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Abstract: A fast, economic, and eco-friendly methodology for the wine variety and geographical
origin differentiation using 13C nuclear magnetic resonance (NMR) data in combination with machine
learning was developed. Wine samples of different grape varieties cultivated in different regions in
Greece were subjected to 13C NMR analysis. The relative integrals of the 13C spectral window were
processed and extracted to build a chemical fingerprint for the characterization of each specific wine
variety, and then subjected to factor analysis, multivariate analysis of variance, and k-nearest neighbors
analysis. The statistical analysis results showed that the 13C NMR fingerprint could be used as a
rapid and accurate indicator of the wine variety differentiation. An almost perfect classification rate
based on training (99.8%) and holdout methods (99.9%) was obtained. Results were further tested on
the basis of Cronbach’s alpha reliability analysis, where a very low random error (0.30) was estimated,
indicating the accuracy and strength of the aforementioned methodology for the discrimination of the
wine variety. The obtained data were grouped according to the geographical origin of wine samples
and further subjected to principal component analysis (PCA) and partial least squares-discriminant
analysis (PLS-DA). The PLS-DA and variable importance in projection (VIP) allowed the determination
of a chemical fingerprint characteristic of each geographical group. The statistical analysis revealed
the possibility of acquiring useful information on wines, by simply processing the 13C NMR raw data,
without the need to determine any specific metabolomic profile. In total, the obtained fingerprint can
be used for the development of rapid quality-control methodologies concerning wine.

Keywords: wine; 13C NMR fingerprint; MANOVA; factor analysis; k-nearest neighbors; partial
least squares-discriminant analysis; variable importance in projection; varietal discrimination;
geographical discrimination

1. Introduction

The global impact of wine production in terms of economy and people involved is not negligible.
According to the report of the International Organization of Vine and Wine (OIV), the world wine
production in 2016 reached 259,500.000 hectoliters. Among the largest producers, Italy holds the first
position, followed by France and Spain. The wine production of Romania is of medium size and
constant, while that of the United States increased from 2015 to 2016. Referring to 2016, in South
America, and particularly in Argentina, Chile, and Brazil, the wine production decreased, while the
opposite trend was observed in Australia and New Zealand. Greece holds the 16th position in the world
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ranking, with a wine production that reached 2.6 million hectoliters in 2016. Currently, five countries
consume approximately 50% of the world’s wine production: United States (13%), France (12%), Italy
(9%), Germany (8%), and China (7%) [1]. Considering the size of the wine market, there is a great
interest in the clarification and maintenance of wine quality and varietal authenticity. It is then clear,
that more effective analytical methods are needed to control and monitor the quality of wine, improve
the production stages, increase the knowledge about its composition, and more generally, reach the
consumer needs at ahigh level.

The development, however, of new tools for quality assessment in food and related areas represents
a continuous challenge for researchers. Within the many available analytical techniques for food
analysis and control, fast and sustainable nuclear magnetic resonance (NMR) spectroscopy for food
and biological samples has largely affirmed its utility and advantages especially in analyses based
on metabolomics [2–4]. Many protocols based on different analytical techniques have been reported
with the aim of distinguishing between wine samples on the basis of cultivar, geographical, biological,
and processes information. Some techniques, such as high-performance liquid chromatography coupled
to diode array detector (HPLC-DAD) [5], mass spectrometry (MS) coupled with inductively coupled
plasma (ICP/MS) [6], or with gas chromatography (GC) [7,8] require specific sample treatments as the
solid-phase micro-extraction (SPME). On the other hand, other techniques, such as IR [9] or Raman [10]
spectroscopy have been employed in combination with chemometrics to determine a fingerprint
specific to each wine type, resulting in effectiveness and time saving. More specifically, the 1H and 13C
NMR spectra of wine and a deuterium natural abundance NMR method (SNIF-NMR: site-specific
natural isotope fractionation) can be exploited to determine a molecular fingerprint, which can be
used directly for the characterization and quantitative identification of specific metabolites (ethanol,
glycerol, 2,3-butanediol, ethyl acetate, malic acid, tartaric acid, succinic acid, lactic acid, alanine, valine,
proline, choline, gallic acid, etc.)in samples of different varieties and geographical origins [11,12].
The wine metabolome is based on the identification of either the compositional or spectrometric
characteristics, and it depends on several factors such as agronomic practices and pedoclimatic
conditions [2], grape variety [5,13], wine-making/fermentation strategies [14], and geographical
origin [5,15]. The wine metabolome can be used for the quality control and authentication of wine and
for the support of the already known labeling of protected designation of origin (PDO) and protected
geographical indication (PGI). However, all the aforementioned NMR-based methodologies require
an excessive amount of analysis time and the purchase of standards for the quantification of the
metabolites. Regarding the Greek wine varieties, in addition to the most important wines Assyrtiko,
Moschofilero, Agiorgitiko, and Xinomavro, numerous other grape varieties are present in different
territories (Augoustiatis, Kakotrygis, Kalavritiko Black, Krassato, Lagorthi, Savatiano, etc.) which
are all vinifiable, whether they go toward vinification of monovarietals or are used as part of wine
blends. In all cases, these contribute to the character and diversity of the wines, showcasing them
as one-of-a-kind [16]. In this context, the aim of the present study was to develop a fast, economic,
eco-friendly, and effective analytical methodology for the classification of commercial wine samples
of different varieties, cultivated in the Hellenic zone, in combination with statistical tools. Thus,
in the present study, PDO and PGI wine samples were subjected to 13C NMR analysis, and a chemical
fingerprint characteristic of each sample was determined and processed through statistical analysis.
As an outcome, the study contributes to the rapid quality-control analysis of different wine varieties
from different regions and the support of the identical character of certified wines distributed by the
domestic wine industry in the local or international markets.

