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Conformal invariance of weakly compressible two-dimensional turbulence

Leonardo Puggioni1, Alexei G. Kritsuk2, Stefano Musacchio1, and Guido Boffetta1
1Dipartimento di Fisica and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy

2Center for Astrophysics and Space Sciences, University of California San Diego,

9500 Gilman Drive, La Jolla, California 92093-0424, USA

We study conformal invariance of vorticity clusters in weakly compressible two-dimensional tur-
bulence at low Mach numbers. On the basis of very high resolution direct numerical simulation we
demonstrate the scaling invariance of the inverse cascade with scaling close to Kolmogorov predic-
tion. In this range of scales, the statistics of zero-vorticity isolines are found to be compatible with
those of critical percolation, thus generalizing the results obtained in incompressible Navier-Stokes
turbulence.

I. INTRODUCTION

The inverse energy cascade is a key feature of
two-dimensional incompressible turbulence predicted by
Kraichnan many years ago [1]. As a consequence of the
existence of two inviscid quadratic invariants of the 2D
incompressible Navier-Stokes equations, the enstrophy is
transferred to small scales producing the direct cascade,
while energy moves to large scales generating the inverse
cascade. The inverse cascade in 2D incompressible tur-
bulence has been observed in numerical simulations [2–6]
and laboratory experiments [7–9], and its scaling proper-
ties have been established including the almost Gaussian
statistics of velocity fluctuations and the absence of in-
termittency [5].

More recently, scaling invariance of the inverse cascade
has been promoted to conformal invariance for some spe-
cific features of the turbulent field. In particular, by using
the technique of stochastic-Löwner evolution (SLE), it
has been shown that clusters of vorticity are statistically
equivalent to those of critical percolation, one of the sim-
plest universality classes in critical phenomena [10]. This
result, which suggests an intriguing connection between
(non-equilibrium) turbulent flows and statistical models
at the critical point, has been extended to other 2D in-
compressible flows, including surface quasi-geostrophic
turbulence [11] and a class of active scalar turbulence
[12]. Conformal invariance has also been investigated ex-
perimentally in Lagrangian reconstructed vorticity field
of a turbulent surface flow [13] (two-dimensional section
of a three-dimensional flow), where deviations from SLE
predictions have been observed.

In this paper, we study the appearance of conformal
invariance in the inverse cascade of weakly compress-
ible 2D turbulence. Compressible two-dimensional tur-
bulence has applications in numerous geophysical, astro-
physical and industrial problems. Specifically, we con-
sider a flow with an ideal-gas equation of state with the
ratio of specific heats γ = cv/cp ≃ 1, which is relevant to
astrophysical applications (where radiation provides for
temperature equilibration) [14] and for soap films when
fluid velocities are of the order of the elastic wave speed
in the limit of large Reynolds numbers [15].

This paper is organized as follows. In Section II, we

introduce the physical model, its phenomenology and
the numerical simulation. In Section III, we discuss the
statistics of the inverse cascade, while Section IV is de-
voted to conformal analysis of isovorticity lines. Finally,
Section V contains some conclusions.

II. MODEL AND PHENOMENOLOGY OF 2D

COMPRESSIBLE FLOWS

The dynamics of a compressible flow is given by the
Euler equations, which impose the conservation of mass,
momentum and total energy:

∂tρ+∇ · (ρu) = 0, (1)

∂t (ρu) +∇ · (ρuu+ pI) = f , (2)

∂tE +∇ · [(E + p)u] = f · u, (3)

where ρ is the density field, u the velocity, p is the pres-
sure, f is the external forcing, E = ρ

(

u2/2 + e
)

is the
total energy density (the sum of kinetic and potential
energy density), and I is the identity matrix. The sys-
tem of equations (1-3) is closed by the equation of state
for an idea gas p = (γ − 1) ρe. In the absence of ex-
ternal forcing f = 0, the system conserves the total en-
ergy E =

∫

Edx, which is given by the sum of the ki-
netic energy K = (1/2)

∫

ρu2dx and the potential energy
U =

∫

ρedx.
The average compressibility of the velocity field is

quantified by the rms Mach number M =
√

〈u2〉/c,
where c is the speed of sound in the fluid. The velocity
field can be decomposed into the solenoidal and irrota-
tional components u = us + ui, where ∇ · us = 0 and
∇× ui = 0.
In the case of a two-dimensional flow, they can be ex-

pressed in terms of two scalar fields: the stream function
ψ, and the velocity potential φ,

us = (∂yψ,−∂xψ), (4)

ui = ∇φ . (5)

