continuously differentiable in (u, v). Let σ ∈ {−1, 1} and assume
that every solution w(t) = (u(t), v(t)) of (1) with v(0) ∈ [a, b] is defined for
every t ∈ [0, T ] and satisfies{

v(0) = a ⇒ σ[u(T )− u(0)] < 0,

v(0) = b ⇒ σ[u(T )− u(0)] > 0.

Then, there exist at least two T -periodic solutions w(t) = (u(t), v(t)) of (1),
such that

w(0) = (u(0), v(0)) ∈ [0, 2π[× ]a, b[ .

On the other hand, far fewer progresses have been made for the higher
dimensional issue, which was considered by Birkhoff himself as an outstanding
question [6, page 299]. Its study has led to some famous conjectures by
Arnold [1] and eventually to the development of symplectic geometry [33]. By
the use of monotonicity assumptions on the twist, some higher dimensional
versions of the Poincaré–Birkhoff theorem have been given (see, e.g., [34]),
but, so far, a genuine generalization has never been found.

Recently, however, Fonda and Ureña [20] provided an extension of Theo-
rem 2 to Hamiltonian systems in any (even) finite dimension: considering a
system like (1) with (u, v) = (u1, . . . , uN , v1, . . . , vN) ∈ R2N , a suitable twist
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condition on the boundary of the set
∏N

k=1[ak, bk], requiring a change of sign
for uk(T ) − uk(0) when passing from vk(0) = ak to vk(0) = bk, provides the
existence of N + 1 distinct T -periodic solutions (see [20, Theorem 6.2] for
the precise statement). This twist condition clearly extends, in the higher
dimensional case, the one proposed in Theorem 2.

Taking advantage of this result, in this paper we will provide for the first
time an infinite-dimensional version of the Poincaré–Birkhoff theorem. This
seems to be an ambitious task, since most of the compactness arguments used
to prove the theorem in the finite-dimensional case could fail, of course. We
will manage to overcome this difficulty by working on a Hilbert cube of the
type

∏∞
k=1[ak, bk] in the Hilbert space `2; the compactness of this set, together

with a suitable formulation of the twist condition, will allow us to remedy
the lack of compactness in the infinite-dimensional setting, finally getting
the existence of at least one T -periodic solution of our (infinite-dimensional)
Hamiltonian system, i.e., one fixed point of the associated Poincaré map.

The plan of the paper is as follows. In Section 2 we describe our infinite-
dimensional setting and we prove our first main result (Theorem 3). The
proof is based on a Galerkin-type approximation scheme: first, the main
theorem in [20] is applied to a sequence of approximating finite-dimensional
Hamiltonian systems, providing a corresponding sequence of periodic solu-
tions; a compactness argument is then used to extract a subsequence con-
verging to a periodic solution of the original infinite-dimensional system.

In Section 3 we provide some applications of our main result to systems
of infinitely many second order ODEs, extending to the infinite-dimensional
setting some well-known statements for pendulum-like scalar equations and
systems.

In Section 4 we adopt a more abstract perspective, providing a further
extension of Theorem 3; here, the twist condition takes a more general form,
which can be seen as an infinite-dimensional generalization of the one in-
troduced by Conley and Zehnder in [10, Theorem 3]. We also propose an
infinite-dimensional extension of [10, Theorem 1], a result of the same authors
providing an answer to a famous conjecture by Arnold. A final Appendix is
devoted to the Hilbert cube and its main topological features.

We mention that well-established methods to deal with periodic (and
quasi-periodic) solutions to infinite-dimensional Hamiltonian systems are the
ones of the (infinite-dimensional generalization of) KAM theory. Such a the-
ory, perturbative in nature and providing periodic solutions for small pertur-
bations of completely integrable systems, finds fertile ground in the applica-
tions to Hamiltonian PDEs (e.g., NLS, KdV, wave equation, see [3, 4, 25, 26]
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and the references therein). Our approach is much more elementary and, by
now, can be successfully applied to systems of infinitely many second order
ODEs like the ones mentioned in Section 3; on the other hand, we observe
that we are allowed to deal with a slightly more global framework.

This paper is dedicated to the memory of Maria Paola Gramegna who,
at the beginning of the twentieth century, under the supervision of Giuseppe
Peano, was one of the first pioneering mathematicians to prove the existence
of solutions to infinite-dimensional differential systems [23]. She tragically
died when she was 28 years old, victim of an earthquake.

2 The main result
In this section we state and prove our first main result, dealing with an
infinite-dimensional Hamiltonian system on a separable real Hilbert space
H. Precisely, we consider the system

x′ = ∇yH(t, x, y) , y′ = −∇xH(t, x, y) , (2)

where H : R × H × H → R is assumed to be T -periodic in the first vari-
able, continuous in (t, x, y) and continuously differentiable in (x, y). More
precisely, we assume that H is differentiable in every z = (x, y) ∈ H × H,
and ∇zH = (∇xH,∇yH) : R×H×H → H×H is continuous. Throughout
the paper, solutions to (2) are meant in the classical sense, namely as con-
tinuously differentiable functions z = (x, y) : I → H × H, being I ⊂ R an
interval, satisfying the differential equation pointwise; in particular, we will
be interested in the existence of T -periodic solutions. Hamiltonian systems
like (2) have been considered, e.g., in [2, 14]; we also mention the book [13] as
a reference about the general theory of ODEs in infinite-dimensional spaces.