2. Materials and Methods

2.1. Wine Samples and Handling

Wine samples of different varieties, bottled in 2015–2018, were considered in the study. Most of
the wine samples were of protected designation of origin (PDO) and protected geographical indication
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(PGI). Table 1 lists the harvesting year, type, geographical origin, variety, and alcohol volume for
each wine sample. For the present study, the samples were categorized in the following eight groups:
Group A: Syrah + Syrah-based wines (sample nos. 3, 4, 5, 27, 31, 32); Group B: Muscat (sample
nos. 9, 10, 12); Group C: Xinomavro+Xinomavro-based wines (sample nos. 7, 33, 34, 35); Group D:
Assyrtiko+Assyrtiko-based wines (sample nos. 19, 23, 29); Group E: Malagouzia (sample nos. 8, 20,
22); Group F: Other wine varieties (sample nos. 2, 6, 11, 13, 14, 15, 16, 18, 21, 24, 28, 30, 36); Group G:
Agiorgitiko (sample nos.25, 26); and Group H: Debina (sample nos.1, 17). For the geographical origin
differentiation, wine samples were grouped according to Table 2. Three different bottles of each wine
variety (N = 36 × 3ib, where ib: independent bottles of wine) were subjected to the study, and the
mean value of the data arising from the three independent bottles was used further in the processing
of results.

Table 1. The wine samples used in the study.

Wine
Samples Year Type Geographical Origin Variety Alcohol

Volume (%)

1 2017 Dry white wine—PDO Zitsa, Ioannina Debina 12.0

2 2017 Dry white wine—PGI Crete Malvasia di Candia
Aromatica–Chardonnay 12.5

3 2016 Dry red wine—PGI Crete Syrah–Mandilari 13.0
4 2017 Dry Rosé wine—PGI Crete Syrah–Mandilari 13.0
5 2017 Dry red wine—PGI Crete Syrah 12.5
6 2017 Dry white wine—PGI Crete Vidiano 13.0
7 2018 Dry red wine—PGI Epanomi, Macedonia Xinomavro 13.5
8 2018 Dry white wine—PGI Epanomi, Macedonia Malagouzia 13.5
9 2017 Dry white wine—PDO Samos Island Muscat 15.0
10 2017 Dry white wine Samos Island Muscat 12.5
11 2018 Semi dry rosé wine Samos Island Samos red grapes 12.5

12 2011 Nectar, white wine
naturally sweet—PDO Samos Island Muscat 14.0

13 2016 Dry red wine—PGI Letrinoi, Ileia Refosco 14.0

14 2015 Dry red wine—PGI Letrinoi, Ileia Daphne
Nera–Mavrodafni 13.0

15 2016 Dry red wine—PGI Ileia Augoustiatis 13.0
16 2017 Dry white wine Ileia Albariño 13.5
17 2017 Demi Sec white wine Zitsa, Ioannina Debina 12.0
18 2016 Dry red wine—PGI Meteora Limniona 13.0
19 2017 Dry white wine—PGI Meteora Assyrtiko 14.0
20 2018 Dry white wine—PGI Meteora Malagouzia 13.0
21 2017 Dry white wine—PGI Markopoulo, Athens Savatiano 12.5
22 2018 Dry white wine—PGI Macedonia Malagouzia 12.5
23 2017 Dry white wine—PGI Drama Assyrtiko 13.5
24 2016 Dry red wine—PGI Zitsa, Ioannina Vlahiko 12.0
25 2017 Dry rosé wine—PGI Korinthos Agiorgitiko 13.0
26 2017 Semi sweet red wine—PGI Korinthos Agiorgitiko 12.0
27 2015 Dry red wine Korinthos Syrah/Merlot/Cabernet 14.0

28 2017 Dry red wine—PGI Kavala Merlot–Cabernet
Sauvignon–Agiorgitiko 14.0

29 2018 Dry white wine—PGI Kavala Assyrtiko–Sauvignon
Blanc 13.0

30 2017 Dry white wine—PDO Mantinia, Messinia Moschofilero 12.0
31 2015 Dry red wine—PGI Naoussa, Macedonia Syrah–Xinomavro 12.0
32 2015 Dry red wine—PGI Naoussa, Macedonia Syrah 13.0
33 2015 Dry red wine—Table wine Naoussa, Macedonia Xinomavro–Mavroudi–Sefka 11.0
34 2016 Dry red wine—PDO Naoussa, Macedonia Xinomavro 12.5
35 2015 Dry red wine—PGI Macedonia Merlot–Xinomavro 13.0
36 2016 Dry white varietal wine Trifylia, Messinia Chardonnay 13.5

PDO: protected designation of origin. PGI: protected geographical indication.
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Table 2. Grouping of wine samples according to geographical origin.