The Laplacian of the velocity potential provides a local
measure of the divergence of the velocity ∇ · u = ∇2φ,
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while the Laplacian of the stream functions defines the
vorticity field ω = ∂xuy − ∂yux = −∇2ψ.
The phenomenology of a 2D compressible flow is

strongly dependent on the Mach number. In the low-
compressibility regime (M ≪ 1), the behavior is similar
to that of the incompressible case. One observes the de-
velopment of a double-cascade scenario in which the en-
strophy Ω = (1/2)

∫

ω2ρdx is preferentially transferred
toward small scales (direct cascade), while the kinetic
energy is transferred mostly to large scales (inverse cas-
cade). In the absence of a large-scale dissipation mecha-
nism (such as friction), the inverse cascade process causes
the accumulation of energy at the largest scale (smaller
wavenumber) of the flow. The phenomenon of “spectral
condensation” of kinetic energy on the lowest accessible
wavenumber has been studied both in the 2D incompress-
ible [4] and compressible flows [14, 16]. It has also been
observed in quasi-2D geometries, i.e. in the turbulent
dynamics of thin layers [17, 18].
The energy accumulation at large scales causes the

growth in time of the Mach number, increasing the com-
pressibility of the flow. A peculiar phenomenon of the
compressible case is the formation of acoustic waves,
i.e. pressure fluctuations which propagate within the
fluid [19]. Acoustic waves of sufficiently large amplitude
break to form a train of N-waves. Emerging shocks in
turn speed up the attenuation of acoustic energy. Shocks
also amplify small-scale vorticity by compression and
produce new vorticity through shock-shock interactions,
while strong shear generates new shocks and rarefac-
tion waves [20, 21]. At sufficiently large Mach numbers,
the interaction between acoustic waves and vortices thus
causes a transfer of energy toward small-scales through
wave breaking and the generation of shocks [14]. This
provides a stabilizing mechanism for the energy of the
condensate, which is fed by the inverse cascade process
and is removed by the acoustic waves, allowing for the
formation of a statistically steady state. This process
resembles the so-called “flux loop” observed in 2D strati-
fied flows [22]. While the dynamics of vortices and waves
is strongly coupled at large scales, it has been found to
be almost independent at small scales, where the cascade
of wave energy follows the predictions of acoustic turbu-
lence and is decoupled from the enstrophy cascade [14].

A. Numerical simulation

The Euler equations (1-3) have been integrated by an
implicit large eddy simulation (ILES) [23] in a square pe-
riodic domain of size L on a grid of 8192×8192 points us-
ing an implementation of the piecewise parabolic method
(PPM) [24] with the Enzo code [25]. The reference
length, time, and mass in the simulation are defined by
choosing the box size L = 1, the speed of sound c = 1,
and the mean density ρ0 = 1. Starting from a zero ini-
tial velocity field, the system is forced by a solenoidal,
random external forcing f acting on am intermediate

pumping scale Lf = 2π/kf with kf = 1024π. The time
correlation of the forcing is of the order of the time step,
i.e. much smaller to any physical timescale in the system.
The rate of kinetic energy injection provided by the forc-
ing is εf = 0.001. We remark that this value has to be
kept sufficiently small to avoid the production of shock
waves at the injection scale, which would inhibit the in-
verse cascade of energy. The characteristic vortex turn-

over time at the scale Lf is τf = ρ
1/3
0
L
2/3
f ε

−1/3
f ≃ 0.52,

which is more than 104 times larger than the forcing cor-
relation time. The time integration has been performed
up to time t = 30 with a sampling of the velocity field
and computation of the vorticity field every ∆t = 0.05.
We remark that even if no explicit dissipative mecha-

nism is prescribed in (1-3), the code introduces numeri-
cal dissipation which strongly affects scales smaller than
16∆x (∆x = 1/8192 is the spatial resolution).