Let us introduce our structural framework. In the following, it will be
convenient to identify the space H with `2, the space of real sequences ξ =
(ξk)k≥1 such that

∑∞
k=1 ξ

2
k <∞, endowed with the usual scalar product

〈ξ, ξ̃〉`2 =
∞∑
k=1

ξkξ̃k ,

and the associated norm ‖ξ‖`2 =
√
〈ξ, ξ〉`2 . In this way, (2) can be thought

as a system of infinitely many scalar ODEs,
x′k =

∂H

∂yk
(t, (x1, x2, . . .), (y1, y2, . . .)),

y′k = −∂H
∂xk

(t, (x1, x2, . . .), (y1, y2, . . .)),

k = 1, 2, . . . ,
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where x = (x1, x2, . . . , ) and y = (y1, y2, . . .) belong to `2. We will also make
use of the following standard notation: given (ξ1, ξ2, . . .) and (ξ̃1, ξ̃2, . . .) in `2,

∞∏
k=1

[ξk, ξ̃k] := {χ = (χ1, χ2, . . .) ∈ `2 | ξk ≤ χk ≤ ξ̃k}.

First, we assume that ∇zH(t, z) has at most linear growth in the vari-
able z, namely:

(A1) there exists C > 0 such that

‖∇zH(t, z)‖ ≤ C(1 + ‖z‖), for every t ∈ [0, T ], z ∈ `2 × `2,

where the symbol ‖ · ‖ denotes the usual norm in the product space.

Second, we consider three sequences (τk)k, (ak)k, (bk)k in `2, with

τk > 0, ak ≤ 0 ≤ bk and bk − ak > 0,

for every k ≥ 1, and we define the two bounded subsets of `2

T∞ =
∞∏
k=1

[0, τk], D∞ =
∞∏
k=1

[ak, bk].

With this notation, we assume the Lipschitz continuity condition

(A2) setting
R = (diam(T∞ ×D∞) + 1) eCT ,

there exists a constant L > 0 such that

‖∇zH(t, z1)−∇zH(t, z2)‖ ≤ L‖z1 − z2‖, for every t ∈ [0, T ], z1, z2 ∈ BR,

where BR ⊂ `2 × `2 denotes the closed ball centered at 0 with radius R and
C > 0 is the constant introduced in assumption (A1).

Finally, to state the main result of this section we need to introduce the
following Galerkin-type approximation scheme. Writing ξ = (ξ1, ξ2, . . . ) ∈ `2,
for every integer N ≥ 1 we define the projection PN : `2 → RN as

PN(ξ1, ξ2, . . . ) = (ξ1, ξ2, . . . , ξN),

and the immersion IN : RN → `2 as

IN(η1, η2, . . . , ηN) = (η1, η2, . . . , ηN , 0, 0, . . . ).
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Accordingly, we introduce the finite-dimensional approximating Hamiltonian
function HN : R× RN × RN → R by setting

HN(t, u, v) = H(t, INu, INv) , (3)

and we write the corresponding Hamiltonian system

u′ = ∇vHN(t, u, v) , v′ = −∇uHN(t, u, v) , (4)

where u = (u1, . . . , uN), v = (v1, . . . , vN) ∈ RN . Notice that 〈INu, INv〉`2 =∑N
i=1 uivi, so that the scalar product induced by `2 on RN coincides with

the usual Euclidean one, and the gradients in (4) are defined accordingly. In
particular,

∇uHN(t, u, v) = PN∇xH(t, INu, INv),

∇vHN(t, u, v) = PN∇yH(t, INu, INv) .
(5)

As a final notation, we set

TN = PNT∞ =
N∏
k=1

[0, τk], DN = PND∞ =
N∏
k=1

[ak, bk].

We are now in a position to state and prove our first main result, extend-
ing Theorem 2 to the infinite-dimensional setting.

Theorem 3. Let (A1) and (A2) hold and assume further that:

• the Hamiltonian function H is τk-periodic in the variable xk, for every
k ≥ 1;

• there exists a sequence (σk)k in {−1, 1} such that, for every sufficiently
large integer N , if w(t) = (u(t), v(t)) is a solution of (4) with v(0) ∈
∂DN , then, for every k = 1, . . . , N ,{

vk(0) = ak ⇒ σk[uk(T )− uk(0)] < 0,

vk(0) = bk ⇒ σk[uk(T )− uk(0)] > 0.
(6)

Then, there exists a T -periodic solution z(t) = (x(t), y(t)) of (2), such that

z(0) = (x(0), y(0)) ∈ T∞ ×D∞.

Remark 4. Some comments about Theorem 3 are in order. As in the
classical version of the Poincaré–Birkhoff Theorem, the assumption of pe-
riodicity in the xk-variables for the Hamiltonian H implies that the natural
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phase space for system (2) looks like the product of the infinite-dimensional
“torus” T∞ with the infinite-dimensional “cube” D∞. The key point in our
infinite-dimensional setting is that both these sets are compact. Indeed, since
(τk)k, (ak)k, (bk)k belong to `2, both T∞ and D∞ are homeomorphic to the
Hilbert cube [0, 1]N, whose compactness follows from Tychonoff’s Theorem
(see the final Appendix for further details).
Referring to the twist condition, it is worth noticing that the set D∞ has
empty interior, since it is a compact subset of an infinite-dimensional space.
Hence, each of its points is a boundary point and thus a twist-type assump-
tion on ∂D∞ would hardly be satisfied. In our statement, the twist condi-
tion (6) is indeed required on a sequence of finite-dimensional approximating
systems, and this seems to be a convenient choice also for the applications.

Proof. Throughout the proof, it will be convenient to make use of the pro-
jection operator on the product spaces, namely PN : `2 × `2 → RN × RN ,
defined as

PN(x, y) = (PNx, PNy) = (x1, . . . , xN , y1, . . . , yN).