Group Samples

Crete 2, 3, 4, 5, 6
Ilia 13, 14, 15, 16

Korinthos 25, 26, 27
Macedonia 7, 8, 22, 31, 32, 33, 34, 35

Meteora 18, 19, 20
Samos Island 9, 10, 11, 12

Others 1, 17, 21, 23, 24, 28, 29, 30, 36

2.2. Chemicals

Deuterated water (D2O) and tetramethylsilane (TMS) were purchased from Sigma–Aldrich, Italy.

2.3. 13C NMR Analysis

Wine samples were collected from the original bottle and analyzed in pure form (0.4 mL).
Proton-decoupled 13C NMR analysis, in the presence of 30 mL of D2O containing 10% of
tetramethylsilane (TMS, internal reference) (Sigma-Aldrich Italy), was then conducted. As the TMS is
almost insoluble in D2O, when reference was not detected, the typical signal at 60.1 ppm of glucose,
common to all the samples, was taken as an internal reference for scale adjusting [17]. Each sample
was analyzed in triplicate and the mean value of the three replicates was used for the statistical
analysis. The NMR measurements were performed on a Bruker NEO 500 spectrometer equipped
with a 5 mm pulsed-field z-gradient broad band BBFO probe and a variable-temperature unit and
operating at 125 MHz for the carbon nucleus. The following acquisition parameters were applied for
each measurement: time domain 32K, 2500 scans, and a spectral width of 240 ppm. The spectral data
from the 13C NMR analysis were processed as follows: the entire spectrum in the range 0–220 ppm was
divided in parts of 0.1 ppm (bin = 0.1 ppm), and all the corresponding signals were extracted and saved
in a text file. For each signal, the value of the corresponding integral was considered for the statistical
analysis. About 2500 integrals from each spectrum were extracted and subjected to MetaboAnalyst
processing as described in the following section.

2.4. Statistical Analysis

Given the large amount of data contained in the processed 13C NMR spectra, as a first step,
a dimension-reduction technique (factor analysis) was used to investigate whether a satisfactory total
variance could be explained in the multidimensional space, among wine samples of different varieties.
The basic principle of factor analysis is to provide a reduction in the correlated variables (in our case,
the 13C NMR integrals) to highlight those that have the higher communalities (common variance
shared by factors with specific variables) of the independent latent variables. A higher communality
(≥0.4) indicates that larger amount of the variance in the variable has been extracted during the factor
analysis. The extraction method was principal component analysis (PCA). The efficiency (accuracy and
strength) of factor analysis was checked by the Kaiser–Meyer–Olkin (KMO) test, which comprises a
measure of how well-suited the data set is for factor analysis. The value that was considered acceptable
during the analysis was that of KMO ≥0.50. An additional criterion for factor analysis was the Bartlett’s
test of sphericity, which is a test that highlights the hypothesis that the correlation matrix used in
the analysis is an identical matrix. Small probability values (p < 0.05) indicate that factor analysis
may be useful with data treatment [18]. For the classification of wine samples according to variety,
multivariate analysis of variance (MANOVA) in combination with k-nearest neighbors (k-NN) analysis
was implemented. At first, MANOVA indicated the significant (p < 0.05) 13C NMR integrals in relation
to the wine variety. Thereafter, k-NN, as a supervised classification technique, was used to classify
wine samples according to variety. The group of wine samples was considered as the factor variable,
whereas the 13C NMR integrals were the independent variables. Finally, the reliability of the performed
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analyses was tested using the Cronbach’s alpha index. The calculation of Cronbach’s alpha has become
a common practice for scientists to test the reliability level of research [19] when multiple-item measures
or multi-element parameter analysis are employed. Cronbach’s alpha test provides a measure of the
internal consistency of a group of objects or scale. It is expressed as a number between 0 and 1. On the
other hand, the internal consistency describes the extent to which all the items in a test measure the
same concept or construct, and hence, it is connected to the inter-relatedness of the items within the
test, to ensure validity. In addition, reliability analysis estimates the amount of measurement error in a
test. Therefore, for high-quality tests it is mandatory to evaluate the reliability of data supplied in an
examination or a research study. For the geographical origin differentiation of wine samples, given the
challenging grouping of samples (Table 2), multivariate analyses such as principal component analysis
(PCA), partial least squares-discriminant analysis (PLS–DA), and variable importance in the projection
(VIP) were performed using the online tool MetaboAnalyst 4.0 [20]. The PLS regression was performed
by employing the plsr function provided by R pls package [21]. Classification and cross-validation
were performed using the corresponding wrapper function contained in caret package [22]. Statistical
analysis was performed by the SPPSS statistics software version 26.0 and the MetaboAnalyst online
tool [23,24]. The raw data were filtered, normalized by the sum, and then processed by the specific
statistical tool (vide infra). Filtering of the raw data was conducted to remove variables of very small
values (close to baseline or detection limit) and variables that are near-constant values throughout
the experiment conditions (housekeeping or homeostasis) [25]. All the variables exhibiting a relative
standard deviation (RSD) >10% were not considered in the statistical analysis.