III. STATISTICS OF THE INVERSE CASCADE

The temporal evolution of the total energy E, the ki-
netic energy K, the enstrophy Ω, and the Mach number
M during the simulation is shown in Figure 1. At the
beginning of the simulation, the Mach number is very
small and the dynamics of the system are dominated by
its incompressible part. Therefore, we expect to observe
the development of an inverse energy cascade propagat-
ing from the forcing scale Lf to larger scales r ≫ Lf and
a direct enstrophy cascade toward small scales r ≪ Lf .
This is confirmed by the linear growth of the total en-
ergy E ∼ εinvt with a growth rate εinv ≈ 0.92εf , which
corresponds to the flux of energy in the inverse cascade.
The total energy is dominated by the contribution of the
kinetic energy K, while the potential energy U becomes
visible only at late times t≫ 20.
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FIG. 1. Time evolution of the total energy E (red solid line),
kinetic energy K (blue dashed line), enstrophy Ω (purple
dash-dotted line), and Mach number M (black dotted line).
The values of E and K have been multiplied by a factor of
10, and Ω by a factor of 1/2000 for plotting purposes.

In contrast to the energy, we find that after an initial
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growth, the enstrophy Ω reaches an almost constant value
(see Fig. 1). This happens because the direct enstrophy
cascade transfers the enstrophy injected by the forcing
to the small scales, where it is removed by numerical
dissipation.
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FIG. 2. Power spectra of the solenoidal component of the
velocity Ps(k) (red solid line) and of the irrotational compo-
nent Pi(k) (blue dashed line), at time t = 20. Black dotted

line represents Kolmogorov scaling k−5/3.

At late times, the inverse energy cascade will eventu-
ally produce an accumulation of the energy at the largest
scale, giving rise to the formation of an intense vortex
dipole (the condensate). The formation of this vortical
structure results in non-Gaussian statistics in the vortic-
ity field and causes the breaking of scale invariance [26].
Considering that we are interested in the study of the
conformal invariance of the vorticity field, it is crucial to
verify that the field is at least scale-invariant. For this
reason, in the following we will limit our analysis to the
time range 10 < t < 20, i.e., well before the beginning of
the formation of the condensate. Moreover, in this time
interval the value of Ω is almost constant, which allows us
to assume that the dynamics of the vorticity field are in
a statistically steady state. In this time range, the Mach
number varies from M ≃ 0.12 at t = 10 to M ≃ 0.18
at t = 20 (Fig. 1). The dynamics are therefore weakly
compressible.
Furthermore, we will consider the scaling properties in

the range of scales of the inverse cascade Lf ≪ r ≪ L,
in which the conformal invariance has been detected for
the case of 2D incompressible turbulence [10]. As shown
in Figure 2, in the range of wavenumbers of the inverse
cascade (0.04kf < k < kf ) the power spectrum of kinetic
energy is dominated by the spectrum of the solenoidal
component of the velocity field Ps(k) =

∑

|q|=k |us(q)|2,
while the spectrum of the irrotational component Pi(k) =
∑

|q|=k |ui(q)|2 is much smaller (by more than a factor of

200 between 0.04kf < k < 0.4kf). The power spectrum
of the solenoidal component Ps(k) displays an approxi-
matively Kolmogorov slope for wavenumbers k < 0.6kf
with a steeper exponent close to −2 close to the forc-
ing scale [14, 26]. At high wavenumbers, the spectra of

the irrotational and solenoidal components become com-
parable. With a more accurate numerical method and
adaptively controlled numerical dissipation, two indepen-
dent direct cascades can be resolved at k > kf : the en-
strophy cascade and the acoustic energy cascade. These
are reflected in the scaling of power spectra, Ps(k) ∼
k−3 ln (k/kf ) and Pi(k) ∼ k−2 [26]. While Ps(k) domi-
nates at k . kf , Pi(k) inevitably becomes dominant at
k ≫ kf .

10-7

10-6

10-5

10-4

10-1 100 101

S
3(

r)

r/Lf

10-1

100

10-1 100 101

S
3(

r)
/(

ε in
vr

)

r/Lf

FIG. 3. Third-order longitudinal structure function S3(r)
(blue circles) average over times 10 ≤ t ≤ 20. Black dashed
line represents (6). Inset: compensated structure function
S3(r)/(εinvr) (blue circles) and the predicted value 3/2 (black
dashed line).