We also define the operator IN : RN × RN → `2 × `2 as

IN(u, v) = (INu, INv) = ((u1, . . . , uN , 0, . . .), (v1, . . . , vN , 0, . . .)),

and we set
PN = IN ◦ PN : `2 × `2 → `2 × `2,

in such a way that

PN(x, y) = ((x1, . . . , xN , 0, . . .), (y1, . . . , yN , 0, . . .)).

We first prove some preliminary estimates on the solutions of the Cauchy
problems associated with (2), whose integral formulation reads as

z(t) = z(0) +

∫ t

0

(
∇yH(s, z(s))
−∇xH(s, z(s))

)
ds. (7)

Using the linear growth assumption (A1) and Gronwall’s lemma, it is easily
checked that, if a solution z(t) is defined on [0, T0] for some T0 ∈ ]0, T ], then
it satisfies the estimate

‖z(t)‖ ≤ (1 + ‖z(0)‖) eCT0 , for every t ∈ [0, T0].

In particular, if z(0) ∈ T∞×D∞, it follows that z(t) ∈ BR for every t ∈ [0, T0],
with R as in (A2). By the Lipschitz continuity on BR, we thus have that
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z(t) is actually defined on the whole interval [0, T ], is therein unique and
belongs to BR for every t ∈ [0, T ]. The same argument shows that, for any
solution w(t) = (u(t), v(t)) of (4) satisfying w(0) ∈ TN × DN , it holds that
INw(t) ∈ BR for every t ∈ [0, T ] (notice that ∇wHN straightly satisfies the
finite-dimensional counterparts of assumptions (A1) and (A2), with the same
constants).

As a consequence of the above proved global existence, together with the
twist condition (6), we can apply [20, Theorem 6.2] to obtain, for every large
enough integer N , a T -periodic solution wN(t) = (uN(t), vN(t)) of (4) with
wN(0) ∈ TN ×DN . Moreover, in view of the above estimates, INwN(t) ∈ BR
for every t ∈ [0, T ].

Let now zN0 = INwN(0); we thus have a sequence (zN0 )N in T∞×D∞. By
the discussion in Remark 4, the set T∞ ×D∞ is compact in `2 × `2, so that
there exists a subsequence, still denoted by (zN0 )N , which converges to some
z0 ∈ T∞ ×D∞. In view of the arguments at the beginning of the proof, the
solution z(t) of (2) starting from z(0) = z0 is uniquely defined on [0, T ]; we
are going to show that z(t) is T -periodic, thus completing the proof of the
theorem.

Indeed, we will prove that

INwN(t)→ z(t) , uniformly for every t ∈ [0, T ] ,

this being enough since the uniform limit of T -periodic functions is a T -
periodic function. To this end, we fix ε > 0, and we define ε′ = ε/2eLT ,
being L > 0 as in assumption (A2). Writing

‖z(t)− INwN(t)‖ ≤ ‖z(t)−PNz(t)‖+ ‖PNz(t)− INwN(t)‖,
we are led to estimate each summand separately. As for the first one, since
PN → Id in the space L(`2) of bounded linear operators on `2 and z(t) ∈ BR
for every t ∈ [0, T ], for N large enough it holds that

‖z(t)−PNz(t)‖ ≤ ε′, for any t ∈ [0, T ].

As for the second summand, we first pass to the integral formulations of (2)
and (4), namely (7) and

wN(t) = wN(0) +

∫ t

0

(
∇vHN(s, wN(s))
−∇uHN(s, wN(s))

)
ds,

and we use standard properties of the Riemann integral so as to obtain

‖PNz(t)− INwN(t)‖ ≤ ‖PNz(0)− INwN(0)‖+

+

∫ t

0

∥∥∥∥PN

(
∇yH(s, z(s))
−∇xH(s, z(s))

)
− IN

(
∇vHN(s, wN(s))
−∇uHN(s, wN(s))

)∥∥∥∥ ds.
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Now, since by definition INwN(0) = zN0 = PNz
N
0 and ‖PN‖L(`2) ≤ 1, for N

sufficiently large it holds that

‖PNz(0)− INwN(0)‖ ≤ ‖z(0)− zN0 ‖ ≤ ε′.

On the other hand, using (5) we rewrite the integral term as∫ t

0

∥∥∥∥PN

(
∇yH(s, z(s))
−∇xH(s, z(s))

)
−PN

(
∇yH(s, INwN(s))
−∇xH(s, INwN(s))

)∥∥∥∥ ds
which in turn can be estimated by

L

∫ t

0

‖z(s)− INwN(s)‖ ds,

using again the fact that ‖PN‖L(`2) ≤ 1, together with the Lipschitz condition
(A2), and recalling that z(t) and INwN(t) belong to BR, for every t ∈ [0, T ].
Summing up, for every t ∈ [0, T ] and every large enough N , it holds that

‖z(t)− INwN(t)‖ ≤ εe−LT + L

∫ t

0

‖z(s)− INwN(s)‖ ds.

By Gronwall’s Lemma we get

‖z(t)− INwN(t)‖ ≤ ε, for every t ∈ [0, T ],

whence the conclusion.

Remark 5. Let us notice that [20, Theorem 6.2], used in the proof of our
main result, actually gives the existence of N+1 distinct T -periodic solutions
to (4). Therefore, under the assumptions of Theorem 3, it would be natural to
conjecture the existence of infinitely many T -periodic solutions of (2). This
however seems to be out of reach within our Galerkin-type approximation
argument, since multiplicity may be lost when passing to the limit.