3. Results and Discussion

3.1. Commercial Characteristics of the Wine Samples—Consumer Issues

The product status and characteristics of the wine samples herein considered according to the brand
labeling are presented and discussed exhaustively in the Supplementary Materials. The information
presented should be considered as a typical screenshot for the reader/consumer (consumer’s choice)
aimed to a rapid (and available) knowledge on these wines and not an advertisement of these specific
brands. The consumer’s need should fill the gap between researchers and food community, as the
cooperation between the two societies would guarantee their welfare and the authenticity of the wine
products introduced in the international market.

3.2. 13C NMR Fingerprints of Wine Samples—MANOVA Analysis

As an alternative methodology to the classical employment of standards or comparison handling
of the chemical shift information of the wine metabolites based on the related references and
databases [12,26–28] for the characterization of wine, we propose the determination of a molecular
fingerprint on the basis of 13CNMR measurements. This approach allows us, with the proper
combination of specific NMR technique (1H, 13C, 31P) and statistical tools, to obtain a chemical
fingerprint of samples that can be employed in discrimination and quality assessment. Such a fingerprint
is representative of the chemical composition of the samples and can be used for classification purposes
without determining specific compositional characteristics [29]. In addition, any chemical additive
due to the agricultural process or wine production will be treated as valuable information. Products
present in low amounts (traces) do not affect the statistical outcome as they are filtered as described
above. For each sample, the spectral region from 0 to 220 ppm was divided in intervals of 0.1 ppm
(bin = 0.1 ppm). The corresponding integrals were considered and subjected to statistical analysis
(Supplementary Materials Figure S1). The time of analysis was about 2 h for 13C NMR, while the
extraction of the raw data from the FID (Free Induction Decay) required a few minutes. The proposed
technique is different from the already reported employment of NMR for the determination of ethanol
content in wine [30] or for the recognition of specific chemical groups [31]. Indeed, the implementation
of a chemical fingerprint based on the entire spectrum allows indicating even small differences between
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samples, which can be highlighted only by specific combination of patterns of signals through an
opportune statistical multivariate analysis. Herein, 13C NMR has been preferred to faster the 1H NMR
analysis because carbon frequencies are spread over a larger spectral window, enhancing resolution
and reducing overlaps. In fact, 1H NMR signals range from 0 to about 12 ppm, while in the case of
13C NMR the signals window ranges from 0 to about 220 ppm. Thus, numerous frequencies were
recorded for each wine sample (Supplementary Materials Table S1), allowing enough data for an
exhaustive statistical analysis. The determination of this specific chemical fingerprint does not require
the employment of any standard or database access, thus proving quite economic when compared
with other methodologies of food classification. Moreover, no specific manipulation or treatment of
the samples is needed, reducing the employment of chemicals and toxic solvents and, thus, enhancing
the sustainability of the methodology. Regarding the studied wine samples, significant (p < 0.05)
differences were recorded in the 13C NMR integrals according to the wine variety using MANOVA
(Table 3). The power of the combination between 13C NMR and statistical analysis is evident even
from a qualitative comparison between the spectra. If, e.g., the spectra relative to Muscat PDO and
Assyrtiko (Meteora) wines are compared, important differences can be noted (Figure 1). It is evident
that dry white wines from Meteora (Assyrtiko grapes) and from Samos (Muscat grapes) have different
composition (Figure 1). In particular, the relative amount of carbonyl compounds (between 170 and
180 ppm) is higher in the wine from Meteora, while the Samos sample is richer in chemicals with
carbons close to heteroatoms or involved in multiple bonds (between 60 and 110 ppm). On the contrary,
the aliphatic part of the spectrum (between 0 to 50 ppm) is more populated with signals in the Meteora
wine sample. If in some cases, such as the one reported in Figure 1, it is possible to qualitatively
distinguish between wine samples, other comparisons can be more difficult. In Figure 2, samples of
Syrah–Mandilari (Crete), Malvasia–Chardonnay (Crete), and Debina (Zitsa, Ioannina) are compared.
Despite the known differences between these three wines, it is evident that, in this specific case, a visual
discrimination is not possible (Figure 2). Nevertheless, the 13C NMR spectra contain much information,
not directly visually accessible, which, if extracted and properly processed, can be used for sample
discrimination. This matter will be discussed in the next sections.
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Figure 1. Qualitative 13C nuclear magnetic resonance (NMR) spectra comparison between Assyrtiko
(Meteora) and Muscat (Samos Island) wines.
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Table 3. Significant contribution (p < 0.05) of the relative integrals of the 13C NMR spectra in relation to
the wine variety.