Another indication of the scale invariance of the ve-
locity field in the range of scales of the inverse en-
ergy cascade is provided by the third-order longitudi-
nal structure function (SF) S3(r) = 〈(δuL(r))3〉 where
δuL(r) = [u(x + r) − u(x)] · r/r is the longitudinal ve-
locity difference at scale r. In 2D incompressible tur-
bulence, the constant energy flux in the inertial range
gives an exact prediction for the third-order structure
function which, in homogeneous and isotropic conditions
reads [27, 28]

S3(r) =
3

2
εinvr, (6)

where εinv represent the inverse kinetic energy flux. The
third-order SF, time averaged for 10 < t < 20 in our
simulation, is shown in Figure 3. It displays a linear
scaling range at r > Lf with a coefficient 3

2
εinv (see

inset of Fig. 3) in agreement with the assumption of a
constant energy flux. Let us notice that, because of the
lack of stationarity at large scales r ≫ Lf , the scaling
S3(r) ∼ r is observed only in a narrow range of scales.

IV. CONFORMAL INVARIANCE OF

ISOVORTICITY LINES

The discovery of conformal invariance in two-
dimensional turbulence was first made for the zero-
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vorticity lines in incompressible Navier-Stokes equations
[10] and then extended to others two-dimensional tur-
bulent systems characterized by different scaling laws
[11, 12]. These previous results suggest the possibility
to also test conformal invariance in the inverse cascade
of weakly compressible turbulence.

FIG. 4. Top: Vorticity cluster, defined as connected regions
with the same sign of vorticity (here positive). Different col-
ors are attributed to different clusters. Regions of negative
vorticity are black. Bottom: Zero-vorticity isoline of the cyan
cluster.

We have extracted the vorticity clusters (i.e. connected
regions of positive/negative vorticity) and zero vorticity
isolines (boundaries of vorticity clusters) from the differ-
ent fields of the simulation. We have obtained an en-
semble of Nc = 461, 399 clusters. One example of these
clusters is shown in Fig. 4 for an intermediate time in the

simulation t = 20. Here, we observe the presence of clus-
ters of different sizes, each one enclosed by a complex,
fractal boundary.
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FIG. 5. Probability density function of cluster size A (blue
circles). The black dashed line represents the scaling predic-

tion by percolation theory Ap(A) ∼ A−96/91.

Figure 5 shows the probability distribution function
(PDF) p(A) of cluster size A, defined as the number of
connected sites which belong to the cluster. The PDF
displays a power-law behavior in the range L2

f < A <

10L2

f . The scaling exponent observed in Fig. 5 is in agree-
ment with the theoretical value predicted in the case of
critical percolation in 2D p(A) ∼ A−96/91−1. [29] The
same value has been previously observed for the scaling
exponent of the PDF of vorticity clusters size in the case
of incompressible 2D Navier-Stokes [10].
This result suggests that vorticity clusters produced by

the inverse cascade in weakly compressible turbulence are
statistically equivalent to clusters of critical percolation
and therefore display the same properties of conformal
invariance. In particular, the cluster boundaries in the
continuous limit are expected to belong to the class of
conformal curves called SLE curves [30, 31]. In order to
introduce briefly the basics of the SLE, let us consider a
curve γ(s), parameterized by the time s, starting from a
point of the boundary of the half-plane H . At given time
s, the curve γ(s) define a region Ks (the hull) formed
by the points of the complex half-plane which cannot
be reached from infinity without crossing the curve, plus
the curve itself. The simply connected set H \Ks can be
mapped into H by an analytic function gs(z) which satis-
fies the asymptotic behavior gs(z) ∼ z+2s/z+O(z−2) at
z → ∞. The conformal map gs(z) obeys the differential
Löwner equation [32]:

dgs
ds

=
2

gs(z)− ξ(s)
, (7)

where ξ(s) is the real driving function. The Löwner equa-
tion establishes an equivalence between the curve γ(s)
and its driving function ξ(s). Different driving functions
produce different curves. In the case of random curves
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γ(s), the equation (7) is called stochastic Loewner evolu-
tion (SLE) and the driving ξ(s) is a random real variable.
It has been demonstrated that the statistics of random
curves are conformal invariant if and only if the driving
is a Brownian walk, i.e. a random function with indepen-
dent increments and with 〈(ξ(s) − ξ(0))2〉 = κs. Here, κ
is the diffusion coefficient which classifies the universal-
ity class of cluster boundaries in critical phenomena in
2D [31, 33, 34]. One of the predictions for SLE curves is
their fractal dimension, which is known to be D = 1+κ/8
(for κ < 8). In the case of critical percolation, for which
κ = 6, the prediction is D = 7/4 which has been in-
deed measured in the vorticity cluster of two-dimensional
turbulence[10].
We have therefore extracted the zero-vorticity line