3 Some examples of applications
In this section, we give a possible application of Theorem 3 to an infinite-
dimensional second order system of ODEs. Precisely, we consider a system
of the type

x′′k +
∂V
∂xk

(t, x1, . . . , xk, . . . ) = ek(t), k = 1, 2, . . . , (8)
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where V(t, x1, . . . , xk, . . . ) is T -periodic in the variable t and τk-periodic in
each variable xk, while ek(t) is a T -periodic forcing term with zero mean, i.e.,∫ T

0

ek(t) dt = 0, k = 1, 2, . . . (9)

Such a setting is motivated by the classical result for pendulum-like scalar
equations [19, 22, 31], together with its several generalizations to finite-
dimensional systems [9, 15, 17, 20, 21, 24, 28, 29, 32, 36, 38]. Our next
result will then represent a possible infinite-dimensional extension.

To enter the functional setting of Section 2, some care is required. Pre-
cisely, we suppose that V : R× `2 → R is continuous in all its variables and
continuously differentiable with respect to x = (x1, x2, . . .) ∈ `2; moreover,
we require that the map

e : R→ `2, t 7→ e(t) = (e1(t), e2(t), . . .),

is well-defined and continuous. Due to these assumptions, (8) can be rewrit-
ten in a compact way as

x′′ +∇xV(t, x) = e(t). (10)

Solutions to (10) will then be meant as C2-functions x : R → `2 satisfying
the equation pointwise.

We are now ready to state the main result of this section.

Theorem 6. In the above setting, suppose further that (τk)k belongs to `2.
Moreover, assume that:

(V1) there exists (Mk)k in `2 such that, for every k ≥ 1,∣∣∣∣ ∂V∂xk (t, x)

∣∣∣∣ ≤Mk , for every (t, x) ∈ [0, T ]× `2;

(V2) for every ρ > 0, there exists Lρ > 0 such that

‖∇xV(t, x)−∇xV(t, x̃)‖`2 ≤ Lρ‖x− x̃‖`2 , for every t ∈ [0, T ], x, x̃ ∈ Bρ,

where Bρ denotes the closed ball in `2, centered at 0 with radius ρ.

Then, system (8) has a T -periodic solution.
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Proof. As a first step, we rewrite system (10) as

x′k = yk +

∫ t

0

ek(s) ds , y′k = − ∂V
∂xk

(t, x1, . . . , xk, . . . ) , k = 1, 2, . . . ;

it is easily checked that such a system possesses a Hamiltonian structure,
with Hamiltonian function H : R× `2 × `2 → R given by

H(t, x, y) =
∞∑
k=1

(
y2k
2

+ yk

∫ t

0

ek(s) ds

)
+ V(t, x1, . . . , xk, . . . ).

Notice that H is well-defined, is τk-periodic in each variable xk and, thanks to
the zero mean value condition (9), is T -periodic in the variable t. Moreover,
both the assumptions (A1) and (A2) of the previous section are satisfied.
Indeed, since

∇zH(t, z) =

(
∇xV(t, x), y +

∫ t

0

e(s) ds

)
,

assumption (A2) follows plainly from (V2). On the other hand, assumption
(V1) yields

‖∇zH(t, z)‖2 ≤
∞∑
k=1

M2
k + 2

(
‖y‖2`2 +

∫ T

0

‖e(s)‖2`2 ds
)
,

for every t ∈ [0, T ] and z = (x, y) ∈ `2 × `2, implying that (A1) holds true.
To conclude the proof, we thus need to find two sequences (ak)k, (bk)k in

`2 such that the twist condition (6) holds true. To this end, we set

ak = −2MkT, bk = 2MkT,

and, for N sufficiently large, we consider the finite-dimensional system

u′k = vk +

∫ t

0

ek(s) ds , v′k = − ∂V
∂uk

(t, u1, . . . , uN , 0, . . . ), k = 1, . . . , N,

which is readily verified to be the finite-dimensional approximation (4). Inte-
grating the equations, we immediately see that, if vk(0) = ak, then vk(t) < 0
for every t ∈ [0, T ], whence uk(T ) − uk(0) < 0, using (9) once more. Sym-
metrically, if vk(0) = bk, then vk(t) > 0 for every t ∈ [0, T ], so that
uk(T )− uk(0) > 0. Theorem 3 thus applies, giving the conclusion.
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Example 1. As a first example of application of Theorem 6, we consider a
system like (10), where

V(t, x) = −
+∞∑
k=1

ck
ωk

cos(ωkxk) cos(ωk+1xk+1),

with ck > 0 and ωk > 0, for every k ≥ 1. We have the cyclically coupled
system

x′′k +

[
ck−1ωk
ωk−1

cos(ωk−1xk−1)+ck cos(ωk+1xk+1)

]
sin(ωkxk) = ek(t), k = 1, 2, . . .

where we have formally set c0 = 0 and ω0 = 1. Assuming that the sequences

(ck)k,

(
1

ωk

)
k

,

(
ck−1ωk
ωk−1

)
k

all belong to `2 (e.g., we could take ck = 1/k and ωk = k), we can apply
Theorem 6, so that a T -periodic solution exists.

We would like to consider now a system like

ϑ′′k + γk
∂W
∂ϑk

(t, ϑ1, . . . , ϑk, . . .) = fk(t), k = 1, 2, . . . , (11)

where γk > 0 for every k ≥ 1, assuming that W is T -periodic in the variable
t and 2π-periodic in each variable ϑk. In this case, if

∞∑
k=1

1

γk
< +∞,

then it is easy to see that the change of variables xk = ϑk/
√
γk leads back to

the setting of system (8), with V(t, x1, . . . , xk, . . .) =W(t, ϑ1, . . . , ϑk, . . .) and
ek(t) = fk(t)/γk (the k-th period will now be τk = 2π/

√
γk). To make such

a procedure rigorous, we need to settle equation (11) in the Hilbert space of
weighted `2-summable sequences

`2w =

{
(ξk)k

∣∣∣∣∣
∞∑
k=1

ξ2k
γk

<∞

}
,

endowed with the scalar product

〈ξ, ξ̃〉`2w =
∞∑
k=1

ξkξ̃k
γk

,

12



and the corresponding norm ‖ξ‖`2w =
√
〈ξ, ξ〉`2w . Indeed, assuming W : R ×

`2w → R to be continuously differentiable in ϑ, by the definition of the inner
product in `2w one has

∇ϑW(t, ϑ) =

(
γ1
∂W
∂ϑ1

(t, ϑ), γ2
∂W
∂ϑ2

(t, ϑ), . . .