Wine Samples Wilks’
Lambda F df1 df2 p

Malvasia di Candia Aromatica–Chardonnay (Other wine
varieties)(Crete) 0.999 2.224 7 17576 0.029

Syrah–Mandilari (Syrah +Syrah-based wines) 0.999 3.755 7 17576 0.000
Syrah–Mandilari (Syrah +Syrah-based wines)(Crete) 0.998 4.562 7 17576 0.000
Syrah–Mandilari (Syrah +Syrah-based wines)(Crete) 1.000 0.865 7 17576 0.533

Vidiano (Other wine varieties)(Crete) 0.999 2.717 7 17576 0.008
Xinomavro (Xinomavro+Xinomavro-based wines)(Epanomi) 0.998 3.930 7 17576 0.000

Malagouzia (Epanomi) 0.997 6.429 7 17576 0.000
Muscat (Samos Island) 1.000 1.208 7 17576 0.294
Muscat (Samos Island) 0.997 7.611 7 17576 0.000

Samos red grapes wine (Other wine varieties) 0.998 4.177 7 17576 0.000
Muscat (Samos Island) 0.999 2.883 7 17576 0.005

Refosko (Other wine varieties)(Letrinoi) 0.999 1.453 7 17576 0.179
Daphne Nera–Mavrodafni (Other wine varieties)(Letrinoi) 0.999 3.485 7 17576 0.001

Augoustiatis (Other wine varieties)(Ileia) 0.999 3.257 7 17576 0.002
Albarinó (Other wine varieties)(Ileia) 0.999 1.311 7 17576 0.240

Debina (Zitsa, Ioannina) 0.998 4.105 7 17576 0.000
Limniona (Other wine varieties)(Meteora) 0.999 1.282 7 17576 0.255

Assyrtiko (Assyrtiko+Assyrtiko-based wines)(Meteora) 0.999 3.335 7 17576 0.001
Malagouzia (Meteora) 1.000 0.362 7 17576 0.925

Savatiano (Other wine varieties)(Markopoulo) 0.999 3.227 7 17576 0.002
Malagouzia (Macedonia) 0.998 3.875 7 17576 0.000

Assyrtiko (Assyrtiko+Assyrtiko-based wines)(Drama) 0.999 2.996 7 17576 0.004
Vlahiko (Zitsa, Ioannina) 0.999 1.657 7 17576 0.115
Agiorgitiko (Korinthos) 0.999 2.218 7 17576 0.030
Agiorgitiko (Korinthos) 0.999 2.865 7 17576 0.005

Syrah/Merlot/Cabernet Sauvignon (Syrah+Syrah-based
wines)(Korinthos) 0.999 3.073 7 17576 0.003

Merlot–Cabernet Sauvignon–Agiorgitiko (Other wine
varieties)(Kavala) 0.999 3.394 7 17576 0.001

Assyrtiko/Sauvignon Blanc (Assyrtiko+Assyrtiko-based
wines)(Kavala) 0.999 2.663 7 17576 0.009

Moschofilero (Other wine varieties) (Mantinia) 0.998 3.927 7 17576 0.000
Syrah–Xinomavro (Syrah+Syrah-based wines)(Naoussa) 0.999 3.536 7 17576 0.001

Syrah (Syrah+Syrah-based wines)(Naoussa) 1.000 0.324 7 17576 0.944
Xinomavro–Mavroudi–Sefka (Xinomavro+Xinomavro-based

wines)(Naoussa) 0.999 1.688 7 17576 0.107

Xinomavro(Naoussa) 0.997 7.937 7 17576 0.000
Merlot–Xinmavro (Xinomavro+Xinomavro-based

wines)(Macedonia) 0.999 2.305 7 17576 0.024

Chardonnay (Other wine varieties)(Trifylia) 0.999 3.686 7 17576 0.001

Tests of equality of the average values (means) of the grouped wine varieties. F: values of the F-distribution; df:
degrees of freedom; p: probability.
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3.3. Classification of Wine Samples According to Variety Using the 13C NMR Integrals and Chemometrics

3.3.1. Factor Analysis

Factor analysis showed that 9 components (13C NMR integrals of the respective wine varieties)
could explain 90.549% (ca. 90.55%) of the total variance. The first component (eigenvalue of
7.169) explained 21.770% of the total variance, whereas the second component (eigenvalue of 5.031)
explained 14.373% of the total variance. Similarly, the third component (eigenvalue of 4.143) explained
11.838% of the total variance. The fourth component (eigenvalue of 3.410) explained 9.743% of the
total variance. The fifth component (eigenvalue of 2.903) explained 8.295% of the total variance.
The sixth component (eigenvalue of 2.598) explained 7.422% of the total variance. The seventh
principal component (eigenvalue of 2.533) explained 7.238% of the total variance. The eighth principal
component (eigenvalue of 1.852) explained 5.291% of the total variance. Finally, the ninth principal
component (eigenvalue of 1.603) explained 4.579% of the total variance. The first component was
more highly correlated with the 13C NMR integrals of Syrah/Merlot/Cabernet wines (Syrah-based
wines) from Korinthos (correlation value of 0.975). The second component was more highly correlated
with the 13C NMR integrals of Xinomavro wines from Epanomi (correlation value of 0.994). The third
component was more highly correlated with the 13C NMR integrals of semi dry rosé wines from
Samos Island (correlation value of 0.979). The fourth component was more highly correlated with
the 13C NMR integrals of Debina wines from Zitsa (Ioannina) (correlation value of 0.995). The fifth
component was more highly correlated with the 13C NMR integrals of Malagouzia wines from Meteora
(correlation value of 0.974). The sixth component was more highly correlated with the 13C NMR
integrals of Muscat wines from Samos Island (correlation value of 0.975). The seventh component was
more highly correlated with the 13C NMR integrals of Syrah–Xinomavro wines (Syrah-based wines)
from Naoussa (correlation value of 0.742). The eighth component was more highly correlated with the
13C NMR integrals of Xinomavro-based wines and pure Xinomavro wines from Naoussa (correlation
value of 0.962). Finally, the ninth component was more highly correlated with the 13C NMR integrals of
Xinomavro+Xinomavro-based wines and wine samples of other varieties from Macedonia and Trifylia
(correlation value of 0.895). The KMO measure of sampling adequacy was 0.776, whereas Bartlett’s test
of sphericity (X2 = 1,962,733.748, df = 595, p = 0.000 < 0.001) approved the effectiveness of analysis.
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3.3.2. k-NN Analysis