from the fields of weakly compressible turbulence. The
extraction is performed by means of an algorithm which
follows the frontier of a cluster of vorticity by always
keeping the positive region on the right of the path. At
variance with “true” SLE curves, in our numerical simu-
lation, scale (and conformal) invariance can be expected
in the range of scales of the inverse cascade only. There-
fore, for numerical convenience, we have coarse-grained
the vorticity fields produced by the simulation by halv-
ing the resolution to a 4096 × 4096 grid. One example
of vorticity isoline obtained from this procedure is shown
in Fig. 4 (right panel). The total number of isolines ob-
tained is N = 1144.
We have computed the correlation dimension D2 of the

zero-vorticity isolines by computing the probability den-
sity function (PDF) p(R) of finding two points belonging
to the same isoline at distance R. For a fractal set, the
probability scales as p(R) ∝ RD2−1. As shown in Fig. 6,
the PDF p(R) displays a scaling exponent in agreement
with the prediction for the SLE curves with κ = 6, i.e.,
D2 = 7/4 in the range of scales 1 . R/Lf . 7, which
corresponds to the the inverse cascade.
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FIG. 6. Probability density function of distances R between
two points belonging to the the same zero-vorticity line (blue
circles). The black dashed line represents the theoretical pre-

diction Rp(R) ∼ R7/4.

Assuming that the ensemble of zero-vorticity isolines

is statistically equivalent to SLE curves, we have derived
the associated ensemble of driving functions ξ(s). The al-
gorithm which computes the driving for a generic curve
is based on the solution of the Eq. (7) in the case of an
infinitesimal line segment starting from the origin (0, 0)

and ending in (ξ, 2
√
ds): gds(z) = ξ +

√

(z − ξ)2 + 4ds.
By approximating the generic curve γ(s) with piecewise
line segments, one obtains the associated driving func-
tion ξ(s) (see [10] for further details). Averaging over
the ensemble of N = 1144 driving functions obtained,
we have computed the variance σ2

ξ = 〈(ξ(s) − 〈ξ(s)〉)2〉.
In the range 1 . s/(2Lf)

2 . 7, we find that the vari-
ance grows linearly as σ2

ξ = κs (see Fig.7). The driving

ξ(s) is therefore a diffusive process with κ ≈ (5.7± 0.2),
which is close (within the statistical uncertainty) to the
expected value of κ = 6. Moreover, the PDF of the stan-
dardized driving (ξ(s) − 〈ξ(s)〉)/(κs)1/2 collapses onto a
standard Gaussian distribution function for values of s in
the scaling range (see Fig. 8). These findings support the
conjecture that the driving function is a genuine Brown-
ian motion ξs =

√
κBs, and that the vorticity isolines are

SLE-curves belonging to the same class of universality of
percolation corresponding to κ = 6.
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FIG. 7. Variance of driving functionσ2

ξ(s) as a function of
the parameterization s (blue solid line) and the theoretical
prediction σ2

ξ(s) = κs with κ = 6 (black dashed line). In the

inset we show the compensated value σ2

ξ(s)/s.

V. CONCLUSIONS

In this work we have studied the conformal invariance
of weakly compressible two-dimensional turbulence. We
have shown that the isolines of vorticity clusters are com-
patible with SLE curves in the universality class of crit-
ical percolation, as in the case of incompressible two-
dimensional turbulence. Our results therefore extend
those obtained in others two-dimensional turbulent sys-
tems (Navier-Stokes, surface quasi-geostrophic, Charney-
Hasegawa-Mima) to the realm of (weakly) compressible
turbulence.
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FIG. 8. PDF of the driving functions ξs at different values
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f (blue upper triangles), s = 20L2

f (red circles),

s = 30L2

f (orange squares), s = 40L2

f (green lower triangles).

One question which naturally arises from our results is
whether the conformal invariance property would survive
in higher compressible regimes characterized by larger
Mach numbers. While this is in principle interesting, we
remark that, by increasing the Mach number, a different

phenomenology emerges at large scales: when velocity
fluctuations reach the speed of sound, kinetic energy pro-
duces shock waves which arrest the inverse cascade and
provide a new mechanism of energy dissipation [14]. This
“flux loop” introduces a characteristic scale in the pro-
cess which breaks the scaling invariance of the cascade.
Conformal (and scaling) invariance could still survive in
the limited range of scales between energy injection and
shock wave production, and its study would be an inter-
esting problem for future investigation.
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