)
.

Hence, system (11) can be briefly written as

ϑ′′ +∇ϑW(t, ϑ) = f(t) ,

where of course the map t 7→ f(t) = (f1(t), f2(t), . . .) is supposed to be well-
defined and continuous with values in `2w, and a solution is meant to be a
C2-function ϑ : I → `2w, where I ⊂ R is an interval, which satisfies the
equation pointwise. We then have the following.

Corollary 7. In the above setting, suppose further that
∫ T
0
fk(t) dt = 0 for

every k ≥ 1 and that

(W1) there exists a constant M > 0 such that, for every k ≥ 1,∣∣∣∣γk ∂W∂ϑk (t, ϑ)

∣∣∣∣ ≤M , for every (t, ϑ) ∈ [0, T ]× `2w;

(W2) for every ρ > 0, there exists Lρ > 0 such that

‖∇ϑW(t, ϑ)−∇ϑW(t, ϑ̃)‖`2w ≤ Lρ‖ϑ− ϑ̃‖`2w , for every t ∈ [0, T ], ϑ, ϑ̃ ∈ Bρ,

where Bρ denotes the closed ball in `2w, centered at 0 with radius ρ.

Then, system (11) has a T -periodic solution.

As a possible application, referring to Example 1 above and taking γk =
k2, ck = 1/k and ωk = k, for every k ≥ 1, we can deal with the system

ϑ′′k + [qk cosϑk−1 + cosϑk+1] sinϑk = fk(t), k = 1, 2, . . . ,

where q1 = 0 and

qk =

(
k

k − 1

)2

, k = 2, 3, . . . .

13



4 A further generalization
In this section, we propose a further infinite-dimensional extension of the
Poincaré–Birkhoff theorem, which will include Theorem 3 as a special case.
Such a generalization will be given on the lines of the N -dimensional version
proved by Fonda and Ureña in [20, Theorem 6.1], which we briefly recall
below (in a slightly simplified version). In the following, by a convex body
D ⊂ RN we mean the closure of a non-empty, open, convex and bounded
set; accordingly, we denote by N (v) the corresponding outer normal cone at
the point v ∈ ∂D, namely, the set

N (v) =
{
ζ ∈ RN | 〈ζ, v − v′〉RN ≥ 0, for every v′ ∈ D

}
.

Theorem 8. [20, Theorem 6.1]. Let {b1, . . . , bN} be a basis of RN and
consider the finite-dimensional Hamiltonian system

u′ = ∇vH(t, u, v) , v′ = −∇uH(t, u, v) , (12)

where H : R × RN × RN → R is T -periodic in t, continuous in (t, u, v),
continuously differentiable in (u, v) and such that, for k = 1, . . . , N ,

H(t, u+ bk, v) = H(t, u, v), for every t ∈ [0, T ], (u, v) ∈ RN × RN .

Let A be a regular and symmetric N ×N matrix and let D ⊂ RN be a convex
body. Furthermore, assume that every solution w(t) = (u(t), v(t)) of (12)
with v(0) ∈ D is defined for every t ∈ [0, T ], and

v(0) ∈ ∂D ⇒ 〈u(T )−u(0),Aζ〉RN > 0, for every ζ ∈ N (v(0))\{0}. (13)

Then, there exist at least N+1 distinct T -periodic solutions w(t) = (u(t), v(t))
of (12) such that

w(0) = (u(0), v(0)) ∈ TN ×D,

where TN =
{∑N

k=1 αkbk | 0 ≤ αk ≤ 1
}
.

Condition (13) was inspired by a similar one previously considered by
Conley and Zehnder [10]; in the particular case when D =

∏N
k=1[ak, bk] and

A is a diagonal matrix, it contains the twist condition appearing in the state-
ment of [20, Theorem 6.2] (we recall that such a theorem was used in the
proof of Theorem 3). For other types of twist conditions, we refer to [16, 20].

Let us now provide an infinite-dimensional version of Theorem 8. Given
a separable real Hilbert space H with Hilbert basis (ek)k, we consider the
Hamiltonian system

x′ = ∇yH(t, x, y), y′ = −∇xH(t, x, y), (14)
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where H : R×H ×H → R is T -periodic in the first variable, continuous in
(t, x, y) and continuously differentiable in z = (x, y). Similarly as in Section 2,
we further assume that:

(A′1) there exists C > 0 such that

‖∇zH(t, z)‖ ≤ C(1 + ‖z‖), for every t ∈ [0, T ], z ∈ H ×H.

Moreover, given a non-empty, convex and compact set D ⊂ H and a
sequence (τk)k ∈ `2, with τk > 0 for every k ≥ 1, we define the bounded
subset of `2

T∞ =

{
∞∑
k=1

αkek | 0 ≤ αk ≤ τk

}
,

and we assume that:

(A′2) setting
R = (diam(T∞ ×D) + 1) eCT ,

there exists a constant L > 0 such that

‖∇zH(t, z1)−∇zH(t, z2)‖ ≤ L‖z1 − z2‖, for every t ∈ [0, T ], z1, z2 ∈ BR,

where BR ⊂ H×H denotes the closed ball centered at 0 with radius R.

Finally, for a strictly increasing sequence of positive integers (pN)N , we
set

XN = span{e1, . . . , epN},
and denote by ΠN : H → XN the corresponding orthogonal projection. With
these preliminaries, we have the following result.