During the k-nearest neighbors analysis (k-NN), the wine variety (8 varieties) was considered
as the target parameter, whereas the significant 13C NMR integrals indicated by MANOVA were the
features. The classification ability of the model was evaluated by application of training and holdout
partitions. In total, the recorded number (N) of the 13C NMR integrals was N = 17,584. In the training
sample, the 70% of the cases (N = 12,336 13C NMR integrals) representing the 70.2% of the population of
samples were randomly assigned to partitions, while the rest of the cases (N = 5248 13C NMR integrals),
representing the 29.8% of the population of samples, were assigned to the holdout sample.The overall
classification rates were 99.8% and 99.9% for training and holdout samples, respectively (Table 4).
As can be observed, this was an almost perfect classification for the different wine varieties based on the
number of the 13C NMR integrals. The respective error summary of the k-NN model (percent of records
incorrectly classified) was 0.2% for the training and 0.1% for the holdout sample. Figure 3 shows the
classification of wine according to variety using the 13C NMR integrals in combination with k-NN
analysis. This chart is a lower-dimensional projection of the predictor space, which contains a total of
26 predictors. In a similar study, Godelmann et al. [32] analyzed different German wine varieties using
1H NMR spectroscopy with multivariate data analysis, including principal component analysis, (PCA),
linear discriminant analysis (LDA), and multivariate analysis of variance (MANOVA). The grape
varieties Pinot Noir, Lemberger, Pinot blanc/Pinot gris, Müller–Thurgau, Riesling, and Gewürztraminer,
were successfully classified (ca. 97%), and it was reported that the metabolites mainly responsible for
the observed differentiation of the wine varieties were shikimic acid, caftaric acid, and 2,3-butanediol.
Wines from the varieties Agiorgitiko, Mandilaria, Moschofilero, and Assyrtiko produced in Greece [27]
and Cabernet Sauvignon, Merlot, Feteasca Neagra, Pinot Noir, and Mamaia wines, produced in
Romania [33] were classified (85.7% correct classification rate) according to variety using NMR-based
metabolomics and LDA. Cabernet Sauvignon and Shiraz wines, produced in Australia, showed a clear
separation based on their respective metabolite profile. In particular, Cabernet Sauvignon had higher
levels of proline, while Shiraz wines had higher levels of sugars (fructose and glucose), succinate,
methanol, acetate, and some aliphatic amino acids [34].

3.3.3. Reliability Analysis

Finally, during the reliability analysis all cases (N = 17,584 13C NMR integrals) were valid and
subjected to the test. Results showed that Cronbach’s alpha had the value of 0.836, indicating a
good reliability of the analysis carried out. The variance error of the analysis (random error) was:
0.836 × 0.836 = 0.698896; 1− 0.698896 = 0.301104 = ~0.30. Therefore, the presented data with a reliability
level of 0.836 have a random error of 0.30.
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Table 4. Classification of wine samples according to variety based on the relative integrals of the 13C NMR spectra and k-NN analysis.

Partition
Observed

Predicted
Syrah +

Syrah-Based
Wines

Muscat
Xinomavro +

Xinomavro-Based
Wines

Assyrtiko +
Assyrtiko-Based

Wines
Malagouzia Other wine

Varieties Agiorgitiko Debina Percent
Correct

Training

Syrah+Syrah-based wines 1560 0 0 0 2 0 1 0 99.8%
Muscat 0 1533 0 0 0 0 1 0 99.9%

Xinomavro + Xinmavro-based wines 0 0 1515 0 1 0 1 0 99.9%
Assyrtiko + Assyrtiko-based wines 0 0 0 1539 1 0 1 0 99.9%

Malagouzia 0 0 0 0 1524 0 4 0 99.7%
Other wine varieties 0 0 0 0 1 1543 5 0 99.6%