Theorem 9. Let (A′1) and (A′2) hold and assume further that:

• for every k ≥ 1, the Hamiltonian H satisfies the periodicity assumption

H(t, x+ τkek, y) = H(t, x, y), for every t ∈ [0, T ], (x, y) ∈ H ×H;

• there exists an invertible self-adjoint operator A ∈ L(H), satisfying
A(XN) ⊂ XN for every N , such that the following condition holds
true: for every sufficiently large integer N ≥ 1, if w(t) = (u(t), v(t)) ∈
XN ×XN is a solution of

u′ = ΠN∇yH(t, u, v), v′ = −ΠN∇xH(t, u, v), (15)

with v(0) ∈ ∂XN
(D ∩XN), then

〈u(T )− u(0), Aζ〉 > 0, for every ζ ∈ ND∩XN
(v(0)) \ {0}. (16)
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Then, there exists a T -periodic solution z(t) = (x(t), y(t)) of (14) such that

z(0) = (x(0), y(0)) ∈ T∞ ×D.

Remark 10. A bit of caution in considering condition (16) is needed. Indeed,
it is implicitly assumed that, for every N sufficiently large, the set D∩XN is
a convex body with respect to the relative topology of the finite-dimensional
subspace XN (for example, the theorem will not be applicable if H = `2 with
the usual Hilbert basis and D =

∏M
k=1[0, 1/k]×{0}×{0}× . . ., since D∩XN

has empty interior in XN when N > M). Having this in mind, if D ∩XN is
a convex body, ∂XN

(D ∩ XN) and ND∩XN
(v) denote the boundary and the

normal cone in XN at v, respectively.

Proof. We just give a sketch of the proof, since it is similar to the one of
Theorem 3. Defining HN : R × XN × XN → R as the restriction of H to
R×XN ×XN , it can be seen that

∇uHN(t, u, v) = ΠN∇xH(t, u, v), ∇vHN(t, u, v) = ΠN∇yH(t, u, v),

and all the assumptions of Theorem 8 are satisfied. Hence, there is a T -
periodic solution wN(t) of (15) satisfying wN(0) ∈ (T∞ ∩XN) × (D ∩XN).
By compactness, there is a subsequence, still denoted by (wN(0))N , which
converges to some z0 ∈ T∞ × D. The solution z(t) of (14) starting from
z(0) = z0 is uniquely defined on [0, T ] by (A′1) and (A′2), and the same
argument used in the proof of Theorem 3 can be applied, showing that z(t)
is T -periodic.

Let us show how Theorem 3 follows from Theorem 9. Let H = `2, with
its usual Hilbert basis (ek)k, and set pN = N and

D =
∞∏
k=1

[ak, bk] = D∞.

In this case,

D ∩XN =
N∏
k=1

[ak, bk]× {0} × {0} × · · ·

is a convex body in XN for every N and its normal cone at

v = (v1, . . . , vN , 0, 0, . . .) ∈ ∂XN
(D ∩XN)

is given by

ND∩XN
(v) = I1(v1)× I2(v2)× · · · × IN(vN)× {0} × {0} × · · · ,
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where, for k ≥ 1,

Ik(vk) =


(−∞, 0) if vk = ak

(0,+∞) if vk = bk

{0} if vk ∈ (ak, bk).

Then, defining the bounded self-adjoint operator A : `2 → `2 by

Aek = σkek, for every k ≥ 1,

it is immediately checked that the twist condition (16) holds true. Since D
is convex and compact, as already remarked, the conclusion follows.

As a final remark, we notice that, using Theorem 9, we can also extend
Theorem 3 to a “vector Hilbert cube” framework. Precisely, we can replace
the intervals [ak, bk] by convex bodiesDk ⊂ Rdk having arbitrary finite dimen-
sion dk ≥ 1; the assumption that (ak)k, (bk)k belong to `2 with ak ≤ 0 ≤ bk
is accordingly replaced by

(diamDk)k belongs to `2, and 0 ∈ Dk.

By minor modifications of the arguments in the Appendix, we see that the
set

D =
∞∏
k=1

Dk

is a convex compact subset of the space `2. On this set, a natural twist
condition, generalizing (6), can be stated on the lines of the one in Theorem 8.
More precisely, setting DN =

∏N
k=1Dk and writing any vector η ∈ RpN , with

pN = d1 + . . . + dN , as η = (~η1, . . . , ~ηN), with ~ηk ∈ Rdk , we require the
following:

• for every k ≥ 1, there exists a symmetric and regular dk×dk matrix Ak

such that, for every sufficiently large integer N , if w(t) = (u(t), v(t)) ∈
RpN × RpN is a solution of

u′ = ∇vHN(t, u, v), v′ = −∇uHN(t, u, v), (17)

with v(0) ∈ ∂DN , then

N∑
k=1

〈~uk(T )− ~uk(0),Ak
~ζk〉 > 0, for every ζ ∈ NDN

(v(0)) \ {0}.
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Of course, in (17) we mean the truncated Hamiltonian HN as the vectorial
analogue of the one in (3), namely,

HN(t, u, v) = H(t, (~u1, . . . , ~uN , 0, . . .), (~v1, . . . , ~vN , 0, . . .)).

To see that the above framework enters the statement of Theorem 9, it is
enough to choose the usual Hilbert basis in the space H = `2, and to define
A ∈ L(`2) as the diagonal operator

A =


A1 0 0 · · ·
0 A2 0 · · ·
0 0

. . .
...

...

 .