Agiorgitiko 0 0 0 0 2 0 1577 0 99.9%
Debina 0 0 0 0 2 0 0 1523 99.9%

Overall Percent 12.6% 12.4% 12.3% 12.5% 12.4% 12.5% 12.9% 12.3% 99.8%

Holdout

Syrah+Syrah-based wines 634 0 0 0 0 0 1 0 99.8%
Muscat 0 664 0 0 0 0 0 0 100.0%

Xinomavro + Xinmavro-based wines 0 0 680 0 1 0 0 0 99.9%
Assyrtiko + Assyrtiko-based wines 0 0 0 656 1 0 0 0 99.8%

Malagouzia 0 0 0 0 670 0 0 0 100.0%
Other wine varieties 0 0 0 0 0 648 1 0 99.8%

Agiorgitiko 0 0 0 0 0 0 619 0 100.0%
Debina 0 0 0 0 0 0 0 673 100.0%

Missing 0 0 0 0 0 0 0 0
Overall Percent 12.1% 12.7% 13.0% 12.5% 12.8% 12.3% 11.8% 12.8% 99.9%
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4. Classification of Wine Samples According to Geographical Origin Using the 13C NMR
Integrals and Chemometrics

Herein, a combination between the 13C NMR integrals and partial least squares-discriminant
analysis (PLS-DA) was successfully used for this purpose. PLS-DA was selected after unsuccessful
attempts to clusterize NMR data through PCA, which is also reported for comparison. Nevertheless,
the relatively low number of wine samples originating from not all the major wine regions in Greece may
comprise limitations of the study. A high number of the proton-decoupled 13C NMR spectra related to
the wine samples were acquired and processed as reported in Section 2.3, and about 2500 integrals
for each spectrum were extracted and considered for the statistical analysis. In that sense, a chemical
fingerprint characteristic of each group was obtained from the PLS-DA data through VIP representation.
The list reported in Table 1 is very heterogeneous and challenging for a possible discrimination, as the
considered wine samples differ from each other in many characteristics. In general, different grapes
were considered in terms of color (red and white) and variety. Furthermore, wines arising from
different geographical areas in Greece were considered, which were prepared according to different
processes. In this context, an effort to classify wine samples on the basis of their geographical origin
was carried out (Table 2). The classification reported in Table 2 considers samples for each group of
wines that are very different in grape type and year of production. It is a general classification based
on the geographical origin of samples. Thus, the possibility of finding specific markers that allow
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distinguishing between these groups is of interest. The difficulties related to a visual classification
based on the analysis of the 13C NMR data can be highlighted by comparing the spectra of wine
samples from Macedonia, Crete, and Ileia regions (Figure 4).Foods 2020, 9, x FOR PEER REVIEW 11 of 23 
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From the visual analysis of the spectra reported in Figure 4, it is possible to notice that same
differences are appreciable within samples. For instance, samples 7, 8, 32, and 34 showed a group of
signals between 90 and 105 ppm, which correspond to the window usually associated to C–C double
bonds or to a carbon on a heteroatom. On the other hand, the wine samples from Crete, as well as
from Ileia regions, showed signals in the carbonyl area, between 170 and 180 ppm (Supplementary
Materials Figure S1). Even though it is possible to qualitatively analyze the NMR data, a direct
relationship between the easily visible 13C signals and the geographical origin of wines cannot
be found. One classical route for grouping the considered samples would be to identify specific
metabolites that are characteristics for each wine and to find a relationship between such metabolites
and the geographical origin of wine. Nevertheless, such an approach would include an exhaustive
characterization of the wine samples with the employment of standards and dedicated libraries.
Our analytical proposal lies into the fact that an analytical signal, such as the 13C NMR FID, contains
much hidden information that can be extrapolated with multivariate statistical analysis. As matter of
fact, to reach the target of grouping the analyzed wine samples on the basis of the different geographical
origin, it would not be necessary to characterize any metabolite, but just to find the proper statistical
method able to identify the differences in the whole FID between wines belonging to the different
geographical groups.

Godelmann et al. [32] reported an analogue study where German wines were classified by
determining a specific chemical fingerprint for each wine by a combination of 1H NMR and statistical
analysis, including PCA and PLS-DA. As an evolution of such approach, with the aim of increasing
the amount of information constituting the chemical fingerprint, 13C NMR raw data were considered.
In fact, the acquisition window of 13C NMR (from 0 to 220 ppm) is much wider than the 1H NMR one
(from 0 to about 10 ppm), resulting in a more elevated number of points and information.

At first, PCA was applied to seek a suitable statistical methodology that would allow the
discrimination of wine samples according to geographical origin based on the 13C NMR data (Figure 5).
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Figure 5. 2D score plot for wines of different geographical origin using principal components
analysis (PCA).

Looking at the 2D score plot reported in Figure 5, it is evident that PCA-based discrimination of
samples of different geographical origin was not possible. In fact, other relevant factors, such as the
grape variety or production conditions, including the production year (vintage), impede the building
of an unsupervised classification based on the principal components.

Partial Least Squares-Discriminant Analysis (PLS-DA)

As an alternative statistical method to the unsupervised method of PCA, the supervised PLS-DA
was considered. PLS regression is a supervised statistical model particularly effective when categorical
variables are considered. It overcomes the difficulties of PCA in cases where more variables than
observations exist [35,36]. It is known that the PLS algorithm often is able to generate groups but with
a low reliability, which can usually be highlighted by a cross-validation procedure [37]. In our case,
the cross-validation procedure gave the following results, indicating a model not affordable (Table 5).