Let us now investigate the case when the Hamiltonian function H(t, x, y),
besides being τk-periodic in each variable xk, is also periodic in some of the
variables yk. This situation has been considered in the finite-dimensional
case in [16, Theorem 12], where it was shown that, if the Hamiltonian is
periodic in x1, . . . , xN and in y1, . . . , yM , adding a twist condition on the
complementary (N −M)-dimensional space one obtains N +M + 1 distinct
T -periodic solutions. In the case whenM = N , i.e., when the Hamiltonian is
periodic in all variables, the twist condition is not necessary any more, and
one gets 2N + 1 periodic solutions: this is a famous theorem by Conley and
Zehnder [10, Theorem 1] partially solving a conjecture by Arnold.

By the techniques introduced in this paper, it is possible to deal with
various situations where the Hamiltonian function, defined on an infinite-
dimensional separable Hilbert space, is also periodic in all variables xk and
in some of the variables yk, maybe also an infinite number of them. To be
brief, we will only consider here the case when the Hamiltonian is periodic
in all variables, similarly as in [10, Theorem 1].

Theorem 11. Let the Hamiltonian function H(t, x, y) be τk-periodic in each
variable xk, and τ̂k-periodic in each variable yk, where (τk)k and (τ̂k)k are
two positive sequences in `2. Accordingly, define

T∞ =

{
∞∑
k=1

αkek | 0 ≤ αk ≤ τk

}
, T̂∞ =

{
∞∑
k=1

αkek | 0 ≤ αk ≤ τ̂k

}
,

and assume conditions (A′1) and (A′2), with D replaced by T̂∞. Then, there
exists a T -periodic solution of (14).
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Proof. All the finite-dimensional reductions (15) of our Hamiltonian system
have a T -periodic solution wN(t) = (uN(t), vN(t)): this can be deduced
from [10, 28, 38]. By the periodicity of the Hamiltonian function, we can
assume that wN(0) ∈ T∞ × T̂∞, and the compactness of this set allows us to
conclude along the lines of the proof of Theorem 3.

Appendix: the Hilbert cube
The Hilbert cube is defined as the set

C = [0, 1]× [0, 1]× . . . = [0, 1]N,

with the usual product topology (that is, the topology generated by all the
Cartesian products of open sets in every component space, only finitely many
of which can be proper subsets). In Functional Analysis, however, the name
Hilbert cube is usually attributed to the closed convex subset of `2 defined
by

C =
∞∏
k=1

[
0,

1

k

]
.

Here, however, the topology is the one inherited by the metric topology on
`2; with this choice, it can be seen (see [11, pp. 164-165]) that the map

C → C, (ξk)k 7→ (kξk)k

is a homeomorphism. As a consequence, C is compact, since the compactness
of C just follows from Tychonoff’s Theorem. Even more, it can be seen
(see [37, Theorem 2.3.3]) that every compact convex subset of a Banach
space is linearly homeomorphic to a closed convex subset of C. Hence, the
Hilbert cube C turns out to be a natural choice when trying to prove fixed
point theorems in an infinite-dimensional setting (cf. [30]).

In this paper, we made use of sets of the type

D∞ =
∞∏
k=1

[ak, bk] ⊂ `2,

where (ak)k, (bk)k belong to `2, and ak ≤ 0 ≤ bk for any k ≥ 1. It is
easily verified that, whenever bk − ak > 0 for every k ≥ 1, the set D∞ is
homeomorphic to C via the affine map

C → D∞, (ξk)k 7→ (ak + k(bk − ak)ξk)k ,
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and hence is compact. However, for the reader’s convenience, we prove here
below its compactness in a self-contained way (relying only on well-known
properties of the metric topology of `2).
Proof. Being `2 a metric space and D∞ a closed set, it is enough to prove that
D∞ is totally bounded, namely that for every ε > 0 there exist ξ1, . . . , ξn ∈ `2
such that

D∞ ⊂
n⋃
i=1

Bε(ξi),

where Bε(ξi) is the open ball centered at ξi having radius equal to ε. Thus,
let us fix ε > 0. Correspondingly, there exists N ≥ 1 such that

‖PNξ − ξ‖2`2 =
∞∑

k=N+1

ξ2k ≤
∞∑

k=N+1

(a2k + b2k) <
ε2

4
, (18)

for every ξ = (ξ1, ξ2, . . .) ∈ D∞ . On the other hand, since INPND∞ is (finite-
dimensional and hence) compact, it is totally bounded, so that there exist
ξ1, . . . , ξn ∈ `2 with

INPND∞ ⊂
n⋃
i=1

Bε/2(ξi). (19)

Combining (18) and (19), the conclusion straightly follows.

Acknowledgments
Partially supported by the GNAMPA project 2016 “Problemi differenziali
non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni”.
Alberto Boscaggin also acknowledges the support of the project ERC Ad-
vanced Grant 2013 n. 339958 “Complex Patterns for Strongly Interacting
Dynamical Systems - COMPAT”.

References
[1] V.I. Arnold, Problems in present day mathematics: fixed points of sym-

plectic diffeomorphisms, Proc. Symp. Pure Math., vol. 28, Amer. Math.
Soc., Providence 1976, p. 66.

[2] V. Barbu, Abstract periodic Hamiltonian systems, Adv. Differential
Equations 1 (1996), 675–688.

20



[3] M. Berti, Nonlinear oscillations of Hamiltonian PDEs, Progress in Nonlin-
ear Differential Equations and their Application, 74, Birkhäuser Boston,
Boston, 2007.

[4] M. Berti and P. Bolle, A Nash-Moser approach to KAM theory, in: Hamil-
tonian partial differential equations and applications, 255–284, Fields
Inst. Commun., 75, Toronto, 2015.

[5] G.D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer.
Math. Soc. 14 (1913), 14–22.

[6] G.D. Birkhoff, An extension of Poincaré’s last geometric theorem, Acta
Math. 47 (1925), 297–311.