Table 5. Cross–validation parameters for the partial least squares-discriminant analysis (PLS-DA).

Measure Component 1 Component 2 Component 3

Accuracy 0.15833 0.15 0.225
R2 0.62002 0.89925 0.97146
Q2 −0.37807 −0.1962 −0.16277
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Nevertheless, even in this case, useful information about the structure of the groups can be
extrapolated [37].

Herein, PLS-DA allows the selection of the most relevant markers (in this case, represented by
specific combination of 13C signals) that can be used to determine a chemical fingerprint representative
of each group. In Figure 6, 2D score plots between the selected components are reported.
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Figure 6. 2Dscore plot for wines of different geographical origin using PLS-DA.

Looking at the 2D plot shown in Figure 2, it is possible to appreciate the better discrimination
among wines of different geographical origin when PLS-DA regression analysis is used. Looking at
the structure of the groups it is possible to gain information about the variability of wines within the
same geographical origin. As expected, the group “other” shows a wider distribution as it contains
different wines. Among them, Chardonnay from Trifylia (Messinia) and Assyrtiko from Drama appear
more similar than expected. Within the wine samples from Crete, the Syrah–Mandilari dry red PGI
shows a different fingerprint with respect to that of the other wines of the same group.

On the basis of the data obtained by PLS-DA, variable importance in projection (VIP) was used to
extract the most relevant combination of 13C NMR responses for each geographical group [38]. VIP is
the result of a weighted sum of squares of the PLS-DA loadings, and it is related to the amount of
explained Y-variable in each dimension. It can provide a fingerprint, characteristic for each group,
defined on the basis of the geographical origin (Figure 7).
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Figure 7. Variable importance in projection (VIP) score plot for the sevengeographical groups identified
by PLS-DA.

The 15 most representative factors that determine the variance are reported in the VIP plot.
Each factor is expressed in each group (Crete, Ileia, Korinthos, Macedonia, Meteora, Samos Island,
and other regions) with a different intensity. The overall combination for each group of the 15 factors
and their intensities constitutes our chemical fingerprint. It is representative of the wines arising from
a specific geographical area. As the statistical analysis has been carried out on the basis of portions of
the 13C NMR FID, no physical meaning is associated to each of the 15 factors extracted. Nevertheless,
these generated variables constitute a unique numeric code that is characteristic of the considered
geographical groups.

Proceeding further to a comparison between the varietal and geographical origin discrimination
results and the k-nearest neighbor and discriminant analyses, it should be stressed that k-NN is a
completely non-parametric approach, given that no assumptions are made about the shape of the
decision boundary. Therefore, we can expect this approach to dominate the discriminant analysis
when the decision boundary is highly non-linear (the opposite holds for discriminant analysis). On the
other hand, k-NN does not provide which predictors are significant (absence of a table of coefficients
with p-values). The k-NN classification algorithm predicts the test sample’s category according to the
k-training samples, which are the nearest neighbors to the test sample, and classifies it to the category
that has the largest category probability [39].
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5. Conclusions

The demanding need for certified products and, especially, for the parallel discrimination of already
certified products in the market, as an evolution to consumer’s rights and for the needs of food choice
support, sets the questioning of developing fast, accurate, economic, eco-friendly, and non-destructive
methodologies, in combination with machine learning, for the beneficial characterization of such
products. In the present case, wine samples of different varieties were unambiguously differentiated
according to variety using 13C NMR spectral data in combination with chemometrics. More specifically,
the combination of factor analysis (non-supervised statistical technique) with k-NN (supervised
statistical technique) resulted in the exhaustive classification of wine samples according to variety.
The analyst, using only the 13C NMR spectra, has the advantage in a short time to screen the varietal
authenticity of wine samples of different varieties or blends of wine varieties. On the other hand,
the classification of wines arising from different grapes and production years on the basis of the
geographical origin can be challenging. Similarly, the statistical analysis of the 13C NMR raw data
(hidden markers contained in the 13C NMR FID) can provide a way to reach such a target without the
need of any specific molecular characterization and eliminating any sample collection problems by
indicating specific chemical fingerprints using PLS-DA. Results, however, showed that the geographical
origin discrimination of the wine samples used in this study is a more difficult task compared to the
respective varietal discrimination. To the best of our knowledge, this is the first report in the literature
presenting this approach for the characterization of the purity of different Greek wine varieties from
different regions, constituting, therefore, the novelty of the present study and providing supportive
knowledge for the wine industry and researchers in this field, in terms of the development of rapid
methodologies for the characterization and differentiation of wine. To overcome any limitations
regarding the effectiveness of the present study, a larger number of wine samples from all the major
wine regions of Greece is required.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/8/1040/s1,
STEX: Information on wine samples, Figure S1: 13C–1H NMR spectra recorded during the analysis of wine samples
of different varieties, Table S1: 13C NMR integrals (mean values) according to the variety of wine samples.
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