[7] G.D. Birkhoff, Une généralisation à n dimensions du dernier théorème de
géométrie de Poincaré, C. R. Acad. Sci., Paris 192 (1931), 196–198.

[8] M. Brown andW.D. Neumann, Proof of the Poincaré–Birkhoff fixed point
theorem, Michigan Math. J. 24 (1977), 21–31.

[9] K.C. Chang, On the periodic nonlinearity and the multiplicity of solu-
tions, Nonlinear Anal. 13 (1989), 527–537.

[10] C.C. Conley and E.J. Zehnder, The Birkhoff-Lewis fixed point theorem
and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33–49.

[11] H.F. Cullen, Introduction to General Topology, D.C. Heath and Co.,
Boston, 1968.

[12] F. Dalbono and C. Rebelo, Poincaré–Birkhoff fixed point theorem and
periodic solutions of asymptotically linear planar Hamiltonian systems,
Turin Fortnight Lectures on Nonlinear Analysis (2001), Rend. Sem. Mat.
Univ. Politec. Torino 60 (2002), 233–263.

[13] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture
Notes in Math. 596, Springer, Berlin, 1977.

[14] G. Dincă and D. Paşca, Existence theorem of periodical solutions of
Hamiltonian systems in infinite-dimensional Hilbert spaces, Differential
Integral Equations 14 (2001), 405–426.

[15] P.L. Felmer, Periodic solutions of spatially periodic Hamiltonian sys-
tems, J. Differential Equations 98 (1992), 143–168.

21



[16] A. Fonda and P. Gidoni, An avoiding cones condition for the Poincaré–
Birkhoff Theorem, J. Differential Equations 262 (2017), 1064–1084.

[17] A. Fonda and J. Mawhin, Multiple periodic solutions of conservative
systems with periodic nonlinearity, in: Differential equations and appli-
cations, (Columbus, 1988), 298–304, Ohio Univ. Press, Athens, 1989.

[18] A. Fonda, M. Sabatini and F. Zanolin, Periodic solutions of perturbed
Hamiltonian systems in the plane by the use of the Poincaré–Birkhoff
Theorem, Topol. Meth. Nonlinear Anal. 40 (2012), 29–52.

[19] A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamilto-
nian systems in the plane, Adv. Nonlinear Stud. 12 (2012), 395–408.

[20] A. Fonda and A.J. Ureña, A higher dimensional Poincaré–Birkhoff the-
orem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire
34 (2017), 679–698.

[21] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative cat-
egory and critical point theory, in: Dynamics reported. Expositions in
Dynamical Systems, vol. 3, 1–24, Springer, Berlin, 1994.

[22] J. Franks, Generalizations of the Poincaré–Birkhoff theorem, Ann.
Math. 128 (1988), 139–151.

[23] M. Gramegna, Serie di equazioni differenziali lineari ed equazioni
integro-differenziali, Atti della R. Accademia delle Scienze di Torino 45
(1910), 469–491.

[24] F. Josellis, Lyusternik–Schnirelman theory for flows and periodic orbits
for Hamiltonian systems on Tn × Rn, Proc. London Math. Soc. (3) 68
(1994), 641–672.

[25] S.B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian sys-
tems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993.

[26] S.B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in
Mathematics and its Applications, 19, Oxford University Press, Oxford,
2000.

[27] P. Le Calvez, About Poincaré–Birkhoff theorem, Publ. Mat. Urug. 13
(2011), 61–98.

[28] J.Q. Liu, A generalized saddle point theorem, J. Differential Equations
82 (1989), 372–385.

22



[29] J. Mawhin, Forced second order conservative systems with periodic non-
linearity, Analyse non linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré
Anal. Non Linéaire 6 (1989), suppl., 415–434.

[30] J. Mawhin, Variations on Poincaré–Miranda’s theorem, Adv. Nonlinear
Stud. 13 (2013), 209–217.

[31] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary
value problem for some forced pendulum-type equations, J. Differential
Equations 52 (1984), 264–287.

[32] J. Mawhin and M. Willem, Variational methods and boundary value
problems for vector second order differential equations and applications
to the pendulum equation, Nonlinear analysis and optimization (Bologna,
1982), 181–192, Lecture Notes in Math. 1107, Springer, Berlin, 1984.

[33] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Ox-
ford University Press, New York, 1998.

[34] J. Moser and E.J. Zehnder, Notes on Dynamical Systems, Courant Lec-
ture Notes in Mathematics, vol. 12, Amer. Math. Soc., Providence, 2005.

[35] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo
33 (1912), 375–407.

[36] P.H. Rabinowitz, On a class of functionals invariant under a Zn action,
Trans. Amer. Math. Soc. 310 (1988), 303–311.

[37] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Lon-
don, 1974.

[38] A. Szulkin, A relative category and applications to critical point theory
for strongly indefinite functionals, Nonlinear Anal. 15 (1990), 725–739.

Authors’ addresses:

23



Alberto Boscaggin
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10, I-10123 Torino, Italy
e-mail: alberto.boscaggin@unito.it

Alessandro Fonda
Dipartimento di Matematica e Geoscienze
Università di Trieste
P.le Europa 1, I-34127 Trieste, Italy
e-mail: a.fonda@units.it

Maurizio Garrione
Dipartimento di Matematica ed Applicazioni
Università di Milano–Bicocca
via Cozzi 55, I-20125 Milano, Italy
e-mail: maurizio.garrione@unimib.it

Mathematics Subject Classification: 34C25, 34G05, 37K99.

Keywords: Poincaré–Birkhoff theorem; Hamiltonian systems in Hilbert spa-
ces; periodic solutions; Hilbert cube.

24


